
Starting Definitions

- Data
- Statistics
- Population
- Census
- Sample
- Parameter
- Statistic

Where do data come from?

- Common ways of obtaining data
- Observational studies
- Experiments
- Sample Surveys

Observational Studies

Observations or measurements of specific characteristics with no attempt to *modify* the *subjects* being studied

- Three types
 - Cross-sectional study (at one point in time)
 - Retrospective (case-control) study
 - Prospective (longitudinal or cohort) study

Observational Studies (continued)

Interpretation of results subject to effects of *confounding*

- *Confounding variable* is one that affects the response variable and is related to the explanatory variable
- Can often establish an association, but generally can't conclude cause and effect

Experiments (continued)

Observe effects on subjects after the application of some *treatment*

- Might want to compare a treatment versus a control or multiple treatments
- Key elements in experimental design are
 - Control for effects of variables
 - Use replication
 - Use randomization

Experiments (continued)

- · Controlling for effects of variables
 - blinding
 - placebo effect
 - double dummy
 - blocking
- Replication and sample size
 - need sufficiently large enough samples to be able to distinguish between a true effect and natural variability
 - experimental results should be reproducible

Sampling Strategies

Using randomization

Expect all components of the population to be approximately proportionately represented

- Random sample: each individual has an equal chance of being selected
- Simple random sample: each sample of the same size n has the same chance of being chosen
- **Probability sample:** each member has a known chance of being selected

Sampling Strategies (continued)

• Other sampling techniques

- Systematic sampling
- Stratified sampling
- Cluster sampling
- Convenience sampling
- Good designs may combine elements
 - Randomized block design experiment
 - Multistage sampling

Sample Surveys

- a type of observational study
- phone, mail, email, web-based, in person
- some additional issues
 - Wording of questions can introduce bias (deliberate or unintentional)
 - "Do you agree...?"
 - Ordering of questions (planting ideas)
 - Convenience samples/Self-selected samples
 - Desire of respondents to please
 - Confidentiality concerns may influence responses
 - Non-response bias

Fundamental Rule

Data must be representative of the population with regards to the question(s) of interest

- -- regardless of how data were collected
- -- random selection
 - Helps to ensure that all components of the population will be approximately proportionately represented prevents selection bias

Sampling (chance) error

- Difference between the sample result and the true population result due to chance sample fluctuations.
- Will never know the population parameter value exactly, even with perfect sampling
- Estimate = Population parameter value + chance error

Nonsampling error

- Errors due to sample data that are incorrectly collected, recorded, or analyzed
- Estimate = Population parameter value + bias + chance error

Things to be aware of

- Already mentioned
 - Sample sizes
 - Loaded questions
 - Order of questions
 - Nonresponse
 - Association versus causation

Things to be aware of

- Some other potential issues
 - Graphs used to exaggerate or understate (scaling of axes)
 - Pictographs
 - Percentages (misleading or unclear)
 - Missing data
 - At random meaning unrelated to values
 - Special reasons
 - Self-interest studies
 - Precise numbers \rightarrow accuracy