
Definition of the Fourier Transform



In the previous three lessons, we discussed the Fourier Series, which is for periodic 
signals. This lesson will cover the Fourier Transform which can be used to analyze 
aperiodic signals. (Later on, we'll see how we can also use it for periodic signals.) The 
Fourier Transform is another method for representing signals and systems in the 
frequency domain.

Definition of the Fourier Transform

is the continuous time Fourier transform of f(t).



It is an extension of the Fourier Series. The Fourier transformation creates F(ω) in 
the FREQUENCY domain. We will see that F(ω) can be seen as a "continuous 
coefficient" of a Fourier Series if we let the period of a periodic function go to 
infinity so that the resulting function becomes aperiodic in the limit.

Let fp(t) be a periodic function. Therefore, we can express it with a Fourier series:

As usual, 



Assuming that fp(t) is a periodic rectangular pulse train, let's plot its magnitude 
spectrum Ck vs. ω=kω0

As shown, each Ck is the frequency component of fp(t) at the frequency ω = k ω0.



Now, if we let T0, the period of fp(t), go to infinity (meaning that fp(t) becomes 
aperiodic), then the fundamental frequency ω0 will go to zero. Then the lines in the 
plot will get closer and closer together and merge into a continuous spectrum.

As ω0 → 0, the distance between lines goes to 0, so let's write Δω for ω0 in our 
Fourier Series representation of fp(t): 

Next, we can replace Ck in our Fourier Series representation of fp(t) by using the 
formula we derived in Lesson 13 for the Fourier Series coefficients: 



Next,

As Δω → 0, we write it as dω and the sum becomes an integral (and kΔω
approaches ω as T0 → ∞ where ω is a continuous variable).

Let                              be the Fourier Transform of f(t). 

So F(ω) replaces the Ck as Δω → 0 and is a continuous function of ω. 

Finally, we have derived our Fourier transform pair:

Notice the similarity between the two formulas except for the sign change in the 
exponent and the multiplicative factor in front of the synthesis formula. 



Because the Fourier Transform is an integral over an infinite range, we must consider 
whether or not the integral converges. Sufficient conditions for the existence of the 
Fourier Transform are the Dirichlet conditions. That is, the Fourier Transform exists if:

1. On any finite interval
(a) f(t) is bounded 
(b) f(t) has a finite number of minima and maxima 
(c) f(t) has a finite number of discontinuities 

2. f(t) is absolutely integrable, that is 

This can be seen because we know that |e-jωt| = 1: 

Therefore, if f(t) is absolutely integrable, then its Fourier Transform exists.



3. Basically, if you can generate a signal in a laboratory, since it has finite energy, 
it will have a Fourier Transform.

Now, let's compute our first Fourier Transforms:
Example 1 Compute the Fourier Transform of



Note:                      

is an IMPORTANT continuous time 
function that we will see many times.



Example 2 Compute the Fourier Transform of



Example 3 Compute the Fourier Transform of δ(t)



Example 4 Compute the Fourier Transform of



Example 5 Find F(ω) for f(t) = Cδ(t + t0)



Example 6 Find f(t) by taking the Inverse Fourier Transform of F(ω). (This is the 
Fourier Transform of an ideal low pass filter.)



The point of this lesson is that knowledge of the properties of the Fourier Transform 
can save you a lot of work. We will cover some of the important Fourier Transform 
properties here.

Because the Fourier Transform is linear, we can write: 
F[a x1(t) + bx2(t)] = aX1(ω) + bX2(ω)

where X1(ω) is the Fourier Transform of x1(t) and X2(ω) is the Fourier Transform of x2(t). 

Properties of the Fourier Transform (Linearity, 
Time Scaling, Time Shifting, and Duality)



if a>0. If a< 0, then

(since u=at). Therefore





Note the DUALITY when you compare Examples 1 and 6 from Lesson 15.

Example 1 of Lesson 15 showed that the Fourier Transform of a block (or rect) function 
in time is a sinc in frequency. Example 6 of Lesson 15 showed that the Fourier 
Transform of a sinc function in time is a block (or rect) function in frequency.

In general, the Duality property is very useful because it can enable to solve Fourier 
Transforms that would be difficult to compute directly (such as taking the Fourier 
Transform of a sinc function). The Duality Property tells us that if x(t) has a Fourier 
Transform X(ω), then if we form a new function of time that has the functional form of 
the transform, X(t), it will have a Fourier Transform x(ω) that has the functional form 
of the original time function (but is a function of frequency). Mathematically, we can 
write:



Notice that the second term in the last line is simply the Fourier Transform 
integral of the function X(t), i.e. 

Therefore we get the Duality Property: 



Example 1 Using the Fourier Transform integral equation, directly find the Fourier 
Transform of

( ) ( ), 0atx t e u t a 

Example 2 Using the results of Example 1 and the Duality Property, find the Fourier 
Transform of



In this lesson, we will cover additional properties of the Fourier Transform. The most 
useful one is the Convolution Property. It tells us that convolution in time corresponds to 
multiplication in the frequency domain. Therefore, we can avoid doing convolution by 
taking Fourier Transforms! In many cases, this will be much more convenient than 
directly performing the convolution.

The Convolution Property
The convolution property states that: 

Let us show that. To start, let 

Then we can take the Fourier Transform of y(t) and plug in the convolution 
integral for y(t) (notice how we've marked the integrals with dt and dτ to 
keep track of them):

More Properties of the Fourier Transform (Convolution,
Multiplication of Signals, and Frequency Shifting/ Modulation)



Now, let's switch the order of the two integrals (this is valid in all but the most 
pathological cases):

Therefore,

We've just shown that the Fourier Transform of the convolution of two functions is 
simply the product of the Fourier Transforms of the functions. This means that for 
linear, time-invariant systems, where the input/output relationship is described by a 
convolution, you can avoid convolution by using Fourier Transforms. This is a very 
powerful result.



Multiplication of Signals
Our next property is the Multiplication Property. It states that the Fourier Transform 
of the product of two signals in time is the convolution of the two Fourier Transforms.

Now, write x1 (t) as an inverse Fourier Transform.



Therefore,

Example 1 Find the inverse Fourier Transform of

Here is a plot of this function: 
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Example 2 Find the Fourier Transform of x(t) = sinc2(t) (Hint: use the Multiplication 
Property).
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Example 3 Find the Fourier Transform of y(t) = sinc2(t) * sinc(t). Use the 
Convolution Property (and the results of Examples 1 and 2) to solve this Example.
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Frequency Shifting or Modulation

This tells us that modulation (such as multiplication in time by a complex 
exponential, cosine wave, or sine wave) corresponds to a frequency shift in the 
frequency domain. 


