Lesson Week 2
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The Unit Step Function

We already defined the unit step function u(t) as:
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Ex: Find and plot u(t - ¢,) and u(t - t,)

ta>0 T uft—t,)
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Ex. Define a block function (window) as

1
rect(l) =
Z 0

Then rect(%) =u(t +%)—u(t —g) This is an ideal low pass filter
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The Unit Impulse Function

Now let's look at a signal: U(t) 10

% i
What is its derivative? Define it as: O (t) = - a(t) which has unit area.

(6

unit area
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Now, lim(t) = u(t)

so what if we take lAin% 5(t)?
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The pulse height gets higher and higher and its width goes to zero, but its area is still 1!
So define §(t) as unit impulse:

[ g0
S = i
£ { undefined, =10

And oo
j Sityds =1

—i0

or equivalently,

undefined, £ =§

5(t 1) = { 0, £ # 1



And oo

Also

0,  otherwise

i1 .
IE(:]-::-’F{ 1, if <0<

&(t) can be considered to be the derivative of u(t) but only in a restricted sense
since u(t) is a discontinuous function.



Note that the impulse function is not a true function since it is not defined for all
values of t. It's a "generalized function.” But its idealization will allow us to derive
many interesting results.



1. Scaling K§(t) is an impulse
with weight or area K:

2. Multiplication of a function x(t) (that is

continuous at 0) by an impulse §(t):

We get an impulse with
area or weight x(0).

T x(2) 0 T x(£)8() = x(05()

/\.@‘/F\\_// 1 ¥ |
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3. Time Shift of an impulse
y(t) = x(£6)5(t-t,)

L o

0, £+ I
o —fp) = { undefined, £ =14

So we get an impulse with weig - re the impulse
is located: y(t) = x(t,)d(¢-t,)

Example What is x(t)*Kd(t-t,)

1 =z RS -tg) l Kxitg)50 - t)
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Example What is 3u(t-1)8(t) ?

T 2u@-1 A
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***SHIFTING PROPERTY***

What if we multiply a function by an impulse and then integrate?

Ix(ﬁ]é[ﬁ —to)dt =7

=0

(e}

= | eyt - g )at

=0

= x(tg) | 8 -~ 1)t = x(z)

We integrate out the time variable so the integral is just equal to a number (or later on,
a function). We'll see this many times. In this case, the impulse §(¢-t,) is defined by the
integral (as long as the function x(t) is continuous at t,).
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ALSO:

If(f—q]}a‘?(f—zl}cﬁ =F(4 —tg) if 7 () is continuous at & —

f
IE{r — i)t = ult - ty)

-0

o 5(2)=8(-1)

. Slat) =150

l
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Continuous-Time System

. A SYSTEM is an operation for which cause-and-effect relations exist.

x(t) Fit)
= Ay stem -

irupnat output

Properties of Continuous-Time Systems

Here, we discuss some of the properties that a continuous-time system could
have. We will use x(t) for the input to the system, y(t) as its output, and use the

notation:

y(t) = Tlx(¢)]
Or y(&) = S[x(t)]
Or x(t) — y(t)
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Systems with memory

Systems whose output depend on values of the input other than just at the time of
the output have memory.

A system y(t,) has memory if its output at time t, depends on the input x(¢) for t >
t,ort<t, i.e., it depends on values of the input other than x(t,).

Otherwise, the system is MEMORYLESS

Example of a memoryless system:
Resistor v(t,) = R i(t,); the voltage depends only on current at time ¢,

Example of System with Memory:
&y
1
Capacitor ¥{fo /= = _[!'( £ it

the voltage depends on past values of current so a capacitor has memory.
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Ex. Does y(t) = x(t) + 5have memory?

y(t) is memoryless.

Ex. Does z(t) = x(t + 5) have memory?

z(t) has memory

Ex. Does y(t) = (t + 5)x(t) have memory?

y(t) is memoryless
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Ex. Does z(t) = [x(t + 5)]*> have memory?

Z(t) has memory

Ex. Does a(t) = x(5) have memory?

a(t) has memory

Ex. Does v(t) = x(2t) have memory?

V(t) has memory
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Imverse of a System

A system is invertible if you can determine the input uniquely from the output,
i.e., there is a one-to-one relationship between the input and output.

#(£) Fitd x(t)

B —— Y - SI

Resistor is Invertible, x(t) = i(t) , y(t) = v(t), x(t) = y(t)/R.

) ity

1) R .

w| -

y(t) = x5(t) is an invertible system.
Noninvertible:
y(t) = x(t)u(t) — zeros out much of the input
y(t) = x3(t) — don't know sign
y(t) = cos[x(t)] — add 2m to x(t)
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Causallity

Output y(t) depends only on past and present inputs and not on the
future.

All physical real-time systems are causal because we can not anticipate the future.
Image processing-Non-causal filters like blurring masks.
Music processing - record and process later - noncausal but not real-time

Ex. Resistor, Capacitor, and stock market are causal,
. Vitg J=ifty JR— metnoryless = Causal

Iy

1
. W)= = Ii{ !}t — Causal since only depends on past and present
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Non causal systems need off-line processing
Intuition: system doesn't laugh until it's tickled

fi+a
EX. sty )= J' x¢t)ds  Is this Causal? You fill in.
It is non causal. Since the value of ‘@’ is not specified, the value of ‘a’ can be positive
(a >0). In that case, it is non causal.
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FACT: Memoryless — Causal but not vice versa. In fact, most causal systems
have memory.

Ex. Let y(t) = x(-t).
[s this causal? Try letting t be a negative number.

This is non causal. For example y(-1) = x(1)




Stabillity

Bounded Input - Bounded Output (BIBO) Stability

Input x(t) bounded produces bounded output.
If| x(t) |[< B, — |y(t)| = B,, wherey(t) is output.

yit)

T = B,

S AWANA NAWAWA ANANANANARAY
VY VAV VAVEVAVEVEL

Ex. Resistor is stable V=iR, | i(t) | < B, — |v(t)| < RB,
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dv, (1)

Example: Capacitor: i(t) = C m

Is this stable?
Let i(¢t) = Bu(t), where B #0
1 b
V() = EL‘(f)df
1 b
V.it)= E:[oﬁlu{r s
1 r
V() = E.!Bldf

E
'Vc {-f,} = ?lf

- BIEC  unstable

B : :
V(1) = Elt grows linearly with t and as t — o, V (1) - .

So capacitor is not BIBO stable.
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Time-Inmvariamce
Given a system that is time-invariant, if the input signal is shifted in time, all
that will happen is the output signal will be shifted by the same amount in

time. It will not change in any other way. An alternative way to state this is
that the system does not change over time. It will perform the same today as

it would next week.

- 3 A # Time Zhift

Alxi®)]

Fl- fu)=

(£

L O . P STt - f0)]

» Ify(t-t,) = S[x(t-t,] (i.e. the outputs of both branches of the above block
diagram are equal), then the system is TIME-INVARIANT. This means that the
system is not changing with time.

> Ify(t-t,) = S[x(t - t,] (the outputs of both branches of the above block diagram
are different), the system is TIME-VARYING. This means that the system will

perform differently depending on when you use it.
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t
Ex. Is a capacitor time-invariant? ¥, = IE .I.!'I:T:I.:ﬁ'

compare V. (t - t,) with S[i(t - t,)]:

=4

-t = - .I.!'[:fjdf
_ AT ¢
- = GG Time Bhift ———————-
if)
¥
it t) STiCt - )] = — [ite-toyas
o Time Shift . 5 ¢

=t

Leta=r-t =S¢ -t)]= = [i@das F¢-1)

—_—0
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Ex. Resistor v(t) = i(t)R. Is this Time-Invariant?

i)

w(f —fy) = i(f - fp)R

5 O ) Tiwe sm .
ATH]
N i(f - ) STt - )] =1 - )R
Tiﬂ'l.ﬁ Sh]ft - S -
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Ex. y(t) = tx(t) IsthisTime-Invariant?

(¢ + e+ 1)
1

-1 a

POt —tg =0t =fyymt =1y )

—li—

}{ = Iime Varping

ST — 1] =t — 152
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Ex. Time Reversal y(t) = x(-t) Is this Time-Invariant?

| Time Shift

A~ +1)

-1 01

Pl =ty ==t -1 1)

=1+

}K = ItmeVayrying

STt~ )] = w1 -ty

x(=1)
-2
Je mey
Al
x(E)
aky
1 o Time dig | 000
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1
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Ex. Test the following systems for time-invariance:

t
1. z(f) = Ix(rjdr

—_—

FEati]

2t -1 = [xedr

=(f) . ) —a
-~ 3 e Time Bhift —  »
STxE)]
x(£)
'
STt~ 1) = .I-I[:T - t,)dr

. . J:'I:f - fl:lj ]

m Timme Zhift - 3 -
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¥
2. y®=[xx)ds
0

This is time varying. Because the length of
the window over which you integrate
changes.

3. a(t) = sin[x(t)]

This is time invariant.
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4. b(t) = sin(t)x(t)

This is time varying.

5. w(t) = x(2t)

This is time varying.
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r
RE Ix(r - $)dr
0

xif)

r

Pt -1 = Ix(f-fu - fidr

ity _ . 0
3 o Time Shift — o
A x()]
r
St -1,7] = Ix(f ~fy - Ddr
. . x(f - fl:,:] 0
Time Shift - = —
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Limearity

For a system to be linear, it must satisfy both the additivity and homogeneity
properties:

1. Additivity

If S[x,(6)] =y,(t) and S[x,(¢)] =y,(t) — S[x,(¢) + x,(6)] =y,(t) +y,(t) means thata
system satisfies the additivity property.

2. Homogeneity or Scaling

S[x(t)] =y(t) — Slax(t)] = ay(t) means that a system satisfies the scaling or
homogeneity property.

Combine Additivity and Homogeneity to get the SUPERPOSITION CONDITION:

If S[x,(6)] =y,(t) and S[x,(t)] =y,(¢)
then Slax (t) + bx,(t)] = ay,(t) + by,(t)
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Examples of Linear systems

Multiplication by a constant:
S[x(t)] = ex(¢)

Try: S[ax,(¢t) + bx, (t) ]:

Sx,(6)] = ex(t) = y,(t)
Sx,(8)] = x,(t) = y,(t)
Slax (t) + bx, (t) | = acx,(t) + bcx,(t)

= ay,(t) + by,(t)

Therefore, linearly combined input produces linearly combined output and the
system is linear.
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Examples of Nonlinear systems

1) Squaring

() - - . xlz(f)

ar (£}
x)+ xz () -

Separe I—— )

n2) + 220 + 2B

SIx(0)] =y(t) = x*(¢)
Violates homogeneity,

S[x(0)] = x(t)
Slax(t)] = a>(t) = ax2(t)
(It also violates Additivity due to the cross-terms.)
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2) Affine or Incrementally linear system
SIx(0)] = y(&) = x(t) +a

This system violates homogeneity:

It also violates additivity:

S[x(t)] = x(t) +a
cx(t) + a = c[x(t) + a]

S[ex(t)] =

Six(t)] = x(t) +a
SIx, ()] = x,(t) +a
Slx,(t) + x,(6)] = x,(t) +x,(t) +a = S[x,(¢)] + S[x,(¢)]

But we can think of this as a system that is "incrementally linear" or affine (note that
the first part of the system is linear):

x(E)

Linear
Swatermn

Wit

V£

)

-CE)
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Note: If the input to a linear system is zero, the output will also be zero. Use the
scaling property to show this:

S[x(t)] = y(t) = Slax(t)] = ay(t)

If we let a = o, then we get that S[o] = o.
For an affine (nonlinear) system such as

Slx(6)] =x(t) + 3

A zero input produces non-zero output, i.e. S[o]=3. This violates the requirement that
a linear system produce a zero output to a zero input.

38



Superposition:

We can generalize superposition to more than 2 functions, i.e. given a set of
inputs x,(t) with a set of corresponding outputs y,(t), we can take a linear
combination of any number of the inputs and get the same linear combination of
the corresponding outputs:

x(E) =2 @ (£) produces output
i:

Y(E) = 2y, @)
i:

You will find this very useful in doing some convolutions.

39



Are the following systems linear?

1. y(t) = tx(2t)

2. vyt = Ix{r)dr

This is Linear.

This is Linear.

40



3. y(t) = cos[x(¢)]

x(E) £
—x(£) £ 2100

4 y6)=4

This is non linear

This is Linear.
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5. y(t) = |x(¢t)]

This is non linear.
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ontinuous-Time Linear Time-Invariant Systems

In this lesson, we will discuss linear time-invariant (LTI) systems - these are
systems that are both linear and time-invariant. We will see that an LTI system has
an input-output relationship described by a convolution.

Impulse Representation of Continuous-Time Signals

Using the sifting property, we can write a signal x(t) as:

[n]

x(e) = [2(r) 8 - r)de

-0

which is writing a general signal x(¢) as a function of an impulse function. This
expresses the input x(t) as an integral (continuum sum) of shifted impulses that
are weighted by weights x(z). Another way to put this is that you can build a CT
signal out of impulses.
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Continuous Time Convolution

We can write: =

x(f)= Ix[r]c‘i‘(ﬁ —r)dt using the sifting propetty

This expresses the input x(t) as an integral (continuum sum) of shifted
impulses that are weighted by weights x(7).

Now take a system and define the impulse response of the system as

S5(t)

sy stern

S[BiE)] = Ait)

h(t) = S[5(1)]

Impulse response

and the response of the system to a shifted impulse as:

50t - 1)

mystem

S| 8(E - )] = Al 7]

h(t,r) = S[6(¢t - 7)]
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If the system is linear, then

oz (E) + Mg i)

- mystem

oy (£) + (£

Slax (t) + Bx,(t)] = ay,(t) + By,(t)

Let

o

x(2) = [x(r)8(e ~r)de

—

- =y stetn

Tx(r]ﬁz (£, rdr

—0

() = STx(e)] = 5[ [ #(x) 8¢ — r)dr]

oo

- II{I}S[E{E —r)ldr due to lineanty

-0
o0

= [x(z)i(e,0)dr

—0
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But what if the system is also Time-Invariant?
Then S[8(t - ©)] = h(t, ) = h(t- 1), since we had S[§(t)] = h(t). Therefore,

sl

y(£) =[xzl - T)dr = x(e) % (2)

We have seen that if we have a linear time-invariant system, then the output is the
input convolved with the system's impulse response h(t). In other words, we can
completely characterize an LTI system by its impulse response.

This is a very important result!

i = T:ﬁ:{r]}z(ﬁ - T)dr
x(L) s

- SFStEI‘ﬂ = I{f:l *;E(f'}

Convolution Integral:

L)

y(E) = x(8) % h(e) = [x(r)k(t -7 )dr

-0

Here, h(7) is flipped and shifted across x(z).
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that will greatly improve the quality of your life:

| Convolution is a tough concept to get at first. [ have 2 rules

/

- 1.DRAW A PICTURE of x(z) and h(t - 7)
- 2.FLIP THE "EASY" FUNCTION

Why can we pick which function to flip?
Because convolution is commutative:

oo

y(£) = [ x(z)kie - 7)dr

-0

Change variables: A =t-t - t=t- A, dt =-dA.

y(£) = =[xt = A)R(A)dA

- T;g(,ﬂ,j x(t = A)dA = hie) * x(£) = x() *h(¢)

(minus signs cancel)

e



_[

Convolution is a tough concept to get at first. [ have 2 rules

/

that will greatly improve the quality of your life:

- .DRAW A PICTURE of x(z) and h(t - 1)
- 2.FLIP THE "EASY" FUNCTION

Why can we pick which function to flip?
Because convolution is commutative:

oo

y(£) = [ x(z)kie - 7)dr

-0

Change variables: A =t-t - t=t- A, dt =-dA.

y(£) = =[xt = A)R(A)dA

- T;g(,ﬂ,j x(t = A)dA = hie) * x(£) = x() *h(¢)

(minus signs cancel)
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Let's examine convolution formula:

y(e) = | x(r)k(e - )de

1. Flip h(z) and shift it t —eo
Note: h(t - 7) is a function of z, not t!

t is the shift parameter.

2. Fix t and multiply x(z) with h(t - ) for all values of .

3. Integrate x(z)h(t - r) over all t to get y(t) which is a single value that
depends on t. Remember that 7 is the integration variable and that t is
treated like a constant when doing the integral.

4. Repeat for all values of t.

Fortunately, it usually falls out that there are only several regions of

interest and the rest of y(t) is zero.

49



Ex. Find y(t) = x(¢t)*h(t).
Form x(r) and h(t - ) (to shift by h(- t) by t, just add ¢ to all points) and continue from the

b oxi) p A

Thiz 1z for the case of t =4
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(I £<-3 ,ne ovetlap
yigy =10

i X xRiE-1)

1

(2) -3¢0

y@=Tx@m@—ﬂdr=pﬁ=z+3

- -3

(3) 01
»(E) =3

(4 £51&(¢-2<1

1
yiey=[dr=4-:

-3

(5) t>4
yz)=0

7 % 5 4 3 =2 1 |0 1 =t
i-3 i
b xf)xhiz -1
1
1 ¢
- 3 ;
1
4 3 2 1 o 1 2z 3 r
£-3 ¢
I
xE) ®BE—T)
1
4 3 2 1 0 2 a5
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h\.“'

When you finish notice:

1. (a) nonzero "width" of x(t) = 3
(b) nonzero "width" of h(t) = 4
(c) nonzero "width" of y(t) =7
2. y(t) is "smoother" than x(t) or h(t)
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