Artificial Intelligence & Marketing Decision Support Systems
University of Washington
Summer 1997
BBUS 429
Professor P.V. (Sundar) Balakrishnan
Office: Room 210
Tel. #: 685-5384
Email: sundar@u.washington.edu
Course Objectives
:Business is in the midst of a technological revolution. To be successful, students have to be at the forefront of this new technology. This means taking a "hands-on" approach to developing the requisite skills necessary to become "marketing engineers".
This course deals with concepts, methods, applications of decision modeling to address various marketing issues. Unlike conventional capstone business courses that focus on conceptual material this course will attempt to provide skills to translate conceptual understanding into developing specific operational models for improved decision-making - a skill in increasing demand in corporations today.
Using PC and UNIX-based computer software, students will develop Spreadsheet Models and Artificial Intelligence based Decision Support Systems for varying managerial decision contexts.
Specifically, course objectives are to:
The course will be of particular relevance to students planning careers in marketing and management consulting. The course is designed for students with some quantitative background as well as some exposure to marketing concepts.
REQUIRED COURSE MATERIAL
1) Gary L. Lilien, Marketing Management: Analytic Exercises for Spreadsheets, Second edition, 1993. (GL).
2) Various Readings placed on reserve in the library (R);
3) EXSYS Manual and Videotape placed on reserve in the library. .
RECOMMENDED REFERENCE
1) Gary L. Lilien, Philip Kotler, and K. Sridhar Moorthy, Marketing Models, Prentice Hall, 1992. (LKS).
This is a reference book that supplements course materials and class discussions. This text will be useful for answering the more advanced questions.
SAMPLE BOOKS FOR REPORT
Each individual is expected to read and report on a book of their choice relating to this course. A sample of books is listed below and some of which are available from the Library (reserve section).
Check with me before you select a book from either this list or find your own.
EVALUATION
Genetic Algorithms Term Projects 35%
Assignments & Exams 35%
Class Participation & Presentations 20%
INDIVIDUAL Book Report 5%
WORK LOAD
Class sessions will be devoted to probing, extending and applying the material in the readings and the cases. It is your responsibility to be prepared for each session as detailed in the course outline. Each one of you will benefit from belonging to a "study group" that meets and prepares for each session before coming to class.
The course will involve extensive computer-based work in addition to the readings and library research. My expectation is that the time required for out-of-class work will be 3 times the duration of class meeting.
Genetic Algorithms Term Projects Guidelines
(35%)
Assignments & Exams:
There are various spreadsheet assignments (mini-cases) to be completed as part of the course. The dates on which the assignments have to be handed in are indicated in the course schedule. The exact nature of the assignments will be announced in class, sufficiently ahead of time. These are group assignments: Please form groups to work on these assignments, and to prepare for class discussions.
Class Presentations:
Class Participation:
Each of you is expected to contribute to class discussions. Do not expect to do well in this course by simply coming to class, taking notes, and synthesizing, recalling, or reproducing these notes for our evaluation. To do well, you must learn from active participation in class discussions.
In evaluating class participation, I will try to assess how your individual contribution enhance both the content and process of a discussion:
If you are unprepared to participate in the day’s discussions, notify me prior to the beginning of the class to avoid any embarrassment.
Software
We will play with a number of different software packages.
(You can also Purchase EXSYS Professional student version for $70. The Purchase can be done directly from the company EXSYS Inc. The phone number is 1-800-676-8356 or 505-256-8356. This is an expert system development package which is limited to 50 rules but has most of the functionality of the substantially more expensive EXSYS Professional Complete package. Additionally you will get the manuals, tutorials etc.)
Please Note: All Reports and Papers submitted as part of this course, whether short or long, will also be graded for
Tentative Class Schedule
Topic: Introduction
6/23 Search the Internet for GA Software
Topic: Basics of Spreadsheet Models
6/25 Read: Chapters 1, 9 {2 if you use LOTUS else skim} (GL)
Software: EXAMPLE (discuss), HW Problem
Topic: Optimization Tools of Spreadsheet Models
6/30 Read: Chapters 1, 9 {2 if you use LOTUS else skim} (GL)
Software: EXAMPLE* (Due§ ), MAP
(discuss)
Topic: Artificial Intelligence Techniques: Overview of Genetic Algorithms
7/2 Read: "Moody’s Evolving Desk" (R)
Skim: "A Gentle Introduction to Genetic Algorithms" (R)
Software: MAP* (Due), GENERATOR
Topics: Decision Calculus Models: Fundamentals
7/7 Read: "Models & Manager: The Concept of Decision Calculus (R)
Read: "Commentary on Judgment based Marketing Decision Models", (R)
Read: "Decision Support Systems for Marketing Managers"(R)
Read: "Shake, Rattle, & Roll" (R)
Software: ADBUDG (play); Estimating Parameters
Topic: Expert Systems Fundamentals
7/9 Read: Chapter 14 "AI, Expert Systems, and DSS" (R);
Read: Chapter B of EXSYS Manual (R)
Video: EXSYS Watch before class (Library Reference Desk)
Software: EXSYS DEMO (Lab)
Topic: Expert Systems Exercise
7/14 Review: EXSYS Manual (R)
Video: EXSYS Watch before class (Library Reference Desk)
Software: EXSYS: Incorporate 3 new Rules (Due)
Topic: Demand Assessment & Forecasting Models
7/16 Read: pg. 43-50 (GL)
Software: EXPER*, REGRESS*
Topic: Expert Systems Applications
7/21 Read: Chapter 15 "Expert Systems from the Outside" (R); &
Read: "Developing Marketing Expert Systems: An Application to International Negotiations" by Rangaswamy, Burke, Eliashberg & Wind (R)
Read: "A Knowledge-Based System for Advertising Design" by Rangaswamy, Burke, Wind & Eliashberg (R)
Software: Negotex, Adcad
Genetic Algorithms for Product Design
7/23 Read: "Triangulation in Decision Support Systems: Algorithms for Product Design" Balakrishnan and Jacob (R)
Read: "Genetic Algorithms for Product Design" Balakrishnan and Jacob (R)
Software: GENELIN;
Cruise the Internet for GA Freeware;
Artificial Intelligence for Market Segmentation
7/28 Read: "A Gentle Introduction to Genetic Algorithms" (R)
Read: "Comparative Performance of the FSCL Neural Network and K-means algorithm for market segmentation" Balakrishnan, et al. (R)
Software: Modify GA Freeware; copy project data
Topic: Genetic Algorithms for Market Segmentation
7/30 Read: "Optimization of Control Parameters for Genetic Algorithms"
Read: GENERATOR Manual (R)
DUE: Book Report
Software: GENERATOR
Topic: Genetic Algorithms Applications
8/4 Cruise the Internet and Library
Presentations of
research articles by Students
Topic: Product & Price Models
8/6 Read: pg. 107-118
Read: Chapter 4, pg. 56-67 (GL)
Software:
BASS*; PRICE*
Topic: Advertising, Sales Promotion Models:
8/11 Read: pg. 75-81 (GL), Chapter 4, pg. 81-83 (GL):
Software: VIDALE*, PROMO*
Topic: Marketing Strategy Models
8/13 Read: Chapter 5, pg. 91-107
Software: GE*, COMPAD*§
Genetic Algorithms
8/18 Project Presentations
GA Final System/Reports Due
* = analysis/report is due
§ = Individual Write-up.
GRADING OF SPREADSHEET ASSIGNMENTS
Criteria
Reports will be graded for organization and writing.
Do NOT submit pages of appendices and charts that are not directly relevant and not referenced in the text.