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Fumans are dependent upon natural syseems for the necessities of life, such a5
air and water, as well as for resources that are essential 1o modern societies
{Odurns 1993). As humans have imposed greater and greater demands upon nat-
ural systems, Arrow et al. (1995) and 1nany others have raised concerns abour
the suseainability of the resource flows from these systems. The purpose of this
exposition is o review some theoretical concepts and present specific examples
to iHustrate the variety of possible behaviors thar natural systems may display
under exploitation. The concepts stem from our informal understanding of the
ideas of stability, sustainability, and resilience, but clarity requires a more
derailed classification of behaviors, The examples that we present do not exhaust
the supply of pessible behaviors, bur each is “generic,” in the mathemarical sense
thar smail changes in paramerer values do not change the qualitative behavior of
the systern. This implies that the qualitative behavior of each example is typical
of a whole class of systems.

Equilibrium

A mechanical system is at equilibrium if the forces acting on it are in balance.
For example, when a body floats, the force of gravity is balanced by the buoyan:
force due to displacement of the liquid. The “balance of nature” (Pimm 1991)
is an extension of this idea to the natural world. The concepr usually refers o
steady flows of energy and materials rather than to systems whose components
do not change.
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Resilience and Stability

We are interested in characterizing narural systerns that are resilient, or, in other
words, that rend to maintain their integrity when subject to disturbance
(Holling 1973}, This is related to the idea of stability. The informal concept of
stability refers to the tendency of a system to rerurn 1o a position of equilibrium
when disturbed, If a weight is added suddenly to a rafr floating on water, the
usual response is for the weighted raft to oscillate, bur the oscillations gradually
decrease in amplitude as the energy of the oscillations is dissipated in waves and,
eventually, in heat. The weighted raft will come to rest in a different position
than the unweighted raft, bur we think of the new configuration as essentially
the same as the old one. The system is stable.

If we gradually increase the weight on the raft, eventually the configuration
will change. If the weight is hung below the raft, the raft will sink decper and
deeper into the water as more and more displacement is required to balance the
higher gravitational force. Eventually, the buoyant force cannor balance the
gravitational force and the whole configuration sinks: the system is no longer
stable. On the other hand, if the weight is placed on top of the raft, the raft may
Hip over suddenly and lose the weight and its other conrents long before the
point at which the system, as a whole, would sink. "T'his sudden loss of stability
may be more danperous than the gradual sinking, because there may be lirde
warning or opportunity to prepare for it. We may think of the raft system as los-
ing its resilience as more weight is placed on it.

Suppose that we accept the “balance of nature” and che steady flows of
resources that it implies. As we demand more and more products of natural sys-
tems, and as we foad these systems with more and more of our waste products,

~are we likely to experience a gradual loss of stability or a sudden one? In order

to clarify such questions, we must refine our terminology. To decide whether a
system is stable or not, we must first specify whar we mean by a change in con-
figuracion or loss of integrity. If we don't care whether the raft fps over when
weighted, then there is no problem of sudden loss of stability for the floating
raft. We must also specify the types and quantities of disturbances that may
affect the system. Suppose thac a fixed weight is placed on top of an occupied
saft. 1f the occupants of the raft move about, the raft may float at a slightly dif-
ferent angle, but if they move o far or all at once, the raft may tip. The range
of possible movements of the occupants chat do not lead to tipping is called the
domain of stability, or demain of attraction, of the upright state. If the amount of
the fixed weight is gradually increased, the balance becomes more precarious
and, hence, the domain of attraction will shrink. Eventually, the weight becomes
large enough so that there is no domain of attraction at all, and the rafe will flip
over no matter what its occupants do.
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The preceding example makes 1 distinction between the wieight wgmmw:w the
raft and the positions of dhe occupants. If the amount of the weight cha g

very stowly or nor ar all, we may think of the “system” as consisting of theivaft’
and weight. The occupants change position relatively quickly, and mwnmg..__.
changes may be thought of as disturbances of the system. On me other g;m, .
we may adopt a more comprehensive point of view, secing the raft, the weight,
and the occupants as a single syswem. If the ovcupants organize themselves to
anticipate and correct for external discurbances, then the system may be able o
maintais ies integrity tong enough for them o achieve their A.L,.:.wns,wﬁ. .wpmﬁrﬁ.
possible response to disturbance might be to restructure the raft itself. | m it were
constructed of several loosely coupled subunits, then excessive weighting or a
strong disturbance might flip one parc of the system bur leave the rest Wﬁ&ﬁ
Such a strucnire might noe require as much vigilance 10 mainmin as the single
raft, and it might be able to withstand a greater variety of external %w.ﬂ.:mumwnmm.
On the other hand, if the bindings that link the subuniss become suff, then the
structure may become brittle and, hence, more prone wo failure. This stmple
exatmple ilustrates how the notion of resilience of @ system amwmbmm upos our
objectives, the time scale of interest, the character and Exmm.E.cm».,, of distur-
bances, the underlying strucrure of the system, and the sort of control measuses
that are feasible. ;
The secrion that follews presents the main ideas of stability and resilience for
simpte, one-dimensional prorotype syscems. Calealations can be done explicidy
for these prototype systems, but their qualitative behavior holds for Ezn,,r morc
complicated examples. The third section in this chapter wA.r“;:ﬁ% %ﬂ ideas of
bistable equitibria, hard loss of stability, hysteresis, and resifience, with a Bsﬂmm
for the spruce budworm. There are qualitative similarities between the behavior
of the budworm model and a variery of ecological systems, parcicularly lake
ecosystems, the Baltic Sea, and boreal forests, although no astempt .:,_ made here
to provide a formal model for these systems, Such a moded is given in the mc:m,.nr
section, for a competitive grazing system. This system has qualitative behavior
analogous to a enc-dimensivnal model, and it also exhibits r%mmnﬁ.nim and rmﬁ
loss of stability. An analogous system that involves fire as a regularing process is
presented in che fifth secrion, The latter system also exhibirs meiﬁ oscillations,
The Appendix presents a detailed account of the relatonship wawﬁwm: feturn
dmmes for a disturbed system and its resilience. There are two conflicting defini-
tions of resilience, which may cause some confusion. The definition of Pimm
{1991) applies only to behavior of a linear syscem or behavior of 2 :em::rﬁﬁ“ sy
temn in the immediate vicinity of a stable equilibrium where a linear approxima-
tion is valid. For Pimm, loss of resilience is due 1o slow dynamics near a stable
equilibrium. The definiton of Holling {1973), which we use in this volume,
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refers to behavior of a nonlinear system near the boundary of a domain of arrrac-
tion. Loss of tesilience, in our sense, is associated wich slow dynamics in a region
that separates domains of attraction,

A Simple Prototype for Stability and Resilience

In order to understand complicated systems, it is often convenient to consider
a simpler system that exhibits the type of behavior of interest. A full theory of
the floating raft would require a combination of the theories of hydrodynam-
ics and of rigid body dynamics, bur the essential features can be caprured in a
one-dimensional model. We are mainly concerned with the notion of stability
and the fact that the domain of atraction of a seable equilibrium may depend
upon slowly varying parameters, These features are present in a one-dimen-
sional sysiem.

Urlobal Stability

The concepr of the balance of narare might be taken to imply that the system
will mainuain its integrity under any sort of perturbation. Such an assumption
may be made {often unconsciously) when we make large modifications to nat-
ural systems. Our expectation is that things will proceed mote or less as before
and that the response of the system will be approximately proportional to the
perturbation. Such behavior is shown by the simplest linear models. Some
might argue that a principle of parsimony dictates that such models be used in
the absence of strong evidence o the contrary. The following linear model
ilustrates the property of global stability, which implies that the system will
always retirn to 2 certain equilibrium regardless of how far it is displaced from
that equilibrium,
Suppose that the dynamics are given by a relation of the form

dx

o= Aet) - x (.1

where 5la) is a smoothly varying fanction of an external variable o and x is the
quantity of interest, Then dvfdr = O if x = o) ; the system has a single equilib-
rium there, This equilibrium is stable, since di/dr > 0 if x < Hlw) and dddr < 0
if ¥ > Bl These reladions imply that the system approaches the equilibrium,
no matter whar the starting point,

A system such as equation (2.1) cannot fail us or surprise us. I returns to an
equilibrium, no matter how far it is displaced, and the position: of the equilib-
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rium changes smoothly with the exogenous variable o Such a system is not suit-
able for a discussion of possible collapses of nararal systems, since such collapses
are excluded by assumptions such as equation (2.1). Mathematical theory pro-
vides numerous examples of different behavior, and our goal is to investigase
their plausibitity. Unforrunately, much theory (inchuding most economic
theory) has been based upon assumptions analogous to equation (2.1). In par-
ticular, “resilience” has been defined by Pimm (1991} in terms of the system
equation {2.1), and this very special assumprion may mislead the unwary, There
is 2 machemarical theory that shows thar systems such as (2.1) are good approx-
imations o general systems with a stable equilibrium, but that theory implies
that the approximation holds enly in the immediate vicinity of the equilibrium:
the approximarion is valid only locally. Details are provided in the appendix.

Bifurcation

En order to explore the differences berween local and global stability, we must
examine nonlinear models, meaning models in which the state variable
appears in functions more complicated than linear ones, The m&oém;m exain-
pie has three equilibria instead of a single one. Such a ncﬁ%mnum:u: requires a
cubic or more complicated dependence upon the x variable, for example equa-
tion (2.2).

L fo) = 2lx - @) (2.2)
dt

Here, w is a parameter or a slowly varving quanticy whose dynamics are not
of immediate concern. The equilibria of the system are the states where fx) = 0.
These are the states where cither of the two factors in equation {2.2) vanishes.
Hence, they are points where

x=0 or ¥* =t {2.3)
If o > 0, then there are three equilibria {equation {2.4]%
xunc,xﬁ/@, or xw - VL (2.4}

1f 0. 0, then there is only the single equilibrium at x = 0. Such a change in
the configuration or stability of equilibria is called a bifircation (Guekenheimer
and Holmes 1983). It implies a change in the qualitative behavior of the system.
To explore this feature, we muse discuss some additional conceps,
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hility and Domain of Atwraction

iobdes do derermine the stability of equilibria, it suffices to examine che sign
i the velocityol . For example, if o < 0, the second factor in equation {2.2) is
.Mﬁmwz.wom:é and, hence, dvidi > 0 if x > 0, and doldr < 0 Hx < 0. In this
s case; the system always moves away from the state where x = 0. We conclude that
the equilibrium at x = 0 is unstable if o < 0, On the other hand, if &1 » 0, then
eeledr changes sign at three shaces:

mmm >0 i x> vy (2.5}
dr
T NN 2.6)
dt
e NG <y < §) 2.1
dr
A RN (2.8)
oy

The cquilibrivm where x = Vot is unstable, because the system always moves
away from that point if nearby (according to equations [2.5] and {2.61). Sini-
larly, the equilibrium where x « Ve is unstable (according to equations 2.7]
and [2.8]). On the other hand, the equilibrium where x = 0 is seable {according
to equations [2.6] and [2.713, because the motion from nearby points is toward
thar point. However, if the system starts ousside the interval (Vo < x < Vo), i
moves away from the equilibrium at x = 0. Therefore, the equilibrium at x = 0
is locally stable, but not globally stable. The system returns 1o x = 0 if small per-
turbations are made, but larger perturbations take the system into an unsiable
domain. The interval (Vi < x < va) is called the domain of artraction of the
point x = 0, because trajectories that stare within thar interval eventually return
to = 0, but nor those that start outside,

It is clear that the domain of attraction of the stable equilibrivm ar x = 0
shrinks as o decreases toward sero. The three equilibria collapse into one where
@ = 0, and only a single unstable equitibrium remains when o < 0. This infor-
marion is summarized in figare 2.1, The diagram Jooks like a branch, and, for
this reason, it is called a bifurcation diagram. The domain of attraction of the
point x = 0 is conrained within the two curved branches, and there is no ather
domain of atcraction.

st
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Figure 2.1. The parameter @ is plotted on the horizontal axis and the corresponding
equilibria in x for equation {2.2} are plotted on the vertical axis.

Disturbarices and Slow Parameter Changes

We have seen that if & > 0 then this system approaches the stable equilibrium ar
x = 0 if it is started within the domain of attraction. If we envisage disturbances
that displace the system a distance x, from the stable equilibrium, they will not
atfect the integrity of the system (its tendency to rerurn o the 0 state) as long as
x% < o Now, if we allow the parameter ¢ ro decrease slowly roward »»__ the sys-
tem will rake longer and longer to return 1o the stare x = 0 when x is &%Emnﬁm 0
x, because motion is very slow near x = Vo, and a %m.nzwwm;nm of Emmm:cﬁma x
may take the system into the region of slow dynamics. We may think of nw.m
decrease in 0t as causing a loss of resilience, because the integrity of the system is
threatened more and more by disturbances of a given magnitude. A symprom of
loss of resilience may be that it takes Jonger and fonger to return o the viciniry
of x = 0 after disturbance. The connection berween return times and resifience is
not completely steaightforward; we address it in some detail in the appendix.

Two Domains of Attraction

The preceding system is not a believable model for natural systems, because it
predicts that the state variable may approach infinity under some circumstances.
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A more plausible scenario is one in which the system may change from having
a single stable equilibrium to one with two scable equilibria. We next consider a
number of such “bistable” systems.

We obtain a simple prototype for such systems by changing the sign of dx/dt
in equation (2.2), If the direction of time is reversed, the stable and unstable
equilibria are interchanged. If o < 0, then the single equilibrium acx = 0 is glob-
ally suble: the system always returns to that equilibrinm no marrer where it
starts. Instead of two unstable equilibriz when o > 0 (as in the former case),
there will be two stable equilibria. The new system is

B« —alx - ) (2.9)
dt
if & > O for this system, we have
i <0 if x> Vo (2.10)
dr
& 0 0<x< (2.1
dt
:amx..AQ if VL <x<l {(2.12)
4t
A0 i v« i (2.13)
dt

If x> 0 initially, then x heads toward the equilibrium at x = Y&, bue if x < 0 ini-
tially, then x heads toward the equilibrium at x = —Vit. Thus, the domain of attrac-
tion of the point x = Vot is the positive s-axis, and the domain of attraction of x =
N0 is the negative saxis. Each of the stable equilibria is locally stable, bur not
globally stable. This system can be flipped from one stable state to another by cross-
ing the unstable line where x = 0. Because this line separates the rwo domains of
attraction, it is called a separarrix. The equilibria in x are ploted in figure 2.2,

Increasing evidence has accumulared for the existence of multistable states in
nature: coral reefs (Done 1992; Hughes 1994; McClanahan er al. 1996), African
rangelands (Dublin et al. 1990), shallow lakes (Schindler 1990; Carpenter and
Leavitt 1991; Schefter et al. 1993; Carpenter et al. 1999), kelp forests {Estes and
Duggins 1995), and grasstands {D’Antonio and Vitousek 1992: Zimov et al.
1995).
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<
Figure 2.2. Equilibria in x for equation (2.9) are plotted against ¢, as in fgure. 2.1,

Disturbances and Slow Parameter Changes

The biturcation diagram in figure 2.2 implies a great deal about the response
of the system to disturbance. If & < 0, then the system will rerurn o the stable
equilibrium at x = 0 no matter how large the disturbance—there is nowhere
else for it to go. However, if 0 > 0, and the system stares near the lower branch,
it will tend 1o return there if displaced by a small amount. As o decreases
toward zero, the distance between the stable equilibsia and the unstable one
decreases. Hence, disturbances of a given magnirude ke the system closer and
closer 1o the unstable equilibrium. Dynamics are slow near the unstable equi-
librium and, hence, the time to return to the vicinity of the lower branch
increases sharply for trajectories that approach the unstable equilibrium. This
point about reeurn times can be made precise by 2 caleulation analogous to that
given in the appendix.

For a higher level of disturbance and @ > 0, the system may be moved across
the separatrix at ¥ = () and may approach the upper branch of stable equilibria.
Under a random pattern of disturbances, we may expect to see the system spend
long periods of time in the vicinity of one or the other of the stable equilibria,
Every now and then, the random disturbances may combine and send the sys-
tem to the other stable equilibrium, The Allee effecr studied by ecologists pro-
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vides an example of a bistable system. A population may suffer reduced survival
or reproductive success at low numbers, For example, schooling fishes tend o
suffer low per capita moruality if their numbers are high enough relative to the
capacity of their predators. If such fish are reduced in numbers through fishing
pressure or environmental degradarion, the population may decline and eventu-
ally become extince locally. On the other hand, a large population may sustain
itself over fong periods. Dynamics of this sort might explain the occasional flips
berween dominance of sardine and anchovy as revealed by deposits of their
scales off che coast of California. A similar pattern appears in such geophysical
features as the polarity of the earth’s magnetic field, the ocean circulation involv-
ing the Gulf Stream, and climate fluctuations, but some of these fluctuations
may be too regular 10 be completely random. For larger values of ¢ one would
expect flips from one equilibrium to the other to be extremely rare. Thus, we
may associate an increase in o with an increase in resilience.

Hard Loss of Stability and Hysteresis

The two preceding examples iflustrare a so-called soff loss of stability. As the
exogenous variable changes, the location of the suble equilibria changes
smoothly. The state variable may move from one domain of attraction to
another, but such changes are stow because dynamics are slow near an unstable
equilibrium or a separatrix. The possibility of such behavior would not ordinar-
ily be cause for alarm, because slow dynamics may aflow for adjustments to new
behavior. There are natural systems, such as outbreaking insect populations, that
sometimes show more abrups changes.

The following modet was used by Ludwig et al. (1978) to understand the
dynamics of the spruce budworm. The quantity B represents budworm density,
measured in larvae per acre. This density is assumed to vary in time according
to equation (2.14):

B su-By g EJ (2.14)

where r, is an intrinsic growth rate at low densities, K, 4 15 a carrying capacity for
the budworm in the absence of predation, and the second term in cquation
(2.14) is a predation rate. The predators are assumed to have a Holling type-111
functional response, with a maximum predation rate of B and a half-saturation
budworm density of o This functional form implies that predators have their
greatest influence upon dynamics at intermediate ranges of budworm densities.
At low densities, the predators search for alternate prey because returns from for-
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aging for budworm are relatively low. At high densities, budwormms swamp their
predators; thus, the predators have a small per capita effect, just as predators
have a small per capita effect on large schools of fish, The paramerer o is pro-
portional 1o 2 measure of foliage density, because the predators search fofiage for
the budworms and their response is mediated by the number of budworms per
unit of foliage. Hence, o is actually a staze variable that generally changes on a
slower time scale than that of the budworm. For the maoment, we regatd ¢ as a
COnSant,

Some algebra supplied in Ludwig er al. {1978) shows that there ase cither
two or four equilibria for the budworm, depending upon the sizes of the dimen-
sionless paramerers £ and , given by relations in equation (2.15),

R-200 - M (2.15)

These equilibria satisty equarion (2,16),

x\w

« 0 (2,10}

where 4 = B/ The equilibriam & = 0 is always unstable, because dbidr > 0 if &
is small and positdve. The highest equilibrium is always swble, because
dbldr < O if b is very large and positive. Thus, if there are only two equilibria,
budworm density always moves coward the upper equilibrium. When there are
tour equilibria, they alternate in stability. A typical case is shown in figure 2.3.
If R is between R, and R, then & may approach either the high equilibrium or
the low equilibrium, depending upon whether the starting position of 4 is above
or below the unstable equilibrium, which is the separaerix,

Hard Loss of Stability

Imagine thar the parameter ¢ begins at a low value and gradually increases as
the forest grows. It turns out thar () does not change with forest growth; hence,
figure 2.3 applies. Because R s proportional to ¢, £ will increase, At first (when
R <R}, budworm numbers will remain low, since the only stable equitibrium
is the low one. Even when R increases beyond R, the budworm numbers will
remain low, because they lie below the unstable equilibrivm, which determines
the domain of attraction of the low equilibrium. The stability of the low equi-
librium becomes precarious as R approaches R,. because the domain of attrac-
tion shrinks. Finally, at R = R,, the lower ewo equilibria disappear and bud-
worm density jumps to the high value: an outbreak occurs. This abrupr change
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Ry m Rz

Figure 2.3, The equilibtia in 4 for equation (2.16) are plotred againg K for Q = 20.

in the atcracting state is called o hard loss of stability. It should be contrasted
with the solt loss of stability displayed by the system in equation (2,9). In the
case of the budworm, once density has reached the high equilibrium there is no
easy way to reduce it 1o the lower equilibrium. If the variable & is reduced
below R,, the budworm remains at the high equilibrium, As & is further
reduced, chere is a second hard loss of stability as & declines below R, In this
case, there is a jump down to the low equilibrium, which is not reversed as &
nCreases again.

Hysteresis and Cycles

I we now connect the dynamics of the trees and the dynamics of the budworm,
a new phenomenon appears. If the system starss with low foliage density and fow
budworm numbers, the foliage density slowly increases until it surpasses R, At
this point, an outbreak occurs, as shown previously. Tmmw budworm numbers
eventually cause death of trees, so R begins to decrease when the budworm has
an outbreak. Budworm numbers remain high even though R declines, because
budworm density lies above the separatrix. As R continues to decline to R,, bud-
worm density declines slowly and then jumps 1o 2 low value when R decreases
below R,. The different paths followed by the total system for increasing versus
decreasing R constitute the hysteresis effect. The combination of budworm and
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forest dynamics produces stable cycles with long periods. Such stable cycles thar
are maintained through alternations of rapid transitions and slow changes are
called relaxation oscillavions. They are common in many physical, chemical, and
physiological systems (Edelstein-Kesher 1988),

Disturbances and Resilience

If the objective of management is to keep budworm numbers and foliage dam-
age low, the loss of stability as R increases beyond R, may be regarded as a loss
of resitience. This model suggests thar small disturbances near the lower stable
equilibrium may exhibit long return times if they approach the unstable branch.
Such long return times may be a useful diagnostic indicator. However, because
Rincreases as trees grow, a loss of stability accompanied by a budworm outbreak
seems inevitable,

We may adopt a different perspective and regard periodic budworm our-
breaks us part of a stable system that renews the forest from time 1o time. Indeed,
systems analogous ro the budworm-forest system frequendy appear as stable
oscillators. The advantage of such oscillators is thar they continue to oscillate
more or less with the same frequency and amplitude under a wide variety of dis-
turbances. Hence, physiological oscillators are important in maintaining
integrity of the organism, which is another kind of resitience. According to this
perspeciive, an attempt to halr the oscillations may lead to a disastrous break-
down in the long term. Will human interventions to increase producrivicy in
nataral systems suffer a similar fare?

Lake Dynamics

Carpenter and Cottingham {chapter 3, and 1997) have discussed the applica-
bility of these ideas 1o lake ccosystems. They characeerize lake dynamics as
cither "normal” or “pathological.” Normal lakes have high numbers of game
tish, effective grazing upon phytoplankton, and low incidence of algal blooms.
The normal system maintains its integrity when subjected 1o perturbations
such as phosphorus pulses, because phosphorus moves rapidly into the higher
traphic levels {Carpenter and Kirchell 1993) and humics constrain algal
growth (Jones 1992). However, heavy phosphate loading, removal of macro-
phytes, overfishing, and removal of wetlands and riparian vegetation may lead
to the pathological state in which there are foew game fish, less grazing, no
macrophytes, and extensive and frequenc algal blooms (Harper 1992, This
may be a rapid eransition and it is not easily reversed (Narional Rescarch
Council 1992},
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This situation appears 1 fit the definition of a hard loss of stability, because
the change is rapid and farge, and is sometimes not reversed even if phosphate
loads are decreased (National Research Council 1992}, One may say that the
normal lake is resilient because it maintains its integrity under perturbation, but
resilience is lost as phosphate foading and other seresses are increased. If critical
levels of phosphate and other environmental varizbles could he ifentified, we
might ateempt 1o measure resitience in rerms of the difference from the crirical
tevels (Vollenweider 1976). Perhaps the question of whether or not the lake
ecosystem fits our definitions may be answered by statistical analysis of long-
rerm data.

The Baltic Sea

‘h.m:uwc: and Jansson {chaprer 4) and Jansson and Veiner {1993) describe the
Baltic system in terms that show many similarities to the lake system. The Baltic
Sea is wmﬂhﬁcw enclosed and, consequently, has a residence time of water on the
order of twenty years. Algae form the base of a diverse food web, with higher
wophic levels occupied by commercially important species such as herring,
flounder, pike, and perch. There may be long periods when thete is weak verri-
cal mixing of the water columa due 5o lack of inflow from the North Sea. Dur-
ing such periods, oxygen levels at grearer depehs may be very fow and sulphur
bacteria may predominate. The larter put farge quantities of phosphorus into
solution, which then upwell and cause plankron blooms.

In historical Gimes, the Baltic has experienced several extended anoxic peri-
ods, but the system had not been permanently aleered. Since the industrial rev-
olution, the Balric has been loaded with increasing amounts of phosphorus,
and there are indications of a change of configuration w a detritus-based sys-
tem. This would imply more turbid water and a fish community consisting
mainly of shuggish species such as bream, roach, and rufte, which are much less
vahuable than those previously listed. The possibility exists that che Batic mighe
reach 4 point at which even reducing phosphate inpurs might not rerurn the
system to its cartier, more desirable state. Such a turn of events would corre-
spond to a hard loss of stability, analogous to the behavior of the lake €COosys-
em. Unfortunately, there are no repiicates of the Baltic system; hence, we have
only analogies to guide action. A purposeful demonstration thar the Balic is
actually capable of 4 sudden change corresponding to a hard loss of stability 15
unthinkable as an experiment. Nevertheless, it may be occurring as a result of
human negligence. The earier ability of the Balric to recover from anoxic peri-
ods may correspond to resilience, but we cannot be sure whether this resifience
is being lost.
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The Boreal Forest

Carpenter et al. (1978) characterize the boreal forest as a system with relatively
few species and complicated interactions and dynamies. In upland regions,
torests dominated by aspen and birch alternate with forests dominated by spruce
and fir. Browsing by moose over a period of twenty to forty years can convert an
aspen stand into one dominated by conifers. As stands of conifers mature, they
become increasingly favorable for reproduction of the spruce budworm. Even-
tually, outbreaks oceur and portions of the system are converted into early suc-
cesstonal aspen. The budworm outbreak corresponds to a hard loss of stability,
and the combined upland system undergoes stable, long-period oscitlations
analogous to those described previousty.

As the upland regions undergo these osclllations, the valley bottoms alternare
berween flooded plains and moist meadows. The flooded state is maintained by
beavers, which cut aspen bordering streams for food and dam the streams 1o cre-
ate ponds. When the supply of aspen is insufficient, the beavers abandon their
dams, the dams break, and the ponds are soon replaced by meadows. This rela-
tively rapid change, a consequence of decreasing supply of aspen, may be
thought of as & hard Joss of stability. The upland and lowland cvcles tend w
entrain each other because of the interaction berween beavers and aspen. Fires
also play a role in synchronizing cycles over large spatial areas, because conifers
kilied by the spruce budworm provide an abundance of fuel,

Although this system undergoes large alterations, sometimes very quickly, ir
may be thought of as resilient, maintaining its character over many centurics.
Conditions at any given site may change abruptly, but the system is usually a
mosaic of patches at differing stages of the cycle. When considered as a whole,
it maintains considerable diversity.

A Competitive Grazing System

En this section, we deseribe @ natural system that may be bistable. Competition
between grasses and woody vegetation in a semi-arid environment is deseribed
in chapter 7 and in Walker et al, (1981}, Suppose that either the grass or the
woody vegetation has an advantage when at high densities relative 10 the other.
En such a case, the system has stable equilibria that correspond to high levels of
grass and woody vegetation, respeceively. The competition is also influenced by
the stocking rate of carde, which consume grass but not woody vegetation. We
shall regard the two plant forms as the dynamic state variables and the stocking
rate as a slowly varying parameter.

Imagine searting with high levels of grass and low levels of woody vegetation.
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At low levels of stocking, there is only a small difference from the ungrazed sys-
tem: if the system starts out with grass dominant, grass will continue 1o domi-
nate. As stocking increases, the competition may favor woody vegetarion, Even-
tually, chere may be a collapse of the grass, and woody vegetation will dominate.
Thus, the effect of grazing is to move the system from a state in which grass
dominates to one in which woody vegetation dominates. Even when grazing
pressurc is relaxed, there may be lirdle change in composition, because of the
advantage enjoyed by woody vegetation over grass when the former is dominant,
The effect of grazing is to move the system into the domain of attraction of
woody vegetation for the ungrazed system.

1 one plots grass densicy versus the stocking level, the behavior may appear
to be inexplicable: the grass level declines as grazing increases but does not return
to former levels when grazing returns 1o its former level. The apparent paradox is
resolved if we realize that the density of grass depends not only on the stocking
level, but alse on competition with woody vegetation. These phenomena may be
iliustrated by a modification of the Lotka-Volterra competition model,

Let g represent the density of grass, and let w represent the density of woody
vegetation. The rate of change of grass density is assumed to be represented in
equation {2.17},

&m wp g{l g ok~ nsmgv (2.17)

dr ¢

anacmmosﬁ.wwr m mmmmuoinw;&,mmm o m:& £y BL€ ncawanmomno&m-
cients. The parameter 5 is determined by the stocking rate of cartle. The rate of
increase of the woody vegetation is assumed to be represented by equation

{2.18).

;mmm\;uwsg+83 W S w)] (2.18)

E i
ot
In equation (2.18), *., 1 a growth rate, £ and <., re competition coefficients,
and « is 2 source term. In the illuserations that follow, the parameters were cho-
sen as indicated in equation {2.19).

H.ﬁ? ‘”_mn N.mw ﬁ.ﬁ a,w, m:ﬁu N, Cpo = N,Qu.cuv ﬁ%uw*n Am.w@v
The case of light grazing corzesponds o 5 = /10,
In order o understand the behavior of this system, it is helpful to plot some
curves in the g, w plane, as in figure 2.4. In the phase plane, the direction and
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Figure 2.4. The phase planc for grass and trees derived from eguations (2.17)-(2.19),

speed of change of the system are given by the vector (dglds, dudds). This vector
is vertical on the curve where dg/dt = 0 (the null g isocling), and it is horizontal
on the curve where dufdt = 0 (the null w isocline), As can be seen, dgldt = 0,
where either g = 0, or the relationship holds in equation {2.20):

C g+ W= s (2.200

This locus is a straight line, and it shifts to the left as s increases. The null w
isocline is 2 hyperbola according to equation (2,18). One of the asymptotes is
the - axis, and the locus passes through the point g = 0, w = 1, labeled “W.”
This locus is independent of the stocking paramerer 5. Figure 2.4 shows in derail
how 2 system: may approach more than one steady state, depending upon the
starting conditions. Although this system is much more complicated than equa-
ton (2.9}, its qualitative behavior is the same if o > 0, This Hlustrates how the
very simple one-dimensional models may, nevertheless, be a valuable heuristic
guide.

We now turn ro the effect of increased seocking, The effect of an incresse in
5 is to shift the null g-isocline down and o the left. Hence, the poiats § and G
will approach each other along the w null isocline, Because the separatrix passes
through the point S, the domain of attraction of G must shrink, whereas the
domain of atcraction of W will expand. Qualitatively, the representation of fig-
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Figure 2.5, A bifurcation diagram showing grass equilibria as a funcrion of the graz-
ing parameter s for the system as described in equations {2.173-{2.19),

ure 2.4 sull holds. For a still-higher value, s = & the points § and G coincide.
The values of g corresponding ro the roots § and G are shown in higure 2.5. A
similar diagram could be drawn o show the corresponding values of w. This is
a bifurcation diagram analogous to figure 2.3, If the stocking rate changes
stowly, we may expect the grass density to be giver: by che upper curve in figure
2.5, However, if s > ¢*, the grass density must crash, since there is no stable eqtti-
librium with a nonzero grass density, This is a hard loss of stability, and indeed
there is a striking similarity between figures 2.5 and 2.3,

For values of s > 5%, the qualicative form of figure 2.6 applies. The only equi-
librium is point W, and all trajectories approach W, The domain of attraction of
W is the whole yuadrant, where g>Dand w > 0.

We may imagine the system beginning with the stocking rate 5 = 0. Accord-
ing to figure 2.5, the unstable equilibrium § and the stble equilibrium W are
very close together. Hence, the separatrix in a figure analogous to figure 2.4 is
in the extreme upper left corner: virwually any initial combination of gand wwill
lead to a high density of g, given by the upper branch in figure 2.5, with a cor-
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Figure 2.6, The phase plane for grass and trees for the system in equations (2.17}(2.19),
with § = 0.6,

respandingly small density of w. Now, if s is increased slowly, the density of g
will move downward along the upper branch until the bifurcation point 5 is
reached. Beyond that point, the grass density must crash, and woody plants will
dominate. Even if grazing pressure is withdrawn (5 = 0), the ZUASS CANNOL fecover
because it will be to the left of the separatrix. This is the hysceresis effect.

Fire in a Savanna System

The preceding model does not describe most savanna systems for two reasons:
(1) Generally, neither grass nor woody vegetation can completely exclude the
other. Instead, chere is a single stable equilibriam for the system (which changes
over time, depending upon rainfall, grazing, and fire} where grass and trees coex-
ist. (2) Woody vegetation cannot exclude grass indefinitely: after 2 long pertod
of low grazing, the grass may return. This is due to 2 combination of two effects.
First, the older woody vegetation may die and leave gaps thar may be colonized
by grass, and then fire gets into the system. Second, woody vegeration dies back
very quickly in dry years but recovers only slowly in wet years—too slowly 1o use
all the water. Grass, on the other hand, can increase ten-fold in a season, quickly
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enough to fully use all of the available warer. Because of this, the combination
of wet and dry years keeps woody vegetation at lower levels than the average rain
would sustain and permits grass to remain in che system in significant amounts.

When viewed at 2 long tine scale, a brief period of grazing may cause a rapid
collapse of the grass followed by a slow recovery. When viewed at a short time
scale, there appears to be an equilibrium with high woody vegetation. However,
when this system is viewed over a longer time scale, it is apparent that the sys-
tem merely spends a long time in this scate, This sort of qualitative behavior is
analogous to “excitable systems.” Such systems are best known as models of the
nerve impulse according to the theory of Hodgkin and Huxley as modified by
Firzhugh. The system has 4 single stable equilibrium, but when perturbed in an
appropriate direction it may undergo a very large excursion (firing of the neu-
ron), followed by a long recovery (refractory) period. Details are given in Edel-
stein-Kesher {1988).

"To model aging properly is complicated, but for present purposes it suffices
to find a simple system that has the required qualitative behavior. We do not
contend that the following model is an accurare representation of the true
dynamics. We must keep track of surplus grass char may serve as fuel for fires.
Hence, we ler gross grass production be given by £, as n equation {2.21}.

&= g4, {2.21}

?amﬁmacn@,wc ahaumc:_.nnﬂnmmrmﬂ&xwmmm:..Eﬁmcmmmmmmm:vmcnmomm«mmi
able for grazing. The grass not consumed mw grazing cattle is potential fuel for

fires and is denosed by 8 as defined in equation (2.22)
&= g, explsg) (2.22)

The parameter s determines the proportion of grass consumed by cartle.
Now equation (2.17) is replaced by equarion (2.23).
dyg &
Nw =g h.o?ﬁ,n + n_é%v 2.2%

The dynamics of w will be influenced by fires, and the age of trees influences
their susceptibility to fire. Let a new variable 4 denote the product of the woody
plant density and the average age of the woody plants. A first approximation
yields db/ds = w, but that relationship neglects the influence of fire on the aver-
age age. The dynamics of w and b are given by equations (2.24) and (2.25),
respectively,
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“Mt = r il - Cpud Co ) v (2.24)
b “ o
8w v fh {2.29)
et Lﬂ

The fire risk fis defined as follows: ler the fire potential p be proportional w
the available fuel as shown in equation (2.26).

,- %Q%\s if b > w”c (2.26)
5 w.hwm:« 20 otherwise
We gssume thar the fire risk £is given by equation (2,27},
. A vy -
o e {2.27}
/ ?ﬁiwva +he

In equation (2.27), the parameter 4 is an age ar which the fire risk is haif of
its maximum, and the parameter o determines the sharpness of the increase of
fire risk with age. We have used 0 = 9 1o give a sharp increase, and «, = 60, The
remaining parameters are given in equation {2.28),

(2.28)

Because there are three state variables io this system, one cannot make a
meaningful phase plot. However, if the age variable 4 is fixed, we may gain an
impression of the dynamics. Figure 2,7 shows how a low value of  feads the sys-
tem to an equilibrium with high w. On the other hand, a higher value of b leads
tor an equilibrium with much lower w as shown in figure 2.8, Now, if b increases
with time, the system will first have high w, then lower w as it ages. Fires
decrease the average age of trees as well as their density. Hence, the system gets
reset 1o a state analogous to thar shown in figure 2.7 after a fire. The cycling of
w with time in the full system, with £ changing, s shown in figure 2.9,

H one were to observe this system over a time of five to twenty years, it would
appear that woody plants would eventually dominate grasses because of the
combination of competition and grazing. Over the nexr thirty years, however,
the effect of fire and aging of tees leads to a collapse of the trees, making way
for the next cycle. This example iHustrates how the tme scale over which we
observe the system may have a decisive influence upon our dassification of it
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Figure 2.7. The phase plane for grass and tees for the system described in equations
(2.21)-(2.28), neglecting che dynamics of the age variable 4 with 4 fow value of 4,
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Figure .9, Tree density (1) versus time {4 in years) for the system described in
equations {2.21)--(2.28), including dynamics for the age variabie.

behavior. Unforrunarely, the scale over which we are able 1o observe the systers
is often much shorter than the scale over which it exhibits irs characteristic
behavior.

Concluding Remarks

The examples presented here iustrace the complexity of the rask facing us as we
artempt to clarify the concepts of sustainability and resilience for natural sys-
wrns. Mathematical theory presents a wealch of possibilities, bur the limitations
of our understanding and the data available make it difficule o distinguish
among them,

Here, we have proceeded from simple conceprual models, such as the raft
analogy, to simple but abstract mathematical models, to ecosystem analogues,
and finally to a fairly detailed modef of & savanna system. In no case can these
amalogies be considered to be complete, nor is our knowledge of the systems
detailed enough to support a full-blown model with statistical justification. Per-
haps one might conclude that all this is merely speculation, unworthy of serious
attention. On the other hand, prudent decision making requires chat we take
account of a variety of plausible hypotheses about the responses to vur actions.
The examples presented here do not encourage complacency about the ability of
natural systems to support us and our habits in the favish fashion we have
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enjoyed in the past. I we refuse o contemplare possibilities that are only dimly
perceived, we may miss the opportunity to learn abour the world and adapr our
behavior accordinglv. If we insist that the simplest and most convenient
hypotheses have priority when choosing actions, we run the risk of allowing
stoth and pride to bring us ro disaster.
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Appendix

Return Times and Resilience

b s important to distinguish between behavior near a stable equilibrium and
behavior near the boundary of a domain of ateraction, which is an unstable
equilibrium or separarrix. As discussed in the second section of the chapter, the
long recurn dimes associated with a loss of resilience are caused by slow dynam-
ics ncar the unstable equilibrium, not by slow dyramics near the stable equi-
tibrium poine. Unfortunately, there are two conflicting definitions of resilience
and consequent confusion abour the connection between resilience and retuen
rimes.

Pimm (1941 p. 13} defines resilience as “how fast a variable that has been
displaced from equilibrium rewurns o it. Resilience could be estimared by a
return dme, the amount of tme wken for the displacement 1o decay to some
specified fraction of #ts initial value.” Pimm (1991 p. 33} describes rerurn to
equilibrium by the cguation {A2.1}.

=X, X e ¥ (A2.1)

In equation (A2.1), X is che population density at time ¢, X is the inicial popu-
lacion density, and X is the equilibrium density. The differential equation for X

. - . - > . ¢
that corresponds to this formula is given in equation (A2.2).

ks (X - X {A2.2)
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A similar model with discrere tme could be given instead, but thar weuld not
alter the following argument. If we measure displacement from X by x, then »
satisfies equation (A2.3), which is equivalent ro equarion (2.1) i Ao — x is

replaced by x,

Seictly speaking, Pimm's definition depends upon this simplicity, because
the amount of ime required for x 10 decay w some specitied fraction of its ini-
tial value is only constant if the model (A2.1) is used. In facr, if the inidal dis-
placement is x, and the fraction is p < 1, then {A2.1) implies the relationships
in (A28,

%y = px, = A4 exp(-ke ) (A4
From (A2.4), we conclude thar the rerurn time ¢, is given by equation (A2.3).

L= MM log W {A2.5)

The remarkable feature is that the magnitude 5 does not appear in this for-
mula. This is a {eature of this model only, as we shall see below. In more general
circumstances, such a result can be expecred to hold only i the limic as =
approaches 0. Such resules are called “local.” As pointed in this chapter, a com-
mon error is 1o extrapolate local results to global ones. In the present contexy, it
amounts to replacing a complicated function by a linear approximation. Such
approxinations are certainly easy to work with, but they may miss essential fea-
tures of the dynamics. In fact, failure to recognize the distinction between local
stabifity and global stability can lead ro unwarranted optimisim about the likely
consequences of interventions in natural systems. IF we think thav stability w
small perturbations necessarily implics seability o lurge perturbations, then pre-

cautions aze never required.

In order ro distinguish behavior near the equilibrium ar x = 0 from behavios
near an: unstable equilibrium, we must use & model with more paramerers than
those of (2.2), such as equation (A2.6}.

(A2.0}

Equation (A2.6) leads to an especially simple equation for the retwrn time:
the time to reach a position x, starting at x is given by equation {A2.7).
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(A2.7)

The form for F (%) was chosen so that equation {A2.8) can be verified alge-
braically.

£ kNS G “z®

In view of {A2.7) and (A2.8), equation (A2,9) emerges.

H X 1 £, 1 X, + Vo
toe—log Ly —log Sl o SETTT (A2.9)
C R T e

Now, if we replace x, by px;, (A2.9) becomes equation (A2.10}.

_ u_ w w .W
logsos ~logs + ~logt {A2.10)
£p ok Te k) Ty

Here p, and £ 3¢ given in equations {AZ.11) and {A2.12), respectively.

, L e N A2.1
(e i
Xy + amm .
e (A2.12)
Py + NG

if the last two terms in cquation (A2.10) are omitted, this result is identical
te Pimm’s assumption (A2.1). Our more complicated dynamical assumption
{A2.6) is the analogue of Pimm’s assumption if there are three equilibria. Under
what conditions does {A.10) imply large return times? The first term, which cor-
responds to Pimm’s model, implies a long recurn time if the ratio p = xlx, is
small or if & is small. In Pimm’s discussion, p is a parameter that describes a
probe or observation of the system. Ordinarily, p is fixed, and the return time
provides an esdmare for &,

The second term in (A2,10) implies a long return time if p, is small or k is
small. Our previous discussion was concerned with a possibly variable o and dis-
turbances thar might take the system near an unstable equilibrium. Thar corre-
sponds ro x, near Vot or x, near V0. In such a case, ¢, will be large even if the
parameter £ is large. That is, return times may be long, even for systems that
show very rapid return when close to the stable equilibrium, According to this
point of view, long return times may be diagnostic for a small o or for distur-
bances that are large enough to take the system near an unseable equilibrium.

B
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They may also correspond to weak repulsion from the unstable equilibrium, or,
in other words, small £,. If a disturbance takes the system beyond the unstable
equilibrivm, there is no return at all.

In summary, according to Pimm (1991) and according ro s, fong return
times may be diagnostic for a loss of resilience, bur the meanings of the terms
are quite different in the two cases. Pimm is concerned with behavior near a sta-
ble equilibrium. In that case, a long return time for a given displacement from
the equilibrium indicates a small coefficient £ or, equivalently, a small derivative
of fog x. W are concerned with behavior of a system with two or three equilib.
ria, one of which is stable. Resilience describes the tendency of the system w
return to its stable equilibrium. A long rerurn rime is due to disturbances that
bring the system near an unstable equilibrium, or possibly to a weak repulsion
from an unseable equilibrium,

Literature Cited

Arrow, K., B. Bolin, R, Costanzs, P Dasgupea, C. Folke, C. §. Hoffing, B.-0. Jansson,
S. Levin, K-G, Miler, C. Perrings, and D). Pimentel, 1995, Economic growth, carry-
ing capacity, and the eavironment. Science 268:520-521,

Carpenrer, 5. R., and K. Cotdngham. 1997. Resilience and the restoration of lakes. Con
servation Feology 1:1.

Carpenter, 5. R, and ]. E Kiwhell, eds.. 1993, The trophic cascade in lakes. Cambridge:
Cambsidge University Press.

Carpentes, 5. R, and P R. Leavitr, 1991, Temporal variation in ¢ paleokimnological
record arising From a trophic cascade. fivolagy 72:377-285.

Carpenter, 5 R., . Ludwig, and W. A, Brock. 1999, Management of eutrophication for
lakes subjece vo potentially irreversible change. Ecological Applications 9(35:751-771.
[Y'Antonio, C. M., and ! M. Vitousek. 1992. Biological invasions by exoric grasses, the

grass-fire cycle, and global change. Annnal Review of Ecology and Sprematics 23:63-87.

Done, T ], 1992, Phase shifts in coral reef commundties and their ecological sighificance.
Hydrobioagy 247:121-132.

Dublin, H. T, A. R. E. Sinclair, and §. McGlade. 1990, Elephants and fite as causes of
muttiple stable smres in rthe Serengeu-Mara woodlands. Jorrnad aof Animal Ecoloyy
59:1147-1164.

Edelswin-Kesher, L. 1988, Mathemarical models in biology, New York: Random House,

Estes, }. A, and 3. Duggins. 1995, Sea veters and kelp forests in Alaska: Generaliny and
variation in a community ecological paradigm. Beological Monographs 65:75--100.

Guckenheimer, 1. and P Holmes. 1983, Nonfinear oscillations, dynamical syrems, and
bifircations of vector fields. New York: Springer-Veriag.

Hasper, . 1992, Busrophication of freshuwaters. London: Chapman and Hall,

Hotling, C. 5. 1973. Resilience and stability of ecological systemns. Annwal Review of Eeol-
ogy and Syrematics 4:1-23.

Hughes, T. B 1994, Cawasvophes, phase shifts, and large-saale degradation of a
Caribbean coral reef. Sefence 265:1947.-1551.




IRSTANDING RESILIENCE

Burriers and bridges to the renewat of ecosyseems and instivations, ediced by L. H. Gun-
derson, C. 8. Holling, and $. $. Light. New York: Columbia University Press.

Joresc o L1992 The influence of humic substances on facustrine planktonic food
chains, Hydrobiologia 229:73-91.

Ladwig, 13, D D, Jones, and ¢, 8, Folling. 1478, Qualitative analysis of insect our-
break sysiems: Sprace budworm and forest. Jorrmal af Animal Feology 47:315-332.
McClanahan, T R, AL T Kamukurys, N. A, Muthiga, M. Gilagabher Yebio, and D.
Cbura. 1996, Effece of sea urchin reductions on algae, coral, and fish populations,

Conservation Brology 10:136-154,

National Research Council. 1992, Restorasion of squatic ecospstems: Science, technology,
and public palicy, Washington, 13.0.: National Acaderny Press.

Odum, E. B V993, Eeology and our endangered life inppore systems, Ind ed. Sunderland,
Mass.: Sinauer,

Pinm, 8. L. 1991, The bulance of nusure? Chicaga: University of Chicago Press.

Scheffer, ML, 3. H. Hosper, Mo-L. Meijer, B. Moss, and E. Jeppesen. 1993, Alternacive
equilibeia in shallow lakes. Trends in Eeology and Fvolusion 8:275-279.

Schindier, [ W 1990, Experimental perturbations of whole lakes as teses of hypotheses
concerning ecosystem structure and Function. Oddes $7:25-41,

Vollenwieder, R AL 1976, Advances in defining critical loading levels for phosphorus in
lake cutrophication. Memarie defl fstituto Talians di Idrobivlogia 33:55-83,
faker, B. H., D, Ludwig, C. S, Holting, and R. M. Peterman, 1981, Stability of semi-
arid savanna graring systems. fournal of Ecology 69:473-498.

Zimov, 8. AV 1L Chusorynin, A P Oreshio, B S, Chapin L 1 B Reynolds, and M.
€. Chapin, 1995, Steppe-tundra transition: A herbivore-driven biome shift at the end
of the Pleistocene. American Naturalise 146:765-794,

Walker, B.HL 1992, Biological diversivy and ecological redundancy. Conservation Biology
G:E8—23,

= L5, Conserving biological diversity through ecosystem resilience. Conserva-
tion Bivlogy 9:747--73 ).

Walker, B.H., A. Kinzig, and |, Langridge. 1999. Plant ateribute diversity, resilience and
ecosystem function: The natire and significance of dominant and minor species,
Ecosystery 2:95--113,

Walters, C. J. 1986, Adaprive mangement of renewable resowrces. New York: MeGraw
Hilh

Weaver, |, I (0. Paguer, and L. Ruggicro. 1996. Resilience and conservarion of large
carpivores it the Rocky Mountains. Consersarion Bivlogy 10:964-976,

Young, M., and B. . McCay. 1995, Building equity, stewardship and resitience into mar-
ket-basedd property rights syscems. In Property rights and the environmens, edired by 8.,
Hanna and M. Munasinghe, Washington, D.C.: Betjer International Institure and
World Bank.

Young, M. 13 1992, Sustainable investment and resource wse. Paris: Parthenon Publishing
Grroup.

PART 11
Resilience in Large-Scale Systems



