
Exact Support Recovery
via (Refined) Least Squares

Stefan Steinerberger
(joint with Ofir Lindenbaum)



The Problem

y = θ + ω



The Problem

y = θ + ω

known unknown



The Problem

y = θ + ω

known unknown

Gaussian Noise

lots of 0s



The Problem

y = θ + ω

I We have y = Aθ + ω. We know y and A, ω is an (unknown)
random Gaussian vector. Goal: recover θ ∈ {−1, 0, 1}D .

I A common example given is gene expression: you have 30.000
genes which are turned on or off. You suspect that what is
observed depends at most on 5 genes (columns of the matrix).
Do you really need to run 30.000 experiments to find the 5
relevant genes? Or maybe only 50? And of course there is
noise.



The Problem

y = θ + ω

I We have y = Aθ + ω. We know y and A, ω is an (unknown)
random Gaussian vector. Goal: recover θ ∈ {−1, 0, 1}D .

I A common example given is gene expression: you have 30.000
genes which are turned on or off.

You suspect that what is
observed depends at most on 5 genes (columns of the matrix).
Do you really need to run 30.000 experiments to find the 5
relevant genes? Or maybe only 50? And of course there is
noise.



The Problem

y = θ + ω

I We have y = Aθ + ω. We know y and A, ω is an (unknown)
random Gaussian vector. Goal: recover θ ∈ {−1, 0, 1}D .

I A common example given is gene expression: you have 30.000
genes which are turned on or off. You suspect that what is
observed depends at most on 5 genes (columns of the matrix).

Do you really need to run 30.000 experiments to find the 5
relevant genes? Or maybe only 50? And of course there is
noise.



The Problem

y = θ + ω

I We have y = Aθ + ω. We know y and A, ω is an (unknown)
random Gaussian vector. Goal: recover θ ∈ {−1, 0, 1}D .

I A common example given is gene expression: you have 30.000
genes which are turned on or off. You suspect that what is
observed depends at most on 5 genes (columns of the matrix).
Do you really need to run 30.000 experiments to find the 5
relevant genes?

Or maybe only 50? And of course there is
noise.



The Problem

y = θ + ω

I We have y = Aθ + ω. We know y and A, ω is an (unknown)
random Gaussian vector. Goal: recover θ ∈ {−1, 0, 1}D .

I A common example given is gene expression: you have 30.000
genes which are turned on or off. You suspect that what is
observed depends at most on 5 genes (columns of the matrix).
Do you really need to run 30.000 experiments to find the 5
relevant genes? Or maybe only 50?

And of course there is
noise.



The Problem

y = θ + ω

I We have y = Aθ + ω. We know y and A, ω is an (unknown)
random Gaussian vector. Goal: recover θ ∈ {−1, 0, 1}D .

I A common example given is gene expression: you have 30.000
genes which are turned on or off. You suspect that what is
observed depends at most on 5 genes (columns of the matrix).
Do you really need to run 30.000 experiments to find the 5
relevant genes? Or maybe only 50? And of course there is
noise.



The Problem

y = θ + ω

I We have y = Aθ + ω. We know y and A, ω is an (unknown)
random Gaussian vector. Goal: recover θ ∈ {−1, 0, 1}D .

I Clearly impossible: the system is underdetermined and we
have noise. What if θ is sparse?

I Formally: A ∈ RN×D and θ vanishes on all but k coordinates.
I’ll try to keep things variable-free as much as possible.



The Problem

y = θ + ω

I We have y = Aθ + ω. We know y and A, ω is an (unknown)
random Gaussian vector. Goal: recover θ ∈ {−1, 0, 1}D .

I Clearly impossible: the system is underdetermined and we
have noise. What if θ is sparse?

I Formally: A ∈ RN×D and θ vanishes on all but k coordinates.
I’ll try to keep things variable-free as much as possible.



The Problem

y = θ + ω

I We have y = Aθ + ω. We know y and A, ω is an (unknown)
random Gaussian vector. Goal: recover θ ∈ {−1, 0, 1}D .

I Clearly impossible: the system is underdetermined and we
have noise. What if θ is sparse?

I Formally: A ∈ RN×D and θ vanishes on all but k coordinates.
I’ll try to keep things variable-free as much as possible.



A first idea

y = θ + ω

Suppose that θ only has one nonzero entry in the i−th position.
Then

y = ±A·,i + ω

and A·,i is the i−th column of the matrix (but we do not know
which one). This is a nice question: you have a list of vector
v1, . . . , vn in front of you. Somebody gives you

y = vi + ω.

How do you have the best chance of getting vi?



A first idea

y = θ + ω

Suppose that θ only has one nonzero entry in the i−th position.

Then
y = ±A·,i + ω

and A·,i is the i−th column of the matrix (but we do not know
which one). This is a nice question: you have a list of vector
v1, . . . , vn in front of you. Somebody gives you

y = vi + ω.

How do you have the best chance of getting vi?



A first idea

y = θ + ω

Suppose that θ only has one nonzero entry in the i−th position.
Then

y = ±A·,i + ω

and A·,i is the i−th column of the matrix (but we do not know
which one).

This is a nice question: you have a list of vector
v1, . . . , vn in front of you. Somebody gives you

y = vi + ω.

How do you have the best chance of getting vi?



A first idea

y = θ + ω

Suppose that θ only has one nonzero entry in the i−th position.
Then

y = ±A·,i + ω

and A·,i is the i−th column of the matrix (but we do not know
which one). This is a nice question: you have a list of vector
v1, . . . , vn in front of you.

Somebody gives you

y = vi + ω.

How do you have the best chance of getting vi?



A first idea

y = θ + ω

Suppose that θ only has one nonzero entry in the i−th position.
Then

y = ±A·,i + ω

and A·,i is the i−th column of the matrix (but we do not know
which one). This is a nice question: you have a list of vector
v1, . . . , vn in front of you. Somebody gives you

y = vi + ω.

How do you have the best chance of getting vi?



A first idea

y = θ + ω

Suppose that θ only has one nonzero entry in the i−th position.
Then

y = ±A·,i + ω

and A·,i is the i−th column of the matrix (but we do not know
which one).

A good idea is to take the inner product

〈y ,A·,j〉 = 〈±A·,i ,A·,j〉+ 〈ω,A·,j〉

The first term is only big when i = j , the second is always equally
random. Pick the j for which the inner product is the largest.



A first idea

y = θ + ω

Suppose that θ only has one nonzero entry in the i−th position.
Then

y = ±A·,i + ω

and A·,i is the i−th column of the matrix (but we do not know
which one). A good idea is to take the inner product

〈y ,A·,j〉 = 〈±A·,i ,A·,j〉+ 〈ω,A·,j〉

The first term is only big when i = j , the second is always equally
random. Pick the j for which the inner product is the largest.



A first idea

y = θ + ω

Suppose that θ only has one nonzero entry in the i−th position.
Then

y = ±A·,i + ω

and A·,i is the i−th column of the matrix (but we do not know
which one). A good idea is to take the inner product

〈y ,A·,j〉 = 〈±A·,i ,A·,j〉+ 〈ω,A·,j〉

The first term is only big when i = j , the second is always equally
random. Pick the j for which the inner product is the largest.



Example!

We take the following matrix A ∈ R20×30.

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

where θ = (1, 1, 0, 0, . . . ) and ωi ∼ N (0, 1). How to get θ from y?



Example!

We take the following matrix A ∈ R20×30.

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

where θ = (1, 1, 0, 0, . . . ) and ωi ∼ N (0, 1). How to get θ from y?



Example!

Let’s take inner products of the y with the columns.

5 10 15 20 25 30

-20

-10

10

20

30

Clearly the first two coordinates stick out.



Example!

Let’s take inner products of the y with the columns.

5 10 15 20 25 30

-20

-10

10

20

30

Clearly the first two coordinates stick out.



Example!

Let’s take inner products of the y with the columns.

5 10 15 20 25 30

-20

-10

10

20

30

Clearly the first two coordinates stick out.



y = θ + ω

Such methods are known as Matching Pursuit (Mallat & Zhang,
Gilbert & Tropp). There are many variations on it, for example
RandOMP (Elad & Yavneh), regularized OMP (Needell &
Vershynin), . . .



Other approach: Lasso

y = Aθ + w .

The Lasso (Tibshirani 1996)

‖y − Ax‖2
2 → min

‖x‖1 ≤ R

The `1−norm ‘encourages’ sparsity, a very influential idea. Many
variations, such as

‖y − Ax‖2
2 + λ · ‖x‖2

1 → min .

One version we will also consider is the ‘Trimmed Lasso’ where
sparsity is enforced by

Tk(x) = min
‖φ‖0≤k

‖x − φ‖1.



Other approach: Lasso

y = Aθ + w .

The Lasso (Tibshirani 1996)

‖y − Ax‖2
2 → min

‖x‖1 ≤ R

The `1−norm ‘encourages’ sparsity, a very influential idea. Many
variations, such as

‖y − Ax‖2
2 + λ · ‖x‖2

1 → min .

One version we will also consider is the ‘Trimmed Lasso’ where
sparsity is enforced by

Tk(x) = min
‖φ‖0≤k

‖x − φ‖1.



Other approach: Lasso

y = Aθ + w .

The Lasso (Tibshirani 1996)

‖y − Ax‖2
2 → min

‖x‖1 ≤ R

The `1−norm ‘encourages’ sparsity, a very influential idea.

Many
variations, such as

‖y − Ax‖2
2 + λ · ‖x‖2

1 → min .

One version we will also consider is the ‘Trimmed Lasso’ where
sparsity is enforced by

Tk(x) = min
‖φ‖0≤k

‖x − φ‖1.



Other approach: Lasso

y = Aθ + w .

The Lasso (Tibshirani 1996)

‖y − Ax‖2
2 → min

‖x‖1 ≤ R

The `1−norm ‘encourages’ sparsity, a very influential idea. Many
variations, such as

‖y − Ax‖2
2 + λ · ‖x‖2

1 → min .

One version we will also consider is the ‘Trimmed Lasso’ where
sparsity is enforced by

Tk(x) = min
‖φ‖0≤k

‖x − φ‖1.



Other approach: Lasso

y = Aθ + w .

The Lasso (Tibshirani 1996)

‖y − Ax‖2
2 → min

‖x‖1 ≤ R

The `1−norm ‘encourages’ sparsity, a very influential idea. Many
variations, such as

‖y − Ax‖2
2 + λ · ‖x‖2

1 → min .

One version we will also consider is the ‘Trimmed Lasso’ where
sparsity is enforced by

Tk(x) = min
‖φ‖0≤k

‖x − φ‖1.



Other approaches

Because of time constraints, I am not going to explain

I Iterative Support Detection (ISD), Wang & Yin 2010

I Iterated Reweighted `1−minimization (IRL1), Candes, Wakin
& Boyd (2008)

There are also many other methods.



Other approaches

Because of time constraints, I am not going to explain

I Iterative Support Detection (ISD), Wang & Yin 2010

I Iterated Reweighted `1−minimization (IRL1), Candes, Wakin
& Boyd (2008)

There are also many other methods.



How do these methods compare?

64 unknown variables (say, genes) and θ ∈ {−1, 0, 1}64 has 30
nonzero entries (not that sparse) and N (0, 1) Gaussian noise.

How
many ‘experiments’ (equations) do you need to recover θ?



How do these methods compare?

64 unknown variables (say, genes) and θ ∈ {−1, 0, 1}64 has 30
nonzero entries (not that sparse) and N (0, 1) Gaussian noise. How
many ‘experiments’ (equations) do you need to recover θ?



How do these methods compare?

64 unknown variables (say, genes) and θ ∈ {−1, 0, 1}64 has 30
nonzero entries (not that sparse) and N (0, 1) Gaussian noise. How
many ‘experiments’ (equations) do you need to recover θ?



How do these methods compare?

64 unknown variables (say, genes) and θ ∈ {−1, 0, 1}64 has 30
nonzero entries (not that sparse) and N (0, 0.5) Gaussian noise.
How many ‘experiments’ (equations) do you need to recover θ?



How do these methods compare?

64 unknown variables and N (0, 1) Gaussian noise. Success as a
function of sparsity.



Refined Least Squares (RLS)

The goal of the rest of the talk is to motivate the essence behind
Refined Least Squares (RLS).

I will mainly emphasize the underlying new idea. It seems
very likely that the underlying idea can be used to boost
many other methods (example later).



Refined Least Squares (RLS)

The goal of the rest of the talk is to motivate the essence behind
Refined Least Squares (RLS).

I will mainly emphasize the underlying new idea.

It seems
very likely that the underlying idea can be used to boost
many other methods (example later).



Refined Least Squares (RLS)

The goal of the rest of the talk is to motivate the essence behind
Refined Least Squares (RLS).

I will mainly emphasize the underlying new idea. It seems
very likely that the underlying idea can be used to boost
many other methods (example later).



Refined Least Squares (RLS)

We take the same example as above. A ∈ R20×30 as above

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

where θ = (1, 1, 0, 0, . . . ) and ωi ∼ N (0, 1). How to get θ from y?

Simplest possible idea. Let’s just do least squares

‖y − Ax‖2 → min .



Refined Least Squares (RLS)

We take the same example as above. A ∈ R20×30 as above

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

where θ = (1, 1, 0, 0, . . . ) and ωi ∼ N (0, 1). How to get θ from y?

Simplest possible idea. Let’s just do least squares

‖y − Ax‖2 → min .



Refined Least Squares (RLS)

We take the same example as above. A ∈ R20×30 as above

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

where θ = (1, 1, 0, 0, . . . ) and ωi ∼ N (0, 1). How to get θ from y?

Simplest possible idea. Let’s just do least squares

‖y − Ax‖2 → min .



Refined Least Squares (RLS)

Let’s just do least squares

‖y − Ax‖2 → min .

5 10 15 20 25 30

-0.5

0.5

This is very bad. Certainly the first two coefficients are not small
but many others are bigger.



Refined Least Squares (RLS)

Let’s just do least squares

‖y − Ax‖2 → min .

5 10 15 20 25 30

-0.5

0.5

This is very bad. Certainly the first two coefficients are not small
but many others are bigger.



Refined Least Squares (RLS)

Let’s just do least squares

‖y − Ax‖2 → min .

5 10 15 20 25 30

-0.5

0.5

This is very bad. Certainly the first two coefficients are not small
but many others are bigger.



Refined Least Squares (RLS)

Least Squares does not work – but it works on average. Let’s take
the same example, θ = (1, 1, 0, 0 . . . , 0) and average the behavior
of Least Squares over 100 random choices of A, ω.

0 5 10 15 20 25 30

20

40

60

That works! But it’s clearly cheating: 100 random matrices is like
having 100 times the number of equations...



Refined Least Squares (RLS)

Least Squares does not work – but it works on average. Let’s take
the same example, θ = (1, 1, 0, 0 . . . , 0) and average the behavior
of Least Squares over 100 random choices of A, ω.

0 5 10 15 20 25 30

20

40

60

That works!

But it’s clearly cheating: 100 random matrices is like
having 100 times the number of equations...



Refined Least Squares (RLS)

Least Squares does not work – but it works on average. Let’s take
the same example, θ = (1, 1, 0, 0 . . . , 0) and average the behavior
of Least Squares over 100 random choices of A, ω.

0 5 10 15 20 25 30

20

40

60

That works! But it’s clearly cheating: 100 random matrices is like
having 100 times the number of equations...



Refined Least Squares (RLS)

How to get more equations without cheating :

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω



Refined Least Squares (RLS)

How to get more equations without cheating :

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

Just pick some random subset of rows: this gives you a ‘new ’
problem. It’s easy to create many ‘new’ problems like this.



Refined Least Squares (RLS)

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

Let’s do an example.

64 unknowns, the ground truth is supported
in the first 10 coordinates. We average over m random subsets
each of which take each row with likelihood p ∼ 0.6.



Refined Least Squares (RLS)

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

Let’s do an example. 64 unknowns, the ground truth is supported
in the first 10 coordinates.

We average over m random subsets
each of which take each row with likelihood p ∼ 0.6.



Refined Least Squares (RLS)

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

Let’s do an example. 64 unknowns, the ground truth is supported
in the first 10 coordinates. We average over m random subsets
each of which take each row with likelihood p ∼ 0.6.























Refined Least Squares (RLS)

Outline of the algorithm.

1. Pick a random subset of the equations and solve the problem
with least squares.

2. Average the results.

3. Pick the largest entry in the average as a guess for a
coordinate with a nonzero entry. Use the sign as a guess for
the sign.

4. Remove the corresponding coordinate to get a new problem
with the same number of equations and one less unknown.

5. Go back up to 1.



Refined Least Squares (RLS)

Outline of the algorithm.

1. Pick a random subset of the equations and solve the problem
with least squares.

2. Average the results.

3. Pick the largest entry in the average as a guess for a
coordinate with a nonzero entry. Use the sign as a guess for
the sign.

4. Remove the corresponding coordinate to get a new problem
with the same number of equations and one less unknown.

5. Go back up to 1.



Refined Least Squares (RLS)

Outline of the algorithm.

1. Pick a random subset of the equations and solve the problem
with least squares.

2. Average the results.

3. Pick the largest entry in the average as a guess for a
coordinate with a nonzero entry. Use the sign as a guess for
the sign.

4. Remove the corresponding coordinate to get a new problem
with the same number of equations and one less unknown.

5. Go back up to 1.



Refined Least Squares (RLS)

Outline of the algorithm.

1. Pick a random subset of the equations and solve the problem
with least squares.

2. Average the results.

3. Pick the largest entry in the average as a guess for a
coordinate with a nonzero entry. Use the sign as a guess for
the sign.

4. Remove the corresponding coordinate to get a new problem
with the same number of equations and one less unknown.

5. Go back up to 1.



Refined Least Squares (RLS)

Outline of the algorithm.

1. Pick a random subset of the equations and solve the problem
with least squares.

2. Average the results.

3. Pick the largest entry in the average as a guess for a
coordinate with a nonzero entry. Use the sign as a guess for
the sign.

4. Remove the corresponding coordinate to get a new problem
with the same number of equations and one less unknown.

5. Go back up to 1.



Refined Least Squares (RLS)

Outline of the algorithm.

1. Pick a random subset of the equations and solve the problem
with least squares.

2. Average the results.

3. Pick the largest entry in the average as a guess for a
coordinate with a nonzero entry. Use the sign as a guess for
the sign.

4. Remove the corresponding coordinate to get a new problem
with the same number of equations and one less unknown.

5. Go back up to 1.



Refined Least Squares (RLS)

Outline of the algorithm.

1. Pick a random subset of the equations and solve the problem
with least squares.

2. Average the results.

3. Pick the largest entry in the average as a guess for a
coordinate with a nonzero entry. Use the sign as a guess for
the sign.

4. Remove the corresponding coordinate to get a new problem
with the same number of equations and one less unknown.

5. Go back up to 1.



Refined Least Squares (RLS)

Two small lies on the previous slide. One is ε2 (we average over
some parameters), the other one is more interesting.

We run the algorithm, detect candidates for the support and
remove them. This means that we are forced to work with less and
less signal, the noise remains constant.

At the very end, we face a familar problem: you have a list of
vector v1, . . . , vn in front of you. Somebody gives you

y = vi + ω.

How do you have the best chance of getting vi? At this stage, we
switch back to Inner Products (the OMP selection rule).



Refined Least Squares (RLS)

Two small lies on the previous slide. One is ε2 (we average over
some parameters), the other one is more interesting.

We run the algorithm, detect candidates for the support and
remove them.

This means that we are forced to work with less and
less signal, the noise remains constant.

At the very end, we face a familar problem: you have a list of
vector v1, . . . , vn in front of you. Somebody gives you

y = vi + ω.

How do you have the best chance of getting vi? At this stage, we
switch back to Inner Products (the OMP selection rule).



Refined Least Squares (RLS)

Two small lies on the previous slide. One is ε2 (we average over
some parameters), the other one is more interesting.

We run the algorithm, detect candidates for the support and
remove them. This means that we are forced to work with less and
less signal, the noise remains constant.

At the very end, we face a familar problem: you have a list of
vector v1, . . . , vn in front of you. Somebody gives you

y = vi + ω.

How do you have the best chance of getting vi? At this stage, we
switch back to Inner Products (the OMP selection rule).



Refined Least Squares (RLS)

Two small lies on the previous slide. One is ε2 (we average over
some parameters), the other one is more interesting.

We run the algorithm, detect candidates for the support and
remove them. This means that we are forced to work with less and
less signal, the noise remains constant.

At the very end, we face a familar problem:

you have a list of
vector v1, . . . , vn in front of you. Somebody gives you

y = vi + ω.

How do you have the best chance of getting vi? At this stage, we
switch back to Inner Products (the OMP selection rule).



Refined Least Squares (RLS)

Two small lies on the previous slide. One is ε2 (we average over
some parameters), the other one is more interesting.

We run the algorithm, detect candidates for the support and
remove them. This means that we are forced to work with less and
less signal, the noise remains constant.

At the very end, we face a familar problem: you have a list of
vector v1, . . . , vn in front of you.

Somebody gives you

y = vi + ω.

How do you have the best chance of getting vi? At this stage, we
switch back to Inner Products (the OMP selection rule).



Refined Least Squares (RLS)

Two small lies on the previous slide. One is ε2 (we average over
some parameters), the other one is more interesting.

We run the algorithm, detect candidates for the support and
remove them. This means that we are forced to work with less and
less signal, the noise remains constant.

At the very end, we face a familar problem: you have a list of
vector v1, . . . , vn in front of you. Somebody gives you

y = vi + ω.

How do you have the best chance of getting vi?

At this stage, we
switch back to Inner Products (the OMP selection rule).



Refined Least Squares (RLS)

Two small lies on the previous slide. One is ε2 (we average over
some parameters), the other one is more interesting.

We run the algorithm, detect candidates for the support and
remove them. This means that we are forced to work with less and
less signal, the noise remains constant.

At the very end, we face a familar problem: you have a list of
vector v1, . . . , vn in front of you. Somebody gives you

y = vi + ω.

How do you have the best chance of getting vi? At this stage, we
switch back to Inner Products (the OMP selection rule).



Refined Least Squares (RLS)

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

Underlying idea: by looking at subsets of the equations,
we get a harder problem.

However, we get many harder
problems and the gain from being able to average exceeds
the increase of difficulty.



Refined Least Squares (RLS)

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

Underlying idea: by looking at subsets of the equations,
we get a harder problem. However, we get many harder
problems and the gain from being able to average exceeds
the increase of difficulty.



y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

The main problem is so underdetermined that the ran-
domly selected subproblems are relatively independent
even though they share similar equations

and this principle can be implied to other methods as well.



y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

The main problem is so underdetermined that the ran-
domly selected subproblems are relatively independent
even though they share similar equations

and this principle can be implied to other methods as well.



Boosting classical OMP

Classical OMP. Take inner product of RHS with columns.

Assume largest inner product corresponds to a signal, remove it.



Boosting classical OMP

Classical OMP. Take inner product of RHS with columns.
Assume largest inner product corresponds to a signal, remove it.



Boosting classical OMP

Classical OMP. Take inner product of RHS with columns.
Assume largest inner product corresponds to a signal, remove it.



Boosting classical OMP

Classical OMP. Take inner product of RHS with columns.
Assume largest inner product corresponds to a signal, remove it.

Boosted OMP. Pick a random subsets of the equations.

For this
reduced problem, create the vector

(〈(reduced) RHS, (reduced) columni 〉)
#columns
i=1 .

Average over many such vectors and then proceed as above.

Experiments suggests that this boosts OMP to a very competitive
method (it seems slightly worse than RLS but only slightly).



Boosting classical OMP

Classical OMP. Take inner product of RHS with columns.
Assume largest inner product corresponds to a signal, remove it.

Boosted OMP. Pick a random subsets of the equations. For this
reduced problem, create the vector

(〈(reduced) RHS, (reduced) columni 〉)
#columns
i=1 .

Average over many such vectors and then proceed as above.

Experiments suggests that this boosts OMP to a very competitive
method (it seems slightly worse than RLS but only slightly).



Boosting classical OMP

Classical OMP. Take inner product of RHS with columns.
Assume largest inner product corresponds to a signal, remove it.

Boosted OMP. Pick a random subsets of the equations. For this
reduced problem, create the vector

(〈(reduced) RHS, (reduced) columni 〉)
#columns
i=1 .

Average over many such vectors and then proceed as above.

Experiments suggests that this boosts OMP to a very competitive
method (it seems slightly worse than RLS but only slightly).



Boosting classical OMP

Classical OMP. Take inner product of RHS with columns.
Assume largest inner product corresponds to a signal, remove it.

Boosted OMP. Pick a random subsets of the equations. For this
reduced problem, create the vector

(〈(reduced) RHS, (reduced) columni 〉)
#columns
i=1 .

Average over many such vectors and then proceed as above.

Experiments suggests that this boosts OMP to a very competitive
method (it seems slightly worse than RLS but only slightly).



Some Theory

Here is a basic toy model. We have

y = Xθ + ω,

where X ∈ RN×D is a (standard) Gaussian random matrix and ω is
(standard) Gaussian noise.

How far is the least squares
approximation from the ground truth – how does least squares
handle the random error?

Proposition (Lindenbaum, S, 21)

If we fix the ratio N/D < 1 and let the dimensions of the matrix
go to infinity, then

EX ,ω‖X †y − X †Xθ∗‖ = (1 + o(1))

√
N

D − N
.



Some Theory

Here is a basic toy model. We have

y = Xθ + ω,

where X ∈ RN×D is a (standard) Gaussian random matrix and ω is
(standard) Gaussian noise. How far is the least squares
approximation from the ground truth – how does least squares
handle the random error?

Proposition (Lindenbaum, S, 21)

If we fix the ratio N/D < 1 and let the dimensions of the matrix
go to infinity, then

EX ,ω‖X †y − X †Xθ∗‖ = (1 + o(1))

√
N

D − N
.



Some Theory

Here is a basic toy model. We have

y = Xθ + ω,

where X ∈ RN×D is a (standard) Gaussian random matrix and ω is
(standard) Gaussian noise. How far is the least squares
approximation from the ground truth – how does least squares
handle the random error?

Proposition (Lindenbaum, S, 21)

If we fix the ratio N/D < 1 and let the dimensions of the matrix
go to infinity, then

EX ,ω‖X †y − X †Xθ∗‖ = (1 + o(1))

√
N

D − N
.



Some Theory



Some Theory

Proposition (Lindenbaum, S, 21)

If we fix the ratio N/D < 1 and let the dimensions of the matrix
go to infinity, then

EX ,ω‖X †y − X †Xθ∗‖ = (1 + o(1))

√
N

D − N
.

When the matrix is very underdetermined, then a lot of the error
gets lost in the projection.

As the matrix gets closer to square, the
error sticks around. Also: almost square random Gaussian matrices
have small singular values: the error is blown up.



Some Theory

Proposition (Lindenbaum, S, 21)

If we fix the ratio N/D < 1 and let the dimensions of the matrix
go to infinity, then

EX ,ω‖X †y − X †Xθ∗‖ = (1 + o(1))

√
N

D − N
.

When the matrix is very underdetermined, then a lot of the error
gets lost in the projection. As the matrix gets closer to square, the
error sticks around.

Also: almost square random Gaussian matrices
have small singular values: the error is blown up.



Some Theory

Proposition (Lindenbaum, S, 21)

If we fix the ratio N/D < 1 and let the dimensions of the matrix
go to infinity, then

EX ,ω‖X †y − X †Xθ∗‖ = (1 + o(1))

√
N

D − N
.

When the matrix is very underdetermined, then a lot of the error
gets lost in the projection. As the matrix gets closer to square, the
error sticks around. Also: almost square random Gaussian matrices
have small singular values: the error is blown up.



Some Theory

Proposition (Lindenbaum, S, 21)

If we fix the ratio N/D < 1 and let the dimensions of the matrix
go to infinity, then

EX ,ω‖X †y − X †Xθ∗‖ = (1 + o(1))

√
N

D − N
.

Proof.
A fun computation: relevant are the inverse singular values of X .

Use the Marchenko-Pastur distribution. One integral



Some Theory

Proposition (Lindenbaum, S, 21)

If we fix the ratio N/D < 1 and let the dimensions of the matrix
go to infinity, then

EX ,ω‖X †y − X †Xθ∗‖ = (1 + o(1))

√
N

D − N
.

Proof.
A fun computation: relevant are the inverse singular values of X .
Use the Marchenko-Pastur distribution.

One integral



Some Theory

Proposition (Lindenbaum, S, 21)

If we fix the ratio N/D < 1 and let the dimensions of the matrix
go to infinity, then

EX ,ω‖X †y − X †Xθ∗‖ = (1 + o(1))

√
N

D − N
.

Proof.
A fun computation: relevant are the inverse singular values of X .
Use the Marchenko-Pastur distribution. One integral



Some Theory

Another theoretical perspective: we are given

y = Xθ∗ + ω,

where X ∈ RN×D .

Theorem (Lindenbaum, S, 2020)

Averaging over random subsets A of the equations of size
n < 0.9D, we have

EX ,ω

∥∥∥EA

(
πAθ

∗ − θ̂A
)∥∥∥ .

n√
N
√
D

+
n

D
.



Some Theory

Another theoretical perspective: we are given

y = Xθ∗ + ω,

where X ∈ RN×D .

Theorem (Lindenbaum, S, 2020)

Averaging over random subsets A of the equations of size
n < 0.9D, we have

EX ,ω

∥∥∥EA

(
πAθ

∗ − θ̂A
)∥∥∥ .

n√
N
√
D

+
n

D
.



Some Theory

Theorem (Lindenbaum, S, 2020)

Averaging over random subsets A of the equations of size
n < 0.9D, we have

EX ,ω

∥∥∥EA

(
πAθ

∗ − θ̂A
)∥∥∥ .

n√
N
√
D

+
n

D
.

This leads to a dichotomy:

1. If n is small, then the error is small but the projection πAθ
∗

has little to do with the ground truth.

2. If n is large, then the error increases but the projection is more
accurate.



Some Theory

Theorem (Lindenbaum, S, 2020)

Averaging over random subsets A of the equations of size
n < 0.9D, we have

EX ,ω

∥∥∥EA

(
πAθ

∗ − θ̂A
)∥∥∥ .

n√
N
√
D

+
n

D
.

This leads to a dichotomy:

1. If n is small, then the error is small but the projection πAθ
∗

has little to do with the ground truth.

2. If n is large, then the error increases but the projection is more
accurate.



Some Theory

Theorem (Lindenbaum, S, 2020)

Averaging over random subsets A of the equations of size
n < 0.9D, we have

EX ,ω

∥∥∥EA

(
πAθ

∗ − θ̂A
)∥∥∥ .

n√
N
√
D

+
n

D
.

This leads to a dichotomy:

1. If n is small, then the error is small but the projection πAθ
∗

has little to do with the ground truth.

2. If n is large, then the error increases but the projection is more
accurate.



Some Theory

Theorem (Lindenbaum, S, 2020)

Averaging over random subsets A of the equations of size
n < 0.9D, we have

EX ,ω

∥∥∥EA

(
πAθ

∗ − θ̂A
)∥∥∥ .

n√
N
√
D

+
n

D
.

This leads to a dichotomy:

1. If n is small, then the error is small but the projection πAθ
∗

has little to do with the ground truth.

2. If n is large, then the error increases but the projection is more
accurate.



Some Theory

Theorem (Lindenbaum, S, 2020)

Averaging over random subsets A of the equations of size
n < 0.9D, we have

EX ,ω

∥∥∥EA

(
πAθ

∗ − θ̂A
)∥∥∥ .

n√
N
√
D

+
n

D
.

This leads to a dichotomy:

1. If n is small, then the error is small but the projection πAθ
∗

has little to do with the ground truth.

2. If n is large, then the error increases but the projection is more
accurate.



Main Question

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

1. Which methods are best suited for this type of averaging?

2. Better way of selecting equations than just randomly?

3. Any chance of proving bounds with good constants?



Main Question

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

1. Which methods are best suited for this type of averaging?

2. Better way of selecting equations than just randomly?

3. Any chance of proving bounds with good constants?



Main Question

y =

1 10 20 30

1

5

10

15

20

1 10 20 30

1

5

10

15

20

θ + ω

1. Which methods are best suited for this type of averaging?

2. Better way of selecting equations than just randomly?

3. Any chance of proving bounds with good constants?



y = θ + ω

Thank you!


