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Pa(z) _ 1
Pn(Z) B ZZ_ZI('

k=1

If you are outside the convex hull, the charges ‘push you away’.
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Main Question
What about the roots of

p,(f'") where 0 < t < 17

Some History.
1. The question hasn't been studied very much.

2. Polya asked a whole number of questions in the setting of real
entire functions.

3. The smallest gap grows under differentiation. Denoting the
smallest gap of a polynomial p, having n real roots
{x1,...,%n} by

G(pn) = min [x; — x|,
i#

we have (Riesz, Sz-Nagy, Walker, 1920s)

G(Ppn) = G(pn).
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Let us denote the answer by u(t, x).

1. fpu(t,x)dx =1—t.
2. Jpu( txxdx— (1—1t) [z u(0,x)x dx
3. Jp Jru(t, x)(x = y)?u(t,y) dxdy =

(1 - t)3 fR fR U(O, X)(X - y)zu(oay) dXdy
This means: the distribution shrinks linearly in mass, its mean is
preserved and the mass is distributed over area ~ /1 — t.
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If there exists a nice and continuous evolution, then it is described

@%—lgarctan Hu =0 on supp(u)
ot  mox u) PP

1 f
Hf (x) = p.v./ ﬂdy is the Hilbert transform.
s

The argument is actually fun and | can give it in full. But before,
let's explore this strange equation. Sneak preview: the equation
will actually turn out to be pretty important and very few people
have actually studied it.
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Hermite polynomials H, : R — R satisfy a nice recurrence relation

dm 2Mnl

mHn_m(x).

Moreover, the roots of H, converge, in a suitable sense, to

1
= —v2n— x2dx.
T

This suggests that

2
u(t,x):;\/l—t—xz-x|x‘§\/ﬁ fort <1

should be a solution of the PDE (and it is).
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Laguerre Polynomials

(Associated) Laguerre polynomials H, : R — R satisfy the
recurrence relation

SRl 00 = (CDALTO 00,

The roots converge in distribution to the Marchenko-Pastur
distribution

Vs X))

V(C,X) 2 X(X,,X+)dx
where
xt =(Ve+1x1)>2
Indeed,

uc(t,x):v<c+t X )

1—-t'1—t
is a solution of the PDE.



Laguerre Polynomials

(t ) c+t X
u X) =V —_—, T .
an 1—t'1—t

s A

Figure: Marchenko-Pastur solutions uc(t,x): ¢ =1 (left) and ¢ = 15
(right) shown for t € {0,0.2,0.4,0.6,0.8,0.9,0.95,0.99}.



Derivation

H
—+ 190 arctan <) =0 on supp(u)



Derivation

ou 0 Hu
— + ———arctan{ — | =0 on supp(u)
u

Sketch of the Derivation. Crystallization as key assumption.



Derivation

ou 0 Hu
— + ———arctan{ — | =0 on supp(u)
u

Sketch of the Derivation. Crystallization as key assumption.

u(t, x)




Derivation

ou 0 Hu
— + ———arctan{ — | =0 on supp(u)
u

Sketch of the Derivation. Crystallization as key assumption.

u(t, x)




Derivation

ou 0 Hu
— + ———arctan{ — | =0 on supp(u)
u

Sketch of the Derivation. Crystallization as key assumption.

u(t, x)




Derivation

n 1
k=1 x—x
@ @ @




Derivation

n 1 .
2 k=15 =0
.

3

1 1 1
X—Xk: Z X—Xk+ Z X — Xk

k=1 |Xk—X| large |Xk—X| small




Derivation

1
2 k-1 X—xp
A g

L @ L @ L @ L L
Xk
1 1 1
= 2 D
X — Xk X — Xk X — Xk
k=1 |Xk—X| large |Xk—X| small

1 1
Z X—XkNn/RX—y.u(t7y)dy_n.[Hu](taX)'

|Xk *X| large



Derivation

n 1 o
2 k=15 =0
@

L @ L @ L @ L L
Xk
1 1 1
X - Z X X + Z X X
X — — —
k=1 k |Xk—X| large k |Xk—X| small k

1 1
Z X—XkNn/RX—y.u(t7y)dy_n.[Hu](taX)'

|Xk 7X| large

It thus remains to understand the behavior of the local term.
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Derivation

The local term is

1
Z X — Xk

|Xk7X| small

Crystallization means that the roots form, locally, an arithmetic
progressions and thus

> Y :

[xk—x]| small k €7 X — (Xk + u(t, x)n)

We are in luck: this sum has a closed-form expression due to Euler

[ 1 1
wcoth:f—i—g < + ) for x e R\ Z.
X
n=1

X+n Xx-—n
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We can then predict the behavior of the roots of the derivative:
they are in places where the local (near) field and the global (far)
field cancel out. This leads to the desired equation.
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A Fast Numerical Algorithm

Jeremy Hoskins (U Chicago) used the electrostatic interpretation
to produce an algorithm that can compute all derivatives of

polynomials up to degree ~ 100.000. Semicircles at the end.
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Let X be a random variable on R such that all moments are finite
and EX =0 as well as VX = 1. Let p, be a random polynomial
whose roots are i.i.d. copies of X and fix £ € N. Then, as n — oo,

2 _ X
e25  (n=0) [ X\ .
n o o) <ﬁ> (1+ o(1)) - Heg(x + 7n),

where v, ~ N(0,1) and Hey is the /—th Hermite polynomial.
Remarks.
1. The roots of the Hermite polynomial have a semicircle density.

2. If xg,x0,...,xn ~ X, then

X1+ + X
T“’N(O,l)

and the mean of the roots is preserved under differentiation
(that's why there is a random shift).
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around page 19 it says

(where we use the branch of arctan taking values in [0,7]) and thus by the change of
variables k = 1/s and abbreviating f = fi/s,

(=50, + 20, Hf — %az log((Hf)? + f2)1/2 (4.1)

and ;
1
(—80s +x0,) f = ;az arctan 7 (4.2)

The same PDE in a supposedly different context is presumably not
a coincidence.
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A Formal Computation (now Theorem of Kabluchko-Hoskins)

Under some reasonable assumptions

1
uaﬂk =u (l—k,);) dx.

This has a large number of implications.

» Fractional Free Convolution preserves free cumulants

(1) = [ sl

Kz(#):/RX2dM— </Rxdu)2

since
’fn(HEEk) = k- rin()-

Infinitely many conserved quantities.
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A Formal Computation (now a Theorem of
Kabluchko-Hoskins)

1 x
Bk _ o+ X
W —u<1 k,k)dx.

has a large number of implications.

Voiculescu's Free Central Limit Theorem
uwHpH - By — semicircle.

u(t, x) should be close to a semicircle for t close to 1. That's
exactly the Theorem that Jeremy and | proved for polynomials.
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[Submitted on 4 Sep 2020}
Universal objects of the infinite beta random matrix theory

Vadim Gorin, Victor Kleptsyn

which proves that, in a certain setting, the crystallization
assumption for roots is justified in the bulk



Oct 27, 2020



Oct 27, 2020

DYNAMICS OF ZEROES UNDER REPEATED DIFFERENTIATION
JEREMY HOSKINS AND ZAKHAR KABLUCHKO

ABSTRACT. Consider a random polynomial P, of degree n whose roots are independent
random variables sampled according to some probability distribution uo on the complex
plane C. It is natural to conjecture that, for a fixed ¢ € [0,1) and as n — oo, the zeroes
of the [tn]-th derivative of P, are distributed according to some measure y; on C. As-
suming either that po is concentrated on the real line or that it is rotationally invariant,
Steinerberger [Proc. AMS, 2019] and O’Rourke and Steinerberger [arXiv:1910.12161] de-
rived nonlocal transport equations for the density of roots. We introduce a different method

to treat such problems. In the rotationally invariant case, we obtain a closed formula for
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» and many examples
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THE FLOW OF POLYNOMIAL ROOTS UNDER DIFFERENTIATION

ALEXANDER KISELEV AND CHANGHUI TAN

ABSTRACT. The question about the behavior of gaps between zeros of polynomials under
differentiation is classical and goes back to Marcel Riesz. In this paper, we analyze a nonlocal
nonlinear partial differential equation formally derived by Stefan Steinerberger [55] to model
dynamies of roots of polynomials under differentiation. Interestingly, the same equation has
also been recently obtained formally by Dimitri Shlyakhtenko and Terence Tao as the evolution
equation for free fractional convolution of a measure [51] - an object in free probability that
is also related to minor processes for random matrices. The partial differential equation bears
striking resemblance to hydrodynamic models used to describe the collective behavior of agents
(such as birds, fish or robots) in mathematical biology. We consider periodic setting and
show global regularity and exponential in time convergence to uniform density for solutions
corresponding to strictly positive smooth initial data. In the second part of the paper we connect
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Prove existence/uniqueness of solutions of the PDE on R in
PDE language with PDE techniques (fractional free
convolution is known to exist; on T this is Kiselev & Tan)

Infinitely many conservation laws? Tells us something nice?
Linearization seems really nice?

Is Hoskins' algorithm a useful method to compute pF?
What about the complex case?

There is a PDE but it's more complicated (essentially a
complex Burger's equation), the radial case becomes a really
nice one-dimensional transport equation (joint work with Sean
O'Rourke)



What's left to do?

+ 2t
* 15 s
t +
+ »
»
L Tr o + .
+ +
+ et + * +
+ % s
+ + : N
+4 +
+ + +
+ :‘_* & +»
+ -
‘ PO Sivus e S B
-2 + 1 :— +j’b~i+ 4 .+
+ T+ »
+ -
& ik A
. ¥ +* +
+ ¥ +
+ * + . +*++
+ o+ + 1T +
+ +
+ Al o+ s
- v, +
+ A +
+
0
. .

picture from O'Rourke and Williams (2018)



A Nonlocal Transport Equation

Sean O'Rourke and | tried to see whether the equation simplifies if
we assume that the initial distribution is radial around the origin.



A Nonlocal Transport Equation

Sean O'Rourke and | tried to see whether the equation simplifies if
we assume that the initial distribution is radial around the origin.
If the density is (¢, x), then

_2o ((i / Xw<s)ds>_1 w(x)> -



A Nonlocal Transport Equation

Sean O'Rourke and | tried to see whether the equation simplifies if
we assume that the initial distribution is radial around the origin.
If the density is ¥ (t, x), then

_2o ((i / Xw<s)ds>_1 w(x)> -




o ax((/w > X)>

has a nice closed form solution

U(t, X) = X0<x<1—t-



5= ([ e) oo

has a nice closed form solution
u(t,x) = Xo<x<1i—t-

This corresponds to Random Taylor Polynomials.
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Random Taylor polynomials are defined by

n Zk
Pn=) W
k=0 '

where v, ~ N(0,1). They are preserved under differentiation.
Theorem ( Kabluchko & Zaporozhets)

n
1 X|z|<1
- E Ogen—1 — as n — oo.
it 27|z|



Kabluchko & Hoskins give many more examples of solutions.






