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pn will be a polynomial of degree n having n distinct roots.

The Gauss-Lucas theorem (1830s). The roots of p′n are
contained in the convex hull of the roots of pn.

Proof. The ‘electrostatic interpretation’:

p′n(z)

pn(z)
=

n∑
k=1

1

z − zk
.

If you are outside the convex hull, the charges ‘push you away’.
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Suppose now that

pn(x) =
n∏

k=1

(x − xk).

Between any two roots there is a maximum or a minimum, thus a
root of p′n. Moreover, there are n − 1 intervals between the n
roots, so each interval has exactly one root. Thus the roots of pn
and the roots of p′n interlace.

Suppose now the roots are distributed according to some ‘nice’
measure µ and n→∞.
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Conjecture (Rivin-Pemantle), Theorem (Kabluchko, 2015)

The critical points are also distributed according to µ.

Fact for real-rooted polynomials

The roots of

p
( n
log n

)
n

also distributed according to µ as n→∞.

Sketch. Each root moves roughly ±n−1 under one step of
differentiation.

Main Question
What about the roots of

p
(t·n)
n where 0 < t < 1?



Conjecture (Rivin-Pemantle), Theorem (Kabluchko, 2015)

The critical points are also distributed according to µ.

Fact for real-rooted polynomials

The roots of

p
( n
log n

)
n

also distributed according to µ as n→∞.

Sketch. Each root moves roughly ±n−1 under one step of
differentiation.

Main Question
What about the roots of

p
(t·n)
n where 0 < t < 1?



Conjecture (Rivin-Pemantle), Theorem (Kabluchko, 2015)

The critical points are also distributed according to µ.

Fact for real-rooted polynomials

The roots of

p
( n
log n

)
n

also distributed according to µ as n→∞.

Sketch. Each root moves roughly ±n−1 under one step of
differentiation.

Main Question
What about the roots of

p
(t·n)
n where 0 < t < 1?



Conjecture (Rivin-Pemantle), Theorem (Kabluchko, 2015)

The critical points are also distributed according to µ.

Fact for real-rooted polynomials

The roots of

p
( n
log n

)
n

also distributed according to µ as n→∞.

Sketch. Each root moves roughly ±n−1 under one step of
differentiation.

Main Question
What about the roots of

p
(t·n)
n where 0 < t < 1?



Main Question
What about the roots of

p
(t·n)
n where 0 < t < 1?

t = 0

t = 0.5

t = 0.99



Main Question
What about the roots of

p
(t·n)
n where 0 < t < 1?

t = 0

t = 0.5

t = 0.99



Main Question
What about the roots of

p
(t·n)
n where 0 < t < 1?

t = 0

t = 0.5

t = 0.99



Main Question
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p
(t·n)
n where 0 < t < 1?

Some History.

1. The question hasn’t been studied very much.

2. Polya asked a whole number of questions in the setting of real
entire functions.

3. The smallest gap grows under differentiation. Denoting the
smallest gap of a polynomial pn having n real roots
{x1, . . . , xn} by

G (pn) = min
i 6=j
|xi − xj |,

we have (Riesz, Sz-Nagy, Walker, 1920s)

G (p′n) ≥ G (pn).
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Main Question
What about the roots of

p
(t·n)
n where 0 < t < 1?

Let us denote the answer by u(t, x). Here, the idea is that u(t, x)
is the limiting behavior as n→∞.

In particular

µ = u(0, x)dx

and ∫
R
u(t, x)dx = 1− t.

What can one say about u(t, x)?
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Theorem (S. 2018)

If there exists a nice and continuous evolution, then it is described
by

∂u

∂t
+

1

π

∂

∂x
arctan

(
Hu

u

)
= 0 on supp(u)

where

Hf (x) = p.v.
1

π

∫
R

f (y)

x − y
dy is the Hilbert transform.

The argument is actually fun and I can give it in full. But before,
let’s explore this strange equation. Sneak preview: the equation
will actually turn out to be pretty important and very few people
have actually studied it.
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Closed Form Solutions

A nice way to understand a PDE is through explicit closed-form
solutions (if they exist).

So the relevant question is: are there nice special solutions that we
can construct? For this we need polynomials pn whose roots have

a nice distribution and whose derivatives p
(k)
n also have a nice

distribution?

1. Hermite polynomials

2. (associated) Laguerre polynomials
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Hermite Polynomials

Hermite polynomials Hn : R→ R satisfy a nice recurrence relation

dm

dxm
Hn(x) =

2nn!

(n −m)!
Hn−m(x).

Moreover, the roots of Hn converge, in a suitable sense, to

µ =
1

π

√
2n − x2dx .

This suggests that

u(t, x) =
2

π

√
1− t − x2 · χ|x |≤√1−t for t ≤ 1

should be a solution of the PDE (and it is).
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Laguerre Polynomials

(Associated) Laguerre polynomials Hn : R→ R satisfy the
recurrence relation

dk

dxk
L
(α)
n (x) = (−1)kL

(α+k)
n−k (x).

The roots converge in distribution to the Marchenko-Pastur
distribution

v(c, x) =

√
(x+ − x)(x − x−)

2πx
χ(x−,x+)dx

where
x± = (

√
c + 1± 1)2.

Indeed,

uc(t, x) = v

(
c + t

1− t
,

x

1− t

)
is a solution of the PDE.



Laguerre Polynomials

(Associated) Laguerre polynomials Hn : R→ R satisfy the
recurrence relation

dk

dxk
L
(α)
n (x) = (−1)kL

(α+k)
n−k (x).

The roots converge in distribution to the Marchenko-Pastur
distribution

v(c, x) =

√
(x+ − x)(x − x−)

2πx
χ(x−,x+)dx

where
x± = (

√
c + 1± 1)2.

Indeed,

uc(t, x) = v

(
c + t

1− t
,

x

1− t

)
is a solution of the PDE.



Laguerre Polynomials

(Associated) Laguerre polynomials Hn : R→ R satisfy the
recurrence relation

dk

dxk
L
(α)
n (x) = (−1)kL

(α+k)
n−k (x).

The roots converge in distribution to the Marchenko-Pastur
distribution

v(c, x) =

√
(x+ − x)(x − x−)

2πx
χ(x−,x+)dx

where
x± = (

√
c + 1± 1)2.

Indeed,

uc(t, x) = v

(
c + t

1− t
,

x

1− t

)
is a solution of the PDE.



Laguerre Polynomials

uc(t, x) = v

(
c + t

1− t
,

x

1− t

)
.

Figure: Marchenko-Pastur solutions uc(t, x): c = 1 (left) and c = 15
(right) shown for t ∈ {0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99}.
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∑
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x − xk
∼ n
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R

1

x − y
· u(t, y)dy = n · [Hu](t, x).

It thus remains to understand the behavior of the local term.
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Remarks.
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∼ N (0, 1)

and the mean of the roots is preserved under differentiation
(that’s why there is a random shift).
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with k ≥ 1. As t → 1, we have k →∞.

A Formal Computation (now Theorem of Kabluchko-Hoskins)

Under some reasonable assumptions

µ�k = u
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What’s left to do?

I Prove existence/uniqueness of solutions of the PDE on R in
PDE language with PDE techniques (fractional free
convolution is known to exist; on T this is Kiselev & Tan)

I Infinitely many conservation laws? Tells us something nice?

I Linearization seems really nice?

I Is Hoskins’ algorithm a useful method to compute µ�k?

I What about the complex case?

I There is a PDE but it’s more complicated (essentially a
complex Burger’s equation), the radial case becomes a really
nice one-dimensional transport equation (joint work with Sean
O’Rourke)
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What’s left to do?

picture from O’Rourke and Williams (2018)



A Nonlocal Transport Equation

Sean O’Rourke and I tried to see whether the equation simplifies if
we assume that the initial distribution is radial around the origin.

If the density is ψ(t, x), then

∂ψ
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=

∂
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((
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0
ψ(s)ds

)−1
ψ(x)
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.
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)−1
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has a nice closed form solution

u(t, x) = χ0≤x≤1−t .

This corresponds to Random Taylor Polynomials.

-1000 -500 500 1000

-1000

-500

500

1000



∂ψ

∂t
=

∂

∂x

((
1

x

∫ x

0
ψ(s)ds

)−1
ψ(x)

)
has a nice closed form solution

u(t, x) = χ0≤x≤1−t .

This corresponds to Random Taylor Polynomials.

-1000 -500 500 1000

-1000

-500

500

1000



-1000 -500 500 1000

-1000

-500

500

1000

Random Taylor polynomials are defined by

pn =
n∑

k=0

γk
zk

k!
,

where γk ∼ N (0, 1).

They are preserved under differentiation.

Theorem ( Kabluchko & Zaporozhets)

1

n

n∑
k=1

δzkn−1 →
χ|z|≤1

2π|z |
as n→∞.
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Kabluchko & Hoskins give many more examples of solutions.



Thank you!


