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Laplacian eigenfunctions need no introduction

−∆φk = λkφk .

If you have not spent too much time with them: think of
φk(x) = sin (kx) on [0, π] or the spherical harmonics on S2.

Main Question

What do these eigenfunctions do? Specifically: ‖φk‖L∞?
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Chladni meets Napoleon



The late blind Justice Fielding
walked for the first time into my
room, when he once visited me,
and after speaking a few words
said, This room is about 22 feet
long, 18 wide, and 12 high; all
which he guessed by the ear with
great accuracy.

(Erasmus Darwin, Zoonomia)
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at first but I promise it will all make sense in the end).
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Back in 2015 we were working on the Bourgain-Clozel-Kahane
uncertainty principle and needed a curious result about the
Hermite functions Hn (the eigenfunctions of −∆ + x2 on R).

These are also eigenfunctions of the Fourier transform and

Fφn = inφn.
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For any {a1, . . . , am} ⊂ R there are infinitely many n ∈ N so that

min
1≤i≤m

H4n(ai ) > 0.

This should be contrasted with the following
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that

min
1≤i≤m

H4n(ai ) > 0.

Sketch of Proof. On compact intervals

Γ(2n + 1)

Γ(4n + 1)
e

x2

2 H4n = cos (
√

8nx) +O(1/
√

n).

This means we care about the sequence of points

xn = (
√

8na1,
√

8na2, . . . ,
√

8nam) ∈ Tm.

The linear flow γ(t) = (a1t, a2t, . . . , amt) gets arbitrarily close to
the origin again and again (Poincare Recurrence Theorem) and the
cosines are all positive there.
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Suppose now we have a ‘reasonably’ nice potential V : R→ R
(satisfying |V (x)| → ∞ as |x | → ∞) and suppose we have the
eigenfunctions

(−∆ + V )φk = λkφk .

Question. Given two different points x 6= y , is there any
correlation in the sign of φk(x) and φk(y)? We measure this via

αN =
1

N
# {1 ≤ k ≤ N : sgn(φk(x)) = sgn(φk(y))} .

First gut instinct is that αN ∼ N/2 since these quantities should
be sort of unconnected. Second gut instinct: well, maybe they are
connected a little because waves in 1D can only go left or right.
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αN =
1

N
# {1 ≤ k ≤ N : sgn(φk(x)) = sgn(φk(y))} .

Theorem (G, OeS, S)

If V is ‘reasonable’, for almost all (Lebesgue) pairs of points

lim
N→∞

αN =
1

2
.

We also have

1

3
≤ lim inf

N→∞
αN ≤ lim sup

N→∞
αN ≤

2

3

and these bounds are best possible.

Example. For (x , y) = (0.5, 2.5) and V (x) = x2 (Hermite
functions), we have limN→∞ αN = 3/5. For example, α1000 = 603.
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Outline

1 How much can eigenfunctions concentrate? Concretely: how
quickly can ‖φk‖L∞ grow as a function of k (or λk)?

2 Is it possible for different points on the manifold to have sign
correlations via eigenfunctions?

3 How are (1) and (2) related?

4 How is all of this connected to Berry’s wave model?

Main Takeaway

Growth of ‖φk‖L∞ (beyond log) and sign correlations are
intertwined.
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Theorem (Levitan, 1952), (Avakumovic, 1956)

‖φk‖L∞ . λ
d−1
4

k .

This is sharp on Sd for spherical harmonics.





Local Weyl Law (Hörmander, 1966)

If normalized vol(M) = 1, then

n∑
k=1

φk(x)2 = n +O(n
d−1
d ).

In particular,

‖φn‖2L∞ . n
d−1
d

which with Weyl’s λn ∼ n2/d implies

‖φn‖L∞ . λ
d−1
4

n .
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Summarizing, we have the growth bound (sharp on the sphere)
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Motivating Phenomenon

This bound seems to be rarely be sharp.
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Consider the d−dimensional torus Td . The eigenfunctions are, for
n ∈ Zd ,

−∆e i〈n,x〉 = ‖n‖2e i〈n,x〉.

An eigenfunction corresponding to frequency λ can be written as

φ(x) =
∑
‖n‖=

√
λ

ane i〈n,x〉.

Then

‖φ‖L∞ ≤
∑
‖n‖=

√
λ

|an| ≤

 ∑
‖n‖=

√
λ

1

1/2 ∑
‖n‖=

√
λ

a2n

1/2

︸ ︷︷ ︸
=‖φn‖L2

The relevant quantity is the number of lattice points on a sphere.
Classical results imply that for d ≥ 5
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Growth of Eigenfunctions =⇒︸ ︷︷ ︸
?

Structure in Manifold

P. Berard (1977)

On manifolds without conjugate points

‖φn‖L∞ .
λ

d−1
4

n

log λ
.

The same kind of improvement is known for negatively curved
compact manifolds, compact hyperbolic manifolds, ... On generic
negatively curved manifolds it is expected that one has

‖φn‖L∞ . λεn.
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Structure in Manifold

What if there is no particular structure in the manifold? A sphere
with a generic dent in it?

Prediction (Michael Berry, Hejhal-Rackner,...)

Generically, we should have something like

‖φn‖L∞ .
√

log λn.
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The Random Wave Model (Berry, 1977)

‘Generic’ eigenfunctions should locally behave like random
superpositions of pure waves with frequency

√
λk , i.e.

f (x) =

√
2

vol(M)

1√
N

N∑
n=1

an cos (〈kn, x〉+ εn) ,

where

an are independent Gaussians

εn uniformly distributed in [0, 2π]

kn uniformly from the sphere with radius ‖kn‖ =
√
λ

Use this to estimate maximum: we have

vol(M)/(λ
−1/2
n )d ∼ λd/2n

many such local waves. Maximum of m Gaussians is ∼
√

log m.
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New Idea

Some Basic Linear Algebra

For any arbitrary choice of signs

±φ1,±φ2,±φ3, . . .

is an orthonormal basis of L2 (eigenspaces not eigenvectors)

In particular, for any choice of signs∫
M

(±φ1 ± φ2 ± · · · ± φn)φn+1dx = 0.

Is there a particularly smart choice of signs? Yes.
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∫
M

(±φ1 ± φ2 ± · · · ± φn)φn+1dx = 0.

Suppose |φn+1| assumes its maximum in x0 ∈ M.

We could flip all signs of φi in such a way that the eigenfunction
φi is positive in x0. Do we learn anything from∫

M

(
n∑

i=1

sign(φi (x0))φi (x)

)
φn+1(x)dx = 0?
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Define, for x , y ∈ M and n ∈ N

q(n)(x , y) =
n∑

k=1

sign(φk(x))φk(y).

This is a good linear combination of eigenfunctions to investigate
the behavior of the next eigenfunction φn+1 in x .

Basic Facts

We have ∫
M

∫
M
q(n)(x , y)2dxdy = n.

On the diagonal x = y , we have q(n)(x , x) =
∑n

i=1 |φi (x)|dx and

n
d+1
2d .(M,g)

n∑
k=1

|φk(x)| ≤ n +O(n
d−1
d ).
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k=1

|φk(x)| ≤ n +O(n
d−1
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The upper bound should almost always be sharp.

The lower bound
is sharp on the sphere (in the north pole). Probably not on
average?

Question. Is there a universal estimate∫
M
| q(n)(x , x)|dx =

n∑
k=1

‖φk‖L1 &
n

(log n)α

for some α ≥ 0?
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Prediction

Generically, we should have something like

q(n)(x , y) ∼

{
n when ‖x − y‖ . n−1/d
√

n otherwise

I will argue that these two things are highly intertwined. If this
heuristic is violated, then we will speak of spooky action at a
distance (picture of what that looks like in 2 slides).
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Letter from Einstein to Born, March 3 1947

[...] die Physik eine Wirklichkeit
in Zeit und Raum darstellen soll,
ohne spukhafte Fernwirkungen.

[...] that physics should represent
reality in time and space, without
spooky action at a distance.
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Spooky Action at a Distance

Let us take M = [0, π] with Dirichlet boundary conditions.

Then
φk = sin (kx). We plot q(500)(1, y).
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Spooky Action at a Distance II

Square [0, π]2 (Dirichlet boundary): q(675)((1.3, 1.3), (x , y)).
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Spooky Action at a Distance III

Square [0, π]2 (Dirichlet boundary): q(675)((π/2, π/2), (x , y)).
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Growth of Eigenfunctions =⇒︸ ︷︷ ︸
?

Structure in Manifold

Theorem (informal)

Growth of Eigenfunctions =⇒ spooky correlation at a distance

The usual problem: eigenfunctions we can explicitly study are
those with closed form expression. They have a closed form
expression because their manifold is structured which is not
generic. It is hard to get your hand on ‘generic’ eigenfunctions.
Standard trick: take manifolds where eigenspaces have large
multiplicity and take a random linear combination.
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An Example: S1

Theorem

The canonical basis of eigenfunctions on S1 (sines and cosines)
exhibits spooky action at a distance.

A random rotation of the
eigenbasis does not!

One would expect such results to be true at a rather great level of
generality (with guarantees to be formulated in terms of the
multiplicity of the eigenspace).
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Figure: q(250)(1, y) for a fixed randomization of the Fourier basis.



An Example: S1 with randomly rotated basis
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Figure: q(250)(1, y) for a fixed randomization of the Fourier basis.
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Figure: q(250)(1, y) for a fixed randomization of the Fourier basis.



1/4−disk with Dirichlet boundary conditions



1/4−Disk with Neumann boundary conditions



We can now state the main result (somewhat informally).

Theorem (informal)

If vol(M) = 1 and if φn+1 assumes its maximum in z ∈ M, then

φn+1(z) ≤ 2n

q(n) (z , z)

∣∣∣∣∣
∫
M\B(z,1/

√
λn+1)

q(n)(z , y)φn+1(y)dy

∣∣∣∣∣
If φn+1 is ‘large’, then either

1 q(n) (z , z) is small or

2 the integral is large

3 or both
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If φn+1 is ‘large’, then either

q(n) (z , z) is small or

the integral is large or both.

As it turns out, the first case cannot just happen out of nowhere.

Lemma

On manifolds normalized to vol(M) = 1, we have

min
x∈M
q(n)(x , x) ≥ n −O(n

d−1
d )

max1≤k≤n ‖φk‖L∞
.

This inequality is sharp on S2.

The only way for this term to be small is if previous terms were
large. So this term by itself cannot be the (sole) reason for growth.
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Corollary

Eigenfunction growth can only happen when∣∣∣∣∣
∫
M\B(z,1/

√
λ)
q(n)(z , y)φn+1(y)dy

∣∣∣∣∣ is large.

This, however, is tremendously interesting: there is no reason why
an eigenfunction should correlate strongly with a particular linear
combination of eigenfunctions.
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which is a factor 1/4 worse than the L∞−bound. This being sharp
would require q(n)(z , y) and φn+1(y) to be proportional!
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So how large do we expect

X =

∫
M\B(z,1/

√
λ)
q(n)(z , y)φn+1(y)dy to be?

Using the random wave model, we expect φn+1 to behave like a
random Gaussian at scale 1/

√
λn+1 ∼ n−1/d and

X ∼ q(n)(x , y1) · ±1

n
+ · · ·+q(n)(x , yn) · ±1

n

∼ ±

√
q(n)(x , y1)2

n2
+ · · ·+ q

(n)(x , yn)2

n2
∼ N (0, 1).

The maxima of n Gaussians is ∼
√

log n and we recover the
random wave heuristic assuming an integrated version of the
random wave model.
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What I am not talking about: special function identities

Spooky Action implies interesting special function correlations.

On
T,
∑n

k=1 cos(ky) is orthogonal to cos (n + 1)y but has nontrivial
negative correlation outside the origin. On S2, we deduce that a
suitable linear combination of Legendre Polynomials

n∑
k=1

√
k +

1

2
· Pk(cos θ)

has some curious behavior with respect to Pk+1(cos θ).
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What I am not talking about II: other sign flips

We looked at one particular choice of sign flips∫
M

(±φ1 ± φ2 ± · · · ± φn)φn+1dx = 0.

But one could look at others!

In the absence of concentration, one
can pick the n/3 functions that are smallest in x and flip their signs
randomly: leads to 2n/3 functions against which one can test and
for which most of the results remain (at least approximately) true.

Gaussian Free Field =
∞∑
k=1

γk
φk(x)√
λk

where γk ∼ N (0, 1).
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Long story short

1 Growth of eigenfunctions requires manifold structure but
unclear what.

2 Random wave model: ‖φn‖L∞ .
√

log λn
3 New ingredient: linear combinations q(n). Growth of

eigenfunctions happens iff there is strong global correlation
between φn+1 and many suitable linear combination of the
first n eigenfunctions.

4 Not ‘generically’ expected, integrated random wave heuristic.

5 Special Function Identities as byproduct.

6 Counterexamples present Spooky Action at a Distance:
eigenfunctions synchronize across large scales.
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Thank you!


