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t-SNE

Main problem: given a set of high-dimensional points
{x1,...,xn} C RY, we would like to get an 'equivalent’
representation {y1,...,yn} C R? so we can have a look.

Somewhat ill-posed but 'clusters should remain clusters.’

Clearly a mathematically nontrivial problem, however, the
biomedical community has the answer: t-distributed stochastic
neighborhood embedding (van der Maaten & Hinton, 2008)



Makosco et al (2015)

Figure: 49k retinal cells, the t-SNE output and partially known truth.
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Figure: 28 x 28 pixel boxes.



Sammon

g 5T
EAOE sl OOLY,
w19, LT AR W)
T bty &*,“,) 3¢ #' ’rf ‘
Aoy 73 Ml 7}” oyl I ”‘ ‘hv
RIARCRAY A ’3*%', 717 Wty (p;fm,? 58 2 ’|, iSr,
. f"ﬁéwi ﬂfw4<§~u'~"‘”"’$g~;5« LA 55 mf,')"'i,J\km"lni
ANd 47 KRR AR R M TRALN ’uylh
Wy G s ¥, .wqwqw@h T e ,,,”?f;‘”w,’
SN AL Pl 2 Ty T AN, AL AL AN AL P
M F2 Bavdapr e, L. 2, e L by i ity e
R e e A G ek
o E a5 s s 4 K G,
PR TARS S Ay 4y 104 35T A
My, & s By s 0 d iy B s e Ay ,;‘, , 500 gt
SRR L Lo R e ’”“‘wﬂf' s
ARCAMY N ER LI GNP AN 2 S R A s
:""%‘{ t““Z‘ "“"“”;ﬁ;‘f‘u:i’ 'Lg;“ A fﬁ” ‘ hi; oF o 2"' )“"ﬂ"‘sj / ,”*’”‘ l/'//{’//
g b pun A Ev, LA g, ,{}nr 4 i
e m"ﬁ“ A I LA 5 47 r, [ 5 it MRA A
v, €, g ERK PR At R “!B,,» “y X
R DR e w14
00 5 el " B g PR ORI o'y u 4 w7 ”
- M;L":}z & @t%::é‘ae :z’;'fﬁ i;;;‘.ﬁ:hn{“j"” .,;: o, U'f, s }/;, ‘/‘}{//;//,
"2 H. s I s .7
oo 14‘;!“;4‘% Hyrdtn ‘ﬁ”)““*ﬁ (23 4 ."';S%,,il,,;%ﬁf; s
S ] b gk 22 5, r224 :
of, o n DI LYV o it S5 & s S % r4 752 7y
oS o% osd, % g" 0 é ,,n““ql,', ‘o 55 %% < AR % :,
< Sense fete, Sk oo hyy 4 sk F:g,‘«;“ 5Lt s J
v e Yk, O RN P P ) { T i
88, & Ay T a-:ﬁs’i? hoagt 14 AN é{ 3055
£ 2 g fod 4 % H 5P N
LEE S U g
o o A A e
E s LR é»?;;zr, e [ A
1528 SPL R P ST O ) ¥ g R
0% % e :”: Fos 5. sfci‘o“"“-’?’;;’g‘ Brast E i,f‘li;‘ig "zz 2 .
RN A £8o0 8 ulhg ) *‘;; A ;33;%& =%
T Re, & s E AR R iy u‘s L ia s f}; e
°°°-M":f"b§f;£;iooo”f .. ’%g; : f: .s;‘? .',!5,,1" } g 2 %
2020603 42 408 ¥, 0 v, B2
s O ST RN I M, “s,
B SR TR Y I ‘%’% ﬂ‘ﬁs? ’
5
eo 8% ma‘a‘z’%g ,é és&é}lu.&fﬁfjﬁﬁsﬁgtﬁ 2
op @ %8 0 tE s3is Ry 2%
&8 ’%%B Saas > ) aFA s
0 @ o 'Dao'GS ie; .52);‘;!15;,33:?,
0 %8, P
25%, :550 Y s



Curvilinear Component Analysis
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Isomaps
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Maximum Variance Unfolding

°



Locally Linear Embedding




Laplacian Eigenmaps




Stochastic Neighbor Embedding (Roweis & Hinton 2002)
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t-SNE — the picture the biomedical world liked




Stochastic Neighborhood Embedding (SNE,
Hinton-Roweis, 2002)

Main problem: given a set of high-dimensional points
{x1,...,xy} C RY we would like to get an 'equivalent’
representation {y1,...,yn} C R2.

Main idea. Turn configurations of points into probability
distributions and force these distributions to be similar.




SNE (Hinton-Roweis, 2002)

KL Divergence (Kullback & Leibler, 1951)

I
Dk (P||Q) = ZP)Iog 0

L. Dke(PlIQ) =0
2. roughly the number of bits one needs for updating an
incorrect code based on Q to a code for P

3. Gibbs inequality: Dy, (P||Q) =0 iff P = Q



Main Idea

How to do dimensionality reduction like SNE (and then t-SNE).
> Create a probability distribution in high dimensions.
» Create another on a set of points in two dimensions.

> Measure the KL-divergence between them and move the
points in low dimensions around so that KL becomes small.



SNE (Hinton-Roweis, 2002)

Given set of k points, X = {x1,...,xx} C RP, stochastic
neighborhood embedding searches for ¢ = {y1,...,yx} C RY
(usually d € {2,3}) that minimizes the loss

k k
L(yl,...,yk ZZ X,,XJ log pgi’f
— 1

1

Y))
xj)’

Important: p is the similarity in the input space, g is the similarity
induced by the embedding. The question is: how to pick p and g7

Problem. There is no good mathematical theory. This
actually has serious implications in practice (we will return
to this point).

Since the points are in high dimensions, it is not a stretch to make
p a Gaussian affinity. SNE picks g to be a Gaussian.



SNE (Hinton-Roweis, 2002)

Given set of k points, X = {x1,...,xx} C RP stochastic
neighborhood embedding searches for ¢ = {y1,...,yx} C RY
(usually d € {2,3}) that minimizes the loss

k k

L(.y17 cee 7Yk) == _ZZP(XHXJ)IOg Q(%ﬂ/f;)a
i=1 j=1
J#i

where the functions p and g are given by

oy = Pl = /207
IB) -
)= 5 exp(—lxi — xilP/207)
e (—lyi — ;1)
EXPL—IYi — Y
qlyi,yj) = .
) =5 e llyi — yelP)

Important: p is the similarity in the input space, g is the similarity
induced by the embedding.




Stochastic Neighbor Embedding (Roweis & Hinton 2002)

4 h W, t A I
v ,/‘,.r ‘
iz‘wﬂ‘%é’ 23 "%# Wé (
Bt
3

T ,@713 A
. P Ry
AN I;"’l,'/v, VAR 7

" 53/ PR YR £ ¢
e m L7 h
PN

3

;

)
7 R T, 7
Lo, Y awigrt gvETy 2
W, c l" JW,;W{;" 'y;}‘,’w%ﬁ ’7,777: 041
qu ,,; ‘; “ G S M
s p@;g%g A é" 313 q; ,\,’.,,”,’; ,,;”,,;7;’,;,1:777“;
S A ,.}. s ¥ ',,}n};i,;y A
[ 1,, rmg 1“ n‘h,w 7,77;,;,,'71» By 7%
o H,, 7 7, 7 7
Yy
' :mv o St 772 77
, ,,, Ik ’M [ ’,1, ;?7 7
Y4y ,u,’,r"',‘ W 1597, 53
, g A
’/,///,"*9/,/”/ P /m"” ,‘%" ,".’ z,,,/;/w
4 s ' !
s //// /%?'/f "//’, ’//' '
Tyt

4 )
n%; s vy
sl



Laurens van der Maaten (Facebook Al New York)

=] 5 = = E DA



t-SNE (Hinton-van der Maaten, 2008)

Given set of k points, X = {x1,...,xx} C RP, stochastic
neighborhood embedding searches for ) = {y1,...,yx} C RY
(usually d € {2,3}) that minimizes the loss

q(yi, y;)
L(¢1,---a¢}k anX |Og )
3 st )
J#i
where the functions p and g are given by
exp(—||xi — x%/207)
Doz exp(=llxi — x||?/207)

p(XhX_/)

and o1
1+ llyi — ylI%)~

Dokt + vk = wl?) 1

Novelty. g is a much slower decaying function.

q(yi,yj) =



t-SNE (Hinton-van der Maaten, 2008)

It is widely used but is also known to fail on many nice examples




George Linderman (M.D/Ph.D. program Yale)




Outline of the Rest of the Talk

1. A reinterpretation of gradient descent as a dynamical system
acting on particles. Reinterpretation of the dynamical system
as a maximum principle with error term. This was the first
rigorous result. (SIAM J. Math. Data Science)
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2. Byproduct 1: Some mysterious parameter selections in the
original code are explained and improved.
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Outline of the Rest of the Talk

Byproduct 2: If one of the parameters becomes large, we obtain
Laplacian Eigenmaps.

LINDERMAN AND STEINERBERGER
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Figure 7: Early exaggeration via t-SNE with o ~ n/3,h = 1 (top, parameter sclection via
guideline) and iterations of the spectral method (bottom).



Outline of the Rest of the Talk

LINDERMAN AND STEINERBERGER

Step 5

Step 100 Step 800
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Figure 7: Early exaggeration via t-SNE with a ~ n/3,h =1 (top, parameter selection via
guideline) and iterations of the spectral method (bottom).

Emering philosophy.. t-SNE is a spectral method with a repulsion
on top. This might be a very good modification. There are many
such algorithms.



Outline of the Rest of the Talk
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as a maximum principle with error term. This was the first
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2. Byproduct 1: Some mysterious parameter selections in the
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3. Byproduct 2: If one of the parameters becomes large, we
obtain Laplacian Eigenmaps.

4. Moreover, everything can be made a /ot faster. 10 hours —
15 minutes. (Nature Methods)
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1. A reinterpretation of gradient descent as a dynamical system
acting on particles. Reinterpretation of the dynamical system
as a maximum principle with error term. This was the first
rigorous result.

2. Byproduct 1: Some mysterious parameter selections in the
original code are explained and improved.
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obtain Laplacian Eigenmaps.

4. Moreover, everything can be made a /ot faster. 10 hours —
15 minutes.

5. Finally: a return to the basics: the entire Kullback-Leibler
interpretation is misleading. One should really think of it as
particle systems instead. (ECML 2019)



Outline of the Rest of the Talk

1. A reinterpretation of gradient descent as a dynamical system
acting on particles. Reinterpretation of the dynamical system
as a maximum principle with error term. This was the first
rigorous result.

2. Byproduct 1: Some mysterious parameter selections in the
original code are explained and improved.

3. Byproduct 2: If one of the parameters becomes large, we
obtain Laplacian Eigenmaps.

4. Moreover, everything can be made a /ot faster. 10 hours —
15 minutes.

5. Finally: a return to the basics: the entire Kullback-Leibler
interpretation is misleading. One should really think of it as
particle systems instead.

6. Infinite opportunities!



Gradient Descent

0 functional
BN — 43 (s — a)asZ (i — ).
Vi —
JF
where Z is a global normalization constant
-1
Z=3" (14 lye—ylP)
k#1
In practice (hard-coded!)
h O functional
4T_hzo‘f’uqu )=h> a2l

J#i J#i

where « is a multiplier and h is step-size. o =12, h =200 (?).
This was initially not clear to us.



Gradient Descent

h
4

0 functional
RORnOral S s 20 )~ Y 2Ly
Yi
JF#i J#i

During the first 250 learning iterations, we multiplied all
pijvalues by a user- defined constant o > 1. [...] this trick
enables t-SNE to find a better global structure in the early
stages of the optimization by creating very tight clusters
of points that can easily move around in the embedding
space. In preliminary experiments, we found that this trick
becomes increasingly important to obtain good embed-
dings when the data set size increases (van der Maaten,
2014)



Discrete dynamical systems

Let z1,...,z, € R® be given. We use them as initial values for a
time-discrete dynamical system that is defined via

zi(t+1)=z(t) + ZQIJ,t(zj(t) — z(t)) +&i(t)
j=1

zi(0) = z



Discrete dynamical systems
Let z1,...,z, € R® be given. We use them as initial values for a
time-discrete dynamical system that is defined via

zi(t +1) = z( +Zo"uf zi(t) — zi(t)) + &i(t)
Z,'(O) = Zj
1. There is a uniform lower bound on the coefficients for all

t>0andalli#j
’Oé,'7j7t‘ >4 > 0.

2. There is a uniform upper bound on the coefficients

n
Z ajjr <L
j=1

3. There is a uniform upper bound on the error term

lei(t)]] <e.






Stability of the convex hull
With the assumptions above, we have

conv{zi(t+1),z(t+1),...,zo(t + 1)}
is contained in

conv{z(t),z(t),...,za(t)} + B(0,¢),

Contraction inequality
With the notation above, if the diameter is large

diam {Zl(t),ZQ(t), ey Zn(t)} > 170(;:7

then

diam{z(t+1),...,z,(t + 1)} < (1 - ;g) diam {z(¢t), ...



Main Result

Theorem (George Linderman and S, 2017)

t-SNE separates well separated clusters. More precisely, you see 5

clusters in the embedding of clustered data means that there are at
least 5 clusters in the original data. Moreover, for large values of «
it can be reinterepreted as Laplacian eigenmaps with an error term.

P the first theoretical guarantee

» proof highlights a connection to spectral methods but precise
connection is unclear

» follow-up paper by Arora, Hu & Kothari, ‘An Analysis of the
t-SNE Algorithm for Data Visualization’



But wait, there is more:
7(e+1) = 7(8)+ Y aigelz(8) — 2i(8)) + &i(t)
j=1

Convergence is fastest if

n
E Qjjt ™~ 1.
Jj=1

This suggests a new parameter setting

n

e
Makes everything run A LOT faster. This also explains the original
(hard-coded) parameters « and h: without them, things are too
slow.



Lines are lines!
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Swiss roll gets one direction right!

DA



More speed-ups: The Rokhlin Boys

Jeremy Hoskins (Yale)

Manas Rachh (Flatiron Institute)
Main insight
It's all low-rank!



Massive speedup: Fast Multipole instead of Barnes Hut

Runtime (hours)
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The obvious thing nobody saw: embed into 1D

The entire Linderman-S approach does not depend on the
input/output dimension.




The obvious thing nobody saw: embed into 1D
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Massive speedup in one dimension
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How to do dimensionality reduction like SNE and t-SNE.
» Create a probability distribution in high dimensions.
» Create another on a set of points in two dimensions.
> Measure the KL-divergence between them and move the

points in low dimensions around so that KL becomes small.

However, our entire Analysis was that of dynamical sys-
tems. Nothing had to be a probability distribution.



SNE: ,
exp(—Ilyi — yl%)
> ooz &xp(=Ilyi — yel?)

alyi,yj) =

BNE A+ llyi =yl
1+ lyi —yill9)”

CI()/HY) — 1

’ Dokt (L+ vk = wll?)~?

The Evolution is
Gaussian = t-Distribution.

But there is no reason why the t-distribution should be very
special. And there is no reason at all to take a probability
distribution to begin with!



Let us take the function

K(d) = —

(14 d?/a)>’

This is almost SNE for « = 100 and it is tSNE for o = 1. It is not
integrable for a < 1/2. KL divergence becomes trickier to
interpret.

But let's look at some of the examples.



A a=100 B a=1 C a=0.5

Fig. 1. Toy example with ten Gaussian clusters. (A) SNE visualisation of 10 spherical
clusters that are all equally far away from each other (@ = 100). (B) Standard t-SNE
visualisation of the same data set (o = 1). (C) t-SNE visualisation with o = 0.5. The
same random seed was used for initialisation in all panels. Scale bars are shown in the
bottom-right of each panel.



Back to MNIST

A

a=100




Back to MNIST: the clusters refine!

C a=0.5 D

£
3

- W )
Wy




The Overall Picture

Laplacian Eigenmaps = | want to be close to my neighbors + ¢2
normalization to avoid collapse.

tSNE-type algorithms: | want to be close to my neighbors and far
away from my non-neighbors.

A lot more flexibility, multi-scale built in. Presumably can even be
combined. Entire families of algorithms...

Two Guesses.
Such algorithms should be very good on clustered data. | would
also expect it to fail at embedding actual manifolds.



Russian Language: books break up into
A

math and poetry!
a=1

DA



Russian Language: books break up into math and poetry!

B a=0.5
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SNE and tSNE: a short summary!

1. Heuristic derivation trying to force distributions to be similar
leads to SNE and tSNE.

2. The mathematical analysis leads to a discrete dynamical
system. The system does not care about probabilities.

3. We can plug in any function and get a dynamical system.
4. So we have infinitely many methods of this type.

5. They are not the same, they operate at different scales.

Find out which ones are good!
Combine them!



Nov. 2019 — arXiv:2002.05687

Last Semester | gave a similar talk in my own class (MATH 420:
The Math of Data Science) and this actually led to some very nice
work in that direction: tree-SNE by Isaac Robinson and Emma
Pierce-Hoffman (arXiv:2002.05687)

TREE-SNE: HIERARCHICAL CLUSTERING
AND VISUALIZATION USING t-SNE

Isaac Robinson Emma Pierce-Hoffman
Yale University Yale University

New Haven, CT 06511 New Haven, CT 06511
isaac.robinson@yale.edu emma.pierce-hoffman@yale.edu



Nov. 2019 — arXiv:2002.05687

Idea: 1D Embedding, slowly change the av—parameter and cluster
on top of that. It gives nice trees and seems to be doing very well.
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