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Three problems

I will discuss three separate problems regarding polynomials, roots
and dynamics. All three lead to a lot of open problems.

1. If the roots of the random polynomial pn are i.i.d. in C, where
are the solutions of pn(z)− pn(0)?

2. Variations on the (deterministic) Erdős-Turan theorem

3. (Main part:) Dynamics of Roots under Differentiation



A Motivating Theorem

Theorem (Kalbuchko 2012, conjectured by Rivin & Pemantle)

Let µ be a probability distribution in C, let z1, . . . , zn i.i.d. random
variables and consider the random polynomial

pn(z) =
n∏

k=1

(z − zk)

Then the roots of p′n(z) are also distributed according to µ.

This has inspired quite a bit of research (O’Rourke and Williams, Hanin,

...).



Random roots of random equations

Problem
Let µ be a probability distribution in C, let z1, . . . , zn i.i.d. random
variables and consider the random polynomial

pn(z) =
n∏

k=1

(z − zk)

Where are the n roots of pn(z)− pn(0)?

(This question is motivated by some convergence questions in complex

analysis about nonlinear systems using Blaschke products – if interested,

ask me later.)



Example 1: µ is standard Gaussian in C

roots of pn(z)− pn(0)

They appear to also be distributed according to a Gaussian.



Example 2: µ is the union of two circles

Pick roots uniformly at random from

0

1

Where are the roots of pn(z)− pn(0)?



Example 2: µ is the union of two circles

0

1

roots of pn(z)− pn(0)



Theorem

Theorem (Hau-tieng Wu and S., 2018)

In some regions of C, the solutions of pn(z)− pn(0) = 0 are
distributed exactly as µ (see Example 1). In other regions, the
solutions jump to fixed curves that one can compute.

Remark. If µ is radial around 0, then only the first case appears.
This is Example 1 (the Gaussian).



Example 2: µ is the union of two circles

If we pick the roots uniformly from the boundary of two circles,
then the solutions of pn(z) land on the bold lines.



Example 2: µ is the union of two circles



Theorem

Define

A =

{
z ∈ C :

∫
C

log |x − z |dµ(x) >

∫
C

log |x |dµ(x)

}
and

B =

{
z ∈ C :

∫
C

log |x − z |dµ(x) =

∫
C

log |x |dµ(x)

}
.

Theorem (Hau-tieng Wu and S.)

The distribution of {z ∈ C : pn(z) = pn(0)} converges to ν in
distribution, where ν = µ on A and ν has the remaining measure
on B.



Sketch of Proof

A =

{
z ∈ C :

∫
C

log |x − z |dµ(x) >

∫
C

log |x |dµ(x)

}
B =

{
z ∈ C :

∫
C

log |x − z |dµ(x) =

∫
C

log |x |dµ(x)

}
.

Main Idea is twofold: (1)

E log |pn(z)| = n

∫
C

log (z − x)dµ(x)

with very good concentration properties. This means that, for
generic z ∈ A,

E|pn(z)| � E|pn(0)|

but then we can use every single root to find a solution (Rouché’s
theorem).



Sketch of Proof

A =

{
z ∈ C :

∫
C

log |x − z |dµ(x) >

∫
C

log |x |dµ(x)

}
B =

{
z ∈ C :

∫
C

log |x − z |dµ(x) =

∫
C

log |x |dµ(x)

}
.

Main Idea is twofold: (2)

E log |pn(z)| = n

∫
C

log (z − x)dµ(x)

The rest has to concentrate on the lines (counting argument) in an
absolutely continuous fashion. Used many times: there are exactly
n solutions.



Fun Problems

Theorem (Hau-tieng Wu and S., 2018)

Then the distribution of {z ∈ C : pn(z) = pn(0)} converges to ν in
distribution, where ν = µ on A and ν has measure 1− µ(A)
supported on B.

Problems: what does B generically look like? Lines? How many
can intersect? What about

pn(z)− pn(random point)?

What if one were to iterate this? (A good understanding of these
kinds of questions would actually have implications in signal
processing).



The Erdős-Turan Theorem



The Erdős-Turan Theorem: degree 300, i.i.d. coefficients



The Erdős-Turan Theorem

Let pn : C→ C be a (monic) polynomial

pn(z) = zn + an−1z
n−1 + · · ·+ a1z + a0.

Main idea: if the coefficients aren’t terribly large, then the roots
are all very close |z | = 1.

Careful: p(z) = zn has all roots in 0. But somehow this is the only
obstruction. (The theorem requires a0 to not be too small.) Also:
the roots are equally distributed in angle.



Erdős-Turan Theorem: equidistribution at scale n−1/2

h(p) =
1

2π

∫ 2π

0
log+

(
|p(e iθ)|√
|a0|

)
dθ,

where log+(x) = max(0, log x).

Theorem (Soundararajan 2018, Erdős-Turán 1948)

We have, assuming |an| = 1,

max
J⊂T

∣∣∣∣# {1 ≤ k ≤ n : arg zk ∈ J}
n

− |J|
2π

∣∣∣∣ ≤ 8

π

√
h(p)√
n

,

where the maximum runs over all intervals J ⊂ T, where T is the
one-dimensional torus scaled to lentgh 2π and identified with the
boundary of the unit disk.



An Accidental Discovery

Very important in Analytic Number Theory: sums of cosines that
are positive. For example∑

|k|≤n

(
1− |j |

n

)
e ijx = 1 + 2

∑
1≤k≤n

(
1− j

n

)
cos (jx) ≥ 0

which is the Fejér kernel. Another nice example is
Fejér-Gronwall-Jackson (1910, 1911)

n∑
k=1

sin kx

k
> 0 for 0 < x < π

and the Young inequality (1913)

1 +
n∑

k=1

cos kx

k
> 0 for 0 < x < π.



An Accidental Discovery

Theorem (Vietoris, 1958)

If ak is a decreasing sequence of positive real numbers such that

2k · a2k ≤ (2k − 1) · a2k−1,

then, for 0 < x < π,

n∑
k=1

ak sin kx > 0 and
n∑

k=0

ak cos kx > 0.

This inspired a lot of subsequent research.
Leopold Vietoris (1891 – 2002)

I became famous in the 1920s for work in topology

I wrote his last paper at age 103 on trigonometric sums

I died at 110 years, 309 days. His wife died at age 100, they are
the second oldest couple (combined: 211 years) in history.



An Accidental Discovery

n∑
k=0

ak cos kx corresponds to
n∑

k=0

akz
k .

If the trigonometric sum has few or no roots, then what about the
polynomial?



An Accidental Discovery

Roots of the Fejer polynomial: slightly too regular.
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An Accidental Discovery

Theorem (S. 2019)

If
n∑

k=0

ak cos kx

has . nδ real roots, then the roots of
∑n

k=0 akz
k are

equidistributed at scale . nδ−1 in angle.

This improves Erdős-Turán for δ < 1/2. It also raises many
questions: is δ < 1/2 necessary? Somehow one would expect that
δ < 1 might be enough because ’typical’ trigonometric polynomials
have ∼ n roots.



Dynamics of Roots of Derivatives

Problem (Polya, Riesz)

Let pn : R→ R be a polynomial of degree n. What can you say
about the roots of p′n? Are they more regular?

Basic counting argument: between any two roots, there is a
maximum or a minimum. That corresponds to a root of p′n. Since
there are n roots, there are n − 1 gaps between the roots and
therefore the roots of pn and p′n interlace.



Dynamics of Roots of Derivatives

Problem (Polya, Riesz)

Let pn : R→ R be a polynomial of degree n. What can you say
about the roots of p′n? Are they more regular?

’Gaps become bigger Theorem’ (Riesz)

Let pn : R→ R be a polynomial of degree n. Then the largest gap
between roots of p′n(x) is at least as big as that of pn.

There are is a vague folklore conjecture that if you keep
differentiating, the roots even out (Polya, Farmer-Rhoades).
Nothing is known.



The Big Question

Let pn : R→ R be a polynomial of degree n all of whose roots are
on the real line (and, say, distributed according to a nice function).
What does it look like when I differentiate it a lot?



A Motivating Proposition

Let pn : R→ R be a polynomial of degree n whose roots are

randomly chosen on [0, 1]. Then the roots of p
(k)
n are also

uniformly distributed on [0, 1] for all

k . n/(log n)2

as n→∞.

Proof: the roots can only move at most the distance of the largest
gap, which is size ∼ log n/n or something like that.



The Big Question made precise

Let pn : R→ R be a polynomial of degree n all of whose roots are
on the real line. Where are the roots of

p
(t·n)
n for 0 < t < 1?



Example: take p20 to be given by 20 roots from U[0, 1]. Where are

the roots of p
(10)
20 ?

0.2 0.4 0.6 0.8
0

200

400

600



Example: take p20 to be given by 20 roots from U[0, 1]. Where are

the roots of p
(15)
20 ?

0.2 0.4 0.6 0.8
0

100

200

300

400

500



Example: take p20 to be given by 20 roots from U[0, 1]. Where are

the roots of p
(18)
20 ?

0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150



The Big Question made precise

Let pn : R→ R be a polynomial of degree n all of whose roots are
on the real line. Where are the roots of

p
(t·n)
n for 0 < t < 1?

If the roots of p
(t·n)
n are distributed according to u(t, x), then what

sort of equation does u(t, x) satisfy?



The BIG equation

roots of p
(t·n)
n ∼ u(t, x)

Educated Guess (S. 2018)

u(t, x) satisfies a nonlinear, nonlocal transport equation

∂u

∂t
+

1

π

∂

∂x

(
arctan

(
Hu

u

))
= 0

where

Hf (x) = p.v.
1

π

∫
R

f (y)

x − y
dy is the Hilbert transform.



Testcase 1: the Hermite polynomials

1. the roots of the Hermite polynomial Hn are approximately (in
the sense of weak convergence after rescaling) given by the
measure

µ =
1

π

√
2n − x2dx

2. the derivatives of Hermite polynomials are again Hermite
polynomials

dm

dxm
Hn(x) =

2nn!

(n −m)!
Hn−m(x).



Testcase 1: the Hermite polynomials

for Hermite polynomials, we expect a family of shrinking semicircles

u(t, x) =
2

π

√
1− t − x2 solves the equation



Testcase 2: the Laguerre polynomials

The family of associated Laguerre polynomials L
(α)
n satisfies

dk

dxk
L
(α)
n (x) = (−1)kL

(α+k)
n−k (x).

The roots are given by the Marchenko-Pastur distribution

v(c, x) =

√
(x+ − x)(x − x−)

2πx
χ(x−,x+)dx

where
x± = (

√
c + 1± 1)2.



Testcase 2: Orthogonal Polynomials

for Laguerre, we expect a one-parameter family within the
Marchenko-Pastur family

uc(t, x) = v

(
c + t

1− t
,

x

1− t

)
solves the equation!



Testcase 3: Integration!

p
(t·n)
n has (1− t)n roots. There is a constant loss of roots.

∂

∂t

∫
R
u(t, x)dx =

∫
R

∂u

∂t
(t, x)dx

= −
∫
R

1

π

∂

∂x

(
arctan

(
Hu

u

))
dx

= −1.

The equation has a constant loss of mass. If we start with a
probability distribution, then there is a constant loss of mass and
finite time blow-up at time t = 1 (when we have differentiated the
polynomial n times).



Science Fiction!

Magic!

There seems to be a nonlinear, nonlocal partial differential equation
that describes the roots of polynomials under differentiation.

More Magic!

The equation looks a bit like those one-dimensional model
equations for Euler/Navier stokes (cf. Rafael Granero Belinchon).
Do roots of polynomials flow like water?



Thank you!


