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Sturm-Liouville Theory: Some History

Sturm-Liouville theory dates from 1836.

In 1833 both Sturm and Liouville and their common
friend Duhamel applied for the seat vacated by the death
of Legendre. A fourth applicant was Libri-Carucci [...]
(Lützen, 1984)



French Academy, 1833

The outcome of the elections is

1. Sturm: 0

2. Liouville: 1

3. Duhamel: 16

4. Libri-Carucci: 37

Who is this mysterious Libri-Carucci?



Guglielmo Libri Carucci dalla Sommaja (1803–1869)

Libri-Carucci

In 1841, Libri obtained an ap-
pointment as Chief Inspector
of French Libraries through his
friendship with influential French
Chief of Police Francois Guizot.
This job, involving in part the
cataloguing of valuable books
and precious manuscripts allowed
Count Libri to indulge his collect-
ing passion by stealing them.



Guglielmo Libri Carucci dalla Sommaja (1803–1869)

Libri-Carucci

In 1848, as France was involved in
a liberal revolution and the gov-
ernment fell, a warrant was issued
for Libri’s arrest. [...] However
he received a tip-off and fled to
London, shipping 18 large trunks
of books and manuscripts, about
30,000 items, before doing so.



Guglielmo Libri Carucci dalla Sommaja (1803–1869)

Libri-Carucci

In June 2010, one of the stolen
items, a letter from Descartes
to Father Marin Mersenne, dated
May 27, 1641 concerning the
publication of Meditations on
First Philosophy, was discovered
in the library of Haverford Col-
lege. The college returned the
letter to the Institut de France on
June 8, 2010.



Thee year laters: French Academy, 1836

After the death of Ampere, there are again elections. Sturm,
Liouville and Duhamel compete once more for the seat (together
with several others).

Three weeks before the election of Ampere’s successor,
Liouville presented a paper to the Academy [1837a] in
which he praised Sturm’s two memoires on the Sturm-
Liouville theory as ranking with the best works of La-
grange. Supporting a rival in this way was rather unusual
in the competitive Parisian academic circles [...] (Lützen,
1984)



Thee year laters: French Academy, 1836

[...] and it must have been shocking when on the day
of the election, December 5-th, Liouville and Duhamel
withdrew their candidacies to secure the seat for their
friend. Sturm was elected with an overwhelming majority.
(Lützen, 1984)

Now Sturm is one of the 72 names in the Eiffel tower.



Sturm-Liouville Theory

Sturm-Liouville Theory covers general second order linear
operators. For simplicity, we will always discuss the Laplacian

−∆uk = λkuk on [a, b]

with Dirichlet boundary conditions.

Theorem (Sturm Oscillation Theorem)

uk has k − 1 roots.



Theorem (Sturm Oscillation Theorem, 1836)

uk has k − 1 roots.

In our special case of the Laplacian, this is not all that surprising:
just count the roots of the sign.

In fact, stronger results are possible.

Theorem (Sturm-Hurwitz Theorem, 1903)

The function

f (x) =
∞∑
k=n

ak sin (kx)

has at least 2n distinct roots in [0, 2π).



Sturm-Hurwitz

Theorem (Sturm-Hurwitz Theorem, 1903)

The function

f (x) =
∞∑
k=n

ak sin (kx)

has at least 2n distinct roots in [0, 2π).

Proof.
f (x) is the imaginary part of the holomorphic function

g(z) =
∞∑
k=n

akzk

when evaluated on the boundary of the unit circle g(e it). It has at
least n roots in the origin and thus at least n roots inside the unit
disk. By the argument principle, g(e it) winds around the origin at
least n times creating at least 2n roots.



Sturm-Hurwitz

Theorem (Sturm-Hurwitz Theorem, 1903)

The function

f (x) =
∞∑
k=n

ak sin (kx)

has at least 2n distinct roots in T.

So, unsurprisingly, we can strenghten the Sturm Oscillation
Theorem in the case of the Laplacian: surely that is because the
trigonometric system is special.....



The REAL Sturm Oscillation Theorem

Theorem (Sturm Oscillation Theorem, 1836)

uk has k − 1 roots.

Theorem (Sturm Oscillation Theorem, 1836)

Unless all coefficients vanish, the function

n∑
k=m

akuk

has at least m − 1 roots and at most n − 1 roots.

This is a remarkable statement, even for sines and cosines alone. A
sum of oscillating functions is still oscillating.



Berard & Helffer, 2017

Although well known in the nineteenth century, this theo-
rem seems to have been ignored or forgotten by some of
the specialists in spectral theory since the second half of
the twentieth-century.



Timeline from Berard & Helffer, 2017

I 1833. Sturms Memoir presented to the Paris
Academy of sciences in September.

I 1836. Sturms papers published.
I 1877. Lord Rayleigh writes a beautiful theorem has

been discovered by Sturm
I 1891. F. Pockels [30, pp. 68-73] gives a summary

of Sturms results [...] provided by Sturm, Liouville
and Rayleigh.

I 1903. Hurwitz gives a lower bound for the number
of zeros of the sum of a trigonometric series with a
spectral gap and refers, somewhat inaccurately, to
Sturms Theorems. This result, known as the
Sturm-Hurwitz theorem, already appears in a more
general framework in Liouvilles paper.



Timeline from Berard & Helffer, 2017

I 1931. Courant & Hilbert extensively mention the
Sturm-Liouville problem. They do not refer to the
original papers of Sturm, but to Bochers book [8]
which does not include Theorem 1.4 [the full result].

I 1956. Pleijel mentions Sturms Theorem 1.4,
somewhat inaccurately [...]

I ...



Sturm-Liouville Theory in Higher Dimensions
If it exists, what does it look like?



Sturm-Liouville Theory in Higher Dimensions

Let us assume (M, g) is a nice, smooth compact Riemannian
manifold and that

−∆uk = λkuk .

Theorem (Sturm Oscillation Theorem, 1836)

uk has k − 1 roots.

How would one generalize this result to higher dimensions? It
depends on how you interpret the notion of a root.

I Topological. M \ {x : uk(x) = 0} has at most ? connected
components.

I Metric. Hd−1 ({x : uk(x) = 0}) has at most size ?.



SL Theory in Higher Dimensions: the topological version

The topological version of the statement essentially says that

M \ {x : uk(x) = 0} doesn’t have many connected components.

Theorem (Courant, 1923)

Let Ω ⊂ R2 be a bounded planar domain. Then

# connected components of M \ {x : uk(x) = 0} ≤ k .



SL Theory in Higher Dimensions: the topological version

Just as in the one-dimensional case, one could wonder whether this
actually holds true in general.

This was originally claimed in Courant & Hilbert

[the Courant Nodal Line Theorem] may be generalized as
follows: Any linear combination of the first n eigenfunc-
tions divides the domain, by means of its nodes, into no
more than n subdomains. See the Gottingen dissertation
of H. Herrmann, Beitrage zur Theorie der Eigenwerten und
Eigenfunktionen, 1932.



SL Theory in Higher Dimensions: the topological version

This result attracted the attention of Gelfand.

(Gelfand:) I thought that, except for me, nobody paid
attention to Courants remarkable assertion. But I was so
surprised that I delved into it and found a proof. [...] How-
ever, I could prove this theorem of Courant only for oscil-
lations of one-dimensional media, where m = 1. (Arnold)

Arnold (2011) recalls

Having read all this, I wrote a letter to Courant, Where
can I find this proof now, 40 years after Courant announced
the theorem? Courant answered that one can never trust
ones students: to any question they answer either that the
problem is too easy to waste time on, or that it is beyond
their weak powers.



SL Theory in Higher Dimensions: the metric version

Conjecture (Yau)

Hd−1 ({x : uk(x) = 0}) ∼
√
λk .

Theorem (Logunov, 2016)

Hd−1 ({x : uk(x) = 0}) &
√
λk .

This can be regarded as a really advanced (metric) Sturm
Oscillation Theorem. But in the one-dimensional case, the Sturm
Oscillation Theorem also holds for linear combinations . . .



SL Theory in Higher Dimensions: the metric version

Theorem (Logunov, 2016)

Hd−1 ({x : uk(x) = 0}) &
√
λk .

Main Question. What about

Hd−1

({
x :

∞∑
k=n

anun(x) = 0

})
&?



Main Question. What about

Hd−1

({
x :

∞∑
k=n

anun(x) = 0

})
&?

An obstruction: find a measure µ =
∑
δxi such that

〈uj , µ〉 = 0 for all 1 ≤ j ≤ n.

Then let f be the function that is (a) mean 0, (b) constant and
large in small balls around the points xi , (c) constant and negative
outside, (d) orthogonal to the first n eigenfunctions.



Thus any estimate of the flavor

Hd−1

({
x :

∞∑
k=n

anun(x) = 0

})
&?

has to depend on the function

∞∑
k=n

anun(x).

But surely some sort of estimate must be possible!



An extreme example: suppose we are on T2 and f : T2 → {−1, 1}
looks as follows

+

+

− +

+

−

−

+

−

−

Surely such a function is NOT orthogonal to

e i〈k,x〉 for all k ∈ Z2 with ‖k‖ ≤ 1010
100
.



Theorem (S., 2018)

Abbreviating f =
∑∞

k=n anun(x),

Hd−1 ({x : f (x) = 0}) &
√
λ

logA λ

(
‖f ‖L1
‖f ‖L∞

)2− 1
d

I Idea: linear combinations of high-frequency eigenfunctions
decay rapidly under the heat equation.

I T2 shows that the growth in λ is optimal

I The power 2− 1/d is probably not optimal.

I 2020: Carroll, Massaneda & Ortega-Cerda: removed log



Conjecture

Abbreviating f =
∑∞

k=n anun(x),

Hd−1 ({x : f (x) = 0}) &
√
λ
‖f ‖L1
‖f ‖L∞

.

This is only known for d = 2 by an argument coming from Optimal
Transport.



Optimal Transport
A very, very basic introduction.



Optimal Transport
Suppose we are given two measure µ and ν having same total
mass and want to transport one to the other.



Optimal Transport
Think of both measures as being a collection of little boxes.
Suppose it costs δ · ε to move a box of weight ε distance δ. What
is the cheapest way to move the boxes to the desired goal?



Optimal Transport
As it turns out, this problem is not really an issue in one dimension
but it is already quite tricky in d = 2. We call the answer the
1-Wasserstein distance of µ, ν, denoted by W1(µ, ν).



Optimal Transport
This quantity is even funky for d = 1. Let f : T→ R be a function
of mean value 0 and set

µ = f +dx and ν = f −dx .



A couple of years ago, I was playing with whether you can
understand optimal transport in terms of Fourier coefficients of a
function f . The following fun inequality popped up.

Theorem (S. 2018)

Let f : [0, 2π]→ R be a function with mean value 0. Then

# {x : f (x) = 0} ·

( ∞∑
k=1

|f̂ (k)|2

|k |2

) 1
2

&
‖f ‖2L1
‖f ‖L∞

.



Theorem (S. 2018)

Let f : [0, 2π]→ R be a function with mean value 0. Then

# {x : f (x) = 0} ·

( ∞∑
k=1

|f̂ (k)|2

|k |2

) 1
2

&
‖f ‖2L1
‖f ‖L∞

.

I A function that has many large coefficients has the second
term (which is merely the Sobolev norm ‖ · ‖Ḣ−1) small: thus
the first term has to be large.

I One of very few lower bounds on Fourier coefficients.

I I would be interested in any related estimates of this flavor.

I The proof is completely Optimal Transport.



Main Result

A bit later, I realized what I was really looking for.

Wasserstein Uncertainty Principle. If there are very few
post offices, some of your letters will have to travel a very
long time. If letters arrive quickly, there must be many
post offices.



Main Result

Wasserstein Uncertainty Principle. If there are very few
post offices, some of your letters will have to travel a very
long time. If letters arrive quickly, there must be many
post offices.

Theorem (S. 2019)

Let f : [0, 1]2 → R be a function with mean value 0. Then

W 1(f +dx , f −dx) · H1 (x : f (x) = 0) &
‖f ‖2L1
‖f ‖L∞

.



Main Result

Theorem (S. 2019)

W 1(f +dx , f −dx) · H1 (x : f (x) = 0) &
‖f ‖2L1
‖f ‖L∞

.



Sketch of the Argument

|ε− neighborhood(Ω)| ≤ ε|∂Ω|

when ε� diam(Ω)



Main Result

Theorem (S. 2019)

W 1(f +dx , f −dx) · H1 (x : f (x) = 0) &
‖f ‖2L1
‖f ‖L∞

.

How does this connect to Sturm-Liouville Theory?

1. The linear combination of high-frequency eigenfunction has
mean 0 and decays quickly under the heat equation.

2. The heat equation can be understood as inducing a transport:
positive mass is spread evenly and negative mass is spread
evenly.

3. Thus we get an upper bound on the transport cost.

4. The uncertainty principle implies a lower bound on the
H1−size.



Theorem for [0, 1]d (Amir Sagiv and S. 2019)

W 1(f +dx , f −dx) · Hd−1 (x : f (x) = 0) &

(
‖f ‖L1
‖f ‖L∞

)4− 1
d

‖f ‖L1 .

Theorem for [0, 1]d (Carroll, Massaneda, Ortega-Cerda, 2020)

W 1(f +dx , f −dx) · Hd−1 (x : f (x) = 0) &

(
‖f ‖L1
‖f ‖L∞

)2− 1
d

‖f ‖L1 .

Conjecture

W 1(f +dx , f −dx) · Hd−1 (x : f (x) = 0) &

(
‖f ‖L1
‖f ‖L∞

)
‖f ‖L1 .



Theorem for [0, 1]d (Amir Sagiv and S. 2019)

W 1(f +dx , f −dx) · Hd−1 (x : f (x) = 0) &

(
‖f ‖L1
‖f ‖L∞

)4− 1
d

‖f ‖L1 .

1. Divide into many small boxes. ‖f ‖L1/‖f ‖L∞ tells you how
many boxes have to have nontrivial supply/demand.

2. If such a box is mainly supply or mainly demand, then there
has to be transport.

3. If such a box has evenly matched supply demand, then

Relative Isoperimetric Inequality

Let Ω ⊂ [0, 1]d with |Ω| ≤ 1/2. Then

∂Ω ∩ (0, 1)d &d |Ω|
d−1
d .



Supply and Demand



Wasserstein Spectral Geometry

Let −∆uk = λkuk . uk has mean value 0. How much does it cost
to move the positive part to the negative part?

Theorem (S. 2018)

W 1(u+
k dx , u−k dx) .

logA λk√
λk
‖uk‖L1 .

Carroll, Massaneda, Ortega-Cerda (2020) removed the log
therefore obtaining the sharp result.

W 1(u+
k dx , u−k dx) .

1√
λk
‖uk‖L1 .

Is there a corresponding lower bound? I don’t even know a bad
bound.



Thank you!


