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Problem (Fekete Points on S2)

What is

max
x1,...,xn∈S2

n∏
k,`=1
k 6=`

‖xk − x`‖`2(R3)

and how do optimal points behave?

Taking a log, this is equivalent to
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Diamond Ensemble (Beltran & Etayo)

(Picture by Beltran & Etayo)
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Crystallization Conjecture (d = 2).

As n→∞, the points look locally like a hexagonal lattice.

But there is no triangulation of S2 into hexagons.

(Picture by Calef, Ph.D. Thesis, Vanderbilt 2009)
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Abrikosov Lattice (Nobel Prize in Physics 2003)

“When a Bose-Einstein condensate (BEC) is set into rapid
rotation, vortices enter the condensate and arrange themselves into
a regular lattice (Abrikosov lattice).”

(Picture by Peter Engels, JILA)



Let (M, g) be a compact manifold without boundary (i.e. S2).

Let
G (x , y) to denote the Green function of the Laplacian, i.e. G has
mean value 0 and

−∆x

∫
M
G (x , y)f (y)dy = f (x).

You should think of, when d ≥ 3,

G (x , y) ∼ 1

‖x − y‖d−2

and G (x , y) ∼ − log ‖x − y‖ when d = 2. On S2, the Green
function is the logarithm (up to constants).
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Theorem (S, 2019)

On compact manifolds without boundary in d ≥ 2 dimensions
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+

{√
log n√
n

if d = 2

n−1/d if d ≥ 3
.

Corollary

Points maximizing
∏n

k,`=1
k 6=`
‖xk − x`‖ → max satisfy
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√

log n necessary?
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Analytic Number Theory



Theorem (R. Peyre, 2018)

W2(µ, dx) . ‖µ‖Ḣ−1

(Preprint 2011, discussed in Santambrogios book).

If

µ =
1

N

N∑
n=1

δxk ,

then

W2(µ, dx) .

∑
` 6=0

1

`2

∣∣∣∣∣ 1

N

N∑
k=1

e2πi`xl

∣∣∣∣∣
2
1/2

.

Exponential Sum Estimates imply Wasserstein bounds.
Basically completely unexplored!
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Quadratic residue in Fp

If p is a prime number, then

Fp = Z/(pZ) = {0, 1, 2, . . . , p − 1}

with the usual rules of addition and multiplication mod p.

For some n ∈ Fp the equation

x2 = n

has a solution for some x ∈ Fp, these n are called quadratic
residues. For example, if p = 29, then the quadratic residues are

0, 1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23, 24, 25, 28

Question. How are quadratic residues distributed as p →∞?
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Quadratic residues mod 101
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Quadratic residues mod 499

They seem ‘random’.
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The Quadratic Residues in F29

0 1
29

28
29
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Theorem (S. 2018)

For p prime

W2

(
1

p

p−1∑
k=0

δ k2 mod p
p

, dx

)
.

1
√
p

and this is optimal up to constants.
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Irregularities of Distributions
The Coffee Shop Problem



You want to open a coffee shop in the unit square (assume the
coffee drinking population is evenly distributed in this square).

Where’s the best place to put it? Clearly in the center but why?
One could argue that you want to put it in the place x0 such that
‘the averaging walking distance’

W1 (δx , dx) is minimized.
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Suppose now you open n coffee shops on [0, 1]2. How small can
you make the Wasserstein distance of

W1

(
1

n

n∑
k=1

δxk , dx

)
?

It is not very hard to see that

min
x1,...,xn

W1

(
1

n

n∑
k=1

δxk , dx

)
∼ 1√

n
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But that is not what you do in practice.

You start with a couple
of coffee shops and if they go well, well, then you open more.

The Coffee Shop Problem

Is there a sequence (xn)∞n=1 in [0, 1]d such that for all N ∈ N

Wp

(
1

N

N∑
k=1

δxk , dx

)
≤ c · N−1/d ?

Let’s start with d = 1.



But that is not what you do in practice. You start with a couple
of coffee shops and if they go well, well, then you open more.

The Coffee Shop Problem

Is there a sequence (xn)∞n=1 in [0, 1]d such that for all N ∈ N

Wp

(
1

N

N∑
k=1

δxk , dx

)
≤ c · N−1/d ?

Let’s start with d = 1.



But that is not what you do in practice. You start with a couple
of coffee shops and if they go well, well, then you open more.

The Coffee Shop Problem

Is there a sequence (xn)∞n=1 in [0, 1]d such that for all N ∈ N

Wp

(
1

N

N∑
k=1

δxk , dx

)
≤ c · N−1/d ?

Let’s start with d = 1.



But that is not what you do in practice. You start with a couple
of coffee shops and if they go well, well, then you open more.

The Coffee Shop Problem

Is there a sequence (xn)∞n=1 in [0, 1]d such that for all N ∈ N

Wp

(
1

N

N∑
k=1

δxk , dx

)
≤ c · N−1/d ?

Let’s start with d = 1.



The Coffee Shop Problem, d = 1

So how would you actually place coffee shops on [0, 1]?

0 1

12 34 56 7
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Next attempt: a sequence on S1
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Summary

For the van der Corput sequence and the Kronecker sequence
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I thought that it would be quite hard to beat this.

Theorem (Cole Graham, 2020)

For every sequence (xk)∞k=1 in [0, 1], the inequality
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≥ c

√
logN

n

has to hold for infinitely many N ∈ N.
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Similar construction as before: pick a vector α ∈ R2 and define

xn = nα (mod 1),

where the mod acts on each component independently.
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The Coffee Shop Problem for d ≥ 2

Theorem (Louis Brown and S, 2019)

Let d ≥ 2 and let α ∈ Rd be ‘nice’ (number theory).

Then
xk = kα mod 1 satisfies

W2

(
1

N

N∑
k=1

δxk , dx

)
.cα N−1/d

This shows that for the W2 distance, there are solutions for the
coffee shop problem in d ≥ 2 dimensions. I do not currently
know any other example but surely they exist.

‘Badly approximable’ is pretty subtle number theory – are there
easier, nicer, more robust constructions?
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The Coffee Shop Problem

Problem
Is there a sequence (xn)∞n=1 on a manifold (M, g) such that

W2

(
1
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N∑
k=1

δxk , dx

)
. N−1/d?

Remarks.

I This is impossible for d = 1 (Cole Graham).

I Quite tricky but doable for d = 2 on [0, 1]2.

I It’s not that hard for d ≥ 3 (very general construction by
Brown & S on general compact manifolds).

What about Wp?
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Coffee Shop Sampling



Theorem (Bakhalov, 1959)

Let f : [0, 1]d → R be L−Lipschitz. Then there are points
{x1, . . . , xN} ⊂ [0, 1]d such that∣∣∣∣∣

∫
Td

f (x)dx − 1

N

N∑
k=1

f (xk)

∣∣∣∣∣ .d L · 1

N1/d
.

Kantorovich-Rubinstein duality (special case)

If f : [0, 1]d → R is L−Lipschitz and {x1, . . . , xN} ⊂ [0, 1]d , then∣∣∣∣∣
∫
[0,1]d

f (x)dx − 1

N

N∑
k=1

f (xk)

∣∣∣∣∣ ≤ L ·W1

(
1

N

N∑
k=1

δxk , dx

)
.
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Suppose you want to approximate an integral but you do not know
how many samples (xk) you get (this happened to me on a
supercomputer once).
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Coffee Shop Sampling
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As we just saw, in dimension d ≥ 2, we can even get

W2

(
1

N

N∑
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δxk , dx

)
. N−1/d .

W2 is larger than W1 so we can get further improvements!

I S, On a Kantorovich-Rubinstein Inequality (2021).

I F. Santambrogio, Sharp Wasserstein estimates for integral
sampling and Lorentz summability of transport densities
(2022)
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Sparsity of Kantorovich Solutions



Theorem (Birkhoff, von Neumann)

If

µ =
1

n

n∑
i=1

δxi and ν =
1

n

n∑
i=1

δyi ,

then the solution of the Kantorovich optimal transport problem is
Monge: the optimal transport map is a given by a bijection

π : {x1, . . . , xn} → {y1, . . . , yn} .



What if

µ =
1

m

m∑
i=1

δxi and ν =
1

n

n∑
i=1

δyi ,

and m 6= n? There are no Monge maps.

Intrinsic Kantorovich Sparsity (B. Hosseini & S, 2022)

There is a solution of the Kantorovich problem such that mass
from each point in X is moved to at most n/ gcd(m, n) different
points in Y and that each point in Y receives mass from at most
m/ gcd(m, n) points in X .
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1

m
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δxi and ν =
1

n
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δyi ,

and m 6= n? There are no Monge maps.

Intrinsic Kantorovich Sparsity (B. Hosseini & S, 2022)

There is a solution of the Kantorovich problem such that mass
from each point in X is moved to at most n/ gcd(m, n) different
points in Y and that each point in Y receives mass from at most
m/ gcd(m, n) points in X .



Figure: m = 30 red points are sent to n = 50 blue points. Each red point
is transported to at most 30/ gcd(30, 50) = 3 blue points, each blue
points receives mass from at most 50/ gcd(30, 50) = 5 red points.



Extension to weighted points

Intrinsic Kantorovich Sparsity (B. Hosseini & S, 2022)

Let

µ =
m∑
i=1

ai
bi
δxi and ν =

n∑
i=1

ci
di
δyi

be two probability measures with positive rational weights and let

B = lcm(b1, . . . , bm) and D = lcm(d1, . . . , dn).

There exists a solution of the Kantorovich problem such that mass
from each point in X is moved to at most D/ gcd(B,D) different
points in Y and each point in Y receives mass from at most
B/ gcd(B,D) different points in X .



Thank you!


