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Things that you maybe want to be true

1. Graphs with curvature bounded below by K > 0 satisfy
diam(G ) ≤ f (K ) for some f . (Bonnet-Myers Theorem)

2. Equality cases in Bonnet-Myers (diam(G ) = f (K )) imply
constant curvature (Cheng Diameter Rigidity Theorem)

3. Graphs with curvature bounded from below by K > 0 have a
spectral gap λ2 ≥ g(K ) > 0 (Lichnerowicz Theorem)

A matter of taste again. I personally also want

1. Many nice examples of graphs with positive curvature.

2. Everything happens on the graph.

3. Curvature lives in vertices, not edges (can compromise).

4. Cycle graph has positive curvature (can compromise).
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There are many definitions of curvature on graphs.

1. Purely combinatorial definitions (Higuchi, Stone, Woess)

2. Definitions based on the Laplacian (Bakry-Émery, Forman)

3. Definitions based on Optimal Transport, specifically the
Ollivier curvature (2009) and the Lin-Lu-Yau curvature (2011)

Wonderful reference: Norbert Peyerimhoff, Lecture Notes,
Curvature Notions on Graphs, Summer School Leeds 2019
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One definition could be

define curvature in a vertex locally so that things sum up
to 360 degrees.

Do not try to parse the next definition.
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If a graph has positive (combinatorial) curvature, then

it is either a
prism or an antiprism

or it has at most 208 vertices.
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Next idea: Optimal Transport/Coupling of Random Walks



Idea behind Ollivier Curvature (Peyerimhoff Survey)
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Ollivier curature is going to define the ‘curvature’ of an edge.

Let
G = (V ,E ) and let u, v ∈ V be two adjacent vertices.

x y

The rules of the game are: transporting one unit mass across one
edge costs 1. One unit of mass across 2 edges costs 2. Two units
of mass across one edge costs 2. Cost of transporting δx to δy is

W1(δx , δy ) = 1.
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3. Has many nice properties!



Ollivier curvature

Yann Ollivier

1. Parameter p.

2. Computation requires solving
optimal transport problem (linear
programming).

3. Has many nice properties!



Ollivier curvature

Yann Ollivier

1. Parameter p.

2. Computation requires solving
optimal transport problem (linear
programming).

3. Has many nice properties!



Lin-Lu-Yau curvature

Yong Lin Linyuan Lu
Shing-Tung Yau

Definition (Lin-Lu-Yau 2011)

The LLY-curvature of the edge (x , y) is given by

KLLY (x , y) =
max(deg(x), deg(y)) + 1

max(deg(x), deg(y))
· K 1

max(deg(x),deg(y))+1
(x , y).

No need to remember these formulas.
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Motivation. Mass equilibrium. Signed measure x : V → R∑
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d(i , j) · xj independent of i .
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Examples

Figure: Vertices colored by curvature (red if positive, blue if negative).
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I vertices are k−element subsets
of n element set and connected
if intersection is size k − 1

I constant curvature
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‘archimedes drawing a circle in the

sand by johannes vermeer’

The Cycle Graph Cn

has Ollivier and LLY curvature 0
when n ≥ 6 but

K =
n⌊
n2

4

⌋ ∼ 4

n
.
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Let (M, g) be a complete connected n−dimensional Riemannian
manifold with Ricci curvature bounded below by K > 0, then

diam(M) ≤ π√
K
.

positive curvature→ small diameter

large diameter→ curvature somewhere small
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The Bonnet-Myers Theorem, 1941

Let (M, g) be a complete connected n−dimensional Riemannian
manifold with Ricci curvature bounded below by K > 0, then

diam(M) ≤ π√
K
.

Bonnet-Myers on Graphs (Ollivier 2009, Lin-Lu-Yau 2011)

If G has Ollivier or Lin-Lu-Yau curvature bounded from below by
K > 0, then

diam(G ) ≤ 2

K
.

This is known to be sharp in some cases.
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A linear system of equations, like

Dx = n = (n, n, n, . . . , n)

need not have a unique solution.

So what is the curvature?

Proposition (Invariance of Total Curvature)

Let G be a connected graph and suppose Dw1 = n = Dw2 for two
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Theorem (A Bonnet-Myers Inequality)

Let G be connected and suppose Dw = n. If wi ≥ K , then

diam(G ) ≤ 2n

‖w‖`1
≤ 2

K
.

positive curvature→ small diameter

small diameter→ ‘graph is very curved’

Theorem (Reverse Bonnet-Myers)

Let G be connected and suppose Dw = n with wi ≥ 0. Then

‖w‖`1 ≥
n2

n − 1

1

diam(G )

with equality if and only if G = Kn.
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Theorem (Lichnerowicz, 1958)

Let (M, g) be an n−dimensional manifold with Ricci curvature
bounded below by K , then λ1 ≥ n/(n − 1) · K .

Theorem (Ollivier, Lin-Lu-Yau)

If G has (O/LLY)-curvature bounded below by K , then the first
eigenvalue of the Laplacian satisfies

inf∫
f=0

∑
(u,v)∈E (f (u)− f (v))2∑

f (v)2
= λ1 ≥ K .

Proposition (S)

If G has curvature bounded below by K , then the first eigenvalue
of the Laplacian satisfies

λ1 ≥
K

2n
.

Sharp up to constants (cycle graph).
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Special Case (Oliver Alfred Gross (RAND?), 1964)

Let 0 ≤ x1, . . . , xn ≤ 1. There exists 0 ≤ x ≤ 1 such that

1

n

n∑
i=1

|x − xi | =
1

2
.

Proof.
Set f (x) = 1

n

∑n
i=1 |x − xi |. Then

f (0) + f (1) =
1

n

n∑
i=1

|xi |+ |1− xi | = 1.

Either f (0) = f (1) = 1/2 or one is smaller and one is bigger and
the intermediate value theorem.
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Theorem (Gross, 1964)

Let (X , d) be a compact, connected metric space.

There exists a
unique r > 0 such that for all x1, . . . , xn ∈ X there exists x ∈ X
such that

1

n

n∑
i=1

d(x , xi ) = r .

These numbers r > 0 are only known in special cases (easy to
approximate though). Proof uses Glicksberg Fixed Point Theorem
(Glicksberg → Garnett → Jones). We will now do this on graphs
(compact metric space but not connected metric space).
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Theorem (Total Curvature Minimax)

Let G be nonnegatively curved with total curvature ‖w‖`1 .

Then,
for any list of vertices v1, . . . , vm, there exist a, b ∈ V

1

m

m∑
i=1

d(a, vm) ≤ n

‖w‖`1
≤ 1

m

m∑
i=1

d(b, vm)

Moreover, n/‖w‖`1 is the unique number with this property.

Proof of Bonnet-Myers. Take d(v1, v2) = diam(G ). Then

1

2
(d(a, v1) + d(a, v2)) ≤ n

‖w‖`1
.

Triangle inequality diam(G ) = d(v1, v2) ≤ d(a, v1) + d(a, v2).
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von Neumann Minimax (1928)

Let A ∈ Rn×n by a symmetric
matrix. There exists a unique α ∈ R
such that for all (x1, . . . , xn) ∈ Rn

≥0
satisfying x1 + · · ·+ xn = 1

min
1≤i≤n

(Ax)i ≤ α ≤ max
1≤i≤n

(Ax)i .

In our case
α =

n

‖w‖`1
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Existence?

When does the equation
Dw = n

have a solution?

Not always. But frustratingly often.

Mathematica’s list of 10.000 graphs contains roughly 5000
examples where rank(D) < n but only 5 examples where Dw = n
does not have a solution.

Very strange phenomenon....
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Dx = n where Dij = d(vi , vj).

But as we know: the geodesic distance on a graph might be not be
a good way of measuring distances. Much of the theory is
robust: pick your favorite metric!
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Idea: replace distance by a graph-adapted notion of distance.
Random walks but symmetrized.

Resistance Distance
Let Ω ∈ Rn×n be the matrix of effective resistances

Ωij =
commute time between vi and vj

2 · |E |
.



Idea: replace distance by a graph-adapted notion of distance.
Random walks but symmetrized.

Resistance Distance
Let Ω ∈ Rn×n be the matrix of effective resistances

Ωij =
commute time between vi and vj

2 · |E |
.



Resistance Curvature
Let Ω ∈ Rn×n be the matrix of effective resistances. Define
resistance curvature κ as the solution of

Ωκ = 1.

Figure: Vertices of graphs colored by the sign of the resistance curvature
(red if positive, blue if negative).
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K ∼ 0.1 K ∼ 0.208K ∼ 0.206 K ∼ 0.289

Figure: Graphs with #V = 8 and constant resistance curvature: the cycle
C8, the cube Q3, the Wagner Graph and Antiprism4. As curvature
increases the average commute time between vertices decreases.



Theorem (KOS, 2023)

Let G = (V ,E ) be a connected graph with maximal degree ∆ and
resistance curvature bounded from below by K > 0. Then

diam(G ) ≤
√

∆

K
· log |V |

Conjecture (Bonnet-Myers)

Let G = (V ,E ) be a connected graph with resistance curvature
bounded from below by K > 0. Then

diam(G ) ≤ 100√
K
.
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Lichnerowicz Inequality (KOS, 2023)

Suppose G = (V ,E ) has resistance curvature bounded from below
by K > 0, then the smallest positive eigenvalue of D − A satisfies

λ2 ≥ 2K .

Commute Time Pinching (KOS, 2023)

Suppose G = (V ,E ) has curvature bounded from below by K > 0
and bounded from above by K2. Then, for all vertices x ∈ V ,

2

K2

|E |
|V |
≤ max

y∈V
commute(x , y) ≤ max

y ,z∈V
commute(y , z) ≤ 4

K

|E |
|V |

.
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