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A Useful Simplification

We will work with periodic functions f : [0, 2π]→ R.

We write

f (t) = Re F (e it)

for some holomorphic F : C→ C. This is not far from the truth.
Most of our illustrations will be using

t →
(
Re F (e it), Im F (e it)

)
as a curve in the complex plane. It may also be helpful to think of

F : C→ C

as a polynomial.
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Blaschke products

zm
k∏

i=1

z − ai
1− aiz

where ai ∈ D

Theorem
Any holomorphic F : C→ C can be written as

F = B · G ,

where B is a Blaschke product and G has no roots inside D.
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Blaschke products – moving roots around

Figure: Roots of F = BG Figure: Roots of G

(
z − 1

3

)
(z − 3)︸ ︷︷ ︸

F

=
z − 1

3

1− z
3︸ ︷︷ ︸

B

·
(

1− z

3

)
(z − 3)︸ ︷︷ ︸

G

If the roots are all close to the boundary, not much is happening.



Blaschke products – moving roots around

Figure: Roots of F = BG Figure: Roots of G

(
z − 1

3

)
(z − 3)︸ ︷︷ ︸

F

=
z − 1

3

1− z
3︸ ︷︷ ︸

B

·
(

1− z

3

)
(z − 3)︸ ︷︷ ︸

G

If the roots are all close to the boundary, not much is happening.



Blaschke products

zm
k∏

i=1

z − ai
1− aiz

where ai ∈ D

Note that
|B(e it)| = 1.

In particular,
B(e it) = e iφ(t),

and φ is monotonically increasing.



Blaschke products

zm
k∏

i=1

z − ai
1− aiz

where ai ∈ D

Note that
|B(e it)| = 1.

In particular,
B(e it) = e iφ(t),

and φ is monotonically increasing.



Blaschke products

zm
k∏

i=1

z − ai
1− aiz

where ai ∈ D

Note that
|B(e it)| = 1.

In particular,
B(e it) = e iφ(t),

and φ is monotonically increasing.



Nonlinear Fourier series

On the boundary of the unit disk |B| = 1.

F = B︸︷︷︸
∼phase

G︸︷︷︸
∼amplitude

F = BG

= B(G (0) + (G (z)− G (0)))

= G (0)B + B(G (z)− G (0)))

= G (0)B + B(B1G1)
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Figure: F (∂D) (black) and G (∂D) (red)



Figure: G (∂D) (black) and (G − G (0))(∂D) (red)



Figure: (G − G (0))(∂D) and its outer function
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(Three steps of the algorithm, Michel Nahon, PhD Thesis)
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”Michel” Nahon (PhD Thesis 2000)



Acoustic Underwater Scattering (Letelier & Saito, 2009)



Doppler Effect (Healy, 2009)
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One can find F = B · G without computing the roots of F .

(Thanks to José Luis Romero.)



(Guido & Mary Weiss, 1963)

One can find F = B · G without computing the roots of F .

(Thanks to José Luis Romero.)



Theorem (Tao Qian, 2012)

The sequence converges in H2 for initial data in H2. The
convergence is at least as fast as that of Fourier series.

Proof.
Write F (z)− F (0) = z · B · G .

F = a0 + a1zB1 + a2z
2B1B2 + · · ·+ anz

nB1 · . . .BnG .

Observation: All these terms are mutually orthogonal in L2(∂D).
The last term is additionally orthogonal to

1, z , z2, . . . , zn−1.
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Define two spaces X ,Y for monotonically increasing weights γn∥∥∥∥∥∥
∑
n≥0

anz
n
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We define a norm Y∥∥∥∥∥∥
∑
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∑
n≥0

(γn+1 − γn)|an|2.

(Basic Observation)

Suppose F (z) = F (0) + z · G (z). Then

‖G‖2X ≤ ‖F‖
2
X − ‖F‖2Y .
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(Theorem, Coifman and S)

If holomorphic F has a Blaschke factorization F = B · G , then

‖G (e i ·)‖X ≤ ‖F (e i ·)‖X .

Moreover, if F (α) = 0 for some α ∈ D, we even have

‖G (e i ·)‖2X ≤ ‖F (e i ·)‖2X − (1− |α|2)

∥∥∥∥ G (e i ·)

1− αz

∥∥∥∥2
Y

.

Corollary. Initial data in X =⇒ convergence in Y
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Interesting special case: X = D (the Dirichlet space) and Y = L2.

(Carleson’s formula for Blaschke product, 1960)

Assume F is holomorphic with roots {αi : i ∈ I} in D and
F = B · G , then∫

D
|F ′(z)|2dz =

∫
D
|G ′(z)|2dz +

1

2

∫
∂D
|G |2

∑
i∈I

1− |ai |2

|z − αi |2
.
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Numerical stability

Holomorphic function inside the unit disk is given by

f (x) =

∫
|z|=1

Px(e it)f (e it)dt.

This implies drastic levels of stability under additive noise.



So what’s the point?

We have a natural analogue of Fourier series

F = BG

= B(G (0) + (G (z)− G (0)))
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= G (0)B + B(B1G1)

= G (0)B + G1(0)BB1 + G2(0)BB1B2 + G3(0)BB1B2B3 + . . .

We have roughly the same type of convergence guarantee as for
Fourier series. So what’s the point?

An amazing observation

In reality, convergence seems to happen at an exponential rate.
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(Lukianchikov, Nazarchuk and Xue, 2019)



The big open question
In reality, convergence seems to happen much, much faster.∫
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Respiratory signal (Hau-tieng Wu)

Figure: Respiratory signal and first Blaschke



Respiratory signal (Hau-tieng Wu,)

Figure: Synchrosqueezing vs. Blaschke-Synchrosqueezing



Gravity Wave (Hau-tieng Wu)

Figure: Gravity wave and the first two Blaschkes



Gravity Wave (Hau-tieng Wu)

Figure: Synchrosqueezing, Blaschke-synchrosqueezing and zoom
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pn = B · G ,

where B is the Blaschke product containing all the roots of
pn(z)− pn(0) inside the unit disk. So where are these roots?
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Example 1: µ is standard Gaussian in C
z1, . . . , zn ∼ µ (iid) and

pn(z) =
n∏

k=1

(z − zk)

Where are the roots of pn(z)− pn(0)?
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Theorem (Kabluchko 2012, conjectured by Rivin & Pemantle)

Let µ be a probability distribution in C, let z1, . . . , zn i.i.d. random
variables and consider the random polynomial

pn(z) =
n∏

k=1

(z − zk)

Then the roots of p′n(z) are also distributed according to µ.
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Problem
Let µ be a probability distribution in C, let z1, . . . , zn i.i.d. random
variables and consider the random polynomial

pn(z) =
n∏

k=1

(z − zk)

Where are the n roots of pn(z)− pn(0)?



Example 2: µ is the union of two circles

Pick roots uniformly at random from

0

1

Where are the roots of pn(z)− pn(0)?



Example 2: µ is the union of two circles

0

1

roots of pn(z)− pn(0)



Theorem (Hau-tieng Wu and S., IMRN 2021)

In some regions of C, the solutions of pn(z)− pn(0) = 0 are
distributed exactly as µ (see Example 1). In other regions, the
solutions jump to fixed curves that one can compute.

Remark. If µ is radial around 0, then only the first case appears.
This is Example 1 (the Gaussian).
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Other recent work

Theorem (Coifman and Peyriere)

Convergence in Hp.
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Deep Blaschke?



Coifman and Peyriere (2021)

One can do all these things just as easily on R. The proper
analogue is

B(x) =
∏
k≥1

x − ak
x − ak

.

We have B(x) = e iθ(x) where

θ(x) =
∑
k≥0

σ

(
x − Re ak

Im ak

)
and

σ(x) =
π

2
+ arctan x .
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Thank you!


