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A Useful Simplification

We will work with periodic functions f : [0, 27] — R. We write
f(t) = Re F(e™)

for some holomorphic F : C — C. This is not far from the truth.
Most of our illustrations will be using

t — (Re F(e"),Im F(e™))
as a curve in the complex plane. It may also be helpful to think of
F:C—C

as a polynomial.
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Fourier series. Let f : C — C be holomorphic and
f(2) =ay+a1z+ axz’+...
On the boundary of the unit disk:
f(e) = ap + are’ + ape®® 4 ...
This is the same as classical Fourier series because

e =cost+isint
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Recursively.
f(z) = £(0) + (f(2) — £(0))

We can factor out and get f(z) — 7(0) = z- g(2).

Idea. Factor all the roots inside the unit disk. There is a canonical
way of doing this.



Blaschke products

’"Hz_a"
1—3;z

where a; € D




Blaschke products

’"Hz_a"
1—3;z

where a; € D

Theorem
Any holomorphic F : C — C can be written as

F=B.G,

where B is a Blaschke product and G has no roots inside D.
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Blaschke products — moving roots around

Figure: Roots of F = BG Figure: Roots of G

If the roots are all close to the boundary, not much is happening.
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Blaschke products

where a; € D

Note that _
|B(e")| = 1.

In particular,
B(eit) — ei(b(t),

and ¢ is monotonically increasing.



Nonlinear Fourier series

On the boundary of the unit disk |B| = 1.

F= B G
—~— ~—

~phase  ~amplitude



Nonlinear Fourier series

On the boundary of the unit disk |B| = 1.

F= _B G
—~— ~—
~phase  ~amplitude

F =BG

B(G(0) + (G(2) - 6(0)))
= G(0)B + B(G(2) — 6(0)))
G(0)B + B(B16y)

= G(O)B + Gl(O)BBl + GQ(O)BBle + G3(0)BB]_BZB3 +...



Figure: F(OD) (black) and G(OD) (red)



Figure: G(OD) (black) and (G — G(0))(OD) (red)



Figure: (G — G(0))(0D) and its outer function
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Figure 1.20: Orthogonal decomposition of the modulated Gaussian signal F : 6 — e
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(Three steps of the algorithm, Michel Nahon, PhD Thesis)
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Acoustic Underwater Scattering (Letelier & Saito, 2009)

fcenceshits512

600

500

400

300

200

100



Doppler Effect (Healy, 2009)
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A DERIVATION OF THE MAIN RESULTS
OF THE THEORY OF Hr SPACES

by MARY and GUIDO WEISS
(Facultad de’Ciencias Exactas y Naturales, Universidad de Buenos Aires)

§ 1. Introduction.

The space H?, p > 0, is the vector space of all analytic functions
F (z) defined in the open unit dise, | 2| = r < 1, such that

2%
sup f | F (re®) |Pdb < . [1]
0=<r<1 Jo

The basic result in the theory of these spaces is the following
theorem:

(Thanks to José Luis Romero.)
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Theorem (Tao Qian, 2012)

The sequence converges in #? for initial data in H?. The
convergence is at least as fast as that of Fourier series.

Proof.
Write F(z) — F(0) =z- B - G.

F =ap+ aizBi + az°Bi1Bs+ -+ -+ a,z"B; - ... B,G.

Observation: All these terms are mutually orthogonal in L2(0D).

The last term is additionally orthogonal to

O
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Define two spaces X, Y for monotonically increasing weights v,
2
. 2
Zanz” = Z’yn|an| < 0.
n>0 X n>0

We define a norm Y

2

Zanz" = Z(’Yn-&-l _’Yn)|an‘2'

n>0 v n>0

(Basic Observation)
Suppose F(z) = F(0) + z- G(z). Then

2
I1GI5 < IF % = IFI%-
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(Theorem, Coifman and S)
If holomorphic F has a Blaschke factorization F = B - G, then

1G(e)llx < [IF(e")llx-

Moreover, if F(a) = 0 for some o € D, we even have

1G(e")I% < IF(e™)I% — (1~ |af?)

Corollary. Initial data in X = convergence in Y



Theorem (Coifman and S.)

2

1G(e")I% < IF(e™) 1% — (1~ |af?)

1—az

‘ G(e)

Y
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Theorem (Coifman and S.)

G(e,'.) 2

1—az

1G(e")I% < IF(e™) 1% — (1~ |af?)

14
Interesting special case: X = D (the Dirichlet space) and Y = L.
(Carleson’s formula for Blaschke product, 1960)

Assume F is holomorphic with roots {a; : i € I} in D and
F = B - G, then

[iFers= [stera sy [ 16ry = Lolal



Numerical stability

Holomorphic function inside the unit disk is given by
F(x) = / P.(e)f(e™)dt.
|z|=1

This implies drastic levels of stability under additive noise.
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So what's the point?

We have a natural analogue of Fourier series

F =BG

= B(G(O) (G(2) - G(0)))
)B + B(G(2) — G(0)))
)B+ B(BlGl)
)

G(0
G(0
( B+ Gl( )BBl + GQ(O)BBle + G3(0)BBleB3 + ...

0

We have roughly the same type of convergence guarantee as for
Fourier series. So what's the point?

An amazing observation
In reality, convergence seems to happen at an exponential rate.
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F(O) + a()B() + a13031

F(O) + aopBo + a1 ByB1+ F(O) + apBo + a1 BoB1+
azBoBle leBoBlBQ + agBoBlBQB;;

(Lukianchikov, Nazarchuk and Xue, 2019)
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The big open question

In reality, convergence seems to happen much, much faster.
/ IF(2)2dz —/ G'(2)Pdz + / G2 Z —lail
|z —ai?

/ |F'(2)|?dz = area enclosed
D

If the roots are nicely spread

1— 12
Z “‘9'_’ ~ winding number.

(winding number)/ ]G\zw/ |F'(2)|dz
oD D

= exponential convergence(?)



Respiratory signal (Hau-tieng Wu)
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Respiratory signal (Hau-tieng Wu,)
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Gravity Wave (Hau-tieng Wu)

Strain (10°2")

Figure: Gravity wave and the first two Blaschkes
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Gravity Wave (Hau-tieng Wu)

300 - 300 180
250 A 250 160
140
7200 7200 T120
< < L
150 150 100 /
g : g g -,
& 100 & 100 ¥ i 80
/_/ 60
50 e 50 40
0 0 20
025 03 035 04 045 025 03 035 04 045 0.35 0.4
Time (sec) Time (sec) Time (sec)

Figure: Synchrosqueezing, Blaschke-synchrosqueezing and zoom



1—|a;f?

yG2§j !

/am | — |z — aj
i€l

/ G'(2) Pz +
D 2
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2 _ |ai
/|F/ )2dz = /yc J2dz + /G|Z|2_al|2

So somehow everything boils down to where
the roots are. ldea: try to understand what
happens for random polynomials. Here: ran-
dom polynomials are polynomials with a ran-
dom i.i.d. distribution of roots.

Suppose p, : C — C, then

where B is the Blaschke product containing all the roots of
pn(z) — pn(0) inside the unit disk. So where are these roots?
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Theorem (Kabluchko 2012, conjectured by Rivin & Pemantle)

Let 1 be a probability distribution in C, let z,..., z, i.i.d. random
variables and consider the random polynomial

n

po(2) = [ (z — )

k=1

Then the roots of p/,(z) are also distributed according to (.



Problem
Let 1 be a probability distribution in C, let z,..., z, i.i.d. random
variables and consider the random polynomial

n

po(2) =[] (2 2)

k=1

Where are the n roots of p,(z) — pn(0)?
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roots of p,(z) — pn(0)
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Theorem (Hau-tieng Wu and S., IMRN 2021)

In some regions of C, the solutions of p,(z) — pn(0) = 0 are
distributed exactly as p (see Example 1). In other regions, the
solutions jump to fixed curves that one can compute.

Remark. If p is radial around 0, then only the first case appears.
This is Example 1 (the Gaussian).
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Other recent work

Theorem (Coifman and Peyriere)

Convergence in HP.

ON ALMOST-EVERYWHERE CONVERGENCE OF
MALMQUIST-TAKENAKA SERIES

GEVORG MNATSAKANYAN

We are interested in almost everywhere convergence of the MT series (1.3). By
standard techniques, almost everywhere convergence can be deduced from estimates
of the maximal partial sum operator. Denote

N
(1.5) Tf(e) =T f(e¥) = sup| D (fibndn(e™)].

n=0
Question. Is the mazimal partial sum operator (1.5) bounded on LP?
If a, = 0, then the MT series reduces to the classical Fourier series and the

operator (1.5) reduces to the Carleson operator. In this case the positive answer to
the above question is given by the Carleson-Hunt theorem [Car66, Hun68].
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Coifman and Peyriere (2021)

One can do all these things just as easily on R. The proper

analogue is
X — dg
B(x) = | | —.
X — dg
k>1

We have B(x) = /) where
B x — Re ax
0(x) = ZO’ (Im ” )
k>0

and
T
o(x) = 5 Tarctanx.
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