
New Interactions between Analysis
and Number Theory

Stefan Steinerberger

University of Minnesota, Minneapolis



Karl Popper, Conjectures and Refutations, 1963

[...] in the natural sciences [...] what we look for is truth which has
a high degree of explanatory power [...]

This talk: truth with low degree of explanatory power.

Outline.

1. Poincaré inequalities on the torus Td

2. Number Theory in the Hardy-Littlewood maximal function

3. A Mystery hiding in Ulam’s integer sequence [$200]



(1) Poincaré inequalities on the torus Td



The Poincaré inequality

General setting: Ω ⊂ Rn bounded and nice enough. Then∫
Ω
f (x)dx = 0 =⇒

∫
Ω
|∇f (x)|pdx ≥ cp,Ω

∫
Ω
|f (x)|pdx .

’If a function has large values, it has to have large growth.’

Figure : The best functions on a disk with Dirichlet condition.



Everything is easy on the torus!

Particularly simple on Td and p = 2. Then, if f has mean value 0,∫
Td

|∇f (x)|2dx ≥
∫
Td

|f (x)|2dx

and this is the sharp result.

Proof. Convexity!

f (x) =
∑
k6=0

ake
ik·x

∇f (x) =
∑
k6=0

kake
ik·x

‖f ‖2
L2(T2) =

∑
k 6=0

|ak|2 ≤
∑
k6=0

|k|2|ak|2 ≤ ‖∇f ‖2
L2(T2)



Main result

Theorem (S., special case d = 2)

There exist α ∈ T2 and cα > 0 so that for all functions with mean
value 0

‖∇f ‖L2(T2)‖ 〈∇f , α〉 ‖L2(T2) ≥ cα‖f ‖2
L2(T2)



Main result

Theorem (S., special case d = 2)

There exist α ∈ T2 and cα > 0 so that for all functions with mean
value 0

‖∇f ‖L2(T2)‖ 〈∇f , α〉 ‖L2(T2) ≥ cα‖f ‖2
L2(T2)

Clearly α = (1, 0) does not work because that would give

‖∇f ‖L2(T2)‖∂x f ‖L2(T2) ≥ cα‖f ‖2
L2(T2)

and the function might vary along the y−direction. Clearly
α = (m, n) ∈ Z2 does not work either: sin (nx −my).



Non-closed geodesics

‖∇f ‖L2(T2)‖ 〈∇f , α〉 ‖L2(T2) ≥ cα‖f ‖2
L2(T2)



Bad non-periodic geodesics

α =

(
1,
∞∑
n=1

1

10n!

)
∼ (1, 0.110001 . . . )

where the number, Liouville’s constant, is known to be irrational.

fN(x , y) = sin

(
10N!

(
N∑

n=1

x

10n!
− y

))
,

then

‖fN‖2
L2(T2) = 2π2 and ‖∇fN‖L2(T2) ≤ 6 · 10N!

while

‖〈∇fN , α〉‖L2(T2) =
√

2π2

( ∞∑
n=N+1

10N!

10n!

)
� 10−2·N! for N ≥ 3.



Theorem (special case d = 2)

‖∇f ‖L2(T2)‖ 〈∇f , α〉 ‖L2(T2) ≥ cα‖f ‖2
L2(T2)

Characterization (special case d = 2)

α = (α1, α2) ∈ T2 is admissible if and only if α2/α1 has a bounded
continued fraction expansion.

α = (1,
√

2) is admissible.
α = (1, e) is not admissible.
α = (1, π) is conjectured to not be admissible.



Main idea of the proof

‖ 〈∇f , α〉 ‖2
L2(Td ) =

∥∥∥∥∥∥
〈∑

k∈Zd

akke
ik·x , α

〉∥∥∥∥∥∥
2

L2(Td )

=

∥∥∥∥∥∥
∑
k∈Zd

ak 〈k, α〉 e ik·x
∥∥∥∥∥∥

2

L2(Td )

= (2π)d
∑
k∈Zd

|ak |2| 〈k , α〉 |
2
.

The term | 〈k , α〉 | is not bounded away from 0.



Main idea of the proof

Theorem (Dirichlet’s approximation theorem)

There exist infinitely many k ∈ Zd with

| 〈k , α〉 | . 1

|k |d
.

Theorem (Perron)

There exist α ∈ Td such that for all k ∈ Zd

| 〈k , α〉 | & 1

|k |d
.



Main idea of the proof

Theorem (Perron)

There exist α ∈ Td such that for all k ∈ Zd

| 〈k , α〉 | & 1

|k |d
.

We want

‖∇f ‖L2(T2)‖ 〈∇f , α〉 ‖L2(T2) ≥ cα‖f ‖2
L2(T2).

If ‖∇f ‖L2(T2) is of a certain size, then some of the L2−norm is on
low frequencies and we may employ Perron’s result.



More results

Theorem

‖∇f ‖d−1
L2(Td )

‖ 〈∇f , α〉 ‖L2(Td ) ≥ cα‖f ‖dL2(T2)



More results

Theorem

‖∇f ‖d−1
L2(Td )

‖ 〈∇f , α〉 ‖L2(Td ) ≥ cα‖f ‖dL2(T2)

Theorem (Coifman)∥∥∥〈Dd f , α
〉∥∥∥

L2(Td )
≥ cα‖f ‖L2(T2)



More results

Theorem

‖∇f ‖d−1
L2(Td )

‖ 〈∇f , α〉 ‖L2(Td ) ≥ cα‖f ‖dL2(T2)

Theorem (Coifman)∥∥∥〈Dd f , α
〉∥∥∥

L2(Td )
≥ cα‖f ‖L2(T2)

Irrationality measure of π

‖∇f ‖7/8
L2(T2)

‖ 〈∇f , (1, π)〉 ‖1/8
L2(T2)

≥ c‖f ‖L2(T2).



More results

Markov spectrum (special case due to Hurwitz)

Let d = 2. If

‖∇f ‖L2(T2)‖ 〈∇f , α〉 ‖L2(T2) ≥ cα‖f ‖2
L2(T2)

then

cα ≤
|α|√

5
.

‘The best flow on the torus is given by the golden ratio.’



More results

Markov spectrum

‖∇f ‖L2(T2)‖ 〈∇f , α〉 ‖L2(T2) ≥ cα‖f ‖2
L2(T2)

0 ≤ cα ≤
|α|√

5
.

Sharp: let α =
(

1, 1+
√

5
2

)
and fn(x , y) = sin (Fn+1x − Fny),

where Fn is the n−th Fibonacci number. One needs to prove

lim
n→∞

∣∣∣∣∣Fn+1

Fn
− 1 +

√
5

2

∣∣∣∣∣F 2
n =

1√
5
.



Several directions

Theorem
Let 1 ≤ ` ≤ d − 1. Then there exists a set B` ∈ (Td)` such that
for every (α1, α2, . . . , α`) ∈ B` there is a cα > 0 with

‖∇f ‖d−1
L2(Td )

(∑̀
i=1

‖ 〈∇f , αi 〉 ‖L2(Td )

)`
≥ cα‖f ‖d−1+`

L2(Td )

for all f ∈ H1(Td) with mean 0.

There are also stronger versions conditional on very recent results.



Further directions

Khintchine
For every δ < 1/2, the set of α ∈ T2 for which

‖∇f ‖1−δ
L2(T2)

‖ 〈∇f , α〉 ‖δL2(T2) ≥ c‖f ‖L2(T2)

has full Lebesgue measure.

The general problem

General question: nice geometry, smooth vector field Y on that
geometry

‖∇f ‖1−δ
L2 ‖ 〈∇f ,Y 〉 ‖δL2 ≥ c‖f ‖L2



Further directions

S2 Hairy ball theorem. A continuous vector field on an
even-dimensional sphere vanishes somehwere.
S3 Seifert conjecture (false). Every nonsingular, continuous
vector field on the 3-sphere has a closed orbit.

Very daring conjecture. Td is the best geometry (i.e. smallest δ).



Further directions (in progress)



(2) Number Theory in the Hardy-Littlewood maximal function



One version of the statement

Theorem (S. 2015)

Let f ∈ C 1/2+ be periodic. If, for all x ∈ R,∫ x+1

x−1
f (z)dz = f (x − 1) + f (x + 1),

then

f (x) = a + b sin (cx + d) for some a, b, c, d ∈ R.

Why? Is it trivial? Also: why even think about this?



Lax (2007)



Hardy-Littlewood maximal function

Definition.
Let f : R→ R+. We set

(Mf )(x) := sup
r>0

1

2r

∫ x+r

x−r
f (z)dz .

−1 −0.5 0 0.5 1



The computational question
How is the maximal function being computed?

Definition.
Given a function f : R→ R+, the smallest optimal radius
rf : R→ R is

rf (x) = inf

{
r > 0 :

1

2r

∫ x+r

x−r
f (z)dz = (Mf )(x)

}
.



The combinatorial question
Question.

rf has certain properties⇔ f has certain properties.

Trivial example. Let f : R→ R be continuous and periodic. If∣∣∣∣∣⋃
x∈R
{rf (x)}

∣∣∣∣∣ = 1, then f is constant.



Simple functions are trigonometric

Theorem
Let f ∈ C 1/2+ be periodic. If∣∣∣∣∣

(⋃
x∈R
{rf (x)}

)
∪

(⋃
x∈R
{r−f (x)}

)∣∣∣∣∣ ≤ 2,

then

f (x) = a + b sin (cx + d) for some a, b, c, d ∈ R.



Periodic solutions of a DDE are trigonometric

Theorem (equivalent)

Let α > 0 be fixed and let f ∈ C 1(R,R) be a solution of the delay
differential equation

f ′(x + α)− 1

α
f (x + α) = −f ′(x − α)− 1

α
f (x − α).

If f is periodic, then

f (x) = a + b sin (cx + d) for some a, b, c, d ∈ R.
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Proof

After a standard application of Fourier series:

Theorem (again equivalent)

Let (α,m, n) ∈ R× N× N. If

tanαm = αm

tanαn = αn,

then α = 0 or m = n.



Proof II

5 10 15 20
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We need that any two elements in the set

{x ∈ R>0 : x = tan x} = {4.49.., 7.72.., 10.90.., 14.06.., ...}

are linearly independent over Q.



Proof III

Use multiple angle formulas.

tanα = α

tan 3α = 3α

3α =︸︷︷︸
2nd eq

tan 3α =︸︷︷︸
trig identity

((tanα)2 − 3) tanα

3(tanα)2 − 1
=︸︷︷︸

1st eq

α2 − 3

3α2 − 1
α

Yields very complicated polynomials very quickly.

It would be exceedingly nice if we wouldn’t have to deal with
polynomials.



Proof IV - the miracle

Corollary of the Lindemann-Weierstrass theorem.

tan(nonzero algebraic number) is transcendental.

If tanβ = β then β is transcendental (or β = 0).



Proof V

tanαm = αm

tanαn = αn

implies
n tanαm −m tanαn = 0.

Rewriting these as polynomials of tanα, we get

0 = n tanαm −m tanαn = n
pm(tanα)

qm(tanα)
−m

pn(tanα)

qn(tanα)

and therefore after multiplication with qm(tanα)qn(tanα)

0 = nqn(tanα)pm(tanα)−mqm(tanα)pn(tanα).



Proof VI

0 = nqn(tanα)pm(tanα)−mqm(tanα)pn(tanα).

This means that tanα is algebraic. Algebraic numbers form a field
(closed under sums, products and division). Since

tan nα =
pn(tanα)

qn(tanα)
,

tan nα is algebraic (and, little extra work, not 0). However, by
assumption,

tan nα = nα

and therefore
tan tan nα︸ ︷︷ ︸

algebraic

= tan nα︸ ︷︷ ︸
algebraic

.

This means the tangent sends a nonzero algebraic number to an
algebraic number. Contradiction.



A complete mystery in N



Ulam (1964)

One can consider a rule for
growth of patterns – in one
dimension it would be merely
a rule for obtaining successive
integers. [...] In both cases
simple questions that come to
mind about the properties of
a sequence of integers thus
obtained are notoriously hard
to answer.

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53. . .



Ulam sequence

Start with 1,2. The next
element is the smallest integer
that can be uniquely written
as the sum of two distinct
earlier terms.

1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53. . .

The sequence grows at most exponentially. Nothing else is known.



1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53. . .

Roth’s theorem
If the function has nontrivial density, then it has many arithmetic
progressions of length 3.

Self-consistency

If a · n + b is in the sequence for n = 1, 2, 3, then a or 2a is not.

Fourier series detect correlation with linear phases, let’s look at

Re
N∑

n=1

e ianx =
N∑

n=1

cos (anx)
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Figure : N = 5
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Figure : N = 10
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Figure : N = 100
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Peak roughly at (thanks to data provided by Dan Strottman!)

α ∼ 2.5714474 . . .

and of strength

R
N∑

n=1

e ianx =
N∑

n=1

cos (anx) ∼ −0.79N.

Indeed, we have (empirically, up to 1011)

cos (αan) < 0 for all numbers except {2, 3, 47, 69} .



1 2 3 4 5 6
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Indeed, we have ( at least up to 1011)

cos (αan) < 0 for all numbers except {2, 3, 47, 69} .

This means that the cos (αan) terms have to line up.

The relevant set is (αan mod 2π)Nn=1 .



The limiting distribution

0 1 2 3 4 5 6





Fast computation (Donald Knuth)

PhD thesis (Daniel Ross, in progress)





0 1 2 3 4 5 6

Figure : Initial values (1, 3)



0 1 2 3 4 5 6

Figure : Initial values (1, 4)



0 1 2 3 4 5 6

Figure : Initial values (2, 3)



Zeroes of the Riemann ζ−function on the critical line

((log 5)tn mod 2π)100.000
n=1

where ζ(1/2 + itn) = 0.
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’Almost’ another example

1 2 3 4 5 6
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ζ(s) =
∞∑
n=1

1

ns
=
∏
p

1

1− p−s
.

∣∣∣∣∣ 1

1− p−( 1
2

+itn)

∣∣∣∣∣ ≤ 1 related to
π

2
≤ [(log p)tn mod 2π] ≤ 3π

2
.

Explained by Landau (1912) and Ford-Zaharescu (2005).



Thank you!


