

View from the front line:

simulations of quantum chromodynamics and the continuum limit

Stephen R. Sharpe Physics Department University of Washington

A fish out of water?

• Why someone might have mistaken me for an expert on quantization

• But this is the "trivial" quantization condition of particles in a box, albeit in the nontrivial context of a generic relativistic effective field theory

A fish out of water?

- Lattice QCD can calculate energy levels of multiparticle systems in a box
- How are these related to infinite-volume scattering amplitudes?

A fish out of water?

Lattice QCD can calculate energy levels of multiparticle systems in a box

!?

• How are these related to infinite-volume scattering amplitudes?

Today's topic: how can we claim that "lattice QCD can calculate...."?

- QCD=Quantum Chromodynamics=QFT describing the strong interactions (quarks & gluons)
- Lattice QCD \Rightarrow discretize space-time \Rightarrow computational method, implemented numerically
- (Also need to work in finite space-time volume, imaginary time, ...)
- Key question for today: can we take the continuum limit (lattice spacing $a \rightarrow 0$)?
- Much numerical evidence, backed by some theoretical calculations, suggests that we can do so in a controlled way
- How rigorous can this be made?

State-of-the art LQCD results

Eur. Phys. J. C (2020) 80:113 https://doi.org/10.1140/epjc/s10052-019-7354-7 THE EUROPEAN PHYSICAL JOURNAL C

Review

FLAG Review 2019

Flavour Lattice Averaging Group (FLAG)

S. Aoki¹, Y. Aoki^{2,3,34}, D. Bečirević⁴, T. Blum^{3,5}, G. Colangelo⁶, S. Collins⁷, M. Della Morte⁸, P. Dimopoulos^{9,10}, S. Dürr^{11,12}, H. Fukaya¹³, M. Golterman¹⁴, Steven Gottlieb¹⁵, R. Gupta¹⁶, S. Hashimoto^{2,17}, U. M. Heller¹⁸, G. Herdoiza¹⁹, R. Horsley²⁰, A. Jüttner^{21,a}, T. Kaneko^{2,17}, C.-J. D. Lin^{22,23}, E. Lunghi¹⁵, R. Mawhinney²⁴, A. Nicholson²⁵, T. Onogi¹³, C. Pena¹⁹, A. Portelli²⁰, A. Ramos²⁶, S. R. Sharpe²⁷, J. N. Simone²⁸, S. Simula²⁹, R. Sommer^{30,31}, R. Van de Water²⁸, A. Vladikas³², U. Wenger⁶, H. Wittig³³

What is QCD?

$$\mathcal{L}_{QCD} = \bar{q}_{a,i} \left[(i\gamma^{\mu}\partial_{\mu} - m_{i}) \delta_{ab}\delta_{ij} \right] q_{b,j} - g \ G^{a}_{\mu} \bar{q}_{i,b}\gamma^{\mu}T^{a}_{bc} q_{i,c} - \frac{1}{4} G^{a}_{\mu\nu}G^{\mu\nu}_{a} - G^{\mu\nu}_{a} - g \ f^{abc}G^{b}_{\mu}G^{c}_{\nu}$$

$$q_{a,i}(x) = \text{quark, 3 colors "a" and 6 flavors "i"}$$

$$g \quad \text{QCD coupling}$$

$$q_{g} \quad g^{2} \quad g^{2}$$

↓ ↓ ↓ ↓ ↓ ↓

Textbook quantization

- EITHER canonical quantization in term of quark and gluon field operators
 - Subtleties associated with gauge symmetry (redundant degrees of freedom)
- OR (more usual) use functional integral approach (Feynman path integral)
 - Non-abelian gauge symmetry leads to ghosts (spinless particles quantized as fermions)
- BOTH lead, formally, to standard Feynman rules (after gauge fixing)

- Calculation of loop contributions to vertex functions & scattering amplitudes leads to UV (and IR) divergences
 - Regularize (e.g. dim. reg., introduces a scale), renormalize with counterterms (e.g. MS scheme?)
 - Leads to method for calculating order by order in perturbation theory (extremely successful for QED, although series known not to converge)

Wilsonian view—EFTs

- Theory is defined with an UV cutoff on momenta ($\sim 1/a$ in a lattice theory)
- As the cutoff is changed, couplings and masses change ("run") to account for the modes that have been "integrated out/in"
 - Leads to differential equations (RG equations) for couplings (and masses)
 - Physically more appealing (and mathematically more solid) as only claiming to control a range of momenta
- Running, in general, takes place in a space with an infinite number of couplings (EFT)
 - Couplings are organized by their dimensions, n, with contributions, in general, $\sim (q/\Lambda)^{n-d}$ with $q \sim$ momentum scale of process, and d = space-time dimension
 - Renormalizable couplings have $n \leq d$, and are those that remain as $\Lambda \to \infty$ (e.g. in QCD: gluon coupling g and quark masses)
- Caveats: in general, can only work out explicitly in perturbation theory; there may be large anomalous dimensions (due to interactions); "triviality" (couplings diverge at finite Λ)

Wilsonian view of QCD

Wilsonian view of QCD

Gauge symmetry preserved; Nonperturbative formulation

Quantizing Lattice QCD

- Countably-infinite set of coupled QM systems
- In classical continuum limit action goes over to desired continuum form
 - **Define** QFT as $a \rightarrow 0$ limit of this QM system

Lattice QCD in practice

- Restrict to finite volume \Rightarrow finite QM system
- Using Monte-Carlo methods to simulate
 - State of the art: $144^3 \times 288$ lattice [MILC collaboration]

Highly Improved Staggered (HISQ) fermions Physical quark masses (in isospin limit: m_u=m_d)

Need to invert matrices of size ~ (3x10⁹) x (3x10⁹)

Wilsonian view again

• Finite-volume physics must accommodate and reproduce both short-distance weakly interacting quarks & gluons AND long-distance confinement

Key questions

- SCALING. Can we reduce

 a → 0 (by varying g
 appropriately) while the long-distance non-perturbative
 physics remains fixed?
- ASYMPTOTIC SCALING. If scaling holds does the required g(1/a) depend on a in the manner predicted by perturbation theory?
- CORRECTIONS TO SCALING. Can we predict the form of the aⁿ corrections to scaling, and do the numerical results agree with the predictions?
- Do the results agree with nature?

Agreement with nature

• Spectrum of light hadrons in QCD with $m_u = m_d$ (after $a \rightarrow 0$ extrapolation)

Isospin splittings

Corrections to scaling

- Generic expectation with "improved actions": dimensionless quantities approach continuum limit as $c_1a^2 + c_2a^4 + \dots$ (up to $\log(a)$ corrections), with c_i unknown
- Example from recent LQCD calculation of anomalous magnetic moment of muon

BMW collab. Nature (2021) arXiv: 2002.12347

Evidence for asymptotic scaling

- Does bare coupling g(1/a) run with a as predicted by perturbation theory (PT) ?
 - Accuracy of PT improves as *a* decreases (asymptotic freedom)

$$\frac{dg(1/a)}{d\log(a)} = \beta_0 g(1/a)^3 + \beta_1 g(1/a)^5 + \mathcal{O}(g^7) + \mathcal{O}(a^2)$$

$$\beta_0, \beta_1 \text{ known and both positive}$$

- Tricky issue as there are a^n corrections that must be disentangled
- Can test indirectly by checking that PT correctly reproduces short-distance observables
 - Wilson loops, short-distance correlation functions, ...

Evidence for asymptotic scaling

- Can test indirectly by checking that PT correctly reproduces shortdistance observables determined using lattice QCD
 - Wilson loops, short-distance correlation functions,

Methods based on different quantities, and a range of scales above $\sim 2 \text{ GeV}$, give consistent results

21/25

Theory of scaling violations

- Based on Symanzik effective field theory (SEFT), known to be valid to all orders in PT
 - Continuum EFT that reproduces the discretization effects of the lattice theory

State of the art

• Result for physical (dimensionless) quantities in renormalization group improved PT

Husung, Nada, Sommer, PoS(Lattice2019)263

Closing comments

- Asymptotic freedom (AF) allows theoretical control of continuum limit, assuming no short-distance nonperturbative effects
 - Supported by numerical evidence
 - Extends to other AF theories (varying numbers of colors and fermions)
- Corrections to scaling in lower-dimensional theories (e.g. O(3) sigma model) studied in great detail
 - Logarithmic corrections turn a^2 dependence almost into a linear dependence
- For SUSY theories, there are many exact results assuming the theory exists
 - Hard to confirm with lattice methods, although some progress
- QIS approaches that aim to solve sign problems in lattice theories (e.g. studying real time processes) are based on the Hamiltonian approach with spatial discretization
 - Face the same issue of understanding the spatial continuum limit

Thank you. Questions?