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The formalism relating the relativistic three-particle infinite-volume scattering amplitude to the finite-

volume spectrum has been developed thus far only for identical or d
egenerate particles. We provide the

generalization to the case of three
nondegenerate s

calar particles w
ith arbitrary masses. A key quantity in

this formalism is the quantizatio
n condition, which

relates the spect
rum to an intermediate K matrix. We

derive three versions of this quantization condition, each
a natural generaliz

ation of the corresponding

results for identi
cal particles. In e

ach case we also
determine the integral e

quations relating
the intermediate

K matrix to the three-particle scattering amplitude, M3. The version that is likely to be most practical

involves a single
Lorentz-invarian

t intermediate K matrix, eKdf;3. The ot
her versions invo

lve a matrix of K

matrices, with elements distinguishe
d by the choice of wh

ich initial and final particles ar
e the spectators.

Our approach should allow a straightforward
generalization of the relativistic

approach to all other three-

particle systems of interest.
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I. INTRODUCTION

The theoretical f
ormalism needed to study three-particle

interactions using lattice QCD (LQCD) has advanced

considerably in recent years [1–14]. In addition, the

formalism has been shown to be a practical to
ol in simple

systems [8,15–17], and applied to LQCD results for the

3πþ [18–22] and 3K− systems [23], as well a
s to the ϕ4

theory [24,25]. For rec
ent reviews, see

Refs. [26,27].
1

The relativistic f
ormalism has so far only be

en developed

for degenerate scalars.
2 Within the generic relativistic

effective field theory (RFT) approach, which
we adopt

here, the initial d
evelopment was for ident

ical scalars with
a

G-parity-like Z2 symmetry [2,3], with the extension to

theories without
theZ2 symmetry presented in

Ref. [4], and

that to nonidentical but
degenerate scala

rs (e.g. three pio
ns

with all allowed total isospins) given in Ref. [12]. An

additional gener
alization to allow the inclusion of poles in

the two-particle K matrices was given in Refs. [9,11].

Alternative approaches have been developed using either

nonrelativistic effective field theory (NREFT) [5,6], or

the application to finite volume of a unitary representa-

tion of the three-particle scattering amplitude [7,8]. Both

approaches have so far only considered identical scalars
,

and also only s-wave two-particle interactions. Rec
ently,

the RFT and finite-volume unitarity approaches have
been

shown to be equivalent [14].

In this work we generalize the RFT approach to non-

degenerate scalar particles.
We derive three forms of the

three-particle quantization condition, Eqs.
(36), (59), and

(112), each with associated integral equation
s relating the

intermediate K matrices to the three-particle scattering

amplitude, M3.

The first form is derived using the simplified method,

based on time-ordered perturb
ation theory (TO

PT), that we

introduced recently in Ref. [13], a reference henceforth

referred to as BS
1. The quantizat

ion condition inv
olves the

nondegenerate generalization of the asymmetric three-

particle K matrix used in BS1, and for this reason we

refer to it as “asymmetric.” This generalizat
ion is a three-

dimensional flavor m
atrix of K matrices, denoted

bKdf;3. A

significant disadvantage of this approach is that the K

matrices are not L
orentz invariant

(although the formalism

is valid for relativistic kinematics).

The second form of the quantization condition resolves

this shortcoming, as it involve
s a flavor matrix of Lorentz-

invariant K matrices. Its deriva
tion follows the o

riginal RFT

works [2,3] in using Feynman diagrams, but, compared to

those works, rear
ranges the order

in which the diag
rams are

analyzed, and the manner in which finite- and infinite-

volume quantities are related. The guiding principle is to
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We show that a recently derived alternative form of the relativistic three-particle quantization condition

for identical particles can be rewritten in terms of the R matrix introduced to give a unitary representation of

the infinite-volume three-particle scattering amplitude. Combined with earlier work, this shows the

equivalence of the relativistic effective field theory approach of Refs. [M. T. Hansen and S. R. Sharpe,

Phys. Rev. D 90, 116003 (2014); M. T. Hansen and S. R. Sharpe, Phys. Rev. D 92, 114509 (2015)] and the

“finite-volume unitarity” approach of Refs. [M. Mai and M. Döring, Eur. Phys. J. A 53, 240 (2017);

M. Mai and M. Döring, Phys. Rev. Lett. 122, 062503 (2019)]. It also provides a generalization of the latter

approach to arbitrary angular momenta of two-particle subsystems.DOI: 10.1103/PhysRevD.102.054515

I. INTRODUCTIONThe study of resonant three-particle systems using lattice
QCD (LQCD) is becoming feasible, due to advances in the
underlying theoretical formalism [1–13] and its practical
application [4,14–16], as well as in algorithmic and
computational methods necessary to extract three-particle
spectra (see, for example, the recent results presented in
Refs. [17–19]).1 The present frontier is the application to
the 3πþ system [18,25,26]. For recent reviews, see
Refs. [27,28].
One of the key steps in the formalism is the derivation of

three-particle quantization conditions, equations whose
solutions give the finite-volume spectrum of three-particle
states as functions of infinite-volume two- and three-
particle K matrices. These K matrices can then be related
to two- and three-particle scattering amplitudes by solving
integral equations. Three different approaches have been
followed to obtain the quantization conditions.The first is based on an all-orders diagrammatic analysis
in a generic relativistic field theory and is usually denoted
the RFT approach. It was initially developed for identical
scalar particles with a G-parity-like Z2 symmetry [1,2], and
subsequently extended to allow 2 → 3 processes [6], the
inclusion of poles in the two-particle K matrix [9,11], and

nonidentical but degenerate scalars [12]. In all cases, the
formalism allows arbitrary interactions in two-particle
subsystems (which we henceforth refer to as “dimers”).
In a companion paper [13], henceforth referred to as BS1,
we have presented an alternative, simpler, derivation of the
RFT quantization condition in the presence of the Z2

symmetry, including an alternative form of the quantization
condition itself. This new form, which depends on an
unsymmetrized three-particle K matrix, will play a crucial
role in the present work.The second approach uses nonrelativistic effective field
theory (NREFT), allowing a much simplified derivation of
the quantization condition [7,8]. The formalism has so far
only been developed for identical scalars with s-wave
dimers and no 2 → 3 transitions.The third approach, developed in Refs. [3,4], is based on
a unitary parametrization of the three-particle scattering
amplitude, M3, in terms of a K-matrix-like real quantity
called the R matrix (and denoted Rðu;uÞ below) [29,30].
Following Ref. [27], we call this method the “finite-volume
unitarity” (FVU) approach. It leads to a quantization
condition that incorporates relativistic effects, and has so
far only been developed for scalars with s-wave dimers and
no 2 → 3 transitions.A natural question is whether there are relations between
the approaches, particularly between the two relativistic
approaches (RFT and FVU). In addition, as stressed in
Ref. [27], it is not clear in the FVU approach whether all
sources of power-law volume dependence have been
accounted for. Thus an alternative derivation of the FVU
result would be welcome.The relationship between approaches was first addressed
in Ref. [8], where it was shown that the nonrelativistic limit
of the RFT quantization condition of Ref. [1], restricted to
s-wave dimers, reproduced the NREFT result, aside from
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We present a simplified derivation of the relativistic
three-particle qu

antization condition for identical,

spinless particles described by a generic relativistic field theory satisfying a Z2 symmetry. The

simplification is afforded by using a three-particle quasilocal K matrix that is not fully symmetrized,

K̃ðu;uÞ
df;3

, and makes extensive u
se of time-ordered perturb

ation theory (TOPT). We obtain a new form of the

quantization condition. This
new form can then be related algebraically to the standard quantization

condition, which
depends on a fully symmetric three-partic

le K matrix, Kdf;3. The ne
w derivation is fully

explicit, allowing
, for example, a closed-form

expression forKdf;3 to be gi
ven in terms of TOPTamplitudes.

The new form of the quantization condition is similar in structure to that obtained in the “finite-volume

unitarity” approa
ch, and in a com

panion paper we
make this connecti

on concrete. Our
simplified approach

should also allow a more straightforward
generalization of the quantization condition to nondegenerate

particles, and perhaps also to more than three particles.

DOI: 10.1103/P
hysRevD.102.05

4520

I. INTRODUCTION

One of the present frontiers
of lattice QCD (LQCD) is

the study of systems containing three or more particles.

The aims include the determination of the three-nucleon

interaction and the study of resonances decaying to

three or more particles. Advances have been made

both in the ability to calculate multiple finite-volume

energy levels using numerical simulations, and in the

theoretical formalism needed to interpret the results.

Examples of the succe
ssful combination of these methods

are in Refs. [1–11].
1

A key output of the theoretical formalism is a qua-

ntization condition, an equation whose solutions give the

finite-volume three-particle energy levels in terms of

infinite-volume scattering quantities. The latter quantities

are then related to infinite-volume scattering amplitudes in

a second step that involves sol
ving integral equation

s. Our

aim in this work is to provide a simplified method for

deriving the quantization
condition in a generic relativi

stic

effective field theory (RFT). Our hope is that our new

method will simplify the generalizatio
n of the quantizati

on

condition to syst
ems not heretofore

studied, for exam
ple to

three nondegenerate particles and to more than three

particles, as well as allow the unification of the different

approaches used
to develop the th

ree-particle form
alism (to

be described below).

The two-particle
quantization condition has be

en known

for decades and
is now a standard tool in LQCD [13–23].

(See Ref. [24] for a review.) The three-particle formalism

has been developed more recently, using three main

approaches
2:

(1) The RFT approach, which
is the most general and

also the most complicated. This formalism was

derived in Refs. [37,38] for the case of identical

scalar particles w
ith a Z2, G-parity

-like, symmetry.

We refer to these p
apers in the follo

wing as HS1 and

HS2, respectively. The formalism has been sub-

sequently generalized to allow 2 ↔ 3 transitions

[39], K matrix poles [40,41], and nonidentical but

degenerate partic
les [42]. The num

erical implemen-

tation of the formalism has been studied in

Refs. [41,43,44], and recently applied to extract

the 3πþ interaction [8] using results for the 3πþ

spectrum from Ref. [7].

(2) The nonrelativistic effective field theory (NREFT)

approach of Refs. [45–48]. H
ere the derivation is
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Using our recentl
y developed relat

ivistic three-parti
cle quantization c

ondition [Phys. R
ev. D 90, 116003

(2014); Phys. Rev. D 92, 114509 (2015)], we study the finite-volume energy shift of a spin-zero

three-particle bound state. We reproduce the r
esult obtained using nonrelativistic qu

antum mechanics by

Meißner et al. in [Phys. Rev. Lett.
114, 091602 (2015)] and generalize the result to a moving frame.

DOI: 10.1103/Ph
ysRevD.95.0345

01

I. INTRODUCTION

There has been co
nsiderable recent

progress using lat
tice

QCD to study resonances (as reviewed, for example, in

Refs. [1–3]). This is
mainly based on a line of theoretical

work, begun by Lüscher in Refs. [4,5], that
relates the

spectrum of multiple-particle st
ates in a finite volume (FV)

to infinite-volume scattering amplitudes. Until rec
ently, this

work has been restricted to resonances (or bound states)

that couple only to two-particle channels. Since many

resonances and bound states couple to channels containi
ng

more than two particles, it is necessary to extend the

theoretical formalism to three or more particles.

Recently, we deri
ved a generalization of Lüscher’s wor

k

that applies for th
ree identical, spin

less relativistic pa
rticles

[6,7]. Specificall
y, we obtained a quantization condition

that relates three-
particle energies

in a cubic box of size L

to the two-particl
e scattering amplitudeM2 and an inf

inite-

volume three-particle sc
attering K-matrixKdf;3, as well

as a

set of integral equations relating Kdf;3 and M2 to the

physical three-pa
rticle scattering a

mplitudeM3. Our resul
t

assumes that the two-pa
rticle K-matrix has no poles on the

real energy axis i
n the kinematic region of inte

rest and also

assumes a symmetry that decouple
s even- and odd-p

article-

number states. The first restriction must be imposed

because two-particle K-matrix poles give rise to finite-

volume effects that we did not include in our derivation.

The second restriction reduces the class
es of diagrams that

contribute and thus simplifies the derivation.

Other than this, th
e result is completely general. B

oth the

derivation and the final expressions
are, however, rat

her

complicated, and it is important to provide cross-che
cks of

the formalism. We have completed one such check in

Ref. [8] by comparing the FV energies of the st
ate nearest

to the three-particle threshold to results obtained using

nonrelativistic quantum mechanics (NRQM) [9–11] and

relativistic perturbation theory [12].

The purpose of this paper is to provide another, com-

pletely independent chec
k on the formalism, by using it to

determine the leading volume dependence of the binding

energy of a spin-zero three-particle bound state. Using

NRQM, Meißner, Ríos, and
Rusetsky (MRR) have calcu-

lated this depende
nce in Ref. [13]. I

n that work, the a
uthors

restrict attention
to a system with two-particle inter

actions

near the unitary limit, so that Efimov-like three-particle

bound states appear [14
]. Here, we determine the leading

energy dependence for the same system, using our rela-

tivistic formalism, and find complete agreement with the

NRQM result.

The derivation of this result in our formalism is quite

involved. In particular, as noted above, the quantization

condition depends on the intermediate, regularization-

dependent quanti
ty, Kdf;3, wherea

s the final result for th
e

energy shift must depend only on physical quantities.

Seeing how this happens give
s us insight into t

he workings

of the formalism.

MRR consider the case of a bound state at rest in the

finite volume. It has been found for two-particle bound

states that the lea
ding volume dependence can

be canceled

by combining results for bound
states with differing total

momenta, ~P [15]. Thus, it is
interesting to generalize the

three-particle ana
lysis also to moving bound states. It turns

out that our deriv
ation of the finite

-volume energy shift can

readily be genera
lized to ~P ≠ 0, as we describe

in Sec. VII.

The remainder of this article is organized as follows.

In the next section,
we describe the r

esult of MRR. Then,

in Sec. III, we use our quantization
condition to derive a

general prediction for the leading-order energy shift,

ΔEðLÞ, in terms of unsymmetrized versions of the re
sidue

factors (which are the on-shell limit of unsymmetrized

Bethe-Salpeter am
plitudes). This se

ction is the core of the

paper. Next, in Sec. IV, we relate
the residue factor

s to the

components of the Fadeev wave function in the NRQM
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We present a generalization of Lüscher’s relation between the finite-volume spectrum and scattering

amplitudes to the case of three particles. We consider a relativistic scalar field theory in which the couplings

are arbitrary aside from aZ2 symmetry that removes vertices with an odd number of particles. The theory is

assumed to have two-particle phase shifts that are bounded by π=2 in the regime of elastic scattering. We

determine the spectrum of the finite-volume theory from the poles in the odd-particle-number finite-volume

correlator, which we analyze to all orders in perturbation theory. We show that it depends on the infinite-

volume two-to-two K-matrix as well as a nonstandard infinite-volume three-to-three K-matrix. A key

feature of our result is the need to subtract physical singularities in the three-to-three amplitude and thus

deal with a divergence-free quantity. This allows our initial, formal result to be truncated to a finite

dimensional determinant equation. At present, the relation of the three-to-three K-matrix to the

corresponding scattering amplitude is not known, although previous results in the nonrelativistic limit

suggest that such a relation exists.
DOI: 10.1103/PhysRevD.90.116003

PACS numbers: 11.80.-m, 11.80.Jy, 11.80.La, 12.38.Gc
I. INTRODUCTIONIn the last few years, lattice QCD calculations of the

properties of resonances have become widespread.1 Most
use a method first proposed by Lüscher in Refs. [4–6], in
which the finite-volume spectrum (obtained using lattice
simulations) can be related to infinite-volume scattering
amplitudes. This method initially applied to two-particle
systems below the inelastic threshold, but has since been
extended to systems with multiple two-particle channels
[7–11]. A striking example of the practical implementation
of this multichannel formalism is the recent lattice study of
the properties of kaon resonances [12].Lattice calculations can now determine many spectral
levels for a given set of total quantum numbers, and can
do so for quark masses approaching physical values. This
means that channels involving three or more particles are
opening up and must be incorporated into the formalism.
Examples include ω → 3π, K! → Kππ, and N! → Nππ.
Indeed, the study of Ref. [12], although using an unphysi-
cally heavy pion mass of 390 MeV, was limited by the
opening of the Kππ channel. Thus there is strong motiva-
tion to extend the finite-volume formalism to include three
(or more) particles.First steps in this direction have been taken in Refs. [13]
and [14]. The former work considers the problem in a
nonrelativistic context, and shows that the finite-volume
spectrum is determined (via integral equations) by infinite-
volume scattering amplitudes. The latter work reaches the
same conclusion in the case in which pairs of particles

interact only in the s-wave. Related problems have also
been considered in Refs. [15] and [16]. We attempt here to
go beyond these works by considering a relativistic theory
in which we make no approximation concerning the nature
of the two-particle interactions.Our approach is a generalization of the diagrammatic,
field-theoretic method introduced for two particles in
Ref. [17]. The finite-volume spectrum is determined by
the poles in an appropriate finite-volume correlation
function. The method consists of rewriting this correlation
function, diagram by diagram, in terms of infinite-volume
contributions and kinematic functions that depend on the
volume. Summing all diagrams then leads to the desired
quantization condition. This approach is straightforward
in the two-particle case, but several complications arise
with three particles. In the end, however, we are able to
obtain a simple-looking quantization condition [Eq. (18)],
which succeeds in separating finite-volume dependence
into kinematical functions.As in the two-particle quantization conditions, our result
is formal in that it involves a determinant over an infinite-
dimensional space. Practical applications require truncation
of this space. It turns out that such a truncation can be
justified for three particles by a simple extension of the
arguments used for two particles.The main drawback of our result is that it depends on a
nonstandard infinite-volume three-to-three scattering quan-
tity, a modified three-particle K-matrix. The relation of this
quantity to physical scattering amplitudes is as yet unclear.
Nevertheless, given the results of Refs. [13,14] in the
nonrelativistic context, we think it very likely that such a
relation exists.
The remainder of this article is organized as follows.

We begin, in Sec. II, by presenting our main result. This in

*mth28@uw.edu†srsharpe@uw.edu1For recent reviews see Refs. [1–3].
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We present numerical results showing how our recently proposed relativistic three-particle quantization

condition can be used in practice. Using the isotropic (generalized s-wave) approximation, and keeping

only the leading terms in the effective range expansion, we show how the quantization condition can be

solved numerically in a straightforward manner. In addition, we show how the integral equations that relate

the intermediate three-particle infinite-volume scattering quantity, Kdf;3, to the physical scattering

amplitude can be solved at and below threshold. We test our methods by reproducing known analytic

results for the 1=L expansion of the threshold state, the volume dependence of three-particle bound-state

energies, and the Bethe-Salpeter wave functions for these bound states. We also find that certain values of

Kdf;3 lead to unphysical finite-volume energies, and give a preliminary analysis of these artifacts.
DOI: 10.1103/PhysRevD.98.014506

I. INTRODUCTIONStudies of few-hadron systems based on lattice quantum
chromodynamics (LQCD) are advancing rapidly. Recent
results highlighting this progress include the first study of
multiple, strongly coupled scattering channels [1,2], the
first determination of resonant electroweak amplitudes
[3,4], and the first study of a meson-baryon scattering
amplitude in a resonant channel [5]. Each of these
calculations has been made possible by a series of theo-
retical developments, stemming from seminal work by
Lüscher [6,7]. This formalism and its subsequent general-
izations explain how the desired infinite-volume observ-
ables, namely scattering and transition amplitudes, can be
obtained from the finite-volume correlation functions
evaluated using numerical LQCD. We point the reader
to Ref. [8] for a recent review on the topic.Current theoretical work is focused on extending the
finite-volume relations to extract observables with initial
or final states composed of three or more hadrons. To this
end, in a series of papers published in the past few years, we

have derived a quantization condition that relates the finite-
volume energies of states containing a three-particle com-
ponent to infinite-volume, two- and three-particle scattering
amplitudes [9–11].1This quantization condition accounts for
all power-law volume dependence while dropping depend-
ence that falls exponentially with the box length, L. The
formalism is relativistic and encompasses arbitrary inter-
actions aside from two restrictions: (i) the particles must be
spinless and identical, and (ii) the two-particle K matrix
cannot have poles in the kinematical regime of interest. From
our past experience in the two-body sector [22,23],we expect
the former restriction to be straightforward to remove, and
now understand how to remove the latter [24]. The relation to
physical scattering amplitudes involves two steps. In the first,
the quantization condition is used to determine an infinite-
volumeKmatrix like quantity,Kdf;3 [10]. In the second,Kdf;3

is related to the physical scattering amplitudes via integral
equations.2,3 The formalism has been tested in several ways,
most notably by reproducing the known finite-volume
dependence of a weakly interacting threshold state and of
an Efimov-like bound state [26–29].

*rbriceno@jlab.org†maxwell.hansen@cern.ch‡srsharpe@uw.edu
Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1For parallel studies of three-body systems see Refs. [12–21].
2We stress that these integral equations are defined via

manifestly finite integrals with fixed total three-particle energy.
In addition, the equations depend only on on-shell quantities and
make no reference to an underlying effective theory.

3In general, taking these steps will require using parametriza-
tions for the physical scattering amplitudes, such as those
currently being developed in Ref. [25].
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• But this is the “trivial’’ quantization condition of particles in a box, albeit in the 
nontrivial context of a generic relativistic effective field theory
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• Lattice QCD can calculate energy levels of multiparticle systems in a box

• How are these related to infinite-volume scattering amplitudes?

A fish out of water?
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Today’s topic: how can we claim 
that “lattice QCD can calculate….”?

5

• QCD=Quantum Chromodynamics=QFT describing the strong interactions (quarks & gluons)

• Lattice QCD  discretize space-time  computational method, implemented numerically

• (Also need to work in finite space-time volume, imaginary time, …)

• Key question for today: can we take the continuum limit (lattice spacing )?

• Much numerical evidence, backed by some theoretical calculations, suggests that we can do so 
in a controlled way

• How rigorous can this be made?

⇒ ⇒

a → 0
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State-of-the art LQCD results
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S. Aoki1, Y. Aoki2,3,34, D. Bečirević4, T. Blum3,5, G. Colangelo6, S. Collins7, M. Della Morte8, P. Dimopoulos9,10,
S. Dürr11,12, H. Fukaya13, M. Golterman14, Steven Gottlieb15, R. Gupta16, S. Hashimoto2,17, U. M. Heller18,
G. Herdoiza19, R. Horsley20, A. Jüttner21,a, T. Kaneko2,17, C.-J. D. Lin22,23, E. Lunghi15, R. Mawhinney24,
A. Nicholson25, T. Onogi13, C. Pena19, A. Portelli20, A. Ramos26, S. R. Sharpe27, J. N. Simone28, S. Simula29,
R. Sommer30,31, R. Van de Water28, A. Vladikas32, U. Wenger6, H. Wittig33

1 Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto
606-8502, Japan

2 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
3 RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
4 Laboratoire de Physique Théorique (UMR8627), CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
5 Physics Department, University of Connecticut, Storrs, CT 06269-3046, USA
6 Albert Einstein Center for Fundamental Physics, Institut für Theoretische Physik, Universität Bern, Sidlerstr. 5, 3012 Bern, Switzerland
7 Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
8 CP3-Origins and IMADA, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
9 Centro Fermi – Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Compendio del Viminale, Piazza del Viminiale 1,

00184 Rome, Italy
10 c/o Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
11 University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
12 Jülich Supercomputing Center, Forschungszentrum Jülich, 52425 Jülich, Germany
13 Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
14 Dept. of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132, USA
15 Department of Physics, Indiana University, Bloomington, IN 47405, USA
16 Los Alamos National Laboratory, Theoretical Division T-2, Los Alamos, NM 87545, USA
17 School of High Energy Accelerator Science, The Graduate University for Advanced Studies (Sokendai), Tsukuba 305-0801, Japan
18 American Physical Society (APS), One Research Road, Ridge, NY 11961, USA
19 Instituto de Física Teórica UAM/CSIC and Departamento de Física Teórica, Universidad Autónoma de Madrid, 28049 Cantoblanco,

Madrid, Spain
20 Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK
21 School of Physics & Astronomy, University of Southampton, Southampton SO17 1BJ, UK
22 Institute of Physics, National Chiao-Tung University, Hsinchu 30010, Taiwan
23 Centre for High Energy Physics, Chung-Yuan Christian University, Chung-Li 32023, Taiwan
24 Physics Department, Columbia University, New York, NY 10027, USA
25 Dept. of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27516-3255, USA
26 School of Mathematics & Hamilton Mathematics Institute, Trinity College Dublin, Dublin 2, Ireland
27 Physics Department, University of Washington, Seattle, WA 98195-1560, USA
28 Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
29 Sezione di Roma Tre, INFN, Via della Vasca Navale 84, 00146 Rome, Italy
30 John von Neumann Institute for Computing (NIC), DESY, Platanenallee 6, 15738 Zeuthen, Germany
31 Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
32 Sezione di Tor Vergata, INFN, c/o Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
33 PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institute Mainz, University of Mainz, 55099 Mainz, Germany
34 Present address: RIKEN Center for Computational Science, Kobe 650-0047, Japan

Received: 26 March 2019 / Accepted: 5 September 2019 / Published online: 11 February 2020
© The Author(s) 2020

Abstract We review lattice results related to pion, kaon, D-
meson, B-meson, and nucleon physics with the aim of mak-
ing them easily accessible to the nuclear and particle physics
communities. More specifically, we report on the determina-

a e-mail: a.juttner@soton.ac.uk (corresponding author)

tion of the light-quark masses, the form factor f+(0) arising
in the semileptonic K → π transition at zero momentum
transfer, as well as the decay constant ratio fK / fπ and its con-
sequences for the CKM matrix elements Vus and Vud . Fur-
thermore, we describe the results obtained on the lattice for
some of the low-energy constants of SU (2)L × SU (2)R and
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Fig. 1 MS mass of the strange quark (at 2 GeV scale) in MeV. The
upper two panels show the lattice results listed in Tables 4 and 5, while
the bottom panel collects sum rule results [173–177]. Diamonds and
squares represent results based on perturbative and nonperturbative
renormalization, respectively. The black squares and the grey bands
represent our estimates (33) and (35). The significance of the colours is
explained in Sect. 2

and the RGI values

MRGI
ud = 4.746(60)m(55)! MeV = 4.746(82) MeV Refs. [8,9],

Nf = 2 + 1 + 1 :
MRGI

s = 130.0(0.9)m(1.5)! MeV = 130.0(1.8) MeV Refs. [8,9,15,16]. (36)

In Figs. 1 and 2 the lattice results listed in Tables 4 and 5
and the FLAG averages obtained at each value of N f are pre-
sented and compared with various phenomenological results.

3.1.5 Lattice determinations of ms/mud

The lattice results for ms/mud are summarized in Table 6.
In the ratio ms/mud , one of the sources of systematic error –
the uncertainties in the renormalization factors – drops out.
Nf = 2 + 1 lattice calculations

For N f = 2 + 1 our average has not changed since the last
version of the review and is based on the result RBC/UKQCD
14B, which replaces RBC/UKQCD 12 (see Sect. 3.1.4), and
on the results MILC 09A and BMW 10A, 10B. The value
quoted by HPQCD 10 does not represent independent infor-
mation as it relies on the result for ms/mud obtained by the
MILC collaboration. Averaging these results according to the
prescriptions of Sect. 2.3 gives ms/mud = 27.42(12) with
χ2/dof ! 0.2. Since the errors associated with renormaliza-

Fig. 2 Mean mass of the two lightest quarks, mud = 1
2 (mu + md ).

The bottom panel shows results based on sum rules [173,176,178] (for
more details see Fig. 1)

tion drop out in the ratio, the uncertainties are even smaller
than in the case of the quark masses themselves: the above
number for ms/mud amounts to an accuracy of 0.5%.

At this level of precision, the uncertainties in the elec-
tromagnetic and strong isospin-breaking corrections might
not be completely negligible. Nevertheless, we decide not
to add any uncertainty associated with this effect. The main
reason is that most recent determinations try to estimate this
uncertainty themselves and found an effect smaller than naive
power counting estimates (see Nf = 2 + 1 + 1 section).

N f = 2 + 1 : ms/mud=27.42 (12) Refs. [10–12,16].

(37)

Nf = 2 + 1 + 1 lattice calculations
For N f = 2 + 1 + 1 there are three results, MILC 17 [5],

ETM 14 [9] and FNAL/MILC 14A [18], all of which satisfy
our selection criteria.

MILC 17 uses 24 HISQ staggered-fermion ensembles at
six values of the lattice spacing in the range 0.15 fm–0.03 fm.

ETM 14 uses 15 twisted mass gauge ensembles at three
lattice spacings ranging from 0.062 to 0.089 fm (using fπ

123
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[247]
[248]
[249]
[250]
[251]

Fig. 8 Comparison of lattice results (squares) for f+(0) and fK±/ fπ±
with various model estimates based on χPT (blue circles). The ratio
fK±/ fπ± is obtained in pure QCD including the SU (2) isospin-

breaking correction (see Sect. 4.3). The black squares and grey bands
indicate our estimates. The significance of the colours is explained in
Sect. 2

as they make use of the known explicit expression for the
K#3 form factors to NNLO in χPT [250,252]. The corre-
sponding formula for f4 accounts for the chiral logarithms
occurring at NNLO and is not subject to the ambiguity men-
tioned above.19 The numerical result, however, depends on
the model used to estimate the low-energy constants occur-
ring in f4 [247–250]. The figure indicates that the most recent
numbers obtained in this way correspond to a positive or an
almost vanishing rather than a negative value for $ f . We
note that FNAL/MILC 12I [30] and Ref. [253] have made
an attempt at determining a combination of some of the low-
energy constants appearing in f4 from lattice data.

4.3 Direct determination of f+(0) and fK±/ fπ±

Many lattice results for the form factor f+(0) and for
the ratio of decay constants, which we summarize here
in Tables 13 and 14, respectively, have been computed in
isospin-symmetric QCD. The reason for this unphysical
parameter choice is that there are only a few simulations
of isospin-breaking effects in lattice QCD, which is ulti-
mately the cleanest way for predicting these effects [139–
141,148,185,206,207,231,254,255]. In the meantime, one
relies either on chiral perturbation theory [166,244] to esti-
mate the correction to the isospin limit or one calculates the
breaking at leading order in (mu −md) in the valence quark
sector by extrapolating the lattice data for the charged kaons
to the physical value of the up(down)-quark mass (the result

19 Fortran programs for the numerical evaluation of the form factor
representation in Ref. [250] are available on request from Johan Bijnens.

for the pion decay constant is always extrapolated to the value
of the average light-quark mass m̂). This defines the predic-
tion for fK±/ fπ± .

Since the majority of results that qualify for inclusion into
the FLAG average include the strong SU (2) isospin-breaking
correction, we confirm the choice made in the previous edi-
tion of the FLAG review [3] and we provide in Fig. 8 the
overview of the world data of fK±/ fπ± . For all the results
of Table 14 provided only in the isospin-symmetric limit we
apply individually an isospin correction that will be described
later on (see Eqs. (78)–(79)).

The plots in Fig. 8 illustrate our compilation of data for
f+(0) and fK±/ fπ± . The lattice data for the latter quantity
is largely consistent even when comparing simulations with
different N f , while in the case of f+(0) a slight tendency to
get higher values for increasing N f seems to be visible, even
if it does not exceed one standard deviation. We now proceed
to form the corresponding averages, separately for the data
with Nf = 2 + 1 + 1, Nf = 2 + 1, and Nf = 2 dynamical
flavours, and in the following we will refer to these averages
as the “direct” determinations.

4.3.1 Results for f+(0)

For f+(0) there are currently two computational strategies:
FNAL/MILC uses the Ward identity to relate the K → π

form factor at zero momentum transfer to the matrix ele-
ment 〈π |S|K 〉 of the flavour-changing scalar current S = s̄u.
Peculiarities of the staggered fermion discretization used
by FNAL/MILC (see Ref. [30]) makes this the favoured
choice. The other collaborations are instead computing the

123
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“Continuum” QCD

7

(x) =

(x) =
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Textbook quantization 

8

• EITHER canonical quantization in term of quark and gluon field operators

• Subtleties associated with gauge symmetry (redundant degrees of freedom)

• OR (more usual) use functional integral approach (Feynman path integral)

• Non-abelian gauge symmetry leads to ghosts (spinless particles quantized as fermions)

• BOTH lead, formally, to standard Feynman rules (after gauge fixing)

20

+ ghost vertices

• Calculation of loop contributions to vertex functions & scattering amplitudes leads to UV 
(and IR) divergences

• Regularize (e.g. dim. reg., introduces a scale), renormalize with counterterms (e.g.  
scheme?)

• Leads to method for calculating order by order in perturbation theory (extremely 
successful for QED, although series known not to converge)

MS
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Wilsonian view—EFTs

9

• Theory is defined with an UV cutoff on momenta (  in a lattice theory)

• As the cutoff is changed, couplings and masses change (“run”) to account for the modes that 
have been “integrated out/in” 

• Leads to differential equations (RG equations) for couplings (and masses)

• Physically more appealing (and mathematically more solid) as only claiming to control 
a range of momenta

• Running, in general, takes place in a space with an infinite number of couplings (EFT)

• Couplings are organized by their dimensions, , with contributions, in general,
  with momentum scale of process, and space-time dimension

• Renormalizable couplings have , and are those that remain as  (e.g. in 
QCD: gluon coupling  and quark masses)

• Caveats: in general, can only work out explicitly in perturbation theory; there may be large 
anomalous dimensions (due to interactions); “triviality” (couplings diverge at finite )

∼ 1/a

n
∼ (q/Λ)n−d q ∼ d =

n ≤ d Λ → ∞
g

Λ
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Λ(GeV)

αs(Λ)
PDG, 2010

Wilsonian view of QCD

10

Λ ∼ 1/a

∼ 1 GeV

ΛQCD ≈ 300 MeV
≈ 1/fm

αs(Λ) =
g(Λ)2

4π
∝

1
log(Λ/ΛQCD)

20

Asymptotic
 Freedom

Perturbative region

Nonperturbative region

Confinement
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How do we test this ?
Can we control the 

 limit?a → 0

Λ

αs(Λ)
PDG, 2010

Wilsonian view of QCD

11

Λ ∼ 1/a

∼ 1 GeV

ΛQCD ≈ 300 MeV
≈ 1/fm

αs(Λ) =
g(Λ)2

4π
∝

1
log(Λ/ΛQCD)

20

Asymptotic
 Freedom

Perturbative region

Nonperturbative region

Confinement
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Gauge symmetry preserved; Nonperturbative formulation

Lattice QCD

12

Space
3-dim

Euclidean 
time

Wilson gauge action Lattice fermion action

�
�

q

q(Dlat
µ �µ + amq)q

a
Un,ν ≃ eiagGb

n,νTb ∈ SU(3)
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Quantizing Lattice QCD

13

Use Feynman 
path integral

definition of QM

ZQCD =

Z Y
dUdq̄ dq e�Slat

E

=

Z
dUe�Slat

glue

Y

q

det
�
Dlat

µ �µ +m
�

Grassmann variables

• Countably-infinite set of coupled QM systems

• In classical continuum limit action goes over to desired continuum form

• Define QFT as  limit of this QM system a → 0

No need for gauge fixing
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Lattice QCD in practice

14

a=0.043fm

~6 fm

~12 fm

Need to invert matrices 
of size

~ (3x109) x (3x109)

Highly Improved Staggered (HISQ) fermions
Physical quark masses (in isospin limit: mu=md)

• Restrict to finite volume  finite QM system

• Using Monte-Carlo methods to simulate

• State of the art:  lattice [MILC collaboration]

⇒

1443 × 288
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Wilsonian view again

15

~6 fm

~6 fm

“Femto-universe”

• Finite-volume physics must accommodate and reproduce both short-distance weakly 
interacting quarks & gluons AND long-distance confinement

20

Input

Output
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Key questions

16

Λ ∼ 1/a

∼ 1 GeV

ΛQCD

αs(1/a) =
g(1/a)2

4π
∝

1
log(1/(aΛQCD))

20

Perturbative region

Nonperturbative region

• SCALING. Can we reduce 
 (by varying g 

appropriately) while the long-
distance non-perturbative 
physics remains fixed? 

• ASYMPTOTIC SCALING. If 
scaling holds does the required 

 depend on  in the 
manner predicted by 
perturbation theory?

• CORRECTIONS TO SCALING. 
Can we predict the form of the  

 corrections to scaling, and do 
the numerical results agree with 
the predictions?

• Do the results agree with 
nature?

a → 0

g(1/a) a

an
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Agreement with nature

17

• Spectrum of light hadrons in QCD with  (after  extrapolation)mu = md a → 0

BMW collab. Science 322 (2008) 1224



Isospin splittings

18

BMW Collaboration
2014

Errors ~ 0.2 MeV !

u, d, s & c in loops
mu ≠ md

QED included

quark masses & scale
determined using 
π+, K+, K0, D0, Ω
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Corrections to scaling

19

• Generic expectation with “improved actions”: dimensionless quantities approach continuum 
limit as  (up to  corrections), with  unknown

• Example from recent LQCD calculation of anomalous magnetic moment of muon

c1a2 + c2a4 + … log(a) ci
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Figure 4: Continuum extrapolation of the isospin-symmetric, light, connected component of the window

observable aµ,win, denoted by [alight
µ,win]iso. The data points are extrapolated to the infinite-volume limit.

Two di↵erent ways to perform the continuum extrapolations are shown: one without improvement, and

another with corrections from next-to-leading-order staggered chiral perturbation theory. In both cases the

lines show linear and quadratic fits in a2 with varying number of lattice spacings in the fit. The continuum

extrapolated result is shown with the results from other lattice groups, RBC’18 [19] and Aubin’19 [20].

Also plotted is our R-ratio-based determination, obtained using the experimental data compiled by the

authors of [4] and our lattice results for the non light connected contributions. This value, denoted by

’R-ratio/lattice’, is 3.4� smaller than our pure lattice result for [alight
µ,win]iso.

11

BMW collab. Nature (2021) arXiv:2002.12347

https://arxiv.org/abs/2002.12347
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Evidence for asymptotic scaling

20

• Does bare coupling  run with  as predicted by perturbation theory (PT) ?

• Accuracy of PT improves as  decreases (asymptotic freedom)

g(1/a) a

a

dg(1/a)
d log(a)

= β0g(1/a)3 + β1g(1/a)5 + 𝒪(g7) + 𝒪(a2)

 known and both positiveβ0, β1

• Tricky issue as there are  corrections that must be disentangledan

• Can test indirectly by checking that PT correctly reproduces short-distance observables

• Wilson loops, short-distance correlation functions, …
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Evidence for asymptotic scaling

21

• Can test indirectly by checking that PT correctly reproduces short-
distance observables determined using lattice QCD

• Wilson loops, short-distance correlation functions, …

Figure 40: α(5)

MS
(MZ), the coupling constant in the MS scheme at the Z mass. Top: lattice

results, pre-ranges from different calculation methods, and final average. Bottom: comparison
of the lattice pre-ranges and average with the nonlattice ranges and average. The first PDG
18 entry gives the outcome of their analysis excluding lattice results (see Sec. 9.10.4).

232

α (Nf=5)
s (MS, MZ)

Methods based on different 
quantities, and a range of scales 

above ,  give 
consistent results

∼ 2 GeV
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Figure 40: α(5)

MS
(MZ), the coupling constant in the MS scheme at the Z mass. Top: lattice

results, pre-ranges from different calculation methods, and final average. Bottom: comparison
of the lattice pre-ranges and average with the nonlattice ranges and average. The first PDG
18 entry gives the outcome of their analysis excluding lattice results (see Sec. 9.10.4).

232

Evidence for asymptotic scaling

22

• Can test indirectly by checking that PT correctly reproduces short-
distance observables determined using lattice QCD

• Wilson loops, short-distance correlation functions, …

α (Nf=5)
s (MS, MZ)

Lattice-based result agrees 
with those from high-energy 

experiments fit to perturbative 
QCD expressions
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Theory of scaling violations

23

• Based on Symanzik effective field theory (SEFT), known to be valid to all orders in PT

• Continuum EFT that reproduces the discretization effects of the lattice theory

February 1, 2008 5:29 Proceedings Trim Size: 9in x 6in narav3

5

pions with low momenta in χPT, and continuum-like quarks and gluons
in the Symanzik theory. These degrees of freedom interact via vertices
that are quasi-local, with a physical size Λ−1. This quasi-locality follows
because we consider only external momenta satisfying p ! Λ, so the high-
momentum degrees of freedom are always highly virtual. The vertices are
then expanded in powers of p/Λ, yielding local operators with increasing
numbers of derivatives. The low-momentum modes themselves can become
nearly on shell (or exactly on shell if we continue to Minkowski space), but
the resulting analytic structure of correlation functions (leading to cuts in
Minkowski space) is maintained in the effective theory.

π

a2

q=1/a

Figure 2. Generation of effective field theories.

This description is impractical to implement in most cases. In particu-
lar, we do not know how to integrate out quarks and gluons from QCD an-
alytically to yield a theory of pions, since confinement is a non-perturbative
phenomenon. Even in the Symanzik theory, where one might have expected
that quarks and gluons with p ∼ π/a would have been perturbative since
1/a ∼> 2 GeV (a ∼< 0.1 fm), it turns out that accurate results mostly require
non-perturbative calculations.d The beauty of the EFT method, however,
is that we do not actually need to do the integrations. Instead, following
Weinberg18 we can rely on the general properties of EFTs. If the underly-

dThis is found when implementing the improvement program for Wilson fermions 19.

ℒSEFT = ℒQCD + a2 ∑
i

ci(g)Oi + 𝒪(a4)

O1 = ∑
μνρ

Tr ([Dμ, Gνρ][Dμ, Gνρ]), O2 = ∑
μν

Tr ([Dμ, Gμν][Dμ, Gμν]), …

ℒQCD = −
1
2

tr∑
μν

(GμνGμν)
All operators of dimension 6 
consistent with symmetries 

of lattice QCD

g = g(1/a)
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State of the art

24

• Result for physical (dimensionless) quantities in renormalization group improved PT

Q(a) = Q(0) + ∑
i

d(0)
i a2g(1/a)ng(1/a)2γi[1 + 𝒪(g2)] + …

unknown coefficients
n>0 if calculation 

“improved”

Operator-dependent 
logarithmic correction to 

scaling, determined by 
anomalous dimension , 
which is known in PT

γi
[ 1

log(1/(aΛQCD)) ]
γi

PoS(LATTICE2019)263

Yang Mills short distance potential and perturbation theory Rainer Sommer

0 0.005 0.01 0.015 0.02 0.025 0.03

0.82

0.84

0.86

0.88

0.9
 = 0.235
 = 0.275
 = 0.315

Figure 2: Left: Continuum extrapolations (4.8) at different ηi: upward pointing triangles and smaller error-
bars have the Ba4/r4 term (see text) turned off. Right: resulting slopes ρi and the fits (4.9) with one (blue
band) and three free parameters (green band).

The improved Fimpr(r) is accurate up to O(a4) except for O(a2) effects which originate from V (r)
itself. The latter are now known in the form [20]

αqq(1/r,a/r)−αqq(1/r,0) = αs(r−1)
a2

r2 ×
#$

αs(a−1)

αs(r−1)

%γ̂1

A1(r)+
$

αs(a−1)

αs(r−1)

%γ̂2

A2(r)

&
(4.3)

×(1+O(αs(a−1)), γ̂1 =
7

11
≈ 0.636 , γ̂2 =

63
55

≈ 1.145 .

Here we have written the expansion in terms of the renormalised coupling αs in a scheme s which
is irrelevant at the considered order. The functions Ai(r) are (RGI) matrix elements of the d = 6
operators in Symanzik’s effective action. At short distances they can be expanded

Ai(r) = Ai,0 +Ai,1αs(1/r)+Ai,2αs(1/r)2 + . . . (4.4)

and for our Wilson action we have

A1,0 = 0 , A2,0 =
3
4
. (4.5)

At small lattice spacing, the first term in the curly bracket in (4.3) dominates, but the second one is
suppressed by one power less of α(r−1) at small r.

We therefore also use the known A2,0 and define

αRGimpr
qq =

αqq

1+A2,0

'
αqq(a−1)

αqq(r−1)

(γ̂2 a2

r2

, (4.6)

where the coupling at the cutoff αqq(a−1) is obtained from the measured αqq(r−1)= 3
4 Fn(r)r2 at r =

2.5a by four-loop evolution (here we use the unimproved force Fn). Discretisation errors of αRGimpr
qq

are then modelled as a2

r2

'
αs(a−1)
αs(r−1)

(γ̂1
αqq(r−1)A1(r), with A1(r) = O(αqq(r−1)). The evaluation of Σ

requires αqq as a continuum function of r, which is easily obtained by a local interpolation. The

4

PoS(LATTICE2019)263

Husung, Nada, Sommer,  PoS(Lattice2019)263

Example of fitting including 
logarithmic correction to 
power-law scaling in QCD 

without fermions
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Closing comments

25

• Asymptotic freedom (AF) allows theoretical control of continuum limit, assuming no 
short-distance nonperturbative effects

• Supported by numerical evidence

• Extends to other AF theories (varying numbers of colors and fermions)

• Corrections to scaling in lower-dimensional theories (e.g. O(3) sigma model) studied in 
great detail

• Logarithmic corrections turn  dependence almost into a linear dependence

• For SUSY theories, there are many exact results assuming the theory exists

• Hard to confirm with lattice methods, although some progress

• QIS approaches that aim to solve sign problems in lattice theories (e.g. studying real time 
processes) are based on the Hamiltonian approach with spatial discretization

• Face the same issue of understanding the spatial continuum limit

a2
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Thank you. 
Questions?

26


