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Outline

• Motivations for studying 3 (or more) particles

• Status of formalism for (2 &) 3 particles

• Examples of implementations

• Alternative derivation & new form of three-particle 
quantization condition (QC3)

• Equivalence of different QC3s

• Conclusions & outlook
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Max Hansen & SRS:   

“Relativistic, model-independent, three-particle quantization condition,” 

 arXiv:1408.5933 (PRD) [HS14] 

“Expressing the 3-particle finite-volume spectrum in terms of the 3-to-3 scattering amplitude,”  

arXiv:1504.04028 (PRD) [HS15] 

“Perturbative results for 2- & 3-particle threshold energies in finite volume,” 

 arXiv:1509.07929 (PRD) [HSPT15] 

“Threshold expansion of the 3-particle quantization condition,”  

arXiv:1602.00324 (PRD) [HSTH15] 

“Applying the relativistic quantization condition to a 3-particle bound state in a periodic box,” 

arXiv: 1609.04317 (PRD) [HSBS16] 

“Lattice QCD and three-particle decays of Resonances,” 

arXiv: 1901.00483 (Ann. Rev. Nucl. Part. Science) [HSREV19]
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Raúl Briceño, Max Hansen & SRS:  

“Relating the finite-volume spectrum and the 2-and-3-particle 

S-matrix for relativistic systems of identical scalar particles,” 

 arXiv:1701.07465 (PRD) [BHS17] 

“Numerical study of the relativistic three-body quantization 

condition in the isotropic approximation,” 

arXiv:1803.04169 (PRD) [BHS18] 

“Three-particle systems with resonant sub-processes in a finite 

volume,” arXiv:1810.01429 (PRD 19) [BHS19] 
  

Tyler Blanton, Fernando Romero-López & SRS:  

“Implementing the three-particle quantization condition including 

 higher partial waves,” arXiv:1901.07095 (JHEP) [BRS19]

SRS 

“Testing the threshold expansion for three-particle energies at fourth order in φ4 theory,” 

arXiv:1707.04279 (PRD) [SPT17]

“I=3 three-pion scattering amplitude from lattice QCD,” 

arXiv:1909.02973 (PRL) [BRS-PRL19]

https://arxiv.org/abs/1909.02973
https://arxiv.org/abs/1909.02973
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Raúl Briceño, Max Hansen, SRS & Adam Szczepaniak:  

“Unitarity of the infinite-volume three-particle scattering 
amplitude arising from a finite-volume formalism,” 

 arXiv:1905.11188 (PRD) 
  

Andrew Jackura, S. Dawid, C. Fernández-Ramírez, V. Mathieu, 
M. Mikhasenko, A. Pilloni, SRS & A. Szczepaniak: 

 

“On the Equivalence of Three-Particle Scattering Formalisms,’’ 
arXiv:1905.12007 (PRD)

Tyler Blanton, Raúl Briceño, Max Hansen, Fernando Romero-López, SRS:  

“Numerical exploration of three relativistic particles in a finite volume 
including two-particle resonances and bound states”, arXiv:1908.02411 

(JHEP) [BBHRS19]

Max Hansen, Fernando Romero-López, SRS:  

“Generalizing the relativistic quantization condition to include all three-pion 
isospin channels”, arXiv:2003.10974 (JHEP) [HRS20]

https://arxiv.org/abs/2003.10974
https://arxiv.org/abs/2003.10974
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Focus for today
Tyler Blanton & SRS:   

“Alternative derivation of the relativistic three-particle quantization condition,” 

arXiv:2007.16188 (to appear in PRD) [BS20a] 

“Equivalence of relativistic three-particle quantization conditions,”  

arXiv:2007.16190 (PRD under review) [BS20b] 

Tyler Blanton, Drew Hanlon, Ben Hörz, Fernando Romero-López & SRS 

“  interactions beyond leading order from lattice QCD,” 

Work in progress

3π+ & 3K+
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Motivations for 
studying three (or more) 

particles using LQCD
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Determining resonance properties

8

• N.B. If a resonance has both 2- and 3-particle strong 
decays, then 2-particle methods fail—channels cannot 
be separated as they can in experiment

• Most resonances have 3 (or more) particle decay channels

•                                                       (no subchannel resonances)                                                       

•   

•  Roper:                               (branching ratio 25-50%)

•  

•                                      (studied by HALQCD)  

ω(782, IGJPC = 0−1−−) → 3π

a2(1320, IGJPC = 1−2++) → ρπ → 3π

N(1440) → Δπ → Nππ

X(3872) → J/Ψππ

Zc(3900) → πJ/ψ, ππηc, D̄D*
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Predicting weak decay amplitudes

• Calculating weak decay amplitudes/form factors 
involving 3 particles, e.g. K → πππ

9

• N.B. Can study weak  decays independently of 
, since strong interactions do not mix these 

final states (in isospin-symmetric limit)

K → ππ
K → πππ

• Long-term goal is to develop methods to predict CP 
violation in  (as measured by 
LHCb in 2019)

D → ππ, KK, (ππππ), …
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Determining 3-body interactions

10

• Determining NN & NNN interactions

• Input for effective field theory treatments of larger nuclei & nuclear matter

• NNN interaction important for determining properties of neutron stars

• Similarly, πππ, πKK̅, … interactions needed for study 
of pion/kaon condensation
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The time is now!
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Two- and three-pion finite-volume spectra at maximal isospin from lattice QCD

Ben Hörz∗

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Andrew Hanlon†

Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz, Germany
(Dated: May 13, 2019)

We present the three-pion spectrum with maximum isospin in a finite volume determined from
lattice QCD, including, for the first time, excited states across various irreducible representations at
zero and nonzero total momentum, in addition to the ground states in these channels. The required
correlation functions, from which the spectrum is extracted, are computed using a newly imple-
mented algorithm which reduces the number of operations, and hence speeds up the computation
by more than an order of magnitude. The results for the I = 3 three-pion and the I = 2 two-pion
spectrum are publicly available, including all correlations, and can be used to test the available
three-particle finite-volume approaches to extracting three-pion interactions.

INTRODUCTION

Lattice QCD calculations of scattering amplitudes
have matured significantly over the last decade owing to
marked increases in available computational capacity and
improved algorithms. A widely used approach for con-
straining scattering observables from simulations relies
on precise measurements of the interacting energy levels
of QCD in a finite volume, which encode hadron interac-
tions via the shifts from their noninteracting values [1–5]
(see [6] for a survey of extensions of the formalism and
numerical results).
So far, practical calculations in lattice QCD have been

mostly confined to the two-hadron sector. Though a
large abundance of lattice data is currently available for
meson-meson scattering (e.g. ππ scattering in all three
isospin channels [7–24], see also [25, 26] for results using
a potential-based approach), these calculations are for-
mally restricted to energies below thresholds involving
three or more hadrons due to the use of a formalism for
relating finite-volume spectra to scattering amplitudes
that is limited to two-hadron scattering. This limita-
tion has precluded a proper lattice QCD study of sys-
tems involving three or more stable hadrons at light pion
masses, e.g. the Roper resonance which decays to both
two- and three-particle channels, the ω(782) decaying to
three pions, many of the X , Y and Z resonances, and
three-nucleon interactions relevant for nuclear physics.
However, significant progress has been made recently

in developing the necessary formalism to interpret the
three-particle finite-volume spectrum (for a review see
[27]), both by extending the two-particle derivation to
include three-hadron states [28–31], as well as through
alternative approaches [32–36][72]. Thus, although the
three-particle formalism is quite mature—including nu-
merical explorations of the corresponding quantization
conditions [36, 37][73]—data for three-particle finite-
volume QCD spectra is lacking since previous lattice
QCD calculations have been restricted to the extraction

of multi-meson ground states at rest [38–40].

We fill this gap by providing the two-pion and three-
pion spectra with maximum isospin in various irreducible
representations at zero and nonzero total momentum, in-
cluding not only the ground states but the excited states
in the elastic region as well, i.e. for center-of-mass ener-
gies Ecm/mπ below 4 and 5 for isospin I = 2 and I = 3
respectively. This data, which is made public, including
all correlations, will allow for an investigation of the var-
ious three-particle interaction parameters as well as the
effect of higher partial waves, for which the quantization
condition has been worked out recently [41].

A technical challenge concerns the growing number of
Wick contractions required to compute correlation func-
tions of suitable interpolating operators—from which the
spectrum is extracted—as the number of valence quark
fields increases. The continued need for improved algo-
rithms to perform these contractions was pointed out re-
cently [42] and indeed was a limiting factor in a recent
study of meson-baryon scattering in the ∆ channel [43].
While Refs. [44–49] investigated efficient contraction al-
gorithms at the quark level, we employ the stochastic
variant [50] of distillation [51] to treat quark propagation.
In this framework, it is useful to view the correlation
function construction in terms of contractions of tensors
associated with the involved hadrons. Then, to reduce
the operation count required to evaluate all contractions,
we use a method which is well-known in quantum chem-
istry [52–54] and has attracted renewed interest recently
in the context of tensor networks [55]. The proposed opti-
mization achieves an operation-count reduction by more
than an order of magnitude, and its implementation is
made publicly available.

This letter is organized as follows: We first describe
the interpolating operators employed in this work and
the method used to speed up the construction of their
correlation functions. This is followed by a presentation
of the analysis and results.
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FIG. 2: I = 2 two-pion spectrum in various irreps Λ(d2)
with total momentum P = 2π

L
d. Open symbols denote the

measured interacting energies which are shifted from their
noninteracting values shown as dashed lines.

5a, t∗ = 10a), corresponding to roughly 0.32 fm and
0.64 fm in physical units [61], in order to extract not only
the ground state but also excited states in most irreps.
Results from different (t0, t∗) are indistinguishable, pre-
sumably due to the weak interaction in I = 2 and I = 3
pion scattering which results in little mixing of our inter-
polating operators, in which each hadron has been pro-
jected to definite momentum and is hence expected to
overlap predominantly with a single state.
For two-pion states the difference ∆E between inter-

acting and noninteracting energies is determined from
single-exponential fits at sufficiently large time separa-
tions to the ratios

Ri(t) =
Ĉii(t)

Cπp1
(t)Cπp2

(t)
large t
−−−−→ Ae−∆Eit (8)

of diagonal elements of the ‘optimized’ correlation ma-
trix Ĉ (i.e. the matrix formed from rotations by the
eigenvectors of the generalized eigenvalue problem) and
two single-pion correlation functions, and similarly for
the three-pion states [38]. Absolute energies are recon-
structed from those energy differences using the single-
pion dispersion relation.
Two-pion and three-pion spectra: The two- and three-

pion spectra with maximum isospin are extracted across a
number of irreps with zero and nonzero total momentum.
The attainable precision is generally at the few-permille
level for the energies measured in units of the single-
pion mass amπ = 0.06504(33). Figures 2 and 3 show
the extracted two- and three-pion spectra together with
the noninteracting energies, displaying significant energy
shifts in all considered three-pion irreps. In particular,
interacting energy levels from different irreps that con-
tain some degeneracy of the noninteracting spectra (e.g.
A−

1u and E−
u at zero total momentum) differ substantially,

which may suggest sensitivity to different combinations
of low-energy scattering parameters.
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FIG. 3: Same as Fig. 2 but for the I = 3 three-pion spectrum.

Only a dedicated investigation of those spectra in the
framework of one of the available three-particle finite-
volume formalisms can disentangle the effects of two-
particle scattering from genuine three-particle scattering
effects, which necessitates further work along the lines of
[35, 41] to apply to the energies in all irreps presented
here. In order to facilitate further investigation along
these lines, the two-pion and three-pion spectra presented
here are made publicly available, including all correla-
tions. The values and covariance matrix of all extracted
energies, as well as the single-pion mass, are given in
Table VII, and the original bootstrap samples from this
analysis are available as ancillary files with the arXiv
submission.
The two- and three-pion excited state spectrum was

previously predicted in [36], with input from the ground
state energies at rest determined in a lattice calculation
[38, 39]. However, comparison with our results is difficult
due to their use of a much smaller volume making their
results subject to more significant finite-volume effects,
especially at pion masses near mπ ≈ 200MeV where the
exponential volume effects may become non-negligible.

CONCLUSIONS AND OUTLOOK

We have presented the I = 3 three-pion spectrum in fi-
nite volume from lattice QCD in which, for the first time,
the excited states in various irreps at zero and nonzero
total momentum, in addition to the ground states, have
been extracted. These spectra need to be interpreted in
the framework of one of the available three-particle finite-
volume formalisms in order to extract infinite-volume in-
formation on three-pion interactions. In order to facil-
itate those investigations, which will require generaliza-
tions of the formulae currently available in the literature,
all spectra are made public, including their correlations.
We also described a method, applied for the first

time in lattice QCD, to reduce the computational re-

[arXiv:1905.04277]
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Status of formalism for 
(2 &) 3 particles
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• Lattice QCD can calculate energy levels of multiparticle 
systems in a box

• How are these related to infinite-volume scattering 
amplitudes (which determine resonance properties)?

13
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• Lattice QCD can calculate energy levels of multiparticle 
systems in a box

• How are these related to infinite-volume scattering 
amplitudes (which determine resonance properties)?

13

iMn!m

Discrete energy 
spectrum

Scattering 
amplitudes

E0(L)

E1(L)

E2(L)

The fundamental issue

?

N.B.This is a finite volume

QFT problem
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How do we connect these?

?

The fundamental issue
• Lattice simulations are done in finite volumes; 

experiments are not

14
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• Two particles in cubic box of size L with PBC and total momentum P

• Below inelastic threshold (4 pions if have Z2 symmetry), the finite-volume 
spectrum E1, E2, ... is given by solutions to an equation in partial-wave (l,m) space

•   is the two-particle K-matrix, which is diagonal in l,m 

• FPV is a known kinematical “zeta-function”, depending on the box shape & E; It is off-diagonal in l,m, 
since the box violates rotation symmetry

• Valid up to corrections 

• Generalized to arbitrary masses, spins and multiple channels

𝒦2 ∼ tan δ/q

∼ e−ML

[Lüscher 86 & 91; 
Rummukainen & Gottlieb 85; 
Kim, Sachrajda & SRS 05; …]

2-particle quantization condition

det [FPV(E, P, L)−1 + 𝒦2(E*)] = 0

?

QC2:
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State of the art: coupled 2-body channels

16

Coupled πK/ηK

det
⇥
(FfPV)

�1 +K2

⇤
= 0

[Dudek, Edwards, Thomas & Wilson 14] 

Same form of quantization 
condition holds, but 

matrices include extra 
channel index 

[He, Feng, Liu 05;
Meißner et al. 09-11;

Briceño & Davoudi 12;
Hansen & SRS 12]

Practical implementation 
requires truncation of 

 indicesℓ, m
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Status for three particles

17

• Applied so far only to systems of three spin-0 particles

• Three approaches

• All orders diagrammatic derivation in generic relativistic EFT (RFT) 
[Hansen & SRS 14; Briceño, Hansen & SRS 17; …]

Control all sources of  volume dependence, while neglecting terms 

Complicated derivation, but general result: holds for all 2-particle (“dimer”) partial waves

Originally derived for 3 identical particles with  symmetry; generalized to allow  
transitions, and nonidentical but degenerate particles (e.g. 3 pions with any allowed isospin)

• Nonrelativistic EFT [Hammer & Rusetsky 17; …]

Greatly simplified derivation; applied so far only for s-wave dimers; nonrelativistic kinematics

• ``Finite-volume unitarity’’ (FVU) [Mai & Döring 17; …]

Based on infinite-volume unitary representation of three-particle amplitude  in terms of R 
matrix (generalization of )

Relativistic, but obtained so far only for s-wave dimers

1/Ln ∝ e−ML

ℤ2 2 ↔ 3

ℳ3
𝒦2
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Refs for alternate approaches
★NREFT approach 

• H.-W. Hammer, J.-Y. Pang & A. Rusetsky, 1706.07700, JHEP & 1707.02176 , JHEP [Formalism & examples]

• M. Döring et al., 1802.03362 , PRD [Numerical implementation]

• J.-Y. Pang et al., 1902.01111 , PRD [large volume expansion for excited levels]

★ Finite-volume unitarity (FVU) approach 

• M. Mai & M. Döring, 1709.08222 , EPJA  [formalism]

• M. Mai et al., 1706.06118, EPJA [unitary parametrization of M3 involving R matrix; used in FVU approach]

• A. Jackura et al., 1809.10523, EPJC [further analysis of R matrix parametrization]

• M. Mai & M. Döring, 1807.04746 , PRL [3 pion spectrum at finite-volume from FVU]

• M. Mai et al., 1909.05749 ,PRD [applying FVU approach to spectrum from Hanlon & Hörz]

• C. Culver et al., 1911.09047, PRD [calculating  spectrum and comparing with FVU predictions]

3π+

3π+

★HALQCD approach  

• T. Doi et al. (HALQCD collab.), 1106.2276, Prog.Theor.Phys. [3 nucleon potentials in NR regime]

http://arxiv.org/abs/arXiv:1706.07700
http://arxiv.org/abs/arXiv:1707.02176
http://arxiv.org/abs/arXiv:1802.03362
http://arxiv.org/abs/arXiv:1902.01111
http://arxiv.org/abs/arXiv:1706.07700
http://arxiv.org/abs/arXiv:1707.02176
http://arxiv.org/abs/arXiv:1802.03362
http://arxiv.org/abs/arXiv:1902.01111
http://arxiv.org/abs/arXiv:1709.08222
http://arxiv.org/abs/arXiv:1706.06118
https://arxiv.org/abs/1809.10523
http://arxiv.org/abs/arXiv:1807.04746
https://arxiv.org/abs/1909.05749
https://arxiv.org/abs/1911.09047
http://arxiv.org/abs/arXiv:1709.08222
http://arxiv.org/abs/arXiv:1706.06118
https://arxiv.org/abs/1809.10523
http://arxiv.org/abs/arXiv:1807.04746
https://arxiv.org/abs/1909.05749
https://arxiv.org/abs/1911.09047
http://arxiv.org/abs/arXiv:1106.2276
http://arxiv.org/abs/arXiv:1106.2276
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 Two-step method

1919

Quantization conditions

2 & 3 particle
Spectra from LQCD

Integral equations in
infinite volume

Intermediate, unphysical 
scattering quantity

det [F−1
2 + 𝒦2]

det [F−1
3 + 𝒦df,3]

Scattering amplitude
ℳ3

L

L

L

= 0

= 0

[These are the RFT
 forms, and assume

 symmetry]ℤ2

𝒦df,3

QC2:

QC3:
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QC2                 ⟶              QC3
det [FPV(E, ⃗P , L)−1 + 𝒦2(E*)] = 0

[HS14]

det [F3(E, ⃗P , L)−1 + 𝒦df,3(E*)] = 0

• Total momentum (E, P)

• Matrix indices are l, m 

• FPV is a finite-volume geometric function

•  is an infinite-volume amplitude, which is 
real and smooth (no threshold cusps)

• It is related algebraically to :

𝒦2

ℳ2

• Total momentum (E, P)

• Matrix indices are k, l, m 

• F3 depends on geometric functions (FPV and 
G) and also on K2

• F3 is known if first solve QC2 

•  is an infinite-volume 3-particle 
amplitude, which is real and smooth

• It is cutoff dependent and thus unphysical

• It is related to  via integral equations 
[HS15]

𝒦df,3

ℳ3

1
ℳ(ℓ)

2
≡

1
𝒦(ℓ)

2
− iρ
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Further details of QC3

21

• All quantities are infinite-dimensional matrices with indices  describing 3 on-shell particleskℓm

â⇤ �! `,m
(E � !k, ~P � ~k)

(!k,~k)
BOOST

[finite volume “spectator” momentum: k=2πn/L] x [2-particle CM angular momentum: l,m]

F3 =
1

2ωL3 [ F
3

− F
1

𝒦−1
2 + F + G

F]
p

k

�
k k

•  contains two-particle interactions ( ) and kinematic functions (F & G)F3 𝒦2
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Status of RFT formalism

2222

det [F−1
3 + 𝒦df,3] = 0

• Original work applied to scalars with  symmetry & no subchannel 
resonances or 2-particle bound states (e.g. ) [HS14, HS15]

ℤ2
3π+

E0(L)

E1(L)

E2(L)

Kdf,3 M3

• Generalized PV prescription allows subchannel resonances & 2-
particle bound states [BBHRS19]

• Alternative more cumbersome approach given in [BHS19]
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Status of RFT formalism

2323

• [BHS17] removed G-parity constraint, allowing 2↔3 processes (step 
towards )Nπ ↔ Nππ

det (F2 0
0 F3)

−1

+ (
𝒦22 𝒦23

𝒦32 𝒦df,33) = 0

F2 appears
in 2-particle
quantization
condition

E0(L)

E1(L)

E2(L)
M22 M23

M32 M33

Kdf,e2e2

Kdf,3e2

Kdf,e23

Kdf,33
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Status of RFT formalism

2424

• [HRS20] generalized to distinguishable but degenerate particles (e.g. 
 with  in isosymmetric QCD)3π I = 0,1,2

J
H
E
P
0
7
(
2
0
2
0
)
0
4
7

det
[
1−K[I]

df,3(E
!)F[I]

3 (E,P , L)
]
= 0

F[I]
3 ≡

F[I]

3
+ F[I] 1

1−M[I]
2,LG

[I]
M[I]

2,LF
[I] M[I]

2,L ≡
1

K[I]−1
2 − F[I]

I F[I] K[I]
2 G[I]

3 iF
2ωL3 i[2ωL3]K(ππ)2 i 1

2ωL3G

2 iF
2ωL3

(
1 0

0 1

)
i[2ωL3]




K(ππ)2 0

0 Kρ



 i 1
2ωL3G




−1

2 −
√
3
2

−
√
3
2

1
2





1 iF
2ωL3




1 0 0

0 1 0

0 0 1



 i[2ωL3]





K(ππ)2 0 0

0 Kρ 0

0 0 Kσ



 i 1
2ωL3G





1
6

√
15
6

√
5
3

√
15
6

1
2 − 1√

3
√
5
3 − 1√

3
1
3





0 iF
2ωL3 i[2ωL3]Kρ −i 1

2ωL3G

Table 1. Summary of quantization conditions for all allowed values of the total isospin I = Iπππ.

We introduce the shorthand G[I] to indicate the block within C ·G · CT corresponding to

a given total isospin. See table 1 for the explicit definitions. It is interesting to note that

G[3], G[0], and G[2] each correspond to the element (13), as it is defined, respectively, in the

trivial, sign and standard irreps of S3. In addition G[1] is this same element in a reducible

representation, the direct sum of the trivial and the standard irreps.

For the two-particle K matrix, K2, the change of basis gives an exact diagonalization,

with each total-isospin block populated by the possible two-pion subprocesses, as illustrated

in figure 1. The quantity F is trivial under the change of basis, since it is proportional

to the identity matrix. Finally, the exchange properties of the pions within Kdf,3 (which

are the same as those of M3,L and M3) are enough to show that it too block diagonalizes,

but now with all elements non-zero in a given total-isospin sector. We conclude that

the quantization condition divides into four separate relations, compactly represented by

adding superscripts [I] to all quantities. The resulting forms of K[I]
2 and F[I] as well as the

corresponding quantization conditions, are summarized in table 1. One noteworthy result

is the change in the sign of the G term for Iπππ = 0 compared to that for Iπππ = 3, which

is a consequence of the antisymmetry of the isospin wavefunction in the former case.

2.5 Block diagonalization in isospin: relation to M3

To conclude our construction of the general isospin formalism, it remains only to express

the relations between Kdf,3 and the scattering amplitude, M3, described in section 2.3, in

– 18 –

 e.g. 3π+

 e.g. ω, h1

 e.g. a1
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Overview
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det [F−1
3 + 𝒦df,3] = 0

E0(L)

E1(L)

E2(L)

Kdf,3 M3

DREAM: LQCD determine predict

Integral equations

E0(L)

E1(L)

E2(L)

Kdf,3 M3

REALITY: fit input predictTOY 
MODELS:

predict
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3-particle bound state from d-wave attraction
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[BRS19]

Trimer appears to 
remain bound as 

L → ∞

 no dimersa0, a2 < 0 ⇒
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3-particle bound state from d-wave attraction
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Quantization 
condition is useful as 

tool for studying 
infinite-volume!

Trimer appears to 
remain bound as 

L → ∞

 no dimersa0, a2 < 0 ⇒
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S-wave dimer properties vs a0
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[BBHRS19]
• Study 3 particles with only s-wave scattering length  nonzero

• Choose  so that there is a dimer (``deuteron’’)

• Look at states with : dimer+particle and, possibly, trimer (“triton”)

• Use QC2 applied to dimer+particle states to determine scattering amplitude 
(and, in particular, scattering length )

a0

ma0 > 1

E < 3m

b0

ma0 > 1, E < 3m
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S-wave dimer properties vs a0
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S-wave dimer properties vs a0
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QC3 allows study 
of relativistic 
bound states



S. Sharpe, ``Three particle interactions from the lattice…,” seminar at U. Maryland, 9/11/2020 /60

Phillips curve in toy N+D / Tritium system

3030
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First application to LQCD
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Two- and three-pion finite-volume spectra at maximal isospin from lattice QCD

Ben Hörz∗

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Andrew Hanlon†

Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz, Germany
(Dated: May 13, 2019)

We present the three-pion spectrum with maximum isospin in a finite volume determined from
lattice QCD, including, for the first time, excited states across various irreducible representations at
zero and nonzero total momentum, in addition to the ground states in these channels. The required
correlation functions, from which the spectrum is extracted, are computed using a newly imple-
mented algorithm which reduces the number of operations, and hence speeds up the computation
by more than an order of magnitude. The results for the I = 3 three-pion and the I = 2 two-pion
spectrum are publicly available, including all correlations, and can be used to test the available
three-particle finite-volume approaches to extracting three-pion interactions.

INTRODUCTION

Lattice QCD calculations of scattering amplitudes
have matured significantly over the last decade owing to
marked increases in available computational capacity and
improved algorithms. A widely used approach for con-
straining scattering observables from simulations relies
on precise measurements of the interacting energy levels
of QCD in a finite volume, which encode hadron interac-
tions via the shifts from their noninteracting values [1–5]
(see [6] for a survey of extensions of the formalism and
numerical results).
So far, practical calculations in lattice QCD have been

mostly confined to the two-hadron sector. Though a
large abundance of lattice data is currently available for
meson-meson scattering (e.g. ππ scattering in all three
isospin channels [7–24], see also [25, 26] for results using
a potential-based approach), these calculations are for-
mally restricted to energies below thresholds involving
three or more hadrons due to the use of a formalism for
relating finite-volume spectra to scattering amplitudes
that is limited to two-hadron scattering. This limita-
tion has precluded a proper lattice QCD study of sys-
tems involving three or more stable hadrons at light pion
masses, e.g. the Roper resonance which decays to both
two- and three-particle channels, the ω(782) decaying to
three pions, many of the X , Y and Z resonances, and
three-nucleon interactions relevant for nuclear physics.
However, significant progress has been made recently

in developing the necessary formalism to interpret the
three-particle finite-volume spectrum (for a review see
[27]), both by extending the two-particle derivation to
include three-hadron states [28–31], as well as through
alternative approaches [32–36][72]. Thus, although the
three-particle formalism is quite mature—including nu-
merical explorations of the corresponding quantization
conditions [36, 37][73]—data for three-particle finite-
volume QCD spectra is lacking since previous lattice
QCD calculations have been restricted to the extraction

of multi-meson ground states at rest [38–40].

We fill this gap by providing the two-pion and three-
pion spectra with maximum isospin in various irreducible
representations at zero and nonzero total momentum, in-
cluding not only the ground states but the excited states
in the elastic region as well, i.e. for center-of-mass ener-
gies Ecm/mπ below 4 and 5 for isospin I = 2 and I = 3
respectively. This data, which is made public, including
all correlations, will allow for an investigation of the var-
ious three-particle interaction parameters as well as the
effect of higher partial waves, for which the quantization
condition has been worked out recently [41].

A technical challenge concerns the growing number of
Wick contractions required to compute correlation func-
tions of suitable interpolating operators—from which the
spectrum is extracted—as the number of valence quark
fields increases. The continued need for improved algo-
rithms to perform these contractions was pointed out re-
cently [42] and indeed was a limiting factor in a recent
study of meson-baryon scattering in the ∆ channel [43].
While Refs. [44–49] investigated efficient contraction al-
gorithms at the quark level, we employ the stochastic
variant [50] of distillation [51] to treat quark propagation.
In this framework, it is useful to view the correlation
function construction in terms of contractions of tensors
associated with the involved hadrons. Then, to reduce
the operation count required to evaluate all contractions,
we use a method which is well-known in quantum chem-
istry [52–54] and has attracted renewed interest recently
in the context of tensor networks [55]. The proposed opti-
mization achieves an operation-count reduction by more
than an order of magnitude, and its implementation is
made publicly available.

This letter is organized as follows: We first describe
the interpolating operators employed in this work and
the method used to speed up the construction of their
correlation functions. This is followed by a presentation
of the analysis and results.

 (16 levels) and  (11 levels) spectra for 2π+ 3π+ Mπ = 200 MeV
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We present the three-pion spectrum with maximum isospin in a finite volume determined from
lattice QCD, including, for the first time, excited states across various irreducible representations at
zero and nonzero total momentum, in addition to the ground states in these channels. The required
correlation functions, from which the spectrum is extracted, are computed using a newly imple-
mented algorithm which reduces the number of operations, and hence speeds up the computation
by more than an order of magnitude. The results for the I = 3 three-pion and the I = 2 two-pion
spectrum are publicly available, including all correlations, and can be used to test the available
three-particle finite-volume approaches to extracting three-pion interactions.

INTRODUCTION

Lattice QCD calculations of scattering amplitudes
have matured significantly over the last decade owing to
marked increases in available computational capacity and
improved algorithms. A widely used approach for con-
straining scattering observables from simulations relies
on precise measurements of the interacting energy levels
of QCD in a finite volume, which encode hadron interac-
tions via the shifts from their noninteracting values [1–5]
(see [6] for a survey of extensions of the formalism and
numerical results).
So far, practical calculations in lattice QCD have been

mostly confined to the two-hadron sector. Though a
large abundance of lattice data is currently available for
meson-meson scattering (e.g. ππ scattering in all three
isospin channels [7–24], see also [25, 26] for results using
a potential-based approach), these calculations are for-
mally restricted to energies below thresholds involving
three or more hadrons due to the use of a formalism for
relating finite-volume spectra to scattering amplitudes
that is limited to two-hadron scattering. This limita-
tion has precluded a proper lattice QCD study of sys-
tems involving three or more stable hadrons at light pion
masses, e.g. the Roper resonance which decays to both
two- and three-particle channels, the ω(782) decaying to
three pions, many of the X , Y and Z resonances, and
three-nucleon interactions relevant for nuclear physics.
However, significant progress has been made recently

in developing the necessary formalism to interpret the
three-particle finite-volume spectrum (for a review see
[27]), both by extending the two-particle derivation to
include three-hadron states [28–31], as well as through
alternative approaches [32–36][72]. Thus, although the
three-particle formalism is quite mature—including nu-
merical explorations of the corresponding quantization
conditions [36, 37][73]—data for three-particle finite-
volume QCD spectra is lacking since previous lattice
QCD calculations have been restricted to the extraction

of multi-meson ground states at rest [38–40].

We fill this gap by providing the two-pion and three-
pion spectra with maximum isospin in various irreducible
representations at zero and nonzero total momentum, in-
cluding not only the ground states but the excited states
in the elastic region as well, i.e. for center-of-mass ener-
gies Ecm/mπ below 4 and 5 for isospin I = 2 and I = 3
respectively. This data, which is made public, including
all correlations, will allow for an investigation of the var-
ious three-particle interaction parameters as well as the
effect of higher partial waves, for which the quantization
condition has been worked out recently [41].

A technical challenge concerns the growing number of
Wick contractions required to compute correlation func-
tions of suitable interpolating operators—from which the
spectrum is extracted—as the number of valence quark
fields increases. The continued need for improved algo-
rithms to perform these contractions was pointed out re-
cently [42] and indeed was a limiting factor in a recent
study of meson-baryon scattering in the ∆ channel [43].
While Refs. [44–49] investigated efficient contraction al-
gorithms at the quark level, we employ the stochastic
variant [50] of distillation [51] to treat quark propagation.
In this framework, it is useful to view the correlation
function construction in terms of contractions of tensors
associated with the involved hadrons. Then, to reduce
the operation count required to evaluate all contractions,
we use a method which is well-known in quantum chem-
istry [52–54] and has attracted renewed interest recently
in the context of tensor networks [55]. The proposed opti-
mization achieves an operation-count reduction by more
than an order of magnitude, and its implementation is
made publicly available.

This letter is organized as follows: We first describe
the interpolating operators employed in this work and
the method used to speed up the construction of their
correlation functions. This is followed by a presentation
of the analysis and results.

 (16 levels) and  (11 levels) spectra for 2π+ 3π+ Mπ = 200 MeV

• [BRS-PRL19] Simultaneous fit with QC2 and QC3 

• s-wave  interaction

• Isotropic (momentum-independent)  with linear dependence on 

• Predict  using leading order chiral perturbation theory

π+π+

𝒦df,3 E2
CM

𝒦df,3
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Global fit to  and  spectra2π+ 3π+

3232

8

parameters. Our results are

Fit 4: D = diag (0.7, 0.3, 160) , (S44)

R =

Q

a
1 ≠0.67 0.23

≠0.67 1 0.24
0.23 0.24 1

R

b , (S45)

Fit 5: D = diag (0.7, 0.3, 330, 290) , (S46)

R =

Q

ca

1 ≠0.63 0.22 ≠0.10
≠0.63 1 ≠0.11 0.25
0.22 ≠0.11 1 ≠0.89

≠0.10 0.25 ≠0.89 1

R

db , (S47)

where the matrix indices are ordered as
(B0, B1, M2

K
iso,0
df,3 ) and (B0, B1, M2

K
iso,0
df,3 , M2

K
iso,1
df,3 ),

respectively. As can be seen, the correlation is large

within the two- and three-particle sector, and smaller
between the two di�erent sectors.

F. Two- and three-pion spectrum

To conclude, we provide a comparison of the data to
the predicted two- and three-pion spectra from the quan-
tization conditions. For this, we use the best parameters
from fit 5 described in the main text (see Table II). The
results are displayed in Fig. S3. We also include the
predictions from the QC above the inelastic thresholds—
ECM = 4M and ECM = 5M for the two- and three-
particle QC, respectively. As can be seen, our predic-
tions lie on top of the data points within errorbars, even
in the inelastic region. This is not surprising, as inelastic
channels open up slowly above kinematic thresholds.

A+
1g(0) A+

1 (1) A+
1 (2) A+

1 (3) A+
1 (4)

2.0

2.5

3.0

3.5

4.0
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5.0
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M

ECM = 4M

Fit 5 Efree Data

(a) 2fi+
spectrum.

ECM = 5M

A�
1u(0) E�

u (0) A�
2 (1) B�

2 (1) A�
2 (2) B�

2 (2) A�
2 (3) E�(3)

3.0

3.5

4.0

4.5

5.0

5.5 ECM
M

Fit 5 Efree Data

(b) 3fi+
spectrum.

FIG. S3: Two- and three-pion spectra from Ref. [1] (blue) compared to the predictions from the global fit 5
(orange). Hollow orange points above the inelastic thresholds have not been included in the fit, but are shown for

comparison. Dashed lines show the non-interacting energy levels.

[BRS-PRL19]

3π+2π+

Global fit
χ2

d.o.f.
=

26.04
(22−4)

Similar fit 
obtained using 
FVU QC3 [Mai 

et al, 19]

Not used in fit

Not used in fit

Inelastic
threshold

3-particle 
spectrum 
primarily 

determined by 
2-particle 

interactions
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Evidence for nonzero 𝒦df,3

3333

[BRS-PRL19]

Global fit
χ2

d.o.f.
=

26.04
(22−4)

To establish the true significance of the results for Kiso
df;3

we perform global fits to the eleven two-particle and eleven
three-particle levels that depend on δ0 and/or Kiso

df;3. We do
so both for constant and linear Kiso

df;3. The results are
collected in Table II. Fit 4 finds a value for Kiso

df;3 that
has around 1.8σ statistical significance and also gives
values for B0 and B1 that are consistent with those from
fits 1–3 above and with the LO χPT predictions. The p
value of the fit is p ¼ 0.103.
In fit 5, we try a linear ansatz for Kiso

df;3, and find that the
current dataset of Ref. [58] is insufficient for a separate
extraction of both constant and linear terms. We note,
however, that, even in this fit, the scenario Kiso

df;3 ¼ 0 is
excluded at ∼2σ.
In Fig. 4, we present a summary of the errors resulting

from the global fits. We also include the value from LO
χPT, along with an estimate of the NLO corrections. As can
be seen, the constant term agrees well with the prediction,
whereas the larger disagreement for the linear term is only
of marginal significance given the large uncertainty in the
χPT prediction.
One concern with our global fits is that we are using the

forms for K2 and Kiso
df;3 beyond their radii of convergence.

For Kiso
df;3, we do not know the radius of convergence, but a

reasonable estimate is that one should use levels only with
jΔj < 1. To check the importance of this issue, we have
repeated the global fits imposing q2=M2 < 1 and Δ < 1, so
that the fit includes only five 2πþ and five 3πþ levels. We
find fit parameters that are consistent with those in Table II,
but with much larger errors. For example, the result from
the equivalent of fit 4 gives M2Kiso;0

df;3 ¼ 610ð350Þ.
We close by commenting on sources of systematic

errors. The results of Ref. [58] are subject to discretization
errors, but these are ofOða2Þ, and likely small compared to
the statistical errors from [58]. The quantization condition

itself neglects exponentially suppressed corrections, but
these are numerically small (e−ML ∼ 1%) compared to our
final statistical error. Errors from truncation of the threshold
expansion for K2 and Kdf;3 are also present but harder
to estimate.
Conclusions.—We have presented statistical evidence for

a nonzero 3πþ contact interaction, obtained by analyzing
the spectrum of three pion states in isosymmetric QCDwith
M ≈ 200 MeV obtained in Ref. [58]. This illustrates the
utility of the three-particle quantization condition. It also
emphasizes the need for a relativistic formalism, since most
of the spectral levels used here are in the relativistic regime.
It gives an example where lattice methods can provide
results for scattering quantities that are not directly acces-
sible to experiment.
We expect that forthcoming generalizations to the

formalism (to incorporate nondegenerate particles with
spin, etc.), combined with advances in the methods of
lattice QCD (to allow the accurate determination of the
spectrum in an increasing array of systems), will allow
generalization of the present results to resonant three-
particle systems in the next few years.
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Alternative derivation and 
new form of QC3

34

[Blanton & SRS, arXiv:2007.16188] = [BS20a]

See also talk by Tyler Blanton at APLAT 2020:
https://conference-indico.kek.jp/event/113/contributions/2070/

https://conference-indico.kek.jp/event/113/contributions/2070/
https://conference-indico.kek.jp/event/113/contributions/2070/
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Why a new RFT derivation?

35

• To simplify generalization of  QC3 to nondegenerate particles with spin (e.g. 
), and to QC4, …

• Original RFT derivation is long, complicated and does not give explicit 
results for all quantities (e.g. )

Nππ

𝒦df,3

enter the analysis. It thus seems that some finite-volume
states have been lost. In fact, all but one of the free states are
present once one takes into account that the equality of allN2

elements of the truncated Kdf;3 will not be exact. This is
shown in a particular example in Appendix C.12

IV. DERIVATION

In this section we present a derivation of the quantization
condition described in the previous section. Following
Ref. [17], we obtain the spectrum from the poles in the
finite-volume Minkowski-space correlator13

CLðE; ~PÞ≡
Z

L
d4xeiðEx

0−~P·~xÞh0jTσðxÞσ†ð0Þj0i: ð40Þ

Here T indicates time-ordering and σðxÞ is an interpolating
field coupling to states with an odd number of particles.
The Fourier transform, implemented via an integral over
the finite spatial volume, restricts the states to have total
energy E and momentum ~P ¼ 2π~nP=L.
The simplest choice for σðxÞ is a one-particle interpolat-

ing field, ϕðxÞ, since in the interacting theory this will
couple to states with any odd number of particles. In a
simulation, however, it is advantageous to use a choice
with larger overlap to the three-particle states of interest.
An example is

σðxÞ ¼
Z

L
d4yd4zfðy; zÞϕðxÞϕðxþ yÞϕðxþ zÞ; ð41Þ

with f being a smooth function with period L in all
directions.
At fixed fL; ~nPg,14 the spectrum of our theory is the set

of CM frame energies E%
j , j ¼ 1; 2; & & & for which CLðEj; ~PÞ

has a pole, with Ej ¼ ðE%2
j þ ~P2Þ1=2. Our goal is thus to

include all contributions to CL which fall at most like a
power of 1=L, and determine the pole structure. In the
previous section we summarized the main result of this
work, but made no reference to the correlator in doing so.
The connection is given by the following identity, the
demonstration of which is the task of this section:

CLðE; ~PÞ ¼ C∞ðE; ~PÞ þ iA0 1

1þ F3Kdf;3
F3A: ð42Þ

This result is valid up to terms exponentially suppressed in
the volume, terms which we will discard implicitly through-
out this section. The quantities A0 ≡ A0

k0;l0;m0 and A≡ Ak;l;m

are, respectively, row and column vectors in ½finite-
volume momentum( × ½two-particle angular momentum(
space. Since A and A0 do not enter the quantization
condition, we have not given their definitions above.
Indeed, we think it most useful to introduce their definitions
as they emerge in our all-orders summation. We have also
introduced C∞, which is an infinite-volume correlator
whose definition we will also build up over the following
subsections.
A key technical issue in the derivation is the need to use a

nonstandard pole prescription when defining momentum
integrals in infinite-volume Feynman diagrams. This is at
the root of the complications in defining A0, A, and C∞.
Despite these complications, these are infinite-volume
quantities that we do not expect to lead to poles in
CL.

15 It follows that, at fixed fL; ~nPg, CL diverges at all
energies for which the matrix between A and A0 has a
divergent eigenvalue. In addition, as long as Kdf;3 is
nonzero, diverging eigenvalues of F3 leave the finite-
volume correlator finite. The spectrum is therefore given
by energies for which ½1þ F3Kdf;3( has a vanishing
eigenvalue, which is the quantization condition quoted
above.
The demonstration of Eq. (42) proceeds by an all-orders

analysis of the Feynman diagrams building up the corre-
lator. As we accommodate any scalar field theory (assum-
ing only a Z2 symmetry), Feynman diagrams consist of any
number of even-legged vertices, as well as one each of the
interpolating fields σ and σ†, connected by propagators.
The finite-volume condition enters here only through the
prescription of summing (rather than integrating) the spatial
components of all loop momenta, i.e.

1

L3

X

~q¼2π~n=L

Z
dq0

2π
over all ~n ∈ Z3: ð43Þ

We now introduce the crucial observation that makes
our derivation possible: Power-law finite-volume effects
only enter through on shell intermediate states. This
motivates a reorganization of the sum of diagrams into a
skeleton expansion that keeps all on shell intermediate
states explicit, while grouping off shell states into Bethe-
Salpeter kernels. Heuristically, the importance of on shell
intermediate states can be understood by noting that on
shell particles can travel arbitrarily far, and are thus

12A similar issue arises with the two-particle quantization
condition when one truncates the angular-momentum expansion.
The lost states involving higher angular momenta are recovered
if one reintroduces the higher partial-wave amplitudes but with
infinitesimal strength. The quantization condition then has
solutions corresponding to free two-particle states projected onto
states in appropriate irreps (irreducible representations) of the
finite-volume symmetry group.

13Minkowski time turns out to be convenient for our analysis,
even though numerical lattice determinations of the spectrum
work in Euclidean time. The point is that the finite-volume
spectrum is the same, however it is determined.

14It is more natural to think in terms of fL; ~nPg rather than
fL; ~Pg, since ~nP is quantized whereas ~P varies with L.

15We discuss this point, following the derivation, at the end of
this section.
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CL;2 ¼ C∞;2 þ iA0
2

1

1þ FK2

FA2: ð252Þ

The subscripts “2” on A, A0, and C indicate that these are
the two-particle end caps and correlator, while F is defined
in Eq. (22) (although here we drop the spectator-momen-
tum argument).
What we now show is that there are poles in A2, A0

2, and
C∞;2, but these cancel in CL;2. To see this we use the
freedom to arbitrarily choose the interpolating functions σ
and σ† without affecting the position of poles in CL;2.
Specifically, we set both σ and σ† equal to the two-particle
Bethe-Salpeter kernel iB2, which, we recall, is a smooth
nonsingular function. One then finds that

C∞;2 ¼ iK2 − iB2 and A2 ¼ A0
2 ¼ iK2: ð253Þ

Inserting these results into Eq. (252) we find that (for this
choice of end caps)

CL;2 ¼ −iB2 þ iK2 þ iK2

1

1 − iFiK2

iFiK2

¼ −iB2 þ
i

K−1
2 þ F

: ð254Þ

From Eqs. (253) and (254) we draw two conclusions.
First, A2, A0

2, and C∞;2 have poles whenever K2 diverges.
Such poles occur, for a given angular momentum, when
δl ¼ π=2 mod π. Thus, using the fPV prescription, there
are, in general, poles in A2, A0

2, and C∞;2. Second, these
poles cancel in CL;2, as shown by the second form in
Eq. (254), which is clearly finite when K2 diverges.
We suspect that a similar result holds for the three-

particle analysis, but have not yet been able to demonstrate
this. Thus, in the three-particle case we must rely for now
on the intuitive argument given above.

V. CONCLUSIONS AND OUTLOOK

In this work we have presented and derived a three-
particle quantization condition relating the finite-volume
spectrum to two-to-two and three-to-three infinite-volume
scattering quantities. This condition separates the depend-
ence on the volume into kinematic quantities, as was
achieved previously for two particles.
There are two new features of the result compared to the

two-particle case. First, the three-particle scattering quan-
tity entering the quantization condition has the physical on
shell divergences removed. The resulting divergence-free
quantity is thus spatially localized. This is crucial for any
practical application of the formalism since it allows for
the partial-wave expansion to be truncated. Indeed, it is
difficult to imagine a quantization condition involving the
three-particle scattering amplitude itself, given that the
latter is divergent for certain physical momenta.

The second feature is that the three-particle scattering
quantity is nonstandard—it is not simply related to the
(divergence-free part) of the physical scattering amplitude.
This is because it is defined using the fPV pole prescription,
and also because of the decorations explained in Sec. IV E.
We strongly suspect, however, that a relation to the physical
amplitude exists. In particular, we know from Ref. [13] that
the finite-volume spectrum in a nonrelativistic theory can
be determined solely in terms of physical amplitudes, and
the same is true in the approximations adopted in Ref. [14].
We are actively investigating this issue.
The three-particle quantization condition involves a

determinant over a larger space than that required for
two particles. Nevertheless, as explained in Secs. III,
because the three-particle quantity that enters has a uni-
formly convergent partial-wave expansion, one can make a
consistent truncation of the quantization condition so that it
involves only a finite number of parameters. This opens the
way to practical application of the formalism.
We have provided in this paper two mild consistency

checks on the formalism—that it correctly reproduces
the known results if one particle is noninteracting (see
Sec. IVA), and that the number of solutions to the
quantization condition in the isotropic approximation is
as expected (see Appendix C). We have also worked out a
more detailed check by comparing our result close to the
three-particle threshold E% ≈ 3m to those obtained using
nonrelativistic quantum mechanics [27,28]. Here one has
an expansion in powers of 1=L, and we have checked
that the results agree for the first four nontrivial orders.
This provides, in particular, a nontrivial check of the form
of F3, Eq. (19), and allows us to relate Kdf;3 to physical
quantities in the nonrelativistic limit. We will present
this analysis separately [29].
Two other issues are deferred to future work. First,

we would like to understand in detail the relation of our
formalism and quantization condition to those obtained in
Refs. [13,14]. Second, we plan to test the formalism using
simple models for the scattering amplitudes, in order to
ascertain how best to use it in practice.
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APPENDIX A: SUM-MINUS-INTEGRAL
IDENTITY

In this appendix we derive the sum-minus-integral identity
that plays a central role in the main text. This identity is
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[HS14]
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Comparison of strategies

36

• Both consider generic EFT for identical particles with a  symmetry

• Work diagrammatically to all orders in PT; no power-counting needed

• Both analyze three-particle, finite-volume correlator for 

ℤ2

ECM < 5M

6/18T. Blanton, APLAT 2020

Finite-volume (FV) correlation function

�Defined for cubic box with side length 𝐿 and periodic boundary conditions

�𝜎 𝑥 : operator coupling to 3-particle states

� 𝐸, 𝑃 : fixed total 4-momentum with 𝑃 ∈ 2గ
𝐿
ℤ3

� CM energy: 𝐸∗ = 𝐸2 − 𝑃2

Assume 𝑚 ൏ 𝐸∗ ൏ 5𝑚 so that only 3-particle states can go on shell

Key properties of         :
� Has poles at energies in the FV spectrum
� Can be expressed as an infinite sum of Feynman diagrams

8/3/2020

• Both use time-ordered PT (TOPT) to argue that only 3-particle cuts lead to 
singularities and thus power-law volume dependence; all others can be integrated

• [HS14] use skeleton expansion in terms of Feynman diagrams

operator 
destroying 
3 particles

Momentum 
sums rather 

than integrals

Infinite-volume 
Bethe-Salpeter 

kernels

3,
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Comparison of strategies: old

37

• [HS14] use skeleton expansion in terms of Feynman diagrams

3,

• Replace sums with integral (PV regulated) + (sum-integral) wherever possible

• Reshuffle contributions of antiparticle poles at 3-particle cuts—which are 
nonsingular—into infinite-volume quantities

• Expend great effort recombining terms so that final expression is written in 
terms of a  that is symmetric under particle exchange

• Define  constructively, rather than explicitly

𝒦df,3

𝒦df,3
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10/18T. Blanton, APLAT 2020

3PIs building blocks
Step 1: Group irrelevant cuts into compact 3PIs quantities

�Sum of all 3PIs left (right) endcaps:

�Sum of all connected 3PIs 3 → 3 diagrams:

�Sum of all disconnected (2+1) 3PIs 3 → 3 diagrams:
� sum of all 2PIs 2 → 2 diagrams

No relevant cuts֜ can treat these as ∞-volume quantities

8/3/2020

Comparison of strategies: new

38

• [BS20a] use skeleton expansion in terms of TOPT diagrams, ordered by the 
number of ``relevant cuts” (3-particle cuts), e.g.

• Loops with only irrelevant cuts can be integrated; build up TOPT kernels 

• The infinite-volume objects  contain Feynman-diagram 
antiparticle contributions to 3-particle cuts

•  is intrinsically asymmetric, since it picks out a ``spectator”

̂A ′ , ℬ2,L = 2ωL3ℬ2, ℬ3, ̂A

̂A ′ , ℬ2, ℬ3, ̂A

ℬ2,L
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• Two types of relevant cuts: F- and G-like

11/18T. Blanton, APLAT 2020

F and G cuts
Step 2: Define compact quantities for the relevant cuts

8/3/2020

k kp

pa ar

r

b
b

Kernels depend on 
two 3-momenta 
and are off shell



S. Sharpe, ``Three particle interactions from the lattice…,” seminar at U. Maryland, 9/11/2020 /60

Comparison of strategies: new
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• Do all orders summation before dealing with momentum sums in relevant cuts

12/18T. Blanton, APLAT 2020

Constructing

This simple closed-form expression for 𝐶3,𝐿 is the main advantage of the new derivation

8/3/2020

• Simple, explicit expression!

• However, are off shell̂A ′ , ℬ2, ℬ3, ̂A
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• Do on-shell projection of F- and G-cuts in parallel (using methods from [HS14])

11/18T. Blanton, APLAT 2020

F and G cuts
Step 2: Define compact quantities for the relevant cuts

8/3/2020

k kp

pa ar

r

b
b

1
L6 ∑

k
∑

a

= ∫k
PV∫a

+
1
L3 ∑

k [ 1
L3 ∑

a

− PV∫a ]
∼ F̃

⇒ DF = Ĩ F + F̃
Project

adjacent kernels 
on shell:

{k, a} → {kℓm}

Integral 
operator that 
sews kernels 

together

• Decompose adjacent kernels into on-shell part 
and residue

• Residue cancels pole & leads to integral operator

⇒ DG = G̃ + δ G̃
Integral 

operator that 
sews kernels 

together
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• Implement on shell projection without symmetrizing K matrices

• Simplicity of expression is due to combining 2- and 3-particle K matrices 

•  are on-shell, infinite-volume quantities

• “(u)” & “(u,u)” indicate asymmetry due to factors of 

Ã ′ (u), 𝒦2, �̃� (u,u)
df,3 , & Ã (u)

ℬ2,L

15/18T. Blanton, APLAT 2020

Final expression for 

� and             are on-shell ∞-volume amplitudes

�The combination                                  appears naturally due to the                    construction

�ሺ𝑢ሻ labels indicate asymmetry under particle exchange due to the spectator-dependent

8/3/2020

15/18T. Blanton, APLAT 2020

Final expression for 

� and             are on-shell ∞-volume amplitudes

�The combination                                  appears naturally due to the                    construction

�ሺ𝑢ሻ labels indicate asymmetry under particle exchange due to the spectator-dependent

8/3/2020

where
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Meaning of asymmetry
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+

<latexit sha1_base64="nPF5bTufkjs0WtKzibFS6tGbtV4=">AAAB6HicbVDLSgNBEOyNUWN8RXP0MhgEQQi7Iqi3gBcPHhIwD9gsYXbSm4yZfTAzK4QQf8CLB0W8+jdevfk1OnkcNLGgoajqprvLTwRX2ra/rMxKdnVtPbeR39za3tkt7O03VJxKhnUWi1i2fKpQ8AjrmmuBrUQiDX2BTX9wNfGb9ygVj6NbPUzQC2kv4gFnVBupdtIplOyyPQVZJs6clCrFD/c723yodgqf7W7M0hAjzQRVynXsRHsjKjVnAsf5dqowoWxAe+gaGtEQlTeaHjomR0bpkiCWpiJNpurviRENlRqGvukMqe6rRW8i/ue5qQ4uvBGPklRjxGaLglQQHZPJ16TLJTIthoZQJrm5lbA+lZRpk03ehOAsvrxMGqdl56x8WTNp3MAMOTiAQzgGB86hAtdQhTowQHiEZ3ix7qwn69V6m7VmrPlMEf7Aev8B6oWQEA==</latexit>

+

<latexit sha1_base64="nPF5bTufkjs0WtKzibFS6tGbtV4=">AAAB6HicbVDLSgNBEOyNUWN8RXP0MhgEQQi7Iqi3gBcPHhIwD9gsYXbSm4yZfTAzK4QQf8CLB0W8+jdevfk1OnkcNLGgoajqprvLTwRX2ra/rMxKdnVtPbeR39za3tkt7O03VJxKhnUWi1i2fKpQ8AjrmmuBrUQiDX2BTX9wNfGb9ygVj6NbPUzQC2kv4gFnVBupdtIplOyyPQVZJs6clCrFD/c723yodgqf7W7M0hAjzQRVynXsRHsjKjVnAsf5dqowoWxAe+gaGtEQlTeaHjomR0bpkiCWpiJNpurviRENlRqGvukMqe6rRW8i/ue5qQ4uvBGPklRjxGaLglQQHZPJ16TLJTIthoZQJrm5lbA+lZRpk03ehOAsvrxMGqdl56x8WTNp3MAMOTiAQzgGB86hAtdQhTowQHiEZ3ix7qwn69V6m7VmrPlMEf7Aev8B6oWQEA==</latexit>

+

<latexit sha1_base64="nPF5bTufkjs0WtKzibFS6tGbtV4=">AAAB6HicbVDLSgNBEOyNUWN8RXP0MhgEQQi7Iqi3gBcPHhIwD9gsYXbSm4yZfTAzK4QQf8CLB0W8+jdevfk1OnkcNLGgoajqprvLTwRX2ra/rMxKdnVtPbeR39za3tkt7O03VJxKhnUWi1i2fKpQ8AjrmmuBrUQiDX2BTX9wNfGb9ygVj6NbPUzQC2kv4gFnVBupdtIplOyyPQVZJs6clCrFD/c723yodgqf7W7M0hAjzQRVynXsRHsjKjVnAsf5dqowoWxAe+gaGtEQlTeaHjomR0bpkiCWpiJNpurviRENlRqGvukMqe6rRW8i/ue5qQ4uvBGPklRjxGaLglQQHZPJ16TLJTIthoZQJrm5lbA+lZRpk03ehOAsvrxMGqdl56x8WTNp3MAMOTiAQzgGB86hAtdQhTowQHiEZ3ix7qwn69V6m7VmrPlMEf7Aev8B6oWQEA==</latexit>

1

<latexit sha1_base64="vVfQJ9mfKwsOqtN56rlJuxUKj3s=">AAAB7XicbZDLSgMxFIYzXmu9VV0KEiyCqzIjgrqy4MaFixbsBdpSMmmmjc0kQ3JGGIYu3btxoYhbX8HX0J3PoA9hello6w+Bj/8/h5xz/EhwA6776czNLywuLWdWsqtr6xubua3tqlGxpqxClVC67hPDBJesAhwEq0eakdAXrOb3L4Z57ZZpw5W8hiRirZB0JQ84JWCtapPLAJJ2Lu8W3JHwLHgTyJ+/f93tvZW/S+3cR7OjaBwyCVQQYxqeG0ErJRo4FWyQbcaGRYT2SZc1LEoSMtNKR9MO8IF1OjhQ2j4JeOT+7khJaEwS+rYyJNAz09nQ/C9rxBCctlIuoxiYpOOPglhgUHi4Ou5wzSiIxAKhmttZMe0RTSjYA2XtEbzplWehelTwjgtnZTdfvEJjZdAu2keHyEMnqIguUQlVEEU36B49oidHOQ/Os/MyLp1zJj076I+c1x/vX5Ph</latexit>

1

<latexit sha1_base64="vVfQJ9mfKwsOqtN56rlJuxUKj3s=">AAAB7XicbZDLSgMxFIYzXmu9VV0KEiyCqzIjgrqy4MaFixbsBdpSMmmmjc0kQ3JGGIYu3btxoYhbX8HX0J3PoA9hello6w+Bj/8/h5xz/EhwA6776czNLywuLWdWsqtr6xubua3tqlGxpqxClVC67hPDBJesAhwEq0eakdAXrOb3L4Z57ZZpw5W8hiRirZB0JQ84JWCtapPLAJJ2Lu8W3JHwLHgTyJ+/f93tvZW/S+3cR7OjaBwyCVQQYxqeG0ErJRo4FWyQbcaGRYT2SZc1LEoSMtNKR9MO8IF1OjhQ2j4JeOT+7khJaEwS+rYyJNAz09nQ/C9rxBCctlIuoxiYpOOPglhgUHi4Ou5wzSiIxAKhmttZMe0RTSjYA2XtEbzplWehelTwjgtnZTdfvEJjZdAu2keHyEMnqIguUQlVEEU36B49oidHOQ/Os/MyLp1zJj076I+c1x/vX5Ph</latexit>

+

<latexit sha1_base64="nPF5bTufkjs0WtKzibFS6tGbtV4=">AAAB6HicbVDLSgNBEOyNUWN8RXP0MhgEQQi7Iqi3gBcPHhIwD9gsYXbSm4yZfTAzK4QQf8CLB0W8+jdevfk1OnkcNLGgoajqprvLTwRX2ra/rMxKdnVtPbeR39za3tkt7O03VJxKhnUWi1i2fKpQ8AjrmmuBrUQiDX2BTX9wNfGb9ygVj6NbPUzQC2kv4gFnVBupdtIplOyyPQVZJs6clCrFD/c723yodgqf7W7M0hAjzQRVynXsRHsjKjVnAsf5dqowoWxAe+gaGtEQlTeaHjomR0bpkiCWpiJNpurviRENlRqGvukMqe6rRW8i/ue5qQ4uvBGPklRjxGaLglQQHZPJ16TLJTIthoZQJrm5lbA+lZRpk03ehOAsvrxMGqdl56x8WTNp3MAMOTiAQzgGB86hAtdQhTowQHiEZ3ix7qwn69V6m7VmrPlMEf7Aev8B6oWQEA==</latexit>

1

<latexit sha1_base64="vVfQJ9mfKwsOqtN56rlJuxUKj3s=">AAAB7XicbZDLSgMxFIYzXmu9VV0KEiyCqzIjgrqy4MaFixbsBdpSMmmmjc0kQ3JGGIYu3btxoYhbX8HX0J3PoA9hello6w+Bj/8/h5xz/EhwA6776czNLywuLWdWsqtr6xubua3tqlGxpqxClVC67hPDBJesAhwEq0eakdAXrOb3L4Z57ZZpw5W8hiRirZB0JQ84JWCtapPLAJJ2Lu8W3JHwLHgTyJ+/f93tvZW/S+3cR7OjaBwyCVQQYxqeG0ErJRo4FWyQbcaGRYT2SZc1LEoSMtNKR9MO8IF1OjhQ2j4JeOT+7khJaEwS+rYyJNAz09nQ/C9rxBCctlIuoxiYpOOPglhgUHi4Ou5wzSiIxAKhmttZMe0RTSjYA2XtEbzplWehelTwjgtnZTdfvEJjZdAu2keHyEMnqIguUQlVEEU36B49oidHOQ/Os/MyLp1zJj076I+c1x/vX5Ph</latexit>

1

<latexit sha1_base64="vVfQJ9mfKwsOqtN56rlJuxUKj3s=">AAAB7XicbZDLSgMxFIYzXmu9VV0KEiyCqzIjgrqy4MaFixbsBdpSMmmmjc0kQ3JGGIYu3btxoYhbX8HX0J3PoA9hello6w+Bj/8/h5xz/EhwA6776czNLywuLWdWsqtr6xubua3tqlGxpqxClVC67hPDBJesAhwEq0eakdAXrOb3L4Z57ZZpw5W8hiRirZB0JQ84JWCtapPLAJJ2Lu8W3JHwLHgTyJ+/f93tvZW/S+3cR7OjaBwyCVQQYxqeG0ErJRo4FWyQbcaGRYT2SZc1LEoSMtNKR9MO8IF1OjhQ2j4JeOT+7khJaEwS+rYyJNAz09nQ/C9rxBCctlIuoxiYpOOPglhgUHi4Ou5wzSiIxAKhmttZMe0RTSjYA2XtEbzplWehelTwjgtnZTdfvEJjZdAu2keHyEMnqIguUQlVEEU36B49oidHOQ/Os/MyLp1zJj076I+c1x/vX5Ph</latexit>

+ . . .

<latexit sha1_base64="SpN4M4OK5Fbmu5jFA2CoIFy4H+w=">AAAB7nicbVC7SgNBFL3rM8bXqgiCzWAQBCHsiqB2AZuUEcwDkiXMTmaTIbMPZu4KYclH2FgooqW1pZ9h54fYO3kUmnhg4HDOPcy9x0+k0Og4X9bC4tLyympuLb++sbm1be/s1nScKsarLJaxavhUcykiXkWBkjcSxWnoS173+9cjv37HlRZxdIuDhHsh7UYiEIyikeqnpNWJUbftglN0xiDzxJ2SQsn+/ng/2H+ttO1Pk2NpyCNkkmrddJ0EvYwqFEzyYb6Vap5Q1qdd3jQ0oiHXXjZed0iOjdIhQazMi5CM1d+JjIZaD0LfTIYUe3rWG4n/ec0Ug0svE1GSIo/Y5KMglQRjMrqddITiDOXAEMqUMLsS1qOKMjQN5U0J7uzJ86R2VnTPi1c3po0yTJCDQziCE3DhAkpQhgpUgUEf7uERnqzEerCerZfJ6II1zezBH1hvP2Zakq0=</latexit>

eKdf,23,L =

<latexit sha1_base64="cqFMgPcPgeKdK5l7m0TAirKMRcE="></latexit>

k
`m

<latexit sha1_base64="rlPFD3XWuwlTgH1384zWbt7Gxfs=">AAAB7nicbZDLSgMxFIYzXut4q7p0EyyCqzIjgroQi25cVrAXaIeSSc+0oZlMSDJCGfoQblwo4sKNb+Lejfg2ZtoutPWHwMf/n0POOaHkTBvP+3YWFpeWV1YLa+76xubWdnFnt66TVFGo0YQnqhkSDZwJqBlmODSlAhKHHBrh4DrPG/egNEvEnRlKCGLSEyxilBhrNdrAOY7dTrHklb2x8Dz4UyhdfrgX8u3LrXaKn+1uQtMYhKGcaN3yPWmCjCjDKIeR2041SEIHpActi4LEoINsPO4IH1qni6NE2ScMHru/OzISaz2MQ1sZE9PXs1lu/pe1UhOdBRkTMjUg6OSjKOXYJDjfHXeZAmr40AKhitlZMe0TRaixF8qP4M+uPA/147J/Uj6/9UqVKzRRAe2jA3SEfHSKKugGVVENUTRAD+gJPTvSeXRenNdJ6YIz7dlDf+S8/wDJ9JI5</latexit>

k
`m

<latexit sha1_base64="rlPFD3XWuwlTgH1384zWbt7Gxfs=">AAAB7nicbZDLSgMxFIYzXut4q7p0EyyCqzIjgroQi25cVrAXaIeSSc+0oZlMSDJCGfoQblwo4sKNb+Lejfg2ZtoutPWHwMf/n0POOaHkTBvP+3YWFpeWV1YLa+76xubWdnFnt66TVFGo0YQnqhkSDZwJqBlmODSlAhKHHBrh4DrPG/egNEvEnRlKCGLSEyxilBhrNdrAOY7dTrHklb2x8Dz4UyhdfrgX8u3LrXaKn+1uQtMYhKGcaN3yPWmCjCjDKIeR2041SEIHpActi4LEoINsPO4IH1qni6NE2ScMHru/OzISaz2MQ1sZE9PXs1lu/pe1UhOdBRkTMjUg6OSjKOXYJDjfHXeZAmr40AKhitlZMe0TRaixF8qP4M+uPA/147J/Uj6/9UqVKzRRAe2jA3SEfHSKKugGVVENUTRAD+gJPTvSeXRenNdJ6YIz7dlDf+S8/wDJ9JI5</latexit>

k
`m

<latexit sha1_base64="rlPFD3XWuwlTgH1384zWbt7Gxfs=">AAAB7nicbZDLSgMxFIYzXut4q7p0EyyCqzIjgroQi25cVrAXaIeSSc+0oZlMSDJCGfoQblwo4sKNb+Lejfg2ZtoutPWHwMf/n0POOaHkTBvP+3YWFpeWV1YLa+76xubWdnFnt66TVFGo0YQnqhkSDZwJqBlmODSlAhKHHBrh4DrPG/egNEvEnRlKCGLSEyxilBhrNdrAOY7dTrHklb2x8Dz4UyhdfrgX8u3LrXaKn+1uQtMYhKGcaN3yPWmCjCjDKIeR2041SEIHpActi4LEoINsPO4IH1qni6NE2ScMHru/OzISaz2MQ1sZE9PXs1lu/pe1UhOdBRkTMjUg6OSjKOXYJDjfHXeZAmr40AKhitlZMe0TRaixF8qP4M+uPA/147J/Uj6/9UqVKzRRAe2jA3SEfHSKKugGVVENUTRAD+gJPTvSeXRenNdJ6YIz7dlDf+S8/wDJ9JI5</latexit>

k
`m

<latexit sha1_base64="rlPFD3XWuwlTgH1384zWbt7Gxfs=">AAAB7nicbZDLSgMxFIYzXut4q7p0EyyCqzIjgroQi25cVrAXaIeSSc+0oZlMSDJCGfoQblwo4sKNb+Lejfg2ZtoutPWHwMf/n0POOaHkTBvP+3YWFpeWV1YLa+76xubWdnFnt66TVFGo0YQnqhkSDZwJqBlmODSlAhKHHBrh4DrPG/egNEvEnRlKCGLSEyxilBhrNdrAOY7dTrHklb2x8Dz4UyhdfrgX8u3LrXaKn+1uQtMYhKGcaN3yPWmCjCjDKIeR2041SEIHpActi4LEoINsPO4IH1qni6NE2ScMHru/OzISaz2MQ1sZE9PXs1lu/pe1UhOdBRkTMjUg6OSjKOXYJDjfHXeZAmr40AKhitlZMe0TRaixF8qP4M+uPA/147J/Uj6/9UqVKzRRAe2jA3SEfHSKKugGVVENUTRAD+gJPTvSeXRenNdJ6YIz7dlDf+S8/wDJ9JI5</latexit>

k
`m

<latexit sha1_base64="rlPFD3XWuwlTgH1384zWbt7Gxfs=">AAAB7nicbZDLSgMxFIYzXut4q7p0EyyCqzIjgroQi25cVrAXaIeSSc+0oZlMSDJCGfoQblwo4sKNb+Lejfg2ZtoutPWHwMf/n0POOaHkTBvP+3YWFpeWV1YLa+76xubWdnFnt66TVFGo0YQnqhkSDZwJqBlmODSlAhKHHBrh4DrPG/egNEvEnRlKCGLSEyxilBhrNdrAOY7dTrHklb2x8Dz4UyhdfrgX8u3LrXaKn+1uQtMYhKGcaN3yPWmCjCjDKIeR2041SEIHpActi4LEoINsPO4IH1qni6NE2ScMHru/OzISaz2MQ1sZE9PXs1lu/pe1UhOdBRkTMjUg6OSjKOXYJDjfHXeZAmr40AKhitlZMe0TRaixF8qP4M+uPA/147J/Uj6/9UqVKzRRAe2jA3SEfHSKKugGVVENUTRAD+gJPTvSeXRenNdJ6YIz7dlDf+S8/wDJ9JI5</latexit>

k
`m

<latexit sha1_base64="rlPFD3XWuwlTgH1384zWbt7Gxfs=">AAAB7nicbZDLSgMxFIYzXut4q7p0EyyCqzIjgroQi25cVrAXaIeSSc+0oZlMSDJCGfoQblwo4sKNb+Lejfg2ZtoutPWHwMf/n0POOaHkTBvP+3YWFpeWV1YLa+76xubWdnFnt66TVFGo0YQnqhkSDZwJqBlmODSlAhKHHBrh4DrPG/egNEvEnRlKCGLSEyxilBhrNdrAOY7dTrHklb2x8Dz4UyhdfrgX8u3LrXaKn+1uQtMYhKGcaN3yPWmCjCjDKIeR2041SEIHpActi4LEoINsPO4IH1qni6NE2ScMHru/OzISaz2MQ1sZE9PXs1lu/pe1UhOdBRkTMjUg6OSjKOXYJDjfHXeZAmr40AKhitlZMe0TRaixF8qP4M+uPA/147J/Uj6/9UqVKzRRAe2jA3SEfHSKKugGVVENUTRAD+gJPTvSeXRenNdJ6YIz7dlDf+S8/wDJ9JI5</latexit>

k
`m

<latexit sha1_base64="rlPFD3XWuwlTgH1384zWbt7Gxfs=">AAAB7nicbZDLSgMxFIYzXut4q7p0EyyCqzIjgroQi25cVrAXaIeSSc+0oZlMSDJCGfoQblwo4sKNb+Lejfg2ZtoutPWHwMf/n0POOaHkTBvP+3YWFpeWV1YLa+76xubWdnFnt66TVFGo0YQnqhkSDZwJqBlmODSlAhKHHBrh4DrPG/egNEvEnRlKCGLSEyxilBhrNdrAOY7dTrHklb2x8Dz4UyhdfrgX8u3LrXaKn+1uQtMYhKGcaN3yPWmCjCjDKIeR2041SEIHpActi4LEoINsPO4IH1qni6NE2ScMHru/OzISaz2MQ1sZE9PXs1lu/pe1UhOdBRkTMjUg6OSjKOXYJDjfHXeZAmr40AKhitlZMe0TRaixF8qP4M+uPA/147J/Uj6/9UqVKzRRAe2jA3SEfHSKKugGVVENUTRAD+gJPTvSeXRenNdJ6YIz7dlDf+S8/wDJ9JI5</latexit>

k
`m

<latexit sha1_base64="rlPFD3XWuwlTgH1384zWbt7Gxfs=">AAAB7nicbZDLSgMxFIYzXut4q7p0EyyCqzIjgroQi25cVrAXaIeSSc+0oZlMSDJCGfoQblwo4sKNb+Lejfg2ZtoutPWHwMf/n0POOaHkTBvP+3YWFpeWV1YLa+76xubWdnFnt66TVFGo0YQnqhkSDZwJqBlmODSlAhKHHBrh4DrPG/egNEvEnRlKCGLSEyxilBhrNdrAOY7dTrHklb2x8Dz4UyhdfrgX8u3LrXaKn+1uQtMYhKGcaN3yPWmCjCjDKIeR2041SEIHpActi4LEoINsPO4IH1qni6NE2ScMHru/OzISaz2MQ1sZE9PXs1lu/pe1UhOdBRkTMjUg6OSjKOXYJDjfHXeZAmr40AKhitlZMe0TRaixF8qP4M+uPA/147J/Uj6/9UqVKzRRAe2jA3SEfHSKKugGVVENUTRAD+gJPTvSeXRenNdJ6YIz7dlDf+S8/wDJ9JI5</latexit>

p
`
0
m

0

<latexit sha1_base64="YBC7LTCh6Eu+89ICHipSO5hRxaE=">AAAB8HicbZDLSsNAFIYn9VbjrerSzWCRuiqJCOpCLLpxWcFepA1lMj1ph84kYWYilNCncONCEXHni7h3I76Nk7YLbf1h4OP/z2HOOX7MmdKO823lFhaXllfyq/ba+sbmVmF7p66iRFKo0YhHsukTBZyFUNNMc2jGEojwOTT8wVWWN+5BKhaFt3oYgydIL2QBo0Qb664NnJewKNmdQtEpO2PheXCnULz4sM/jty+72il8trsRTQSEmnKiVMt1Yu2lRGpGOYzsdqIgJnRAetAyGBIBykvHA4/wgXG6OIikeaHGY/d3R0qEUkPhm0pBdF/NZpn5X9ZKdHDqpSyMEw0hnXwUJBzrCGfb4y6TQDUfGiBUMjMrpn0iCdXmRtkR3NmV56F+VHaPy2c3TrFyiSbKoz20jw6Ri05QBV2jKqohigR6QE/o2ZLWo/VivU5Kc9a0Zxf9kfX+A46fkps=</latexit>

p
`
0
m

0

<latexit sha1_base64="YBC7LTCh6Eu+89ICHipSO5hRxaE=">AAAB8HicbZDLSsNAFIYn9VbjrerSzWCRuiqJCOpCLLpxWcFepA1lMj1ph84kYWYilNCncONCEXHni7h3I76Nk7YLbf1h4OP/z2HOOX7MmdKO823lFhaXllfyq/ba+sbmVmF7p66iRFKo0YhHsukTBZyFUNNMc2jGEojwOTT8wVWWN+5BKhaFt3oYgydIL2QBo0Qb664NnJewKNmdQtEpO2PheXCnULz4sM/jty+72il8trsRTQSEmnKiVMt1Yu2lRGpGOYzsdqIgJnRAetAyGBIBykvHA4/wgXG6OIikeaHGY/d3R0qEUkPhm0pBdF/NZpn5X9ZKdHDqpSyMEw0hnXwUJBzrCGfb4y6TQDUfGiBUMjMrpn0iCdXmRtkR3NmV56F+VHaPy2c3TrFyiSbKoz20jw6Ri05QBV2jKqohigR6QE/o2ZLWo/VivU5Kc9a0Zxf9kfX+A46fkps=</latexit>

p
`
0
m

0

<latexit sha1_base64="YBC7LTCh6Eu+89ICHipSO5hRxaE=">AAAB8HicbZDLSsNAFIYn9VbjrerSzWCRuiqJCOpCLLpxWcFepA1lMj1ph84kYWYilNCncONCEXHni7h3I76Nk7YLbf1h4OP/z2HOOX7MmdKO823lFhaXllfyq/ba+sbmVmF7p66iRFKo0YhHsukTBZyFUNNMc2jGEojwOTT8wVWWN+5BKhaFt3oYgydIL2QBo0Qb664NnJewKNmdQtEpO2PheXCnULz4sM/jty+72il8trsRTQSEmnKiVMt1Yu2lRGpGOYzsdqIgJnRAetAyGBIBykvHA4/wgXG6OIikeaHGY/d3R0qEUkPhm0pBdF/NZpn5X9ZKdHDqpSyMEw0hnXwUJBzrCGfb4y6TQDUfGiBUMjMrpn0iCdXmRtkR3NmV56F+VHaPy2c3TrFyiSbKoz20jw6Ri05QBV2jKqohigR6QE/o2ZLWo/VivU5Kc9a0Zxf9kfX+A46fkps=</latexit>

p
`
0
m

0

<latexit sha1_base64="YBC7LTCh6Eu+89ICHipSO5hRxaE=">AAAB8HicbZDLSsNAFIYn9VbjrerSzWCRuiqJCOpCLLpxWcFepA1lMj1ph84kYWYilNCncONCEXHni7h3I76Nk7YLbf1h4OP/z2HOOX7MmdKO823lFhaXllfyq/ba+sbmVmF7p66iRFKo0YhHsukTBZyFUNNMc2jGEojwOTT8wVWWN+5BKhaFt3oYgydIL2QBo0Qb664NnJewKNmdQtEpO2PheXCnULz4sM/jty+72il8trsRTQSEmnKiVMt1Yu2lRGpGOYzsdqIgJnRAetAyGBIBykvHA4/wgXG6OIikeaHGY/d3R0qEUkPhm0pBdF/NZpn5X9ZKdHDqpSyMEw0hnXwUJBzrCGfb4y6TQDUfGiBUMjMrpn0iCdXmRtkR3NmV56F+VHaPy2c3TrFyiSbKoz20jw6Ri05QBV2jKqohigR6QE/o2ZLWo/VivU5Kc9a0Zxf9kfX+A46fkps=</latexit>

p
`
0
m

0

<latexit sha1_base64="YBC7LTCh6Eu+89ICHipSO5hRxaE=">AAAB8HicbZDLSsNAFIYn9VbjrerSzWCRuiqJCOpCLLpxWcFepA1lMj1ph84kYWYilNCncONCEXHni7h3I76Nk7YLbf1h4OP/z2HOOX7MmdKO823lFhaXllfyq/ba+sbmVmF7p66iRFKo0YhHsukTBZyFUNNMc2jGEojwOTT8wVWWN+5BKhaFt3oYgydIL2QBo0Qb664NnJewKNmdQtEpO2PheXCnULz4sM/jty+72il8trsRTQSEmnKiVMt1Yu2lRGpGOYzsdqIgJnRAetAyGBIBykvHA4/wgXG6OIikeaHGY/d3R0qEUkPhm0pBdF/NZpn5X9ZKdHDqpSyMEw0hnXwUJBzrCGfb4y6TQDUfGiBUMjMrpn0iCdXmRtkR3NmV56F+VHaPy2c3TrFyiSbKoz20jw6Ri05QBV2jKqohigR6QE/o2ZLWo/VivU5Kc9a0Zxf9kfX+A46fkps=</latexit>

p
`
0
m

0

<latexit sha1_base64="YBC7LTCh6Eu+89ICHipSO5hRxaE=">AAAB8HicbZDLSsNAFIYn9VbjrerSzWCRuiqJCOpCLLpxWcFepA1lMj1ph84kYWYilNCncONCEXHni7h3I76Nk7YLbf1h4OP/z2HOOX7MmdKO823lFhaXllfyq/ba+sbmVmF7p66iRFKo0YhHsukTBZyFUNNMc2jGEojwOTT8wVWWN+5BKhaFt3oYgydIL2QBo0Qb664NnJewKNmdQtEpO2PheXCnULz4sM/jty+72il8trsRTQSEmnKiVMt1Yu2lRGpGOYzsdqIgJnRAetAyGBIBykvHA4/wgXG6OIikeaHGY/d3R0qEUkPhm0pBdF/NZpn5X9ZKdHDqpSyMEw0hnXwUJBzrCGfb4y6TQDUfGiBUMjMrpn0iCdXmRtkR3NmV56F+VHaPy2c3TrFyiSbKoz20jw6Ri05QBV2jKqohigR6QE/o2ZLWo/VivU5Kc9a0Zxf9kfX+A46fkps=</latexit>

p
`
0
m

0

<latexit sha1_base64="YBC7LTCh6Eu+89ICHipSO5hRxaE=">AAAB8HicbZDLSsNAFIYn9VbjrerSzWCRuiqJCOpCLLpxWcFepA1lMj1ph84kYWYilNCncONCEXHni7h3I76Nk7YLbf1h4OP/z2HOOX7MmdKO823lFhaXllfyq/ba+sbmVmF7p66iRFKo0YhHsukTBZyFUNNMc2jGEojwOTT8wVWWN+5BKhaFt3oYgydIL2QBo0Qb664NnJewKNmdQtEpO2PheXCnULz4sM/jty+72il8trsRTQSEmnKiVMt1Yu2lRGpGOYzsdqIgJnRAetAyGBIBykvHA4/wgXG6OIikeaHGY/d3R0qEUkPhm0pBdF/NZpn5X9ZKdHDqpSyMEw0hnXwUJBzrCGfb4y6TQDUfGiBUMjMrpn0iCdXmRtkR3NmV56F+VHaPy2c3TrFyiSbKoz20jw6Ri05QBV2jKqohigR6QE/o2ZLWo/VivU5Kc9a0Zxf9kfX+A46fkps=</latexit>

p
`
0
m

0

<latexit sha1_base64="YBC7LTCh6Eu+89ICHipSO5hRxaE=">AAAB8HicbZDLSsNAFIYn9VbjrerSzWCRuiqJCOpCLLpxWcFepA1lMj1ph84kYWYilNCncONCEXHni7h3I76Nk7YLbf1h4OP/z2HOOX7MmdKO823lFhaXllfyq/ba+sbmVmF7p66iRFKo0YhHsukTBZyFUNNMc2jGEojwOTT8wVWWN+5BKhaFt3oYgydIL2QBo0Qb664NnJewKNmdQtEpO2PheXCnULz4sM/jty+72il8trsRTQSEmnKiVMt1Yu2lRGpGOYzsdqIgJnRAetAyGBIBykvHA4/wgXG6OIikeaHGY/d3R0qEUkPhm0pBdF/NZpn5X9ZKdHDqpSyMEw0hnXwUJBzrCGfb4y6TQDUfGiBUMjMrpn0iCdXmRtkR3NmV56F+VHaPy2c3TrFyiSbKoz20jw6Ri05QBV2jKqohigR6QE/o2ZLWo/VivU5Kc9a0Zxf9kfX+A46fkps=</latexit>

eIF

<latexit sha1_base64="ie61hgKU3fnOK20Gw6i6/XnJTZ8=">AAAB/3icbVDJSgNBEO2JW4zbqOBFhMYgeAozIqi3gCDxFsEskAxDT09N0qRnobtHiWMO/ooXD4p49eonePPkr9hZDpr4oODxXhVV9byEM6ks68vIzc0vLC7llwsrq2vrG+bmVl3GqaBQozGPRdMjEjiLoKaY4tBMBJDQ49DweudDv3EDQrI4ulb9BJyQdCIWMEqUllxzp33LfFCM+4CzNiUcXw7cC+yaRatkjYBniT0hxfLexx2V/Lvqmp9tP6ZpCJGinEjZsq1EORkRilEOg0I7lZAQ2iMdaGkakRCkk43uH+ADrfg4iIWuSOGR+nsiI6GU/dDTnSFRXTntDcX/vFaqglMnY1GSKojoeFGQcqxiPAwD+0wAVbyvCaGC6Vsx7RJBqNKRFXQI9vTLs6R+VLKPS2dXOo0KGiOPdtE+OkQ2OkFlVEFVVEMU3aNH9IxejAfjyXg13satOWMys43+wHj/AQ7YmTg=</latexit>

eIF

<latexit sha1_base64="ie61hgKU3fnOK20Gw6i6/XnJTZ8=">AAAB/3icbVDJSgNBEO2JW4zbqOBFhMYgeAozIqi3gCDxFsEskAxDT09N0qRnobtHiWMO/ooXD4p49eonePPkr9hZDpr4oODxXhVV9byEM6ks68vIzc0vLC7llwsrq2vrG+bmVl3GqaBQozGPRdMjEjiLoKaY4tBMBJDQ49DweudDv3EDQrI4ulb9BJyQdCIWMEqUllxzp33LfFCM+4CzNiUcXw7cC+yaRatkjYBniT0hxfLexx2V/Lvqmp9tP6ZpCJGinEjZsq1EORkRilEOg0I7lZAQ2iMdaGkakRCkk43uH+ADrfg4iIWuSOGR+nsiI6GU/dDTnSFRXTntDcX/vFaqglMnY1GSKojoeFGQcqxiPAwD+0wAVbyvCaGC6Vsx7RJBqNKRFXQI9vTLs6R+VLKPS2dXOo0KGiOPdtE+OkQ2OkFlVEFVVEMU3aNH9IxejAfjyXg13satOWMys43+wHj/AQ7YmTg=</latexit>

eIF

<latexit sha1_base64="ie61hgKU3fnOK20Gw6i6/XnJTZ8=">AAAB/3icbVDJSgNBEO2JW4zbqOBFhMYgeAozIqi3gCDxFsEskAxDT09N0qRnobtHiWMO/ooXD4p49eonePPkr9hZDpr4oODxXhVV9byEM6ks68vIzc0vLC7llwsrq2vrG+bmVl3GqaBQozGPRdMjEjiLoKaY4tBMBJDQ49DweudDv3EDQrI4ulb9BJyQdCIWMEqUllxzp33LfFCM+4CzNiUcXw7cC+yaRatkjYBniT0hxfLexx2V/Lvqmp9tP6ZpCJGinEjZsq1EORkRilEOg0I7lZAQ2iMdaGkakRCkk43uH+ADrfg4iIWuSOGR+nsiI6GU/dDTnSFRXTntDcX/vFaqglMnY1GSKojoeFGQcqxiPAwD+0wAVbyvCaGC6Vsx7RJBqNKRFXQI9vTLs6R+VLKPS2dXOo0KGiOPdtE+OkQ2OkFlVEFVVEMU3aNH9IxejAfjyXg13satOWMys43+wHj/AQ7YmTg=</latexit>

� eG

<latexit sha1_base64="tz8N+yEvDI1DgmP1aen5ThsfzRk=">AAAB+3icbVDJSgNBEO2JW4xbjEdBGoPgKcyIoJ4MeNCDhwTMAkkIPT2VpEnPQneNGkKO/oYXD4p4FfwNvfkN+hF2loMmPih4vFdFVT03kkKjbX9aibn5hcWl5HJqZXVtfSO9mSnrMFYcSjyUoaq6TIMUAZRQoIRqpID5roSK2z0b+pVrUFqEwRX2Imj4rB2IluAMjdRMZ+oeSGT1G+EBCukBPW+ms3bOHoHOEmdCsqfvX3c7b8XvQjP9UfdCHvsQIJdM65pjR9joM4WCSxik6rGGiPEua0PN0ID5oBv90e0DumcUj7ZCZSpAOlJ/T/SZr3XPd02nz7Cjp72h+J9Xi7F13OiLIIoRAj5e1IolxZAOg6CeUMBR9gxhXAlzK+UdphhHE1fKhOBMvzxLygc55zB3UrSz+UsyRpJsk12yTxxyRPLkghRIiXByS+7JI3myBtaD9Wy9jFsT1mRmi/yB9foD+XqY6A==</latexit>

B2

<latexit sha1_base64="5kdwonvbOEPKbEFVGW9HoVZPnc0=">AAAB+3icbVDLSsNAFL2pr1pfsS5FGCyCq5IUQd0V3XRZwT6gDWEynbRDJw9mJmIN+RU3LhRx6w/4Ce5c+StO2i609cDA4Zx7uWeOF3MmlWV9GYWV1bX1jeJmaWt7Z3fP3C+3ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX+d+544KyaLwVk1i6gR4GDKfEay05JrlUtoPsBoRzNFV5qa1DLlmxapaU6BlYs9JpX708UAk/2665md/EJEkoKEiHEvZs61YOSkWihFOs1I/kTTGZIyHtKdpiAMqnXSaPUMnWhkgPxL6hQpN1d8bKQ6knASensxzykUvF//zeonyL5yUhXGiaEhmh/yEIxWhvAg0YIISxSeaYCKYzorICAtMlK6rpEuwF7+8TNq1qn1WvbzRbTRghiIcwjGcgg3nUIcGNKEFBO7hEZ7hxciMJ+PVeJuNFoz5zgH8gfH+A9bQl2o=</latexit>

B3

<latexit sha1_base64="scIbnI/wC1qj5GblyPmkvkREbFU=">AAAB+3icbVDLSsNAFJ3UV62vWJeCjBbBVUlUUHdFNy5cVLAPaEKYTCft0MkkzEzEEPIrblwo4tafcOnOX/ArnLRdaOuBgcM593LPHD9mVCrL+jJKC4tLyyvl1cra+sbmlrldbcsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH10VfueeCEkjfqfSmLghGnAaUIyUljyzWsmcEKkhRgxe5l52kkPPrFl1aww4T+wpqTX2nb108PHd9MxPpx/hJCRcYYak7NlWrNwMCUUxI3nFSSSJER6hAelpylFIpJuNs+fwUCt9GERCP67gWP29kaFQyjT09WSRU856hfif10tUcO5mlMeJIhxPDgUJgyqCRRGwTwXBiqWaICyozgrxEAmEla6rokuwZ788T9rHdfu0fnGr27gBE5TBLjgAR8AGZ6ABrkETtAAGD+ARPIMXIzeejFfjbTJaMqY7O+APjPcfctWXJA==</latexit>

B3

<latexit sha1_base64="scIbnI/wC1qj5GblyPmkvkREbFU=">AAAB+3icbVDLSsNAFJ3UV62vWJeCjBbBVUlUUHdFNy5cVLAPaEKYTCft0MkkzEzEEPIrblwo4tafcOnOX/ArnLRdaOuBgcM593LPHD9mVCrL+jJKC4tLyyvl1cra+sbmlrldbcsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH10VfueeCEkjfqfSmLghGnAaUIyUljyzWsmcEKkhRgxe5l52kkPPrFl1aww4T+wpqTX2nb108PHd9MxPpx/hJCRcYYak7NlWrNwMCUUxI3nFSSSJER6hAelpylFIpJuNs+fwUCt9GERCP67gWP29kaFQyjT09WSRU856hfif10tUcO5mlMeJIhxPDgUJgyqCRRGwTwXBiqWaICyozgrxEAmEla6rokuwZ788T9rHdfu0fnGr27gBE5TBLjgAR8AGZ6ABrkETtAAGD+ARPIMXIzeejFfjbTJaMqY7O+APjPcfctWXJA==</latexit>

B3

<latexit sha1_base64="scIbnI/wC1qj5GblyPmkvkREbFU=">AAAB+3icbVDLSsNAFJ3UV62vWJeCjBbBVUlUUHdFNy5cVLAPaEKYTCft0MkkzEzEEPIrblwo4tafcOnOX/ArnLRdaOuBgcM593LPHD9mVCrL+jJKC4tLyyvl1cra+sbmlrldbcsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH10VfueeCEkjfqfSmLghGnAaUIyUljyzWsmcEKkhRgxe5l52kkPPrFl1aww4T+wpqTX2nb108PHd9MxPpx/hJCRcYYak7NlWrNwMCUUxI3nFSSSJER6hAelpylFIpJuNs+fwUCt9GERCP67gWP29kaFQyjT09WSRU856hfif10tUcO5mlMeJIhxPDgUJgyqCRRGwTwXBiqWaICyozgrxEAmEla6rokuwZ788T9rHdfu0fnGr27gBE5TBLjgAR8AGZ6ABrkETtAAGD+ARPIMXIzeejFfjbTJaMqY7O+APjPcfctWXJA==</latexit>

B3

<latexit sha1_base64="scIbnI/wC1qj5GblyPmkvkREbFU=">AAAB+3icbVDLSsNAFJ3UV62vWJeCjBbBVUlUUHdFNy5cVLAPaEKYTCft0MkkzEzEEPIrblwo4tafcOnOX/ArnLRdaOuBgcM593LPHD9mVCrL+jJKC4tLyyvl1cra+sbmlrldbcsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH10VfueeCEkjfqfSmLghGnAaUIyUljyzWsmcEKkhRgxe5l52kkPPrFl1aww4T+wpqTX2nb108PHd9MxPpx/hJCRcYYak7NlWrNwMCUUxI3nFSSSJER6hAelpylFIpJuNs+fwUCt9GERCP67gWP29kaFQyjT09WSRU856hfif10tUcO5mlMeJIhxPDgUJgyqCRRGwTwXBiqWaICyozgrxEAmEla6rokuwZ788T9rHdfu0fnGr27gBE5TBLjgAR8AGZ6ABrkETtAAGD+ARPIMXIzeejFfjbTJaMqY7O+APjPcfctWXJA==</latexit>

B3

<latexit sha1_base64="scIbnI/wC1qj5GblyPmkvkREbFU=">AAAB+3icbVDLSsNAFJ3UV62vWJeCjBbBVUlUUHdFNy5cVLAPaEKYTCft0MkkzEzEEPIrblwo4tafcOnOX/ArnLRdaOuBgcM593LPHD9mVCrL+jJKC4tLyyvl1cra+sbmlrldbcsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH10VfueeCEkjfqfSmLghGnAaUIyUljyzWsmcEKkhRgxe5l52kkPPrFl1aww4T+wpqTX2nb108PHd9MxPpx/hJCRcYYak7NlWrNwMCUUxI3nFSSSJER6hAelpylFIpJuNs+fwUCt9GERCP67gWP29kaFQyjT09WSRU856hfif10tUcO5mlMeJIhxPDgUJgyqCRRGwTwXBiqWaICyozgrxEAmEla6rokuwZ788T9rHdfu0fnGr27gBE5TBLjgAR8AGZ6ABrkETtAAGD+ARPIMXIzeejFfjbTJaMqY7O+APjPcfctWXJA==</latexit>

B3

<latexit sha1_base64="scIbnI/wC1qj5GblyPmkvkREbFU=">AAAB+3icbVDLSsNAFJ3UV62vWJeCjBbBVUlUUHdFNy5cVLAPaEKYTCft0MkkzEzEEPIrblwo4tafcOnOX/ArnLRdaOuBgcM593LPHD9mVCrL+jJKC4tLyyvl1cra+sbmlrldbcsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH10VfueeCEkjfqfSmLghGnAaUIyUljyzWsmcEKkhRgxe5l52kkPPrFl1aww4T+wpqTX2nb108PHd9MxPpx/hJCRcYYak7NlWrNwMCUUxI3nFSSSJER6hAelpylFIpJuNs+fwUCt9GERCP67gWP29kaFQyjT09WSRU856hfif10tUcO5mlMeJIhxPDgUJgyqCRRGwTwXBiqWaICyozgrxEAmEla6rokuwZ788T9rHdfu0fnGr27gBE5TBLjgAR8AGZ6ABrkETtAAGD+ARPIMXIzeejFfjbTJaMqY7O+APjPcfctWXJA==</latexit>

B3

<latexit sha1_base64="scIbnI/wC1qj5GblyPmkvkREbFU=">AAAB+3icbVDLSsNAFJ3UV62vWJeCjBbBVUlUUHdFNy5cVLAPaEKYTCft0MkkzEzEEPIrblwo4tafcOnOX/ArnLRdaOuBgcM593LPHD9mVCrL+jJKC4tLyyvl1cra+sbmlrldbcsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH10VfueeCEkjfqfSmLghGnAaUIyUljyzWsmcEKkhRgxe5l52kkPPrFl1aww4T+wpqTX2nb108PHd9MxPpx/hJCRcYYak7NlWrNwMCUUxI3nFSSSJER6hAelpylFIpJuNs+fwUCt9GERCP67gWP29kaFQyjT09WSRU856hfif10tUcO5mlMeJIhxPDgUJgyqCRRGwTwXBiqWaICyozgrxEAmEla6rokuwZ788T9rHdfu0fnGr27gBE5TBLjgAR8AGZ6ABrkETtAAGD+ARPIMXIzeejFfjbTJaMqY7O+APjPcfctWXJA==</latexit>

B2

<latexit sha1_base64="5kdwonvbOEPKbEFVGW9HoVZPnc0=">AAAB+3icbVDLSsNAFL2pr1pfsS5FGCyCq5IUQd0V3XRZwT6gDWEynbRDJw9mJmIN+RU3LhRx6w/4Ce5c+StO2i609cDA4Zx7uWeOF3MmlWV9GYWV1bX1jeJmaWt7Z3fP3C+3ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX+d+544KyaLwVk1i6gR4GDKfEay05JrlUtoPsBoRzNFV5qa1DLlmxapaU6BlYs9JpX708UAk/2665md/EJEkoKEiHEvZs61YOSkWihFOs1I/kTTGZIyHtKdpiAMqnXSaPUMnWhkgPxL6hQpN1d8bKQ6knASensxzykUvF//zeonyL5yUhXGiaEhmh/yEIxWhvAg0YIISxSeaYCKYzorICAtMlK6rpEuwF7+8TNq1qn1WvbzRbTRghiIcwjGcgg3nUIcGNKEFBO7hEZ7hxciMJ+PVeJuNFoz5zgH8gfH+A9bQl2o=</latexit>

B2

<latexit sha1_base64="5kdwonvbOEPKbEFVGW9HoVZPnc0=">AAAB+3icbVDLSsNAFL2pr1pfsS5FGCyCq5IUQd0V3XRZwT6gDWEynbRDJw9mJmIN+RU3LhRx6w/4Ce5c+StO2i609cDA4Zx7uWeOF3MmlWV9GYWV1bX1jeJmaWt7Z3fP3C+3ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX+d+544KyaLwVk1i6gR4GDKfEay05JrlUtoPsBoRzNFV5qa1DLlmxapaU6BlYs9JpX708UAk/2665md/EJEkoKEiHEvZs61YOSkWihFOs1I/kTTGZIyHtKdpiAMqnXSaPUMnWhkgPxL6hQpN1d8bKQ6knASensxzykUvF//zeonyL5yUhXGiaEhmh/yEIxWhvAg0YIISxSeaYCKYzorICAtMlK6rpEuwF7+8TNq1qn1WvbzRbTRghiIcwjGcgg3nUIcGNKEFBO7hEZ7hxciMJ+PVeJuNFoz5zgH8gfH+A9bQl2o=</latexit>

B2

<latexit sha1_base64="5kdwonvbOEPKbEFVGW9HoVZPnc0=">AAAB+3icbVDLSsNAFL2pr1pfsS5FGCyCq5IUQd0V3XRZwT6gDWEynbRDJw9mJmIN+RU3LhRx6w/4Ce5c+StO2i609cDA4Zx7uWeOF3MmlWV9GYWV1bX1jeJmaWt7Z3fP3C+3ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX+d+544KyaLwVk1i6gR4GDKfEay05JrlUtoPsBoRzNFV5qa1DLlmxapaU6BlYs9JpX708UAk/2665md/EJEkoKEiHEvZs61YOSkWihFOs1I/kTTGZIyHtKdpiAMqnXSaPUMnWhkgPxL6hQpN1d8bKQ6knASensxzykUvF//zeonyL5yUhXGiaEhmh/yEIxWhvAg0YIISxSeaYCKYzorICAtMlK6rpEuwF7+8TNq1qn1WvbzRbTRghiIcwjGcgg3nUIcGNKEFBO7hEZ7hxciMJ+PVeJuNFoz5zgH8gfH+A9bQl2o=</latexit>

B2

<latexit sha1_base64="5kdwonvbOEPKbEFVGW9HoVZPnc0=">AAAB+3icbVDLSsNAFL2pr1pfsS5FGCyCq5IUQd0V3XRZwT6gDWEynbRDJw9mJmIN+RU3LhRx6w/4Ce5c+StO2i609cDA4Zx7uWeOF3MmlWV9GYWV1bX1jeJmaWt7Z3fP3C+3ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX+d+544KyaLwVk1i6gR4GDKfEay05JrlUtoPsBoRzNFV5qa1DLlmxapaU6BlYs9JpX708UAk/2665md/EJEkoKEiHEvZs61YOSkWihFOs1I/kTTGZIyHtKdpiAMqnXSaPUMnWhkgPxL6hQpN1d8bKQ6knASensxzykUvF//zeonyL5yUhXGiaEhmh/yEIxWhvAg0YIISxSeaYCKYzorICAtMlK6rpEuwF7+8TNq1qn1WvbzRbTRghiIcwjGcgg3nUIcGNKEFBO7hEZ7hxciMJ+PVeJuNFoz5zgH8gfH+A9bQl2o=</latexit>

B2

<latexit sha1_base64="5kdwonvbOEPKbEFVGW9HoVZPnc0=">AAAB+3icbVDLSsNAFL2pr1pfsS5FGCyCq5IUQd0V3XRZwT6gDWEynbRDJw9mJmIN+RU3LhRx6w/4Ce5c+StO2i609cDA4Zx7uWeOF3MmlWV9GYWV1bX1jeJmaWt7Z3fP3C+3ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX+d+544KyaLwVk1i6gR4GDKfEay05JrlUtoPsBoRzNFV5qa1DLlmxapaU6BlYs9JpX708UAk/2665md/EJEkoKEiHEvZs61YOSkWihFOs1I/kTTGZIyHtKdpiAMqnXSaPUMnWhkgPxL6hQpN1d8bKQ6knASensxzykUvF//zeonyL5yUhXGiaEhmh/yEIxWhvAg0YIISxSeaYCKYzorICAtMlK6rpEuwF7+8TNq1qn1WvbzRbTRghiIcwjGcgg3nUIcGNKEFBO7hEZ7hxciMJ+PVeJuNFoz5zgH8gfH+A9bQl2o=</latexit>
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FIG. 8: Diagrams contributing to [eK(u,u)
df,23,L]k`m;p`0m0 . Notation as in Figs. 6 and 7. Factors of i are implicit.

to what one does when defining a K matrix, namely removing the imaginary parts that arise from unitary cuts. In

particular, since all the integrals that appear either use a PV prescription or avoid the pole, eK(u,u)
df,23,L is real. Because

of this similarity, we refer to it as a K matrix, and, indeed, the connection to standard K matrices can, in part, be
made more precise, as we show below. We use the subscript “23” to indicate that it contains amplitudes for both
two- and three-particle scattering. Finally, “df” stands for “divergence free”, which is to say that, by construction, it
contains no singularities due to three-particle cuts. This use of “df” is taken over from HS1.

The final issue concerns the volume dependence of the kernels. We find that eA0(u), eA(u), and �C3,1 are infinite-

volume quantities, and that eK(u,u)
df,23,L can be simply related to infinite-volume quantities, both results holding up

to exponentially-suppressed corrections. These results, derived in the next subsection, will allow us to make all L

dependence explicit.

4. Volume (in)dependence of kernels

The most complicated of the kernels is eK(u,u)
df,23,L, and we address this first. As is clear from Fig. 8, the 2 ! 2 part

of eK(u,u)
df,23,L is given by the geometric series

iK2,L ⌘ iB2,L
1

1 � ieIF iB2,L

= iB2,L + iB2,L ieIF iB2,L + · · · . (65)

The o↵-shell version of this quantity, i.e. with indices {ka, pr}, will be a key building block in the final expression.
The factors of 2!kL

3 cancel in pairs, leaving a single overall factor of this type, allowing us to write
⇥
K2,L

⇤
ka;pr

= 2!kL
3 [K2]ka;pr , (66)

[K2]ka;pr ⌘ �kpK2(E2,k,P2,k;a; r) , (67)

where K2(E2,P2;a; r) is the infinite-volume 2 ! 2 quantity obtained by sewing together any number of B2 kernels
with the two-particle version of eIF . As the name suggests, it is related to a two-particle K matrix. Indeed, we show
in Appendix B that the on-shell restriction is given by

⇥
K2,L

⇤
k`m;p`0m0 = 2!kL

3 [K2]k`m;p`0m0 , (68)

[K2]k`m;p`0m0 = �kp�``0�mm0K
(`)
2 (q⇤

2,k) , (69)

2ωL3𝒦2 + �̃� (u,u)
df,3

On-shell kernels 
shown by flat 

ends

• Momenta  spectate if external interaction involves two particlesk, p
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16/18T. Blanton, APLAT 2020

New form of the quantization condition

�Poles occur at energies in FV spectrum ⇒ when determinant of RHS is singular

�Asymmetric QC:

8/3/2020

• Spectrum determined by poles in C3,L(E, P)

16/18T. Blanton, APLAT 2020

New form of the quantization condition

�Poles occur at energies in FV spectrum ⇒ when determinant of RHS is singular

�Asymmetric QC:

8/3/2020

⇒

•  related to  by known integral equations�̃� (u,u)
df,3 ℳ3
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Greatly simplified derivation, easy to 
generalize

Explicit expressions for all quantities

Clean separation of infinite- and finite-
volume quantities

 is not Lorentz invariant (because 

we used TOPT)

Asymmetry of  implies that 

description requires additional parameters 

�̃� (u,u)
df,3

�̃� (u,u)
df,3

det[1 + (2ωL3𝒦2 + �̃� (u,u)
df,3 )( F̃ + G̃ )] = 0det[1 + F3𝒦df,3] = 0

19

Using similar expansions for eA0(u), eA(u), and �C3,1, we find that the factors of L
3 in B2,L, eIF , and � eG either cancel

or can be used to convert sums into integrals, again assuming a PV prescription such that K2 is smooth. Thus these
three kernels are also infinite-volume quantities.

5. Summary

We close this subsection by taking stock of what has been achieved. We started from the closed-form expression
for the three-particle correlator, Eq. (24), which is composed of infinite-volume amplitudes, but has the disadvantage
that these amplitudes are o↵ shell. After some technical e↵ort, which involved generalizing results from HS1 so that
they applied to TOPT amplitudes, we obtained two simple equations, (52) and (57), that allow the correlator to be
expressed in terms of on-shell kernels, as shown explicitly in Eq. (59). In a final step, we determined the volume
(in)dependence of these kernels. These steps lead to the following result for the correlation function,

C3,L(E,P) = eC3,1(E,P) + eA0(u)
i( eF + eG)

1

1 � i

⇣
2!L3K2 + eK(u,u)

3,df

⌘
i( eF + eG)

eA(u)
, (75)

where contributions with no L dependence are collected into21

eC3,1 ⌘ eC(0)
3,1 + � eC3,1 , (76)

and we have introduced the diagonal matrix
⇥
2!L

3
⇤
k`m;p`0m0 = �kp�``0�mm0 2!kL

3
. (77)

All L dependence is now explicit, entering through the quantities eF , eG, and 2!L
3.

Our result can be compared to Eq. (250) of HS1, rewritten to match our notation:

C3,L = C3,1 + A
0
iF3

1

1 � iKdf,3iF3
A , (78)

F3 = eF
"

1

3
�

1

1/(2!L3K2) + eF + eG
eF
#

. (79)

This shows the trade-o↵ that we have made: by using an asymmetric form of the three-particle K matrix, our final
expression is simpler, containing only the combination eF + eG and no factors of 1/3. Another gain is that we have
explicit expressions for all quantities in terms of the underlying TOPT amplitudes, in contrast to HS1, where the
definitions of the kernels are constructive and not explicit.

D. New form of the quantization condition

To make contact with the FV energy spectrum of the theory, we exploit the fact that C3,L(E,P) has a simple pole

whenever E lies in the FV spectrum. Since eC3,1, eA0(u)
, eA(u) are all smooth infinite-volume quantities, any singularity

in C3,L must arise from the quantity lying between eA0(u) and eA(u) in Eq. (75). This quantity is a matrix in the {k`m}

index space, and must have a diverging eigenvalue for C3,L to have a pole. Equivalently, the determinant of its inverse
should vanish,

det
h

eF + eG
i�1

det
h
1 � i

⇣
2!L

3
K2 + eK(u,u)

3,df

⌘
i( eF + eG)

i
= 0 . (80)

The energies where det[ eF + eG]�1 = 0 are the free three-particle energies where E = !k + !a + !bka for some choice

of FV momenta k,a 2
2⇡
L Z3. For general K2 and eK(u,u)

3,df , we expect that the product of the two determinants will not

21 Our notation (with the subscript 1) is slightly misleading because eC3,1 is not the complete infinite-volume limit of C3,L, since the
other term on the right-hand side of Eq. (75), which contains all the volume dependence, has a nonvanishing infinite-volume limit.

Complicated derivation, hard to generalize

Implicit, constructive definitions

 is Lorentz invariant

 is symmetric under particle 
exchange, so easier to parametrize

𝒦df,3

𝒦df,3

[HS14, HS15] [BS20a]
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det[1 + (2ωL3𝒦2 + �̃� (u,u)
df,3 )( F̃ + G̃ )] = 0

det[1 + F3𝒦df,3] = 0

19

Using similar expansions for eA0(u), eA(u), and �C3,1, we find that the factors of L
3 in B2,L, eIF , and � eG either cancel

or can be used to convert sums into integrals, again assuming a PV prescription such that K2 is smooth. Thus these
three kernels are also infinite-volume quantities.

5. Summary

We close this subsection by taking stock of what has been achieved. We started from the closed-form expression
for the three-particle correlator, Eq. (24), which is composed of infinite-volume amplitudes, but has the disadvantage
that these amplitudes are o↵ shell. After some technical e↵ort, which involved generalizing results from HS1 so that
they applied to TOPT amplitudes, we obtained two simple equations, (52) and (57), that allow the correlator to be
expressed in terms of on-shell kernels, as shown explicitly in Eq. (59). In a final step, we determined the volume
(in)dependence of these kernels. These steps lead to the following result for the correlation function,

C3,L(E,P) = eC3,1(E,P) + eA0(u)
i( eF + eG)

1

1 � i

⇣
2!L3K2 + eK(u,u)

3,df

⌘
i( eF + eG)

eA(u)
, (75)

where contributions with no L dependence are collected into21

eC3,1 ⌘ eC(0)
3,1 + � eC3,1 , (76)

and we have introduced the diagonal matrix
⇥
2!L

3
⇤
k`m;p`0m0 = �kp�``0�mm0 2!kL

3
. (77)

All L dependence is now explicit, entering through the quantities eF , eG, and 2!L
3.

Our result can be compared to Eq. (250) of HS1, rewritten to match our notation:

C3,L = C3,1 + A
0
iF3

1

1 � iKdf,3iF3
A , (78)

F3 = eF
"

1

3
�

1

1/(2!L3K2) + eF + eG
eF
#

. (79)

This shows the trade-o↵ that we have made: by using an asymmetric form of the three-particle K matrix, our final
expression is simpler, containing only the combination eF + eG and no factors of 1/3. Another gain is that we have
explicit expressions for all quantities in terms of the underlying TOPT amplitudes, in contrast to HS1, where the
definitions of the kernels are constructive and not explicit.

D. New form of the quantization condition

To make contact with the FV energy spectrum of the theory, we exploit the fact that C3,L(E,P) has a simple pole

whenever E lies in the FV spectrum. Since eC3,1, eA0(u)
, eA(u) are all smooth infinite-volume quantities, any singularity

in C3,L must arise from the quantity lying between eA0(u) and eA(u) in Eq. (75). This quantity is a matrix in the {k`m}

index space, and must have a diverging eigenvalue for C3,L to have a pole. Equivalently, the determinant of its inverse
should vanish,

det
h

eF + eG
i�1

det
h
1 � i

⇣
2!L

3
K2 + eK(u,u)

3,df

⌘
i( eF + eG)

i
= 0 . (80)

The energies where det[ eF + eG]�1 = 0 are the free three-particle energies where E = !k + !a + !bka for some choice

of FV momenta k,a 2
2⇡
L Z3. For general K2 and eK(u,u)

3,df , we expect that the product of the two determinants will not

21 Our notation (with the subscript 1) is slightly misleading because eC3,1 is not the complete infinite-volume limit of C3,L, since the
other term on the right-hand side of Eq. (75), which contains all the volume dependence, has a nonvanishing infinite-volume limit.

can 
symmetrize to 
original form

det[1 + F3 �̃� ′ df,3] = 0

•  obtained from  by solving an 

integral equation and symmetrizing

•Can show that  so obtain 
exactly the original [HS14] QC3

�̃� ′ df,3 �̃� (u,u)
df,3

�̃� ′ df,3 = 𝒦df,3

can 
asymmetrize 
to new form

det[1 + (2ωL3𝒦2 + 𝒦′ (u,u)
df,3 )( F̃ + G̃ )] = 0

•  given by an implicit definition

•  is Lorentz invariant

•However, , due to ambiguity 

in asymmetrization

𝒦′ (u,u)
df,3

𝒦′ (u,u)
df,3

𝒦′ (u,u)
df,3 ≠ �̃� (u,u)

df,3
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[Blanton & SRS, arXiv:2007.16190]
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QC3 (all )ℓ

[HS14]

det [F−1
3 + 𝒦df,3] = 0

RFT = generic relativistic EFT

Mai & Döring, 17

FVU = finite-volume unitarity

[HS15]

𝒦df,3 → ℳ3
Integral eqs.

L → ∞

Mai et al., 17;  Jackura et al., 18

Unitary representation of 
 in terms of ℳ3 ℛ(u,u)

QC3 ( )ℓ = 0

Equivalent representations
 of  (infinite volume)ℳ3

det [ H̃ s −
1

2ωL3
C̃ (u,u)

s
1

2ωL3 ] = 0

Equivalent representations
 of  (infinite volume)ℳ3

“algebra”

Alternate form of QC3

[BS20a]

det [1 + (2ωL3𝒦2 + 𝒦′ (u,u)
df,3 )( F̃ + G̃ )] = 0

Jackura, Dawid, Fernández-Ramírez, 
Mathieu,  Mikhasenko,  Pilloni, SRS,

Szczepaniak, 19

H̃ s = F̃ s + G̃ s + 1/(2ωL3𝒦s
2)

C̃ (u,u)
s = ℛ(u,u)

s

[HSREV19]
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QC3 (all )ℓ

[HS14]

det [F−1
3 + 𝒦df,3] = 0

RFT = generic relativistic EFT

Mai & Döring, 17

FVU = finite-volume unitarity

[HS15]

𝒦df,3 → ℳ3
Integral eqs.

L → ∞

Mai et al., 17;  Jackura et al., 18

Unitary representation of 
 in terms of ℳ3 ℛ(u,u)

QC3 ( )ℓ = 0

Equivalent representations
 of  (infinite volume)ℳ3

det [ H̃ s −
1

2ωL3
C̃ (u,u)

s
1

2ωL3 ] = 0

Equivalent representations
 of  (infinite volume)ℳ3

“algebra”

Alternate form of QC3

[BS20a]

det [1 + (2ωL3𝒦2 + 𝒦′ (u,u)
df,3 )( F̃ + G̃ )] = 0

Jackura, Dawid, Fernández-Ramírez, 
Mathieu,  Mikhasenko,  Pilloni, SRS,

Szczepaniak, 19

H̃ s = F̃ s + G̃ s + 1/(2ωL3𝒦s
2)

C̃ (u,u)
s = ℛ(u,u)

s

Form from
[HSREV19]

Is there a relation?
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QC3 (all )ℓ

[HS14]

det [F−1
3 + 𝒦df,3] = 0

RFT = generic relativistic EFT

Mai & Döring, 17

FVU = finite-volume unitarity

[HS15]

𝒦df,3 → ℳ3
Integral eqs.

L → ∞

Mai et al., 17;  Jackura et al., 18

Unitary representation of 
 in terms of ℳ3 ℛ(u,u)

QC3 ( )ℓ = 0

Equivalent representations
 of  (infinite volume)ℳ3

det [ H̃ s −
1

2ωL3
ℛ(u,u)

s
1

2ωL3 ] = 0

Equivalent representations
 of  (infinite volume)ℳ3

“algebra”

Alternate form of QC3

[BS20a]

det [1 + (2ωL3𝒦2 + 𝒦′ (u,u)
df,3 )( F̃ + G̃ )] = 0

Jackura, Dawid, Fernández-Ramírez, 
Mathieu,  Mikhasenko,  Pilloni, SRS,

Szczepaniak, 19

H̃ = F̃ + G̃ + 1/(2ωL3𝒦2)

Form from
[HSREV19]

Alternate form of QC3

[BS20b]

det [ H̃ −
1

2ωL3
ℛ(u,u) 1

2ωL3 ] = 0

“algebra”
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QC3 (all )ℓ

[HS14]

det [F−1
3 + 𝒦df,3] = 0

RFT = generic relativistic EFT

Mai & Döring, 17

FVU = finite-volume unitarity

[HS15]

𝒦df,3 → ℳ3
Integral eqs.

L → ∞

Mai et al., 17;  Jackura et al., 18

Unitary representation of 
 in terms of ℳ3 ℛ(u,u)

QC3 ( )ℓ = 0

Equivalent representations
 of  (infinite volume)ℳ3

det [ H̃ s −
1

2ωL3
ℛ(u,u)

s
1

2ωL3 ] = 0

Equivalent representations
 of  (infinite volume)ℳ3

“algebra”

Alternate form of QC3

[BS20a]

det [1 + (2ωL3𝒦2 + 𝒦′ (u,u)
df,3 )( F̃ + G̃ )] = 0

Jackura, Dawid, Fernández-Ramírez, 
Mathieu,  Mikhasenko,  Pilloni, SRS,

Szczepaniak, 19

Alternate form of QC3

[BS20b]

det [ H̃ −
1

2ωL3
ℛ(u,u) 1

2ωL3 ] = 0

• Provides derivation 
of FVU QC3

• Generalizes result 
to all 

• Shows equivalence 
of approaches

ℓ
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• If symmetrize, get unitary 

• Asymmetry not defined in terms of diagrams (Feynman or TOPT)

• If  is Lorentz invariant, then so is 

ℳ3

ℛ(u,u) ℳℛ,(u,u)
3

Step : equate forms for1 ℳ(u,u)
3

52

In addition to its implicit dependence on l, ml, l0,
and m0

l, Ap0p depends on the remaining four independent
variables. Convenient choices are s, the initial and final pair
invariant mass squares, σp and σp0 , and the scattering
angle between spectators in the CMF, Θp0p, defined as
cosΘp0p ≡ p̂0 · p̂ ¼ P̂p0 · P̂p.

III. ON-SHELL REPRESENTATIONS

Our interest is in constructing on-shell representations
for the connected 3 → 3 scattering amplitude. Here we
review the relevant features of the B-matrix representation
discussed in Ref. [26] and the HS-BHS representation
of Ref. [12].

A. B-matrix representation

As discussed in Refs. [25,26], the Bmatrix is an on-shell
representation for the connected 3 → 3 amplitude that was
constructed to satisfy elastic 3 → 3 unitarity. In the plml-
basis, the B-matrix representation leads to the integral
equation

Ap0p ¼ F p0Bp0pF p þ
Z

k
F p0Bp0kAkp; ð11Þ

where Bp0p ¼ Gp0p þRp0p is the B-matrix driving term,
with Gp0p being the OPE contribution6 and Rp0p a real
function called the R matrix. Figure 2 shows a diagram-
matic representation of Eq. (11). By construction, Eq. (11)
satisfies the 3 → 3 unitarity relation given that F p is
known, as demonstrated in Appendix A. Equation (11)
is an infinite-dimensional matrix equation in ðl; mlÞ-space,
and the integration over the spectator momenta includes the
measure,

Z

k
≡
Z

d3k
ð2πÞ32ωk

: ð12Þ

The integration ranges over all momenta, or equivalently in
−∞ ≤ σk ≤ ð

ffiffiffi
s

p
−mÞ2 and over the entire solid angle of

the spectator. The jkj → ∞ (σk → −∞) limit is divergent
and needs to be regulated. The preferred option is to restrict
the integration region to 4m2 ≤ σk ≤ ð

ffiffiffi
s

p
−mÞ2, which is

the only domain of σk that is actually restricted by 3 → 3
unitarity [26]. Beyond this region, one deals with unphys-
ical (off-mass shell) amplitudes, which depend on unknown
parameters, e.g., subtraction constants.

The OPE amplitude is given by

ð13Þ

where p̂⋆
p0 is the direction of momentum of the initial state

spectator in the final state pair rest frame. Similarly, p̂⋆
p0 is

the orientation of the final state spectator in the initial state
pair rest frame. The magnitudes of these momenta are

p⋆
p0 ¼

1

2
ffiffiffiffiffiffiσp0

p λ1=2ððPp0 − pÞ2; σp0 ; m2Þ;

p0⋆
p ¼ 1

2
ffiffiffiffiffiσp

p λ1=2ððPp − p0Þ2; σp; m2Þ: ð14Þ

Note that energy-momentum conservation gives Pp − p0 ¼
Pp0 − p. The normalization of the barrier factors is chosen
such that they are equal to 1 when the exchanged particle is
on its mass shell, ðPp − p0Þ2 ¼ m2.
Our definition of G differs from the corresponding

quantity in Ref. [12], denoted G∞, in three ways. First,
there is a difference in overall sign. We find the choice in
Eq. (13) more convenient since it has a positive imaginary
part, which avoids several minus signs in expressions.
Second, G∞ contains a cutoff function, which serves to cut
off the integrals over spectator momenta, which in Ref. [12]
run over all values. Third, the form given in Ref. [12] has
the nonrelativistic form of the pole in the denominator, in
contrast to the relativistic form in Eq. (13). However, in
recent applications of the BHþ BHS formalism, e.g.,
in Refs. [13,30], the relativistic form is used. We also note
that the barrier factors in G are not required from unitarity,

(a)

(b)

FIG. 2. Diagrammatic representation of (a) the B-matrix repre-
sentation for the on-shell amplitude, Eq. (11), and (b) the Bmatrix
that is composed of the OPE Gp0p, Eq. (13), and the R matrix.

6In Ref. [26] we denoted the OPE contribution by the symbol
E, while here we use G to provide a closer connection to the
notation of Ref. [12].

A.W. JACKURA et al. PHYS. REV. D 100, 034508 (2019)

034508-4

• R-matrix form for asymmetric, infinite-volume three-particle amplitudes

Figures from
Jackura et al.,19

MR,(u,u)
3 =
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4

III. THE R
(u,u) MATRIX AND ITS RELATION TO K

′(u,u)
df,3 AND K̃

(u,u)
df,3

One of the results of the RFT approach is an integral equation relating Kdf,3 to the physical three-particle scattering
amplitude M3 [2]. This provides a representation of M3 in terms of a real function that is devoid of s-channel
unitary cuts (up to the five-particle threshold) and of on-shell singularities. An important check on this result was
the demonstration, in Ref. [32], that it provided a representation of M3 that satisfied the constraints of s-channel
unitarity.4 A similar, but different, parametrization of M3, in terms of a real K-matrix-like asymmetric5 amplitude
R(u,u), had previously been suggested in the context of amplitude analyses of experimental results for resonances
that decay to three particles [29, 30]. This parametrization was developed in order to satisfy s-channel unitarity. In
Ref. [31], it was shown that these two parametrizations are equivalent, and the relationship between Kdf,3 and R(u,u)

was derived.
Here we need to extend the analysis of Ref. [31] to relate the asymmetric RFT amplitudes K′(u,u)

df,3 and K̃(u,u)
df,3 to the

FVU amplitude R(u,u). This brings to light two technical issues that were overlooked in Ref. [31], although it turns
out that they do not impact the final conclusion of that work. We will describe these in the course of our discussion.
The desired relationships are determined by equating expressions for asymmetric forms of the three-particle scatter-

ing amplitude. We use two such amplitudes: M(u,u)
3 defined in Ref. [2] in the context of a Feynman diagram analysis,

and M̃(u,u)
3 defined in BS1 in an analysis using time-ordered perturbation theory (TOPT). We present the results for

these quantities in turn, and then compare them to the corresponding expressions in terms of R(u,u).

A. Expression for M
(u,u)
3

M(u,u)
3 is defined in Ref. [2] using a skeleton expansion in terms of Bethe-Salpeter kernels. The external particles can

be directly connected either to two- or three-particle kernels. The asymmetry arises because two-particle kernels are
connected to the external momenta such that the spectator momentum is always associated with the noninteracting
propagator. The connection to the three-particle kernel does not lead to asymmetry, since this kernel is symmetric.

In Ref. [2], an expression for M(u,u)
3 is obtained that depends both on K(u,u)

df,3 and Kdf,3. In particular, it does not
depend solely on the symmetric form Kdf,3 alone. This brings up the first technical issue alluded to above. In the

analysis of Ref. [31], a different expression for M(u,u)
3 is used that is given wholly in terms of Kdf,3 [see Eqs. (20) and

(21) of [31], in which M(u,u)
3 is called A]. This is, in fact, not the correct expression for M(u,u)

3 , but rather describes
a related (and implicitly defined) quantity, in which a certain subclass of diagrams have has been symmetrized. This

change does not impact the final results of Ref. [31] because both the correct and incorrect expressions for M(u,u)
3

symmetrize to the same quantity, M3, and this is all that is required for the derivation.

Here we use the correct expression for M(u,u)
3 . To determine this, we start from the amplitude’s finite-volume

version M(u,u)
3,L (also defined in Ref. [2]), which goes over to M(u,u)

3 in the appropriate L → ∞ limit. It was shown

in BS1 how to asymmetrize the result for M(u,u)
3,L given in Ref. [2] so as to write it solely in terms of K(u,u)

df,3 . After

further manipulation this is rewritten in BS1 in terms of K′(u,u)
df,3 ,

M(u,u)
df,3,L = M(u,u)

3,L −D(u,u)
L (9)

=
1

1 +K2,L(F̃ + G̃)
K′(u,u)

df,3

1

1 + (F̃ + G̃) 1
1+K2,L(F̃+G̃)

K′(u,u)
df,3

1

1 + (F̃ + G̃)K2,L

. (10)

Here we have switched to using the divergence-free form of the three-particle amplitude, whose difference from the
original form is given by the multiple two-particle scattering contribution

D(u,u)
L = −M2,LG̃M2,L

1

1 + G̃M2,L

, (11)

where M2,L is defined in Eq. (A12).

4 This demonstration remains valid when G̃ is defined with the boost used in BS1.
5 As with C̃

(u,u)
s , we have added the superscript (u, u), which is not present in the original works, to emphasize the asymmetry of R(u,u).
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ℳ(u,u)
3 = lim

L→∞
ℳ(u,u)

3,L

ℳ(u,u)
3,L = ℳ(u,u)

df,3,L + 𝒟(u,u)
L

Step : equate forms for1 ℳ(u,u)
3
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connected to the external momenta such that the spectator momentum is always associated with the noninteracting
propagator. The connection to the three-particle kernel does not lead to asymmetry, since this kernel is symmetric.

In Ref. [2], an expression for M(u,u)
3 is obtained that depends both on K(u,u)

df,3 and Kdf,3. In particular, it does not
depend solely on the symmetric form Kdf,3 alone. This brings up the first technical issue alluded to above. In the

analysis of Ref. [31], a different expression for M(u,u)
3 is used that is given wholly in terms of Kdf,3 [see Eqs. (20) and

(21) of [31], in which M(u,u)
3 is called A]. This is, in fact, not the correct expression for M(u,u)

3 , but rather describes
a related (and implicitly defined) quantity, in which a certain subclass of diagrams have has been symmetrized. This

change does not impact the final results of Ref. [31] because both the correct and incorrect expressions for M(u,u)
3

symmetrize to the same quantity, M3, and this is all that is required for the derivation.

Here we use the correct expression for M(u,u)
3 . To determine this, we start from the amplitude’s finite-volume

version M(u,u)
3,L (also defined in Ref. [2]), which goes over to M(u,u)

3 in the appropriate L → ∞ limit. It was shown

in BS1 how to asymmetrize the result for M(u,u)
3,L given in Ref. [2] so as to write it solely in terms of K(u,u)

df,3 . After

further manipulation this is rewritten in BS1 in terms of K′(u,u)
df,3 ,

M(u,u)
df,3,L = M(u,u)

3,L −D(u,u)
L (9)

=
1

1 +K2,L(F̃ + G̃)
K′(u,u)

df,3

1

1 + (F̃ + G̃) 1
1+K2,L(F̃+G̃)

K′(u,u)
df,3

1

1 + (F̃ + G̃)K2,L

. (10)

Here we have switched to using the divergence-free form of the three-particle amplitude, whose difference from the
original form is given by the multiple two-particle scattering contribution

D(u,u)
L = −M2,LG̃M2,L

1

1 + G̃M2,L

, (11)

where M2,L is defined in Eq. (A12).

4 This demonstration remains valid when G̃ is defined with the boost used in BS1.
5 As with C̃

(u,u)
s , we have added the superscript (u, u), which is not present in the original works, to emphasize the asymmetry of R(u,u).

ℳ(u,u)
3 = lim

L→∞
ℳ(u,u)

3,L

ℳ(u,u)
3,L = ℳ(u,u)

df,3,L + 𝒟(u,u)
L

Equating  and  gives integral equation relating  and  ℳℛ,(u,u)
3 ℳ(u,u)

3 ℛ(u,u) 𝒦′ (u,u)
df,3

Step : equate forms for1 ℳ(u,u)
3
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Step : rewrite asymmetric QC32

det [1 + (2ωL3𝒦2 + 𝒦′ (u,u)
df,3 )( F̃ + G̃ )] = 0 ⇒ det [ H̃ − X(u,u)] = 0

H̃ = F̃ + G̃ + 𝒦−1
2,L 𝒦2,L = (2ωL3)𝒦2

X(u,u) = 𝒦−1
2,L𝒦′ (u,u)

df,3 𝒦−1
2,L

1
1 + 𝒦′ (u,u)

df,3 𝒦−1
2,L

• Algebraic manipulations
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Step : combine3
det [ H̃ − X(u,u)] = 0 X(u,u) = 𝒦−1

2,L𝒦′ (u,u)
df,3 𝒦−1

2,L
1

1 + 𝒦′ (u,u)
df,3 𝒦−1

2,L

• Using integral equation relating  and , can show thatℛ(u,u) 𝒦′ (u,u)
df,3

8

In fact, although K(!)
2 and K′(u,u)

df,3 both depend on the choice of PV prescription, it turns out that all choices ofR(u,u)

are prescription-independent. The key fact here is that the combination K−1
2,L + F̃ is, by construction, independent of

the prescription. This in turn implies that L̃ is also prescription-independent, since it can be written

L̃ = lim
L→∞

1

K−1
2,L + F̃ + G̃

. (37)

Finally, using Eq. (23) and the fact that MR,(u,u)
df,3 is prescription independent (which follows from the prescription

independence of M3 and D(u,u)), we see that R(u,u) must also be independent of the PV prescription. In this sense,

R(u,u) is a “more physical” quantity than K′(u,u)
df,3 or K̃(u,u)

df,3 . We note, however, that R(u,u) does depend on the cutoff
function, since that dependence enters through G∞ and is not cancelled.

IV. EXPRESSING THE QUANTIZATION CONDITION IN TERMS OF R
(u,u)

We are now ready to combine the results obtained above to rewrite the quantization condition in terms of R(u,u).

For definiteness, we first consider the choice of R(u,u) that is related to K′(u,u)
df,3 by Eq. (34), and thus consider the

form of the quantization condition containing the latter quantity, Eq. (4). We discuss the other choices of R(u,u)

subsequently.
We start from Eq. (33), from which follows

[
R(u,u)

]−1
= K2 +K2

[
K′(u,u)

df,3

]−1
K2 . (38)

This can be rewritten as

R(u,u) = K−1
2 −

[
K2 +K′(u,u)

df,3

]−1
(39)

= K−1
2 K′(u,u)

df,3 K−1
2

1

1 +K′(u,u)
df,3 K−1

2

. (40)

The key observation is that the quantity X(u,u) appearing in the quantization condition, Eq. (6), satisfies

lim
L→∞

(2ωL3)X(u,u)(2ωL3) = R(u,u) , (41)

where the factors of (2ωL3) arise from Eq. (B7). It follows that, if the finite-volume corrections to this result are
exponentially suppressed, i.e. if

[
(2ωL3)X(u,u)(2ωL3)

]

k!m;p!′m′

=
[
R(u,u)

]

k!m;p!′m′

+O(e−mL) , (42)

then the quantization condition (4) can be rewritten as

det
[
H̃ − (2ωL3)−1R(u,u)(2ωL3)−1

]
= 0 . (43)

Here R(u,u) is the matrix form of the infinite-volume amplitude, obtained in the usual way
[
R(u,u)

]

k!m;p!′m′

≡ R(u,u)(k,p)!m;!′m′ , {k,p} ∈ (2π/L)Z3 , (44)

i.e. by restricting the momenta to the finite-volume set.
To discuss the validity of Eq. (42), we consider the definition of X(u,u), Eq. (6). Expanding out the geometric series,

we find terms of the form . . .K′(u,u)
df,3 K−1

2,LK
′(u,u)
df,3 . . . . As shown in Eq. (B8) this goes over to . . .K′(u,u)

df,3 K−1
2 K′(u,u)

df,3 . . .
in the infinite-volume limit, with the intermediate momentum sums over spectator momenta converted to integrals.

However, if K(!)
2 has zeros within the kinematic range of interest (which ranges up to the four pion threshold for

two-particle scattering), then the difference between sum and integral over the resulting poles in K−1
2 will lead to

power-law corrections to Eq. (42), which would invalidate the quantization condition (43). Zeros in K(!)
2 (along the

• Substituting gives claimed result

8
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2,LK
′(u,u)
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two-particle scattering), then the difference between sum and integral over the resulting poles in K−1
2 will lead to

power-law corrections to Eq. (42), which would invalidate the quantization condition (43). Zeros in K(!)
2 (along the

• Derivation valid only if use smooth cutoff function, and appropriate form for 

• We expect that, if we take the NR limit, we will obtain the NREFT form of the QC3 
generalized to all 

G̃

ℓ
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Conclusions & Outlook

56
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Summary

57

• Formalism is ready to use for phenomenologically interesting case of 3 pions with all 
allowed isospins

• Also provides numerical method for studying properties of relativistic 2- and 3-
particle bound states

• First comparisons with LQCD data for 3π+ show evidence for 3-particle quasilocal 
interaction 

• Several similar studies have recently appeared: [Culver et al., 1911.09047 (GWU), 
Fischer et al., 2008.03035 (ETMC), Hansen et al., 2009.04931 (Hadspec)]

• Simplified derivation of QC3 using TOPT 

• Equivalence of RFT and FVU forms demonstrated, and FVU form generalized 

𝒦df,3

https://arxiv.org/abs/1911.09047
https://arxiv.org/abs/2008.03035
https://arxiv.org/abs/1911.09047
https://arxiv.org/abs/2008.03035
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Relative merits of forms of QC3

58

det


eF + eG+

1

2!L3K2
� 1

2!L3
R(u,u) 1

2!L3

�
= 0

<latexit sha1_base64="eBrCU02bDl/7ySyopcZW9shUddo="></latexit>

det [F−1
3 + 𝒦df,3] = 0

Symmetric three-particle K matrix

Threshold expansion requires fewer 
parameters

Little intuition in presence of three-
particle resonances

 depends on PV pole 
prescription
𝒦df,3

Asymmetric three-particle R matrix

Threshold expansion requires more 
(redundant) parameters

Some experience and intuition from 
JPAC studies of fitting amplitudes to 
experimental data

 independent of pole 
prescription
ℛ(u,u)
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To-do list for QC3s

59

• Generalize formalism to broaden applications

• Nondegenerate particles, e.g.  [Pang et al., 2008.13014 (NREFT)]

• Spin for, e.g., 

• Determination of Lellouch-Lüscher factors to allow application to K→3π etc

• Develop physics-based parametrizations of  to describe resonances

• Need to learn how to solve integral equations relating Kdf,3 to M3 above 
threshold [Jackura, INT talk, 8/20; Hansen et al., 2009.04931]

• Understand appearance of unphysical solutions (wrong residue) for some values of 
parameters—observed in [BHS18; BRS19]

• May be due to truncation, or due to exponentially suppressed effects, or both

• Move on to QC4 !?

K+K+π+

Nππ

𝒦df,3
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• Many precise  levels in all irreps in 8 frames for three choices of quark masses

• Should allow extraction of s- and d-wave parameters of 2- and 3-particle interactions

3π+ & 3K+

A taste of the future?

60
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[Blanton, Hanlon, Hörz, Romero-López, SRS, in progress]
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ࡦ ɠɫƟȋǩȝǩȣŒɫˈ ƌŒʉŒ Œʉ mπ = 345MeVࡪ mK = 440MeV
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Preliminary
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Thank you! 
Questions?
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Backup slides
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F3 collects 2-particle interactions

63

F3 =
1

2ωL3 [ F
3

− F
1

𝒦−1
2 + F + G

F]
• F & G are known geometrical functions, 

containing cutoff function H

Gpℓ′ m′ ;kℓm = ( k*
q*p )

ℓ′ 
4πYℓ′ m′ ( ̂k*)H( ⃗p )H( ⃗k )Y*ℓm( ̂p*)

(P − k − p)2 − m2 ( p*
q*k )

ℓ
1

2ωkL3 Relativistic form 
introduced in [BHS17]

Fpℓ′ m′ ;kℓm = δpk H( ⃗k ) FPV,ℓ′ m′ ;ℓm(E − ωk, ⃗P − ⃗k , L)

FPV;ℓ′ m′ ;ℓm(E, ⃗P , L) =
1
2

1
L3 ∑⃗

k

− PV ∫
d3k

(2π)3

𝒴ℓ′ m′ ( ⃗k *)𝒴*ℓm( ⃗k *) h( ⃗k )
2ωk2ωP−k(E − ωk − ωP−k)

𝒴ℓm( ⃗k *) = 4π ( k*
q* )

ℓ

Yℓm( ̂k*)

Relativistic form 
equivalent up to 
exponentially-

suppressed terms
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Evidence for trimer bound by a2

6464

ma0 = − 0.1, ma2 = − 1.3, r0 = P0 = 𝒦df,3 = 0

22 24 26 28 30 32 34 36

mL

2.874

2.875

2.876

2.877

2.878

2.879

EA+
1

m

Binding caused by d-

wave attraction! 

Relevant for atomic 

physics?
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Definitions of asymmetric kernels

20

+
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a

k
+

<latexit sha1_base64="nPF5bTufkjs0WtKzibFS6tGbtV4=">AAAB6HicbVDLSgNBEOyNUWN8RXP0MhgEQQi7Iqi3gBcPHhIwD9gsYXbSm4yZfTAzK4QQf8CLB0W8+jdevfk1OnkcNLGgoajqprvLTwRX2ra/rMxKdnVtPbeR39za3tkt7O03VJxKhnUWi1i2fKpQ8AjrmmuBrUQiDX2BTX9wNfGb9ygVj6NbPUzQC2kv4gFnVBupdtIplOyyPQVZJs6clCrFD/c723yodgqf7W7M0hAjzQRVynXsRHsjKjVnAsf5dqowoWxAe+gaGtEQlTeaHjomR0bpkiCWpiJNpurviRENlRqGvukMqe6rRW8i/ue5qQ4uvBGPklRjxGaLglQQHZPJ16TLJTIthoZQJrm5lbA+lZRpk03ehOAsvrxMGqdl56x8WTNp3MAMOTiAQzgGB86hAtdQhTowQHiEZ3ix7qwn69V6m7VmrPlMEf7Aev8B6oWQEA==</latexit>

p

r

a

k

a

k p

r p

r
+

<latexit sha1_base64="nPF5bTufkjs0WtKzibFS6tGbtV4=">AAAB6HicbVDLSgNBEOyNUWN8RXP0MhgEQQi7Iqi3gBcPHhIwD9gsYXbSm4yZfTAzK4QQf8CLB0W8+jdevfk1OnkcNLGgoajqprvLTwRX2ra/rMxKdnVtPbeR39za3tkt7O03VJxKhnUWi1i2fKpQ8AjrmmuBrUQiDX2BTX9wNfGb9ygVj6NbPUzQC2kv4gFnVBupdtIplOyyPQVZJs6clCrFD/c723yodgqf7W7M0hAjzQRVynXsRHsjKjVnAsf5dqowoWxAe+gaGtEQlTeaHjomR0bpkiCWpiJNpurviRENlRqGvukMqe6rRW8i/ue5qQ4uvBGPklRjxGaLglQQHZPJ16TLJTIthoZQJrm5lbA+lZRpk03ehOAsvrxMGqdl56x8WTNp3MAMOTiAQzgGB86hAtdQhTowQHiEZ3ix7qwn69V6m7VmrPlMEf7Aev8B6oWQEA==</latexit>

a

k p

r
+

<latexit sha1_base64="nPF5bTufkjs0WtKzibFS6tGbtV4=">AAAB6HicbVDLSgNBEOyNUWN8RXP0MhgEQQi7Iqi3gBcPHhIwD9gsYXbSm4yZfTAzK4QQf8CLB0W8+jdevfk1OnkcNLGgoajqprvLTwRX2ra/rMxKdnVtPbeR39za3tkt7O03VJxKhnUWi1i2fKpQ8AjrmmuBrUQiDX2BTX9wNfGb9ygVj6NbPUzQC2kv4gFnVBupdtIplOyyPQVZJs6clCrFD/c723yodgqf7W7M0hAjzQRVynXsRHsjKjVnAsf5dqowoWxAe+gaGtEQlTeaHjomR0bpkiCWpiJNpurviRENlRqGvukMqe6rRW8i/ue5qQ4uvBGPklRjxGaLglQQHZPJ16TLJTIthoZQJrm5lbA+lZRpk03ehOAsvrxMGqdl56x8WTNp3MAMOTiAQzgGB86hAtdQhTowQHiEZ3ix7qwn69V6m7VmrPlMEf7Aev8B6oWQEA==</latexit>

+

<latexit sha1_base64="nPF5bTufkjs0WtKzibFS6tGbtV4=">AAAB6HicbVDLSgNBEOyNUWN8RXP0MhgEQQi7Iqi3gBcPHhIwD9gsYXbSm4yZfTAzK4QQf8CLB0W8+jdevfk1OnkcNLGgoajqprvLTwRX2ra/rMxKdnVtPbeR39za3tkt7O03VJxKhnUWi1i2fKpQ8AjrmmuBrUQiDX2BTX9wNfGb9ygVj6NbPUzQC2kv4gFnVBupdtIplOyyPQVZJs6clCrFD/c723yodgqf7W7M0hAjzQRVynXsRHsjKjVnAsf5dqowoWxAe+gaGtEQlTeaHjomR0bpkiCWpiJNpurviRENlRqGvukMqe6rRW8i/ue5qQ4uvBGPklRjxGaLglQQHZPJ16TLJTIthoZQJrm5lbA+lZRpk03ehOAsvrxMGqdl56x8WTNp3MAMOTiAQzgGB86hAtdQhTowQHiEZ3ix7qwn69V6m7VmrPlMEf7Aev8B6oWQEA==</latexit>

a

k p

r
+

<latexit sha1_base64="nPF5bTufkjs0WtKzibFS6tGbtV4=">AAAB6HicbVDLSgNBEOyNUWN8RXP0MhgEQQi7Iqi3gBcPHhIwD9gsYXbSm4yZfTAzK4QQf8CLB0W8+jdevfk1OnkcNLGgoajqprvLTwRX2ra/rMxKdnVtPbeR39za3tkt7O03VJxKhnUWi1i2fKpQ8AjrmmuBrUQiDX2BTX9wNfGb9ygVj6NbPUzQC2kv4gFnVBupdtIplOyyPQVZJs6clCrFD/c723yodgqf7W7M0hAjzQRVynXsRHsjKjVnAsf5dqowoWxAe+gaGtEQlTeaHjomR0bpkiCWpiJNpurviRENlRqGvukMqe6rRW8i/ue5qQ4uvBGPklRjxGaLglQQHZPJ16TLJTIthoZQJrm5lbA+lZRpk03ehOAsvrxMGqdl56x8WTNp3MAMOTiAQzgGB86hAtdQhTowQHiEZ3ix7qwn69V6m7VmrPlMEf7Aev8B6oWQEA==</latexit>

a

k p

r
+

<latexit sha1_base64="nPF5bTufkjs0WtKzibFS6tGbtV4=">AAAB6HicbVDLSgNBEOyNUWN8RXP0MhgEQQi7Iqi3gBcPHhIwD9gsYXbSm4yZfTAzK4QQf8CLB0W8+jdevfk1OnkcNLGgoajqprvLTwRX2ra/rMxKdnVtPbeR39za3tkt7O03VJxKhnUWi1i2fKpQ8AjrmmuBrUQiDX2BTX9wNfGb9ygVj6NbPUzQC2kv4gFnVBupdtIplOyyPQVZJs6clCrFD/c723yodgqf7W7M0hAjzQRVynXsRHsjKjVnAsf5dqowoWxAe+gaGtEQlTeaHjomR0bpkiCWpiJNpurviRENlRqGvukMqe6rRW8i/ue5qQ4uvBGPklRjxGaLglQQHZPJ16TLJTIthoZQJrm5lbA+lZRpk03ehOAsvrxMGqdl56x8WTNp3MAMOTiAQzgGB86hAtdQhTowQHiEZ3ix7qwn69V6m7VmrPlMEf7Aev8B6oWQEA==</latexit>

h
fM(u,u)

3,L

i

ka;pr
=

<latexit sha1_base64="2mYmqJKTKb/AjiZ41jPkg2HEOJQ=">AAACIXicbVBNSxxBEO0xmpg1iWs8emkUYQOymdGASggIevCgoOCqsDMOPT01u832fNBdY1ia+Su5+CP8A148RES8iL/B/2Dvrge/HhQ83quiql5USKHRde+csQ/jEx8/TX6uTX35+m26PvP9UOel4tDiuczVccQ0SJFBCwVKOC4UsDSScBT1Ngf+0SkoLfLsAPsFBCnrZCIRnKGVwvqaLyHBtv9XxIBCxmB8zqTZrarQrCztVCemUS6VPypfiU4Xg9D02O9CVfRPWF9wm+4Q9C3xnsjCxtbPW/Nw3tgL6zd+nPMyhQy5ZFq3PbfAwDCFgkuoan6poWC8xzrQtjRjKejADD+s6KJVYprkylaGdKg+nzAs1bqfRrYzZdjVr72B+J7XLjFZC4zIihIh46NFSSkp5nQQF42FAo6ybwnjSthbKe8yxTjaUGs2BO/1y2/J4XLT+9Vc37dpbJMRJskcmScN4pFVskG2yR5pEU7+kQvyn1w5Z86lc+3cjFrHnKeZWfICzv0jrGSoLA==</latexit>

B2

<latexit sha1_base64="5kdwonvbOEPKbEFVGW9HoVZPnc0=">AAAB+3icbVDLSsNAFL2pr1pfsS5FGCyCq5IUQd0V3XRZwT6gDWEynbRDJw9mJmIN+RU3LhRx6w/4Ce5c+StO2i609cDA4Zx7uWeOF3MmlWV9GYWV1bX1jeJmaWt7Z3fP3C+3ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX+d+544KyaLwVk1i6gR4GDKfEay05JrlUtoPsBoRzNFV5qa1DLlmxapaU6BlYs9JpX708UAk/2665md/EJEkoKEiHEvZs61YOSkWihFOs1I/kTTGZIyHtKdpiAMqnXSaPUMnWhkgPxL6hQpN1d8bKQ6knASensxzykUvF//zeonyL5yUhXGiaEhmh/yEIxWhvAg0YIISxSeaYCKYzorICAtMlK6rpEuwF7+8TNq1qn1WvbzRbTRghiIcwjGcgg3nUIcGNKEFBO7hEZ7hxciMJ+PVeJuNFoz5zgH8gfH+A9bQl2o=</latexit>

B3

<latexit sha1_base64="scIbnI/wC1qj5GblyPmkvkREbFU=">AAAB+3icbVDLSsNAFJ3UV62vWJeCjBbBVUlUUHdFNy5cVLAPaEKYTCft0MkkzEzEEPIrblwo4tafcOnOX/ArnLRdaOuBgcM593LPHD9mVCrL+jJKC4tLyyvl1cra+sbmlrldbcsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH10VfueeCEkjfqfSmLghGnAaUIyUljyzWsmcEKkhRgxe5l52kkPPrFl1aww4T+wpqTX2nb108PHd9MxPpx/hJCRcYYak7NlWrNwMCUUxI3nFSSSJER6hAelpylFIpJuNs+fwUCt9GERCP67gWP29kaFQyjT09WSRU856hfif10tUcO5mlMeJIhxPDgUJgyqCRRGwTwXBiqWaICyozgrxEAmEla6rokuwZ788T9rHdfu0fnGr27gBE5TBLjgAR8AGZ6ABrkETtAAGD+ARPIMXIzeejFfjbTJaMqY7O+APjPcfctWXJA==</latexit>

B3

<latexit sha1_base64="scIbnI/wC1qj5GblyPmkvkREbFU=">AAAB+3icbVDLSsNAFJ3UV62vWJeCjBbBVUlUUHdFNy5cVLAPaEKYTCft0MkkzEzEEPIrblwo4tafcOnOX/ArnLRdaOuBgcM593LPHD9mVCrL+jJKC4tLyyvl1cra+sbmlrldbcsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH10VfueeCEkjfqfSmLghGnAaUIyUljyzWsmcEKkhRgxe5l52kkPPrFl1aww4T+wpqTX2nb108PHd9MxPpx/hJCRcYYak7NlWrNwMCUUxI3nFSSSJER6hAelpylFIpJuNs+fwUCt9GERCP67gWP29kaFQyjT09WSRU856hfif10tUcO5mlMeJIhxPDgUJgyqCRRGwTwXBiqWaICyozgrxEAmEla6rokuwZ788T9rHdfu0fnGr27gBE5TBLjgAR8AGZ6ABrkETtAAGD+ARPIMXIzeejFfjbTJaMqY7O+APjPcfctWXJA==</latexit>

B3

<latexit sha1_base64="scIbnI/wC1qj5GblyPmkvkREbFU=">AAAB+3icbVDLSsNAFJ3UV62vWJeCjBbBVUlUUHdFNy5cVLAPaEKYTCft0MkkzEzEEPIrblwo4tafcOnOX/ArnLRdaOuBgcM593LPHD9mVCrL+jJKC4tLyyvl1cra+sbmlrldbcsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH10VfueeCEkjfqfSmLghGnAaUIyUljyzWsmcEKkhRgxe5l52kkPPrFl1aww4T+wpqTX2nb108PHd9MxPpx/hJCRcYYak7NlWrNwMCUUxI3nFSSSJER6hAelpylFIpJuNs+fwUCt9GERCP67gWP29kaFQyjT09WSRU856hfif10tUcO5mlMeJIhxPDgUJgyqCRRGwTwXBiqWaICyozgrxEAmEla6rokuwZ788T9rHdfu0fnGr27gBE5TBLjgAR8AGZ6ABrkETtAAGD+ARPIMXIzeejFfjbTJaMqY7O+APjPcfctWXJA==</latexit>

B3

<latexit sha1_base64="scIbnI/wC1qj5GblyPmkvkREbFU=">AAAB+3icbVDLSsNAFJ3UV62vWJeCjBbBVUlUUHdFNy5cVLAPaEKYTCft0MkkzEzEEPIrblwo4tafcOnOX/ArnLRdaOuBgcM593LPHD9mVCrL+jJKC4tLyyvl1cra+sbmlrldbcsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH10VfueeCEkjfqfSmLghGnAaUIyUljyzWsmcEKkhRgxe5l52kkPPrFl1aww4T+wpqTX2nb108PHd9MxPpx/hJCRcYYak7NlWrNwMCUUxI3nFSSSJER6hAelpylFIpJuNs+fwUCt9GERCP67gWP29kaFQyjT09WSRU856hfif10tUcO5mlMeJIhxPDgUJgyqCRRGwTwXBiqWaICyozgrxEAmEla6rokuwZ788T9rHdfu0fnGr27gBE5TBLjgAR8AGZ6ABrkETtAAGD+ARPIMXIzeejFfjbTJaMqY7O+APjPcfctWXJA==</latexit>

B3

<latexit sha1_base64="scIbnI/wC1qj5GblyPmkvkREbFU=">AAAB+3icbVDLSsNAFJ3UV62vWJeCjBbBVUlUUHdFNy5cVLAPaEKYTCft0MkkzEzEEPIrblwo4tafcOnOX/ArnLRdaOuBgcM593LPHD9mVCrL+jJKC4tLyyvl1cra+sbmlrldbcsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH10VfueeCEkjfqfSmLghGnAaUIyUljyzWsmcEKkhRgxe5l52kkPPrFl1aww4T+wpqTX2nb108PHd9MxPpx/hJCRcYYak7NlWrNwMCUUxI3nFSSSJER6hAelpylFIpJuNs+fwUCt9GERCP67gWP29kaFQyjT09WSRU856hfif10tUcO5mlMeJIhxPDgUJgyqCRRGwTwXBiqWaICyozgrxEAmEla6rokuwZ788T9rHdfu0fnGr27gBE5TBLjgAR8AGZ6ABrkETtAAGD+ARPIMXIzeejFfjbTJaMqY7O+APjPcfctWXJA==</latexit>

B3

<latexit sha1_base64="scIbnI/wC1qj5GblyPmkvkREbFU=">AAAB+3icbVDLSsNAFJ3UV62vWJeCjBbBVUlUUHdFNy5cVLAPaEKYTCft0MkkzEzEEPIrblwo4tafcOnOX/ArnLRdaOuBgcM593LPHD9mVCrL+jJKC4tLyyvl1cra+sbmlrldbcsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH10VfueeCEkjfqfSmLghGnAaUIyUljyzWsmcEKkhRgxe5l52kkPPrFl1aww4T+wpqTX2nb108PHd9MxPpx/hJCRcYYak7NlWrNwMCUUxI3nFSSSJER6hAelpylFIpJuNs+fwUCt9GERCP67gWP29kaFQyjT09WSRU856hfif10tUcO5mlMeJIhxPDgUJgyqCRRGwTwXBiqWaICyozgrxEAmEla6rokuwZ788T9rHdfu0fnGr27gBE5TBLjgAR8AGZ6ABrkETtAAGD+ARPIMXIzeejFfjbTJaMqY7O+APjPcfctWXJA==</latexit>

B3

<latexit sha1_base64="scIbnI/wC1qj5GblyPmkvkREbFU=">AAAB+3icbVDLSsNAFJ3UV62vWJeCjBbBVUlUUHdFNy5cVLAPaEKYTCft0MkkzEzEEPIrblwo4tafcOnOX/ArnLRdaOuBgcM593LPHD9mVCrL+jJKC4tLyyvl1cra+sbmlrldbcsoEZi0cMQi0fWRJIxy0lJUMdKNBUGhz0jHH10VfueeCEkjfqfSmLghGnAaUIyUljyzWsmcEKkhRgxe5l52kkPPrFl1aww4T+wpqTX2nb108PHd9MxPpx/hJCRcYYak7NlWrNwMCUUxI3nFSSSJER6hAelpylFIpJuNs+fwUCt9GERCP67gWP29kaFQyjT09WSRU856hfif10tUcO5mlMeJIhxPDgUJgyqCRRGwTwXBiqWaICyozgrxEAmEla6rokuwZ788T9rHdfu0fnGr27gBE5TBLjgAR8AGZ6ABrkETtAAGD+ARPIMXIzeejFfjbTJaMqY7O+APjPcfctWXJA==</latexit>

B2

<latexit sha1_base64="5kdwonvbOEPKbEFVGW9HoVZPnc0=">AAAB+3icbVDLSsNAFL2pr1pfsS5FGCyCq5IUQd0V3XRZwT6gDWEynbRDJw9mJmIN+RU3LhRx6w/4Ce5c+StO2i609cDA4Zx7uWeOF3MmlWV9GYWV1bX1jeJmaWt7Z3fP3C+3ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX+d+544KyaLwVk1i6gR4GDKfEay05JrlUtoPsBoRzNFV5qa1DLlmxapaU6BlYs9JpX708UAk/2665md/EJEkoKEiHEvZs61YOSkWihFOs1I/kTTGZIyHtKdpiAMqnXSaPUMnWhkgPxL6hQpN1d8bKQ6knASensxzykUvF//zeonyL5yUhXGiaEhmh/yEIxWhvAg0YIISxSeaYCKYzorICAtMlK6rpEuwF7+8TNq1qn1WvbzRbTRghiIcwjGcgg3nUIcGNKEFBO7hEZ7hxciMJ+PVeJuNFoz5zgH8gfH+A9bQl2o=</latexit>

B2

<latexit sha1_base64="5kdwonvbOEPKbEFVGW9HoVZPnc0=">AAAB+3icbVDLSsNAFL2pr1pfsS5FGCyCq5IUQd0V3XRZwT6gDWEynbRDJw9mJmIN+RU3LhRx6w/4Ce5c+StO2i609cDA4Zx7uWeOF3MmlWV9GYWV1bX1jeJmaWt7Z3fP3C+3ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX+d+544KyaLwVk1i6gR4GDKfEay05JrlUtoPsBoRzNFV5qa1DLlmxapaU6BlYs9JpX708UAk/2665md/EJEkoKEiHEvZs61YOSkWihFOs1I/kTTGZIyHtKdpiAMqnXSaPUMnWhkgPxL6hQpN1d8bKQ6knASensxzykUvF//zeonyL5yUhXGiaEhmh/yEIxWhvAg0YIISxSeaYCKYzorICAtMlK6rpEuwF7+8TNq1qn1WvbzRbTRghiIcwjGcgg3nUIcGNKEFBO7hEZ7hxciMJ+PVeJuNFoz5zgH8gfH+A9bQl2o=</latexit>

B2

<latexit sha1_base64="5kdwonvbOEPKbEFVGW9HoVZPnc0=">AAAB+3icbVDLSsNAFL2pr1pfsS5FGCyCq5IUQd0V3XRZwT6gDWEynbRDJw9mJmIN+RU3LhRx6w/4Ce5c+StO2i609cDA4Zx7uWeOF3MmlWV9GYWV1bX1jeJmaWt7Z3fP3C+3ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX+d+544KyaLwVk1i6gR4GDKfEay05JrlUtoPsBoRzNFV5qa1DLlmxapaU6BlYs9JpX708UAk/2665md/EJEkoKEiHEvZs61YOSkWihFOs1I/kTTGZIyHtKdpiAMqnXSaPUMnWhkgPxL6hQpN1d8bKQ6knASensxzykUvF//zeonyL5yUhXGiaEhmh/yEIxWhvAg0YIISxSeaYCKYzorICAtMlK6rpEuwF7+8TNq1qn1WvbzRbTRghiIcwjGcgg3nUIcGNKEFBO7hEZ7hxciMJ+PVeJuNFoz5zgH8gfH+A9bQl2o=</latexit>

B2

<latexit sha1_base64="5kdwonvbOEPKbEFVGW9HoVZPnc0=">AAAB+3icbVDLSsNAFL2pr1pfsS5FGCyCq5IUQd0V3XRZwT6gDWEynbRDJw9mJmIN+RU3LhRx6w/4Ce5c+StO2i609cDA4Zx7uWeOF3MmlWV9GYWV1bX1jeJmaWt7Z3fP3C+3ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX+d+544KyaLwVk1i6gR4GDKfEay05JrlUtoPsBoRzNFV5qa1DLlmxapaU6BlYs9JpX708UAk/2665md/EJEkoKEiHEvZs61YOSkWihFOs1I/kTTGZIyHtKdpiAMqnXSaPUMnWhkgPxL6hQpN1d8bKQ6knASensxzykUvF//zeonyL5yUhXGiaEhmh/yEIxWhvAg0YIISxSeaYCKYzorICAtMlK6rpEuwF7+8TNq1qn1WvbzRbTRghiIcwjGcgg3nUIcGNKEFBO7hEZ7hxciMJ+PVeJuNFoz5zgH8gfH+A9bQl2o=</latexit>

B2

<latexit sha1_base64="5kdwonvbOEPKbEFVGW9HoVZPnc0=">AAAB+3icbVDLSsNAFL2pr1pfsS5FGCyCq5IUQd0V3XRZwT6gDWEynbRDJw9mJmIN+RU3LhRx6w/4Ce5c+StO2i609cDA4Zx7uWeOF3MmlWV9GYWV1bX1jeJmaWt7Z3fP3C+3ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX+d+544KyaLwVk1i6gR4GDKfEay05JrlUtoPsBoRzNFV5qa1DLlmxapaU6BlYs9JpX708UAk/2665md/EJEkoKEiHEvZs61YOSkWihFOs1I/kTTGZIyHtKdpiAMqnXSaPUMnWhkgPxL6hQpN1d8bKQ6knASensxzykUvF//zeonyL5yUhXGiaEhmh/yEIxWhvAg0YIISxSeaYCKYzorICAtMlK6rpEuwF7+8TNq1qn1WvbzRbTRghiIcwjGcgg3nUIcGNKEFBO7hEZ7hxciMJ+PVeJuNFoz5zgH8gfH+A9bQl2o=</latexit>

B2

<latexit sha1_base64="5kdwonvbOEPKbEFVGW9HoVZPnc0=">AAAB+3icbVDLSsNAFL2pr1pfsS5FGCyCq5IUQd0V3XRZwT6gDWEynbRDJw9mJmIN+RU3LhRx6w/4Ce5c+StO2i609cDA4Zx7uWeOF3MmlWV9GYWV1bX1jeJmaWt7Z3fP3C+3ZZQIQlsk4pHoelhSzkLaUkxx2o0FxYHHaccbX+d+544KyaLwVk1i6gR4GDKfEay05JrlUtoPsBoRzNFV5qa1DLlmxapaU6BlYs9JpX708UAk/2665md/EJEkoKEiHEvZs61YOSkWihFOs1I/kTTGZIyHtKdpiAMqnXSaPUMnWhkgPxL6hQpN1d8bKQ6knASensxzykUvF//zeonyL5yUhXGiaEhmh/yEIxWhvAg0YIISxSeaYCKYzorICAtMlK6rpEuwF7+8TNq1qn1WvbzRbTRghiIcwjGcgg3nUIcGNKEFBO7hEZ7hxciMJ+PVeJuNFoz5zgH8gfH+A9bQl2o=</latexit>
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FIG. 10: Diagrams contributing to M(u,u)
3,L in TOPT. Notation as in Fig. 1. The asymmetric feature of this amplitude is that

the momenta k and p are always assigned to a spectator line, if one is present.

vanish at these energies, because the second determinant will diverge.22 Physically this corresponds to the fact that
a general interaction will shift all FV energies from their free values. We therefore conclude that for a given P, an
energy E can only be in the finite-volume spectrum of the interacting theory if

det
h
1 +

⇣
2!L

3
K2 + eK(u,u)

3,df

⌘
( eF + eG)

i
= 0 . (81)

This is our alternate form of the three-particle quantization condition.
This result has a superficially similar form to that from HS1, which follows from Eq. (78),

det [1 + Kdf,3F3] = 0 , (82)

but many of the details are di↵erent. For example, in Eq. (81), the infinite-volume K matrices appear together and
separate from the FV quantities eF and eG, whereas F3 in Eq. (82) is a relatively complicated function of K2, eF , and
eG. We return to the relation between the two approaches in Sec. IV.

III. TOPT EXPRESSION FOR M3,L

In order to understand the relation between quantization conditions, we need to first extend the developments of
the previous section from the correlator C3,L to the finite-volume 3 ! 3 amplitude M3,L. This extension also allows

us to determine the infinite-volume relation between our asymmetric K matrix eK(u,u)
df,3 and the full 3 ! 3 amplitude

M3. This latter relation is somewhat o↵ the main line of development of this paper, so we relegate it to Appendix E.
M3,L is defined as the amputated, connected, 3 ! 3 finite-volume amplitude. It is in general o↵ shell, and thus a

matrix in {ka} space. It is simpler to begin by considering an asymmetric version of the amplitude, fM(u,u)
3,L , defined so

that, if there is an external factor of B2,L, the spectator propagator is always labeled with one of the external momenta
(typically called k or p). This definition is illustrated in Fig. 10.23 As we have seen several times above, results are

22 As is well known from numerical investigations, if one truncates the partial-wave expansions of K2 and eK(u,u)
3,df , then there will be

solutions to the quantization condition at free energies [41, 43, 44].
23 We include a tilde on fM(u,u)

3,L since it is di↵erent from the similar quantity M(u,u)
3,L defined in HS2, with the latter having an asymmetry

based on the Feynman skeleton expansion. We stress, however, that the symmetrized version M3,L is the same as in HS2 (when
evaluated on shell).

k & p assigned to spectators

Cuts in time-ordered PT

TOPT kernels (no 3-particle cuts)

• In our approach (using time-ordered perturbation theory)
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• In original RFT approach (using Feynman diagrams & Bethe-Salpeter kernels)
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Asymmetric kernels differ!
• Consider a particular Feynman diagram

• Thus                                     , although both symmetrize to 
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• In TOPT the two time orderings are put into different terms—one being symmetrized
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• E.g., asymmetric form of QC3 holds with (at least) two different kernels

In addition to its implicit dependence on l, ml, l0,
and m0

l, Ap0p depends on the remaining four independent
variables. Convenient choices are s, the initial and final pair
invariant mass squares, σp and σp0 , and the scattering
angle between spectators in the CMF, Θp0p, defined as
cosΘp0p ≡ p̂0 · p̂ ¼ P̂p0 · P̂p.

III. ON-SHELL REPRESENTATIONS

Our interest is in constructing on-shell representations
for the connected 3 → 3 scattering amplitude. Here we
review the relevant features of the B-matrix representation
discussed in Ref. [26] and the HS-BHS representation
of Ref. [12].

A. B-matrix representation

As discussed in Refs. [25,26], the Bmatrix is an on-shell
representation for the connected 3 → 3 amplitude that was
constructed to satisfy elastic 3 → 3 unitarity. In the plml-
basis, the B-matrix representation leads to the integral
equation

Ap0p ¼ F p0Bp0pF p þ
Z

k
F p0Bp0kAkp; ð11Þ

where Bp0p ¼ Gp0p þRp0p is the B-matrix driving term,
with Gp0p being the OPE contribution6 and Rp0p a real
function called the R matrix. Figure 2 shows a diagram-
matic representation of Eq. (11). By construction, Eq. (11)
satisfies the 3 → 3 unitarity relation given that F p is
known, as demonstrated in Appendix A. Equation (11)
is an infinite-dimensional matrix equation in ðl; mlÞ-space,
and the integration over the spectator momenta includes the
measure,

Z

k
≡
Z

d3k
ð2πÞ32ωk

: ð12Þ

The integration ranges over all momenta, or equivalently in
−∞ ≤ σk ≤ ð

ffiffiffi
s

p
−mÞ2 and over the entire solid angle of

the spectator. The jkj → ∞ (σk → −∞) limit is divergent
and needs to be regulated. The preferred option is to restrict
the integration region to 4m2 ≤ σk ≤ ð

ffiffiffi
s

p
−mÞ2, which is

the only domain of σk that is actually restricted by 3 → 3
unitarity [26]. Beyond this region, one deals with unphys-
ical (off-mass shell) amplitudes, which depend on unknown
parameters, e.g., subtraction constants.

The OPE amplitude is given by

ð13Þ

where p̂⋆
p0 is the direction of momentum of the initial state

spectator in the final state pair rest frame. Similarly, p̂⋆
p0 is

the orientation of the final state spectator in the initial state
pair rest frame. The magnitudes of these momenta are

p⋆
p0 ¼

1

2
ffiffiffiffiffiffiσp0

p λ1=2ððPp0 − pÞ2; σp0 ; m2Þ;

p0⋆
p ¼ 1

2
ffiffiffiffiffiσp

p λ1=2ððPp − p0Þ2; σp; m2Þ: ð14Þ

Note that energy-momentum conservation gives Pp − p0 ¼
Pp0 − p. The normalization of the barrier factors is chosen
such that they are equal to 1 when the exchanged particle is
on its mass shell, ðPp − p0Þ2 ¼ m2.
Our definition of G differs from the corresponding

quantity in Ref. [12], denoted G∞, in three ways. First,
there is a difference in overall sign. We find the choice in
Eq. (13) more convenient since it has a positive imaginary
part, which avoids several minus signs in expressions.
Second, G∞ contains a cutoff function, which serves to cut
off the integrals over spectator momenta, which in Ref. [12]
run over all values. Third, the form given in Ref. [12] has
the nonrelativistic form of the pole in the denominator, in
contrast to the relativistic form in Eq. (13). However, in
recent applications of the BHþ BHS formalism, e.g.,
in Refs. [13,30], the relativistic form is used. We also note
that the barrier factors in G are not required from unitarity,

(a)

(b)

FIG. 2. Diagrammatic representation of (a) the B-matrix repre-
sentation for the on-shell amplitude, Eq. (11), and (b) the Bmatrix
that is composed of the OPE Gp0p, Eq. (13), and the R matrix.

6In Ref. [26] we denoted the OPE contribution by the symbol
E, while here we use G to provide a closer connection to the
notation of Ref. [12].
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Can set this equal to either  or  : leads to different, equally valid,  ℳ(u,u)
3 ℳ̃ (u,u)

3 ℛ(u,u)

det [1 + (2ωL3𝒦2 + 𝒦′ (u,u)
df,3 )( F̃ + G̃ )] = 0

det [1 + (2ωL3𝒦2 + �̃� (u,u)
df,3 )( F̃ + G̃ )] = 0

• R matrix representation of  holds for all choices of asymmetryℳ(u,u)
3

Figures from
Jackura et al.,19

Blanton & SS, 20

Formula from
Mai et al., 17 &
Jackura et al.,18

R(u,u)
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Derivation
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• Generic relativistic EFT, working to all orders

• Do not need a power-counting scheme

• To simplify analysis: impose a global Z2 symmetry (G parity) & consider identical scalars

• Obtain spectrum from poles in finite-volume correlator

• Consider ECM < 5m so on-shell states involve only 3 particles

Momentum 
sums rather 

than integrals

Infinite-volume 
Bethe-Salpeter 

kernels

Arbitrary 
operator 
creating 3 
particles

(1)
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Derivation
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Momentum 
sums rather 

than integrals

Infinite-volume 
Bethe-Salpeter 

kernels

Arbitrary 
operator 
creating 3 
particles

• Replace sums with integrals plus sum-integral differences to extent possible

• If summand has pole or cusp then difference ~1/Ln and must keep (Lüscher zeta function)

• If summand is smooth then difference ~ exp(-mL) and drop

• Avoid cusps by using PV prescription—leads to generalized 3-particle K matrix

• Subtract above-threshold divergences of 3-particle K matrix—leads to Kdf,3

(2)
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Derivation
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• Reorganize, resum, … to separate infinite-volume on-shell relativistically-invariant 
non-singular scattering quantities (K2, Kdf,3) from known finite-volume functions (F 
[Lüscher zeta function] & G [“switch function”])

(3)

det [F−1
3 + 𝒦df,3]⇒ = 0
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Derivation
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• Relate Kdf,3 to M3 by taking infinite-volume limit of finite-volume scattering amplitude

• Leads to infinite-volume integral equations involving M2 & cut-off function H

• Can formally invert equations to show that Kdf,3 (while unphysical) is relativistically 
invariant and has same properties under discrete symmetries (P, T) as M3

(4)

Involve only M2 and G
so “known”

Sums over k go over
to integrals with iε pole prescription


