Effective Field Theories for lattice QCD: Lecture 4

Stephen R. Sharpe University of Washington

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

Wednesday, March 27, 13

Outline of Lectures

- I. Overview & Introduction to continuum chiral perturbation theory (ChPT)
- 2. Illustrative results from ChPT; SU(2) ChPT with heavy strange quark; finite volume effects from ChPT and connection to random matrix theory
- 3. Including discretization effects in ChPT
- 4. Partially quenched ChPT and applications, including a discussion of whether m_u=0 is meaningful

Outline of lecture 4

Partial quenching and PQChPT

- What is partial quenching and why might it be useful?
- Developing PQChPT
- Results and status
- m_u=0 and the validity of PQ theories (and the rooting prescription)

Additional References for PQChPT

- A. Morel, "Chiral logarithms in quenched QCD," J. Phys. (Paris) 48 (1987) 111
- C. Bernard & M. Golterman, "Chiral perturbation theory for the quenched approximation of QCD," Phys. Rev. D46 (1992) 853 [hep-lat/9204007]
- S. Sharpe, "Quenched chiral logarithms," Phys. Rev. D46 (1992) 3146 [hep-lat/9205020]
- C. Bernard & M. Golterman [Partially quenched ChPT], Phys. Rev. D49 (1994) 486 [hep-lat/9306005]
- S. Sharpe [Enhanced chiral logs in PQChPT], Phys. Rev. D56 (1997) 7052 [hep-lat/9707018]
- P. Damgaard & K. Splittorff [Replica method for PQChPT], Phys. Rev. D62 (2000) 054509 [hep-lat/0003017]
- S. Sharpe & N. Shoresh, "Physical results from unphysical simulations," Phys. Rev. D 62 (2000) 094503 [hep-lat/0006107]
- S. Sharpe & N. Shoresh [PQChPT general properties], Phys. Rev. D64 (2001) 114510 [hep-lat/0108003]
- S. Sharpe & R.Van de Water [Unphysical LECs], Phys. Rev. D69 (2004) 054027 [hep-lat/0310012]
- M. Golterman, S. Sharpe & R. Singleton [PQ Wilson ChPT], Phys. Rev. D71 (2005) 094503 [hep-lat/0501015]
- C. Bernard & M. Golterman [Transfer matrix for & foundations of PQQCD], arXiv:1011.0184 & in prep.
- P. Damgaard et al., [Constraints on LECS in WChPT], Phys. Rev. Lett. 105 (2010) 162002 [arXiv:1001.2937]
- M. Hansen & S. Sharpe [Constraints on LECs in WChPT], Phys. Rev. D85 (2012) 014503 [arXiv:1111.2404]

What is partial quenching?

Explain with example of pion correlator:

$$C_{\pi}(\tau) = -\left\langle \sum_{\vec{x}} \bar{\boldsymbol{u}} \gamma_{5} \boldsymbol{d}(\vec{x},\tau) \ \bar{\boldsymbol{d}} \gamma_{5} \boldsymbol{u}(0) \right\rangle$$

$$\equiv -\frac{1}{Z} \int DU \prod_{q} Dq D\bar{q} e^{-S_{\text{gauge}} - \int_{x} \sum_{q} \bar{q}(\not{\!\!\!D} + m_{q})q} \sum_{\vec{x}} \bar{\boldsymbol{u}} \gamma_{5} \boldsymbol{d}(\vec{x},\tau) \ \bar{\boldsymbol{d}} \gamma_{5} \boldsymbol{u}(0)$$

$$= \frac{1}{Z} \int DU \prod_{q} \det(\not{\!\!D} + m_{q}) e^{-S_{\text{gauge}}} \sum_{\vec{x}} \operatorname{tr} \left[\gamma_{5} \left(\frac{1}{\not{\!\!D} + m_{d}} \right)_{x0} \gamma_{5} \left(\frac{1}{\not{\!\!D} + m_{u}} \right)_{0x} \right]$$

"sea" quarks in determinant; "valence" in propagators

- **D** Partial Quenching: $m_{val} \neq m_{sea}$ —many different m_{val} for each m_{sea}
- □ Numerically cheap—can we make use of this extra information?

Many (but not all) numerical calculations use PQing

PQQCD is unphysical

Intuitively clear that unitarity is violated, since intermediate states differ from external states, e.g. $\pi_{VV} \pi_{VV} \rightarrow \pi_{VS} \pi_{SV} \rightarrow \pi_{VV} \pi_{VV}$

Extent and impact of unphysical nature will become clearer when give a formal definition of PQ theory

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

Why partially quench?

- Use PQQCD to learn about physical, unquenched QCD
- This is possible only within an EFT framework
 - Use partially quenched ChPT (PQChPT)
 - Requires that one works in "chiral regime"
 - PQChPT needs very few extra LECs compared to ChPT
 - Extends range over which can match to ChPT
- Comparison with PQChPT is "anchored" by fact that theory with m_v=m_s is physical
- PQQCD is needed to predict properties of small eigenvalues of Dirac operator & connect with Random Matrix Theory

~ 5 years old

Wednesday, March 27, 13

Why partially quench?

- Use PQQCD to learn about physical, unquenched QCD
- This is possible only within an EFT framework
 - Use partially quenched ChPT (PQChPT)
 - Requires that one works in "chiral regime"
 - PQChPT needs very few extra LECs compared to ChPT
 - Extends range over which can match to ChPT
- Comparison with PQChPT is "anchored" by fact that theory with m_v=m_s is physical
- PQQCD is needed to predict properties of small eigenvalues of Dirac operator & connect with Random Matrix Theory

Present status (for some quantities)

Nomenclature

- Why called partially quenched? Why not partially unquenched?
- Bad old days: quenched approximation $m_{\text{sea}} \rightarrow \infty$
 - $\Rightarrow \det(\not\!\!\!D + m_q) \rightarrow \text{constant}$
 - \Rightarrow No quark loops
 - $\Rightarrow Z_{\text{QCD}} \rightarrow Z_{\text{QQCD}} = \int DU e^{-S_{\text{gauge}}} = Z_{\text{gauge}}$
- Unphysical nature of quenched QCD shows up various ways, e.g. $\langle \bar{\psi}\psi \rangle \rightarrow \infty$ as $m_{\rm val} \rightarrow 0$
- Partial quenching is in one sense a less extreme version of quenching, and thus the name
- If $m_{\rm sea} \gg \Lambda_{\rm QCD}$ then PQQCD, like quenched QCD, only qualitatively related to QCD
- Consider here only the case when $m_{sea} \ll \Lambda_{QCD}$ so one can use χPT and relate PQCD to QCD quantitatively

Morels' formulation of (P)QQCD

IDEA: commuting spin-¹/₂ fields (ghosts) q̃ give determinant which cancels that from valence quarks

$$\int D\bar{q}Dq \ e^{-\bar{q}(\not\!\!D+m_q)q} = \det(\not\!\!D+m_q)$$
$$\int D\tilde{q}^{\dagger}D\tilde{q} \ e^{-\tilde{q}^{\dagger}(\not\!\!D+m_q)\tilde{q}} = \frac{1}{\det(\not\!\!D+m_q)}$$

To formulate PQQCD need three types of "quark"

- ▷ valence quarks q_{V1} , q_{V2} , ..., q_{VN_V} ($N_V = 2, 3, ...$)
- \triangleright sea quarks q_{S1} , q_{S2} , ..., q_{SN} (N=2,3)
- ▷ ghosts \tilde{q}_{V1} , \tilde{q}_{V2} , ... \tilde{q}_{VN_V} ($N_V = 2, 3, ...$)
- Ghosts are degenerate with corresponding valence quarks
- **Convergence of ghost integral requires** $m_q > 0$ (since $\not p$ antihermitian)
 - Some subtleties in extending to non-hermitian lattice Wilson-Dirac operator

Morels' formulation of (P)QQCD

Partition function reproduces that which is actually simulated

$$\begin{split} Z_{\mathrm{PQ}} &= \int DU e^{-S_{\mathrm{gauge}}} \int \prod_{i=1}^{N_{V}} \left(D\bar{q}_{Vi} Dq_{Vi} D\tilde{q}_{Vi}^{\dagger} D\tilde{q}_{Vi} \right) \prod_{j=1}^{N} \left(D\bar{q}_{Sj} Dq_{Sj} \right) \times \\ &\times \exp \left[-\sum_{i=1}^{N_{V}} \bar{q}_{Vi} (\not\!\!\!D + m_{Vi}) q_{Vi} - \sum_{j=1}^{N} \bar{q}_{Sj} (\not\!\!\!D + m_{Sj}) q_{Sj} - \sum_{k=1}^{N_{V}} \tilde{q}_{Vk}^{\dagger} (\not\!\!\!D + m_{Vk}) \tilde{q}_{Vk} \right] \\ &= \int DU e^{-S_{\mathrm{gauge}}} \prod_{i=1}^{N_{V}} \left(\frac{\det(\not\!\!\!D + m_{Vi})}{\det(\not\!\!\!D + m_{Vi})} \right) \prod_{j=1}^{N} \det(\not\!\!\!D + m_{Sj}) \\ &= \int DU e^{-S_{\mathrm{gauge}}} \prod_{j=1}^{N} \det(\not\!\!\!D + m_{Sj}) \\ &= \int DU e^{-S_{\mathrm{gauge}}} \prod_{j=1}^{N} \det(\not\!\!\!D + m_{Sj}) \end{split}$$

Adding valence fields leads to desired valence propagators

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

10/51

Wednesday, March 27, 13

Condensed notation

Collect all fields into $(N + 2N_V)$ -dim vectors:

Then can write action and partition function as:

$$S_{\rm PQ} = S_{\rm gauge} + \overline{Q}(\not\!\!D + \mathcal{M})Q$$
$$Z_{\rm PQ} = \int DU D \overline{Q} D Q \ e^{-S_{\rm PQ}}$$

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

11/51

Wednesday, March 27, 13

Formal representation of PQ correlator

$$Q = \left(\underbrace{q_{V1}, q_{V2}, \dots, q_{VN_V}}_{\text{valence}}, \underbrace{q_{S1}, q_{S2}, \dots, q_{SN}}_{\text{sea}}, \underbrace{\tilde{q}_{V1}, \tilde{q}_{V2}, \dots, \tilde{q}_{VN_V}}_{\text{ghost}}\right)$$

$$C_{\pi}^{PQ}(\tau) = \left[= \sqrt{\sum_{q} \gamma_{q}} \underbrace{\sqrt{\sum_{sea} \gamma_{q}}}_{q_{q}} \underbrace{\sqrt{\sum_{gauge} \gamma_{q}}}_{q_{q}} \right]$$

$$= Z_{PQ}^{-1} \int DU \prod_{j=1}^{N} \det([p + m_{Sj}]) e^{-S_{gauge}} \\ \times \sum_{\vec{x}} \operatorname{tr} \left[\gamma_{5} \left(\frac{1}{[p + m_{Vd}]} \right)_{x0} \gamma_{5} \left(\frac{1}{[p + m_{Vu}]} \right)_{0x} \right]$$

$$= Z_{PQ}^{-1} \int DU D\overline{Q} DQ \ e^{-S_{PQ}} \sum_{\vec{x}} \overline{u}_{V} \gamma_{5} d_{V}(\vec{x}, \tau) \ d_{V} \gamma_{5} u_{V}(0)$$

Anchoring to QCD

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

13/51

Wednesday, March 27, 13

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

13/51

Wednesday, March 27, 13

$$Q = \begin{pmatrix} q_{V1}, q_{V2}, \dots, q_{VN_V}, q_{S1}, q_{S2}, \dots, q_{SN}, \\ valence \end{pmatrix} \xrightarrow{\tilde{q}_{V1}, \tilde{q}_{V2}, \dots, \tilde{q}_{VN_V}}_{\text{ghost}}$$

If $m_{Vu} = m_{Sj}$ and $m_{Vd} = m_{Sk}$ then valence correlator is physical:

$$\begin{aligned} C_{\pi}^{\mathrm{PQ}}(\tau) &= Z_{\mathrm{PQ}}^{-1} \int DU D \overline{Q} D Q \ e^{-S_{\mathrm{PQ}}} \sum_{\vec{x}} \bar{u}_{V} \gamma_{5} d_{V}(\vec{x},\tau) \ \bar{d}_{V} \gamma_{5} u_{V}(0) \\ &= Z_{\mathrm{PQ}}^{-1} \int DU D \overline{Q} D Q \ e^{-S_{\mathrm{PQ}}} \sum_{\vec{x}} \bar{q}_{Sj} \gamma_{5} q_{Sk}(\vec{x},\tau) \ \bar{q}_{Sk} \gamma_{5} q_{Sj}(0) \\ &= Z_{\mathrm{QCD-like}}^{-1} \int DU \prod_{i=1}^{N} D \overline{q}_{Si} D q_{Si} \ e^{-S_{\mathrm{QCD-like}}} \\ &\times \sum_{\vec{x}} \bar{q}_{Sj} \gamma_{5} q_{Sk}(\vec{x},\tau) \ \bar{q}_{Sk} \gamma_{5} q_{Sj}(0) \\ &= C_{\pi}^{\mathrm{QCD-like}}(\tau) \end{aligned}$$

Example of enhanced (V \leftrightarrow S) symmetry in PQ theory

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

Summary so far

- PQQCD is a well-defined, local Euclidean statistical theory
 - Describes $m_v \neq m_s$ and allows formal definition of <u>individual</u> Wick contractions
- Morel's formulation restores "unitarity", but at the cost of introducing ghosts
 - Violate spin-statistics theorem, so Minkowski-space theory violates causality & positivity, and may have a Hamiltonian with spectrum unbounded below
 - For m_v ≠ m_s, can show (under mild assumptions) that flavor-singlet "pion" correlators develop manifestly unphysical double-poles [Sharpe & Shoresh]
- Can generalize to include discretization errors & to mixed actions (different discretizations of valence & sea quarks, e.g. "overlap on twisted mass")
- To make practical use of PQQCD, need to develop PQChPT
 - Is this possible given the unphysical features?
 - Do we need to have a healthy Minkowski theory to justify EFTs?

Outline of lecture 4

Partial quenching and PQChPT

- What is partial quenching and why might it be useful?
- Developing PQChPT
- Results and status
- mu=0 and the validity of PQ theories (and the rooting prescription)

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

Methods for developing PQChPT

- "Supersymmetric" method based on Morel's formulation [Bernard & Golterman]
- "Replica" method adjusting loop contributions by adjusting N_{sea}
 [Damgaard & Splittorf]
 - Formalizes "Quark-line" method accounting by hand for quarks in loops [Sharpe]
- Give same results to date—likely equivalent
- Use supersymmetric method here

Symmetries of PQQCD

$$Q = \left(\underbrace{q_{V1}, q_{V2}, \dots, q_{VN_V}}_{\text{valence}}, \underbrace{q_{S1}, q_{S2}, \dots, q_{SN}}_{\text{sea}}, \underbrace{\widetilde{q}_{V1}, \widetilde{q}_{V2}, \dots, \widetilde{q}_{VN_V}}_{\text{ghost}}\right)$$

Action of PQQCD looks like QCD

 $S_{\rm PQQCD} = S_{\rm gauge} + \overline{Q}(\not\!\!D + \mathcal{M})Q$

D Naively, when $M \rightarrow 0$ have graded version of QCD chiral symmetry:

 $Q_{L,R} \longrightarrow U_{L,R}Q_{L,R}, \qquad \overline{Q}_{L,R} \longrightarrow \overline{Q}_{L,R}U_{L,R}^{\dagger} \qquad U_{L,R} \in SU(N_V + N|N_V)$

- Apparent symmetry is $SU(N_V + N|N_V)_L \times SU(N_V + N|N_V)_R \times U(1)_V$
- In fact, there are subtleties in the ghost sector, but can ignore in perturbative calculations [Sharpe & Shoresh]

Subtleties have been understood in calculations leading to connection with random matrix theory [Damgaard et al]

Brief primer on graded groups

 \Box U is graded: contains both commuting and anticommuting elements:

 $U = \begin{pmatrix} A & B \\ C & D \\ N_V + N & N_V \end{pmatrix}, A, D \text{ commuting, } B, C \text{ anticommuting}$

If $U \in U(N_V + N|N_V)$ (fundamental representation) then $UU^{\dagger} = U^{\dagger}U = 1$, [with $(\eta_1\eta_2)^* \equiv \eta_2^*\eta_1^*$]

Supertrace maintains cyclicity:

 $\operatorname{str} U \equiv \operatorname{tr} A - \operatorname{tr} D \quad \Rightarrow \quad \operatorname{str}(U_1 U_2) = \operatorname{str}(U_2 U_1)$

□ For $U \in SU(N_V + N|N_V)$, superdeterminant is unity: $sdet U \equiv exp[str(ln U)] = \frac{det(A - BD^{-1}C)}{det(D)} \Rightarrow sdet(U_1U_2) = sdetU_1sdetU_2$

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

18/51

Wednesday, March 27, 13

Examples of SU(N_v+N|N) matrices

$$\begin{split} U &= \begin{pmatrix} SU(N_V + N) & 0 \\ 0 & SU(N_V) \end{pmatrix} \Rightarrow \quad \text{sdet}U = 1 \\ U &= \begin{pmatrix} e^{i\theta N_V} & 0 \\ 0 & e^{i\theta(N+N_V)} \end{pmatrix} \Rightarrow \quad \text{sdet}U = \frac{(e^{i\theta N_V})^{N+N_V}}{(e^{i\theta(N+N_V)})^{N_V}} = 1 \end{split}$$

□ An overall phase rotation is not in $SU(N_V + N|N)$

$$U = \begin{pmatrix} e^{i\theta} & 0\\ 0 & e^{i\theta} \end{pmatrix} \quad \Rightarrow \quad \text{sdet}U = \frac{e^{i\theta(N+N_V)}}{e^{i\theta N_V}} = e^{i\theta N_V}$$

- $\Box \quad \text{Thus } U(N_V + N|N_V) = [SU(N_V + N|N_V) \otimes U(1)]/Z_N$
- Group structure different if N = 0 (quenched theory)

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

Constructing the EFT

- Follow the same steps as for standard ChPT as closely as possible
 - Expand about theory with M=0 where symmetry is maximal
 - Strictly speaking, need to keep (arbitrarily) small mass to avoid PQ divergences & to use Vafa-Witten
 - A posteriori find divergences if $m_v \rightarrow 0$ at fixed m_s , so must take chiral limit with m_v/m_s fixed
 - Symmetry is $\mathcal{G} = SU(N_V + N|N_V)_L \times SU(N_V + N|N_V)_R$
 - For M real, diagonal, positive [Vafa-Witten] theorem implies that graded vector symmetry is not spontaneously broken [Sharpe & Shoresh; Bernard & Golterman]
 - ▷ Quark and ghost condensates equal if $m_v = m_s \rightarrow 0$
 - We know chiral symm. breaks spontaneously in QCD with non-zero condensate
 - Since QCD is inside PQQCD \Rightarrow we know form of PQ condensate & symmetry breaking

$$SU(N_V + N|N_V)$$

20/51

- With standard masses $\Omega = \omega \times 1$ so vacuum manifold is now
- Symmetry breaking is $\mathcal{G} \to \mathcal{H} = SU(N_V + N|N_V)_V$

Wednesday, March 27, 13

Constructing the EFT

- Still following the same steps as for standard ChPT as closely as possible ...
 - Can derive Ward identities in PQQCD, & Goldstone's thm. for 2-pt functions
 - $(N+2N_V)^2$ -I Goldstone "particles" created by $\overline{Q}\gamma_{\mu}\gamma_5 T^a Q$ with T^a a generator of graded group
 - New: can construct transfer matrix for PQQCD including ghosts & show that, despite not being hermitian, it can be diagonalized and has a bounded spectrum [Bernard & Golterman]
 - Energies can be real or come in complex-conjugate pairs (PT symmetry)
 - ▶ Have a complete set of states, although left- and right- eigenvectors are different
 - ▶ In free theory, correlators fall exponentially (up to powers from double-poles) but can be of either sign
 - This result, if it holds up to scrutiny, makes the foundation of PQChPT essentially as strong as that of ChPT, since can follow a line of argument due to [Leutwyler] which uses cluster decomposition and does not explicitly rely on unitarity
 - In particular, the existence of a transfer matrix etc. means that the spectrum deduced from 2-pt functions holds also for all other correlators (assuming no other light particles)

Constructing the EFT

- Sketch of [Leutwyler]'s argument
 - Existence of bounded transfer matrix + assumption of unique vacuum implies that PQ theory satifies cluster decomposition
 - Integrating out heavy states (which might have complex energies?) still leads to local vertices which can be connected by Goldstone propagators
 - This leads to the same results as a general effective local Lagrangian in terms of Goldstone fields
 - Implementing local symmetry of generating functional with sources (up to anomalies) leads to result that effective Lagrangian can be chosen to be invariant under local symmetry group
- Bottom line: write down the most general local Lagrangian with sources consistent with local SU(N_V+N|N_V)_L X SU(N_V+N|N_V)_R symmetry

Generalization of Σ in PQChPT

Follow method used for QCD:

$$\Omega/\omega \to \Sigma(x) \in SU(N_V + N|N), \qquad \Sigma \xrightarrow{\mathcal{G}} U_L \Sigma U_R^{\dagger}$$

 \blacksquare For standard masses, $\langle \Sigma \rangle = 1$, so define Goldstones by

$$\Sigma = \exp\left[\frac{2i}{f}\Phi(x)\right], \qquad \Phi(x) = \begin{pmatrix} \phi(x) & \eta_1(x) \\ \eta_2(x) & \widetilde{\phi}(x) \end{pmatrix}$$

 $\triangleright \quad \mathrm{sdet}\Sigma = 1 \Rightarrow \mathrm{str}\Phi = \mathrm{tr}\phi - \mathrm{tr}\widetilde{\phi} = 0$

QCD GBs contained in Φ

$$\Phi(x) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \pi(x) & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & N_V \end{pmatrix} \Rightarrow \Sigma = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \Sigma_{\text{QCD}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

D Building blocks for PQ χ PT as for χ PT, e.g.

$$L_{\mu} = \Sigma D_{\mu} \Sigma^{\dagger} \to U_L L_{\mu} U_L^{\dagger} , \qquad \text{str}(L_{\mu}) = 0$$

Power counting as in XPT

PQ Chiral Lagrangian at NLO

[Bernard & Golterman; Sharpe & Van de Water]

24/51

General form consistent with graded symmetries

$$\mathcal{L}^{(2)} = \frac{f^2}{4} \operatorname{str} \left(D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger} \right) - \frac{f^2}{4} \operatorname{str} (\chi \Sigma^{\dagger} + \Sigma \chi^{\dagger})$$

$$\mathcal{L}^{(4)} = -L_1 \operatorname{str} (D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger})^2 - L_2 \operatorname{str} (D_{\mu} \Sigma D_{\nu} \Sigma^{\dagger}) \operatorname{tr} (D_{\mu} \Sigma D_{\nu} \Sigma^{\dagger})$$

$$+L_3 \operatorname{str} (D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger} D_{\nu} \Sigma D_{\nu} \Sigma^{\dagger})$$

$$+L_4 \operatorname{str} (D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma) \operatorname{str} (\chi^{\dagger} \Sigma + \Sigma^{\dagger} \chi) + L_5 \operatorname{str} (D_{\mu} \Sigma^{\dagger} D_{\mu} \Sigma) [\chi^{\dagger} \Sigma + \Sigma^{\dagger} \chi])$$

$$-L_6 \left[\operatorname{str} (\chi^{\dagger} \Sigma + \Sigma^{\dagger} \chi) \right]^2 - L_7 \left[\operatorname{str} (\chi^{\dagger} \Sigma - \Sigma^{\dagger} \chi) \right]^2 - L_8 \operatorname{str} (\chi^{\dagger} \Sigma \chi^{\dagger} \Sigma + \text{p.c.})$$

$$+L_9 i \operatorname{str} (L_{\mu\nu} D_{\mu} \Sigma D_{\nu} \Sigma^{\dagger} + p.c.) + L_{10} \operatorname{str} (L_{\mu\nu} \Sigma R_{\mu\nu} \Sigma^{\dagger})$$

$$+H_1 \operatorname{str} (L_{\mu\nu} L_{\mu\nu} + p.c.) + H_2 \operatorname{str} (\chi^{\dagger} \chi) + \operatorname{WZW}_{PQ}$$

$$+L_{PQ} \mathcal{O}_{PQ}$$

 $\square \quad \chi = 2B_0 \mathcal{M}$

- **C** Same form as for QCD with $tr \rightarrow str$ plus one extra term (\mathcal{O}_{PQ})
- How do the LECs relate to those of QCD?

Anchoring PQChPT to ChPT

 $\square \quad If choose \Sigma to lie in QCD subspace$

$$\Sigma = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & \Sigma_{
m QCD} & 0 \ 0 & 0 & 1 \end{array}
ight)$$

and sources do not connect subspaces, then

 $\mathcal{L}_{\mathrm{PQ}\chi\mathrm{PT}}^{(2,4,\dots)}(\Sigma) \to \mathcal{L}_{\chi\mathrm{PT}}^{(2,4,\dots)}(\Sigma_{\mathrm{QCD}})$

- If external fields in correlation function are from sea sector, then can show that all valence and ghost contributions cancel in intermediate states
 - $\Rightarrow~\Sigma$ takes the form given above
 - ▶ PQ χ PT calculation collapses to one in χ PT
- **Thus LECs in PQ** χ **PT are equal to those in** χ **PT**
 - Results in the chiral regime from PQQCD give information about physical LECs

Additional PQ operator: OPQ

- Starting at NLO, at each order there are an increasing number of PQ operators that vanish on QCD subspace
- □ At NLO, only one such operator [Sharpe & Van de Water]

$$\mathcal{O}_{PQ} = \operatorname{str}(D_{\mu}\Sigma D_{\nu}\Sigma^{\dagger}D_{\mu}\Sigma D_{\nu}\Sigma^{\dagger})$$

$$-\frac{1}{2}\operatorname{str}(D_{\mu}\Sigma D_{\mu}\Sigma^{\dagger})^{2} - \operatorname{str}(D_{\mu}\Sigma D_{\nu}\Sigma^{\dagger})\operatorname{str}(D_{\mu}\Sigma D_{\nu}\Sigma^{\dagger})$$

$$+ 2\operatorname{str}(D_{\mu}\Sigma D_{\nu}\Sigma^{\dagger}D_{\mu}\Sigma D_{\nu}\Sigma^{\dagger})$$

- □ Vanishes if $\Sigma \rightarrow \Sigma_{QCD}$ due to Cayley-Hamilton relations for 3×3 matrices
- Does not vanish for general Σ_{PQ}
- Appears in $\mathcal{L}_{PQ\chi}^{(4)}$ with additional LEC
- Same is true for standard χPT if $N \ge 4$
- \bigcirc \mathcal{O}_{PQ} contributes to $\pi\pi$ scattering at NLO, but to m_{π} and f_{π} only at NNLO

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

Why is O_{PQ} present?

- Because PQQCD allows isolation of individual Wick contractions, unlike QCD
- **G** For example, $\pi^+ K^0$ scattering in QCD has two contractions

Can separate these contractions in PQQCD, e.g.

- $\hfill\square \mathcal{O}_{PQ}$ contributes to the PQQCD process, but not that in QCD
- Shows how PQQCD differs from QCD even if $m_V = m_S$

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

Calculating in PQChPT

PQ Lagrangian at LO:

$$\mathcal{L}^{(2)} = \frac{f^2}{4} \operatorname{str} \left(D_{\mu} \Sigma D_{\mu} \Sigma^{\dagger} \right) - \frac{f^2}{4} \operatorname{str} (\chi \Sigma^{\dagger} + \Sigma \chi^{\dagger})$$

Insert expansion in Goldstone fields:

$$\Sigma = \exp\left[\frac{2i}{f}\Phi(x)\right], \qquad \Phi(x) = \begin{pmatrix} \phi(x) & \eta_1(x) \\ \eta_2(x) & \widetilde{\phi}(x) \end{pmatrix}, \quad \operatorname{str}\Phi = 0$$

$$\mathcal{L}^{(2)} = \operatorname{str}(\partial_{\mu} \Phi \partial_{\mu} \Phi) + \operatorname{str}(\chi \Phi^{2}) + \dots$$

$$= \operatorname{tr}(\partial_{\mu} \phi \partial_{\mu} \phi + \partial_{\mu} \eta_{1} \partial_{\mu} \eta_{2} - \partial_{\mu} \eta_{2} \partial_{\mu} \eta_{1} - \partial_{\mu} \widetilde{\phi} \partial_{\mu} \widetilde{\phi})$$

$$+ \operatorname{tr} \left[(\phi^{2} + \eta_{1} \eta_{2}) \begin{pmatrix} m_{V} & 0 \\ 0 & m_{S} \end{pmatrix} \right] - \operatorname{tr}(\widetilde{\phi}^{2} m_{V}) - \operatorname{tr}(\eta_{2} \eta_{1} m_{V})$$

Calculating in PQChPT

$$\mathcal{L}^{(2)} = \operatorname{tr}(\partial_{\mu}\phi\partial_{\mu}\phi + \partial_{\mu}\eta_{1}\partial_{\mu}\eta_{2} - \partial_{\mu}\eta_{2}\partial_{\mu}\eta_{1} - \partial_{\mu}\tilde{\phi}\partial_{\mu}\tilde{\phi}) + \operatorname{tr}\left[(\phi^{2} + \eta_{1}\eta_{2}) \begin{pmatrix} m_{V} & 0 \\ 0 & m_{S} \end{pmatrix} \right] - \operatorname{tr}(\tilde{\phi}^{2}m_{V}) - \operatorname{tr}(\eta_{2}\eta_{1}m_{V})$$

- $\Box \quad \phi$ terms have wrong signs
 - Naively, propagator for "charged" ghost mesons $\overline{\tilde{q}}_1 \widetilde{q}_2$ is $-1/(p^2 + m_{12}^2)$, $m_{12}^2 = (\chi_1 + \chi_2)/2$
 - But potential not minimized and functional integral not convergent!
 - ▶ More careful treatment of symmetries of PQQCD, maintaining convergence of ghost functional integral, concludes that naive result is OK in perturbation theory (but not non-perturbatively, e.g. in ϵ -regime, where should change $\tilde{\phi} \to i\tilde{\phi}$, $\Sigma^{\dagger} \to \Sigma^{-1}$) [Sharpe & Shoresh]
- Goldstone fermion propagators can have either sign (no convergence problems); actual signs important for cancellations

Implementing stracelessness

- **How implement** $\operatorname{str}(\Phi) = \operatorname{tr}(\phi) \operatorname{tr}(\widetilde{\phi}) = 0$?
 - 1. Use a basis of generators which is straceless:

 $\Phi = \sum_a \Phi_a T^a$ with $\operatorname{str}(T^a) = 0$

> Analagous to not including the η' in QCD χ PT

- 2. Include identity component but then "integrate out" $\Phi \rightarrow \Phi + \Phi_0/\sqrt{N}$ so that $\operatorname{str}\Phi = \sqrt{N}\Phi_0$ $\mathcal{L}_{PQ\chi} \rightarrow \mathcal{L}_{PQ\chi} + m_0^2 \operatorname{str}(\Phi)^2/N$
 - \triangleright Calculate propagators, then send $m_0^2 \rightarrow \infty$ within them
 - ▷ To make formally correct, must regularize with a cut-off (e.g. lattice) so that $(\partial_{\mu}\Phi_0)^2 < m_0^2\Phi_0^2$ (trivial decoupling)
 - Really just a trick to implement stracelessness
- Introducing Φ_0 has advantage of allowing use of "quark line" basis: $\Phi_{ij} \sim Q_i \overline{Q}_j$ for all i, j

Quark lines & double poles

"Charged" particle propagators are simple:

$$\langle \Phi_{ij} \Phi_{ji} \rangle = \pm \frac{1}{p^2 + (\chi_i + \chi_j)/2} =$$

31/51

Neutral propagators have double poles:

$$\mathcal{L}^{(2)} = \sum_{j=1}^{N+2N_V} \epsilon_j (\partial_\mu \Phi_{jj} \partial_\mu \Phi_{jj} + m_j \Phi_{jj}^2) + (m_0^2/N) (\sum_j \epsilon_j \Phi_{jj})^2$$
$$\epsilon_j = \begin{cases} +1 & \text{valence or sea quarks} \\ -1 & \text{ghosts} \end{cases}$$

Can simply invert with linear algebra tricks. Schematically, for external valence quarks have "hairpin" sum:

$$\underline{\overset{\mathbf{V}}{=}} + \underline{\overset{\mathbf{V}}{=}} + \underline{\overset{\mathbf{V}}{=}} + \underline{\overset{\mathbf{V}}{=}} \underbrace{\overset{\mathbf{S}}{=}} \underbrace{\overset{\mathbf{V}}{=}} + \dots$$

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

Quark lines & double poles $\underline{V} + \underline{V} +$

- □ Result after $m_0^2 \to \infty$ for N = 3 [Bernard & Golterman; Sharpe & Shoresh] $\langle \Phi_{ii} \Phi_{jj} \rangle = \frac{\epsilon_i \delta_{ij}}{p^2 + \chi_i} - \frac{1}{N} \frac{1}{(p^2 + \chi_i)(p^2 + \chi_j)} \frac{(p^2 + \chi_{S1})(p^2 + \chi_{S2})(p^2 + \chi_{S3})}{(p^2 + M_{\pi_0}^2)(p^2 + M_{\eta}^2)}$
- Simplifies for degenerate sea quarks:

$$\langle \Phi_{ii}\Phi_{jj}\rangle = \frac{\epsilon_i\delta_{ij}}{p^2 + \chi_i} - \frac{1}{N}\frac{(p^2 + \chi_S)}{(p^2 + \chi_i)(p^2 + \chi_j)}$$

- ▷ Manifestly unphysical double pole for $\chi_i = \chi_j$
- ▷ Residue is then $(\chi_i \chi_S)/N$, so vanishes for physical subspace
- Can show from symmetries of PQQCD that if charged propagators have single poles, then neutral have double (and no higher) poles [Sharpe & Shoresh]

Outline of lecture 4

Partial quenching and PQChPT

- What is partial quenching and why might it be useful?
- Developing PQChPT
- Results and status
- mu=0 and the validity of PQ theories (and the rooting prescription)

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

Sample calculation: m_{π}

- Calculations are straightforward extension of standard χPT
- \square Mass-squared of "pion" composed of valence quarks V1, V2
- Quark-line diagrams for 1-loop contributions

- LO four-pion vertices have single strace, so are "connected"
- Manifest cancellation between contributions from commuting and anticommuting particles

Sample calculation: m_{π^2}

□ To simplify expression for loop contributions, assume N degenerate sea quarks and $m_{V1} = m_{V2} \neq m_S$

$$m_{VV}^{2} = \chi_{V} \left(1 + \frac{1}{N} \frac{2\chi_{V} - \chi_{S}}{\Lambda_{\chi}^{2}} \ln(\chi_{V}/\mu^{2}) + \frac{\chi_{V} - \chi_{S}}{N\Lambda_{\chi}^{2}} + \frac{8}{f^{2}} \left[(2L_{8} - L_{5})\chi_{V} + (2L_{6} - L_{4})N\chi_{S} \right] \right)$$

- ▷ Reduces to QCD-like result when $\chi_V \rightarrow \chi_S$
- \triangleright χ_V and χ_S provide separate dials for determining $2L_8 L_5$ and $2L_6 L_4$
- Result in PQ mass-plane depends on physical LECs
- \triangleright Unphysical nature of result clear from divergence in $\chi_S \ln \chi_V$ as $\chi_V \to 0$
- \triangleright In practice, expansion breaks down only for very small χ_V

Status of PQChPT calculations

I It is now standard to extend any χ PT calculation to PQ χ PT

- Many quantities considered at NLO: pions, baryons, vector mesons, scalar mesons, heavy-light hadrons, weak matrix elements (B_K , $K \rightarrow \pi\pi$), NEDM, pion scattering, ...
- First calculations at NNLO for pion properties
- ▷ PQ effects also included in tm χ PT, staggered χ PT and mixed action χ PT
- Most non-trivial example is baryons, where need to use a set-up in which all three quark lines are explicit
- Most striking result is for scalar meson correlators, where hairpin propagators lead to unphysical *negative* contributions at long distances
- In general, can use PQXPT to determine form of expected results for individual contractions (e.g. connected and disconnected contributions to π₀ propagators in tmLQCD) [Hansen & Sharpe]
- Most extensive practical use is in MILC improved staggered simulations
- PQChPT can be used to estimate size of disconnected contribs, e.g. g-2 [Juettner]
- Generalization to ε-regime allows predictions for small eigenvalues & connection with RMT including discretization errors
 - Recent discovery of constraints on signs of some LECs in WChPT [Damgaard, Splittorff, Verbaarschot; Kieburg et al.; Hansen & Sharpe]

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

Outline of lecture 4

Partial quenching and PQChPT

- What is partial quenching and why might it be useful?
- Developing PQChPT
- Results and status
- m_u=0 and the validity of PQ theories (and the rooting prescription)

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

Some additional references for m_u=0

Including some on the rooting controversy

- M. Creutz, "Ambiguities in the up-quark mass," Phys. Rev. Lett. 92 (2004) 162003 [hep-ph/0312018]
- K. Choi, C. Kim & W. Sze ['t Hooft vertex gives additive mass renorm], Phys. Rev. Lett. 61 (1988) 794
- T. Banks, Y. Nir & N. Seiberg [additive mass renorm & strong CP problem], hep-ph/9403203
- M. Creutz, "One flavor QCD," Annals. Phys. 322 (2007) 1518 [hep-th/0609187]
- T. DeGrand et al., [N_f=1 condensate], Phys. Rev. D74 (2006) 054501 [hep-th/0605147]
- M. Creutz, "The 't Hooft vertex revisited," Annals. Phys. 323 (2008) 2349 [arXiv:0711.2640]
- M. Creutz, "Chiral anomalies and rooted staggered fermions," Phys. Lett. B649 (2007) 230 [hep-lat/0603020]
- C. Bernard, M. Golterman, S. Sharpe & Y. Shamir [Comment on previous paper], Phys. Lett. B649 (2007) 235 [hep-lat/0603027]
- M. Creutz [Comment on comment], Phys. Lett. B649 (2007) 241 [arXiv:0704.2016]
- C. Bernard, M. Golterman, S. Sharpe & Y. Shamir, "'t Hooft vertices, partial quenching & rooted staggered QCD," Phys. Rev. D77 (2008) 114504 [arXiv:0711.0696]
- M. Creutz [Comment on previous paper], Phys. Rev. D78 (2008) 078501 [arXiv:0805.1350]
- C. Bernard et al. [Comment on comment], Phys. Rev. D78 (2008) 078502 [arXiv:0808.2056]
- S. Sharpe, "Rooted staggered fermions, good, bad or ugly?" PoS Lat2006 (2006) 22 [hep-lat/0610094]
- M. Golterman, "QCD with rooted staggered fermions," arXiv:0812.3110
- M. Creutz, "Confinement, chiral symmetry & the lattice," arXiv:1103.3304
- S. Durr & C. Hoelbling, "Scaling tests with dynamical overlap and rooted staggered quarks,", Phys. Rev. D71 (2005) 054501 [hep-lat/0411022]

Ambiguity in m_u=0?

Restatement in N_f=1 QCD

- **C** Can formulate the issue also in $N_f = 1$ QCD, a simpler setting
- **D** No PGBs: spectrum consists of " η ", " Δ ", etc.
- □ With two overlap operators having different kernels, if one sets m = 0, and takes the continuum limit (not an easy task in practice!) will one get the same value for m_{η}/m_{Δ} ?
 - The standard answer is YES
 - [Creutz, PRL 92, 162003 (2004)] argues NO
 - Note that for a ≠ 0 will certainly have "kernel-dependent" discretization errors—the issue is what happens when a → 0.
- Use this formulation in subsequent discussion:

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

40/51

Wednesday, March 27, 13

The standard argument

In perturbation theory, if have chiral symmetry (as with overlap), quark mass is renormalized multiplicatively, to all orders

$$m(a) = Mg(a)^{\gamma_0/\beta_0} [1 + O(g^2)]$$

$$a\Lambda = e^{-1/(2\beta_0 g^2)} g^{-\beta_1/\beta_0^2} [1 + O(g^2)]$$

$$\beta_0 = (11 - 2N_f/3)/(16\pi^2)$$

- This is uncontroversial. If it were the whole story, it would imply that, once g(a) is small enough (so the universal parts of the β -function and anomalous dimension dominate) setting M = 0 ($\Rightarrow m(a) = 0$) leads to universal long-distance physics, irrespective of the overlap kernel.
 - Just as different gauge actions give a Symanzik effective action that differs by a²× irrelevant dim-6 operators, so two different m = 0 theories will differ by irrelevant dim > 4 operators
- What about non-perturbative contributions to the running?

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

The standard argument

- In one flavor QCD, the 't Hooft vertex is bilinear, and leads to additive shift of quark mass
- Instanton calculations are not reliable when instantons are large, since $g(\rho)$ is not small
- □ However, what is needed for the RG evolution between scale 1/a and 1/(a + da) are instantons of size $\rho \sim a$
- If a is small enough, the semi-classical result should be reliable:

$$\frac{dm}{d\ln a} \approx m\gamma_0 g^2 + \text{const} \times (1/a) e^{-8\pi^2/g^2} g^n \qquad \text{For N}_{f}=3$$
$$\approx m\gamma_0 g^2 + \text{const} \times \Lambda(a\Lambda)^{28/3} \qquad \qquad \frac{m_d m_s}{\Lambda} (a\Lambda)^{10}$$

42/51

[Georgi & Macarthy 1981] [Choi, Kim, Sze, PRL 61, 794 (1988)] [Banks, Nir & Seiberg, hep-ph/9403203]

Additive contribution present, which can only calculate approximately

 \triangleright However, it vanishes as $a^{\sim 9}$

Wednesday, March 27, 13

Example of running

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

43/51

Wednesday, March 27, 13

The standard argument

$$\frac{dm}{d\ln a} \approx m\gamma_0 g^2 + \text{const} \times \Lambda(a\Lambda)^{28/3}$$

There is an uncertainty in the running of m

At a given a, for

$$|m(a)| \gtrsim m_{cr} \approx rac{(a\Lambda)^{28/3}\Lambda}{g(a)^2 \gamma_0}$$

the RG evolution to smaller a will be essentially unaffected by the additive term, and thus unambiguous

For $|m(a)| \leq m_{cr}$ evolution to smaller *a* is not controlled

▷ In this sense there is an ambiguity in m(a) of size m_{cr}

- As $a \to 0$, however, this ambiguity shrinks rapidly to zero, much faster than the standard logarithmic decrease of m(a) and faster than other disc. errors
- Thus, in the standard view, we do know, in a regularization invariant way, what m = 0 means in the continuum limit

In particular, we can simply take $a \to 0$ holding m(a) = 0

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

Mike Creutz's view (my summary)

- □ [Creutz, PRL 92, 162003 (2004)] finds this argument unconvincing
- The argument certainly relies on the assumption that we know the form of the non-perturbative terms at short distances
 - Note that the value of m(a) for the massless theory at $a \approx \Lambda_{\text{QCD}}^{-1}$ (the "constituent quark mass") is unknown, since the additive term certainly dominates by this scale
 - \triangleright But this is irrelevant for m(a) as $a \rightarrow 0$
- Creutz makes some qualitative arguments, but does not directly address the standard argument given above
 - Please read and draw your own conclusions
- It would be very interesting to test Creutz's proposed breakdown in universality numerically

Relation to PQQCD

- **Q** PQ extensions of QCD-like theories provide a way of using symmetries to unambiguously define " $m_u = 0$ " [Farchioni *et al.*, 0706.1131,0710.4454]
- Consider the PQ N_f = 1 theory, with N_V valence quarks (and corresponding ghosts) degenerate with the sea quark
 - Enlarged theory now has an approximate chiral symmetry $SU(N_V + 1|N_V)_L \times SU(N_V + 1|N_V)_R$
 - \triangleright This symmetry becomes exact when m
 ightarrow 0
 - ▶ The fact that $\langle \bar{\psi}\psi \rangle \neq 0$ in $N_f = 1$ QCD implies that the chiral symmetry of the PQ extension is spontaneously broken
 - > One can thus write down the corresponding PQ χ PT, and m = 0 at quark level unambiguously maps to m = 0 at the chiral level in order to match the symmetries
 - \triangleright There are thus PG bosons and fermions with $m_\pi^2 \propto m$
 - ▷ Thus m = 0 is unambiguously selected by vanishing PQ pion mass, just as $m_u = m_d = 0$ is picked out by vanishing physical pion mass (both requiring $L \to \infty$)
 - ▶ Used in practice by [Farchioni, 0710.4454]

Relation to PQQCD

- Other (closely related) ways of picking out m = 0
 - Vanishing of topological susceptibility, which is defined using PQ correlators [Giusti *et al*, hep-lat/0402027; Lüscher, hep-lat/0404034]
 - 1/m divergences in certain finite volume PQ correlation functions [Bernard et al, 0711.0696]
- **CONCLUSION:** If m = 0 is ambiguous, then the PQ extension of $N_f = 1$ QCD does not have a universal continuum limit
 - For m = 0 the PQ pions are massless but m_{η} , etc. are regularization dependent
- Same argument would apply to other N_f if one of the quark masses vanishes
- These results seem to me to imply that, if m = 0 is ambiguous, PQQCD is ill-defined in general (even when $m \neq 0$), and thus that extrapolations using PQXPT are invalid!

Consequences for rooting

- Staggered fermion simulations use the "det^{1/4}" trick to remove extra tastes
- det($[D+m]^4$)^{1/4} = det(D+m) is trivial (assuming m>0)
- $D_{stag}+m \rightarrow [D+m]^4$ only in continuum limit
- Using $det(D_{stag}+m)^{1/4}$ leads to an unphysical theory for $a \neq 0$
- Key question: Do the unphysical features vanish when $a \rightarrow 0$?
- Variety of analytic arguments (with assumptions) and numerics suggest YES
- If rooting staggered fermions are in the correct universality class, then they necessarily give PQQCD in the continuum limit (e.g. for one staggered fermion, end up with 4 valence and 1 sea quark)
- If PQ theories are ill-defined, so is this continuum limit, and thus so are rooted staggered fermions

There are several related theoretical issues

- I. Is m_u=0 ambiguous?
- 2. Is m=0 ambiguous in the $N_f=1$ theory?
- 3. Are PQ theories well defined in the continuum limit?
- 4. Does rooted staggered LQCD have the correct continuum limit?
- 5. Does N_f=IQCD have a non-zero (Banks-Casher) density of microscopic $(\lambda \sim I/V)$ eigenvalues?
- 6. Does m_u=0 solve the strong CP problem?

- 4. Does rooted staggered LQCD have the correct continuum limit?
- 5. Does N_f=IQCD have a non-zero (Banks-Casher) density of microscopic $(\lambda \sim I/V)$ eigenvalues?
- 6. Does m_u=0 solve the strong CP problem?

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

- 4. Does rooted staggered LQCD have the correct continuum limit?
- 5. Does N_f=IQCD have a non-zero (Banks-Casher) density of microscopic $(\lambda \sim I/V)$ eigenvalues?
- 6. Does m_u=0 solve the strong CP problem?
- These issues deserve further study, including by numerical simulations
- Key issue is whether hadron mass ratios are unambiguous in continuum limit

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

BACKUP SLIDES

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

52/51

Wednesday, March 27, 13

Kaplan-Manohar ambiguity

[D. Kaplan and A. Manohar, Phys. Rev. Lett 56 (1986) 2004]

- Ambiguity in determination of quark mass ratios from comparison of ChPT with experiment
 - Unrelated to fact that cannot determine masses themselves because they are not RG invariant
- Chiral Lagrangian is constructed using symmetries alone
- M and $(M^{\dagger})^{-1} \det(M)$ transform identically under SU(3)_L × SU(3)_R
- Chiral Lagrangian invariant under $m_u \rightarrow m_u + \alpha m_d m_s$, $m_d \rightarrow m_d + \alpha m_s m_u$, $m_s \rightarrow m_s + \alpha m_u m_d$, as long as change LECs appropriately
- Cannot determine whether m_u=0 using ChPT
- However, QCD is NOT invariant under Kaplan-Manohar transformation, so it does not prevent determination of mu using LQCD
- Similarity of form to 't Hooft vertex due to underlying chiral symmetry

Solving the strong CP problem?

- Full QCD Lagrangian includes $\theta F \tilde{F}$ term which violates CP
- Formally, can rotate into mass matrix because of axial anomaly & bring entire phase onto m_u

 $M = \operatorname{diag}(m_u e^{i\overline{\theta}}, m_d, m_s)$

- $|\theta$ -bar| $\leq |0^{-10}$ to agree with bounds on electric dipole moments
- Could have avoided, apparently, with $m_u=0$ (not, in fact, true in nature)
- Theoretically, could m_u=0 have worked? If m_u ambiguous, clearly not
- [Srednicki: hep-ph/0503051] notes that additive mass renormalization only affects Re(m_u): if Im(m_u)=0 at any scale, then true at all scales
- More generally, solve strong CP problem if Im[det(M)]=0 at any scale
- Another solution is the axion (make θ dynamical)---does this work?

Spurious cuts?

S. Sharpe, "EFT for LQCD: Lecture 4" 3/27/12 @ "New horizons in lattice field theory", Natal, Brazil

Spurious cuts?

- Rooted staggered theory has spurious, unphysical cuts in pion scattering amplitude
- Answer (obtained using rSChPT): Unphysical cuts are present for a≠0 but have discontinuities ("strengths") which vanish like a²
- Also, if one wanted to study the $m_u=0$ issue with staggered fermions, one must take the $a \rightarrow 0$ limit before $m_u \rightarrow 0$ (otherwise, e.g., the condensate will vanish)
- Numerical checks of these properties in Schwinger model by [Durr & Hoelbling]
- Related issues arise in scalar two-point correlator where unphysical cuts lead to negative contributions that vanish like a², and which have been observed and found to be consistent with rSChPT by the [MILC collaboration]