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Outline
Lecture 1

• Motivation/Background/Overview

Lecture 2

• Overview of problem 

• Deriving the two-particle quantization condition (QC2)

• Examples of applications

Lecture 3

• Sketch of the derivation of the three-particle quantization condition (QC3)

Lecture 4

• Applications of QC3

• Summary of topics not discussed and open issues
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Main references for these lectures
• Briceño, Dudek & Young, “Scattering processes & resonances from LQCD,” 1706.06223, RMP 2018

• Hansen & SS, “LQCD & three-particle decays of resonances,” 1901.00483, to appear in ARNPS

• Lectures by Dudek, Hansen & Meyer at HMI Institute on “Scattering from the lattice: applications to 
phenomenology and beyond,” May 2018, https://indico.cern.ch/event/690702/

• Lüscher, Commun.Math.Phys. 105 (1986) 153-188; Nucl.Phys. B354 (1991) 531-578 & B364 (1991) 237-251 
(foundational papers)

• Kim, Sachrajda & SS [KSS05], hep-lat/0507006 , NPB 2015 (direct derivation in QFT of QC2)

• Hansen & SS [HS14, HS15], 1408.5933 , PRD14 & 1504.04248 , PRD15 (derivation of QC3 in QFT)

• Briceño, Hansen & SS [BHS17], 1701.07465 , PRD17 (including 2↔3 processes in QC3)

• Briceño, Hansen & SS [BHS18], 1803.04169, PRD18 (numerical study of QC3 in isotropic approximation)

• Briceño, Hansen & SS [BHS19], 1810.01429 , PRD19 (allowing resonant subprocesses in QC3)

• Blanton, Romero-López & SS [BRS19], 1901.07095 , JHEP19 (numerical study of QC3 including d waves)

• Blanton, Briceño, Hansen, Romero-López & SS, in progress, poster at Lattice 2019
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https://indico.cern.ch/event/690702/
http://arxiv.org/abs/hep-lat/0507006
http://arxiv.org/abs/arXiv:1408.5933
http://arxiv.org/abs/arXiv:1504.04248
http://arxiv.org/abs/arXiv:1701.07465
http://arxiv.org/abs/arXiv:1803.04169
http://arxiv.org/abs/arXiv:1810.01429
http://arxiv.org/abs/arXiv:1901.07095
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Other references for this lecture
• Rummukainen & Gottlieb, hep-lat/9503028, Nucl. Phys B 1995 (generalized QC2 to moving frames)

• Lellouch & Lüscher, hep-lat/0003023, Comm.Math.Phys 01 (K→ππ amplitude from FV matrix element) 

• He, Feng & Liu, hep-lat/0504019, JHEP05 (multiple-channel generalization of QC2  in QM)

• Lage, Meissner & Rusetsky, 0905.0069, PLB09 (multiple-channel generalization of QC2 in NREFT)

• Meyer, 1105.1892, PRL11 (method for timeline pion form factor)

• Hansen & SS, 1204.0826 , PRD12 (multiple-channel generalization of QC2 and LL in QFT)

• Briceño & Davoudi, 1204.1110 , PRD12 (multiple-channel generalization of QC2 in QFT)

• Briceño, 1401.3312  [Bric14], PRD14 (QC2 with particles of arbitrary spin) 

• Agadjanov, Bernard, Meissner & Rusetsky, 1405.3476 , NPB14 (method for photoproduction of Δ)

• Briceño, Hansen & Walker-Loud, 1406.5965, PRD15 (general derivation of LL factor)

• Briceño & Hansen, 1502.04314 , PRD15 (LL for arbitrary spin)

• Briceño & Hansen, 1509.08507, PRD15 ; Baroni, Briceño, Hansen & Ortega-Gama, 1812.10504  (EM form 
factor of the ρ)
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http://arxiv.org/abs/hep-lat/9503028
http://arxiv.org/abs/hep-lat/0003023
http://arxiv.org/abs/hep-lat/0504019
http://arxiv.org/abs/arXiv:0905.0069
http://arxiv.org/abs/arXiv:1105.1892
http://arxiv.org/abs/arXiv:1204.0826
http://arxiv.org/abs/arXiv:1204.1110
http://arxiv.org/abs/arXiv:1401.3312
http://arxiv.org/abs/arXiv:1405.3476
http://arxiv.org/abs/arXiv:1406.5965
http://arxiv.org/abs/arXiv:1502.04314
http://arxiv.org/abs/arXiv:1509.08507
http://arxiv.org/abs/arXiv:1812.10504
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HALQCD method

�5

• I will describe the “Lüscher approach” in these lectures

• There is an alternative approach, introduced by the HALQCD collaboration 
[S. Aoki et al.], which uses the Bethe-Salpeter wave-function calculated with 
LQCD to determine a two-particle “potential” from which one can 
determine scattering amplitudes and bound-state energies 

• It is a fully relativistic method (like that I describe)

• It is potentially more powerful than the Lüscher approach, but in practice 
requires, to date, certain assumptions (truncation of derivative expansion)

• It has been widely applied to two-baryon systems, where the Lüscher 
approach has challenges due to poor signal/noise 

• For meson resonances applications of the Lüscher approach are more 
advanced

[Aoki, Hatsuda & Ishii, 0909.5585; Ishii et al., 1203.3642, PLB 2012; … ; Aoki lectures]

http://arxiv.org/abs/arXiv:0909.5585
http://arxiv.org/abs/arXiv:1203.3642
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Overview of  
problem
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The fundamental issue

�7

?
L

L

L

• Lattice QCD can calculate energy levels of multiple 
particle systems in a box

• How are these related to scattering amplitudes?
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• Lattice QCD can calculate energy levels of multiple 
particle systems in a box

• How are these related to scattering amplitudes?
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iMn!m

Discrete energy 
spectrum

Scattering 
amplitudes

E0(L)

E1(L)

E2(L)

The fundamental issue

?
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• We assume that LQCD has “done its job” and determined the spectrum

• Thus the problem becomes one in continuum, finite-volume QFT

• Note that the spectrum in finite volume IS PHYSICAL—it is just not directly 
experimentally observable

�9

Problem in finite-volume QFT

iMn!m

Discrete energy 
spectrum

Scattering 
amplitudes

E0(L)

E1(L)

E2(L)
?
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When is spectrum related to scattering amplitudes in QM?

L<2R
No “outside” region.

Spectrum NOT related to scatt. amps.
Depends on finite-density properties

L

R (interaction 
range)

 [Lüscher]

✔✘

L

L>2R
There is an “outside” region.

Spectrum IS related to scatt. amps.
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When is spectrum related to scattering amplitudes in QCD?

L<2R
No “outside” region.

Spectrum NOT related to scatt. amps.
Depends on finite-density properties

L

R (interaction 
range) ~ 1/Mπ

 [Lüscher]

✔✘

L

L>2R
There is an “outside” region.

Spectrum IS related to scatt. amps.
up to corrections proportional to

e−MπL

arising from tail of interaction



/56S. Sharpe, “Resonances from LQCD”, Lecture 2, 7/9/2019,  Peking U. Summer School �11

When is spectrum related to scattering amplitudes in QCD?

L<2R
No “outside” region.

Spectrum NOT related to scatt. amps.
Depends on finite-density properties

L

R (interaction 
range) ~ 1/Mπ

 [Lüscher]

✔✘

L

L>2R
There is an “outside” region.

Spectrum IS related to scatt. amps.
up to corrections proportional to

e−MπL

arising from tail of interaction

We ignore such exponentially-suppressed 
corrections throughout: 

If Mπ L=4 / 5 / 6, exp(-Mπ L)~2 / 0.7 / 0.2%
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Aside on “two-particle states” in QFT

• I talk loosely about “two-particle finite-volume states”

• But in QFT all possible states appear that are consistent 
with the chosen quantum numbers

• We often impose a Z2 symmetry decoupling even- and 
odd-particle-number states (cf. G parity for pions)                                    

• In this case there are states with 2, 4, 6, … particles

• Similar comments hold for “three-particle states”
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Deriving the  
two-particle QC

�13

Following the method of [KSS05]
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Set-up

�14

• Work in continuum (assume that LQCD                                                   
can control discretization errors)

• Cubic box of size L with periodic BC,                                                         
and infinite (Minkowski) time

• Spatial loops are sums:

• Can easily generalize to other geometries and BC 

• Consider identical particles with physical mass m (think of pions), interacting 
arbitrarily—a generic (relativistic) effective field theory (RFT)

• Work to all orders in perturbation theory with no assumptions about the 
size of coupling constants

• Generalizations are known for nonidentical particles [Many authors] and 
to particles with spin [Bric14]

1
L3

P
~k

~k = 2⇡
L ~n

L

L

L

…
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Methodology

�15

• Calculate (for some P=2πnP/L)

Full propagators
Normalized to unit residue at pole

Infinite-volume
vertices

Boxes indicated summation
over finite-volume momenta

• Poles in CL occur at energies of finite-volume spectrum [Exercise]

CM energy is
E*=√(E2-P2)

• σ ~ π2, e.g. σ( ⃗x , t) = ∫L
d3y π( ⃗x + ⃗y , t)π( ⃗x − ⃗y , t)e−i ⃗k ⋅ ⃗y π(x) = ū(x)γ5d(x)

Here I have assumed no odd-legged vertices—-not necessary for subsequent arguments, but used in 3-particle case

CL(E, ⃗P ) ≡ ∫L
d4x eiEt−i ⃗P ⋅ ⃗x ⟨Ω |T {σ†(x)σ(0)} |Ω⟩L
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Key step 1

• Replace loop sums with integrals where possible (using Poisson summation formula)

• Drop exponentially suppressed terms (~e-ML,  e-(ML)^2, etc.) while keeping power-law dependence

�16
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Key step 1

• Replace loop sums with integrals where possible (using Poisson summation formula)

• Drop exponentially suppressed terms (~e-ML,  e-(ML)^2, etc.) while keeping power-law dependence

�16

• Example of smooth integrand:
Focus on these loops

k

P = (E, ~P )
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Key step 1

• Replace loop sums with integrals where possible (using Poisson summation formula)

• Drop exponentially suppressed terms (~e-ML,  e-(ML)^2, etc.) while keeping power-law dependence

�16

Exp. suppressed if g(k) is smooth
and scale of derivatives of g is ~1/M

• Example of smooth integrand:
Focus on these loops

k

P = (E, ~P )
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Key step 2
• Use “sum=integral + [sum-integral]” if integrand has pole, and use identity [KSS]

�17

q* is relative momentum
of pair on left in CM

f & g evaluated for ON-SHELL momenta
Depend only on direction in CM

Kinematic function

0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
) + exp. suppressed

1
2

symmetry factor
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Key step 2
• Use “sum=integral + [sum-integral]” if integrand has pole, and use identity [KSS]

�17

q* is relative momentum
of pair on left in CM

f & g evaluated for ON-SHELL momenta
Depend only on direction in CM

Kinematic function

0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
)

• Example of pole:
Focus on this loop

k

P-k

P = (E, ~P )

g is right-hand part 
of integrand

f is left-hand part 
of integrand

+ exp. suppressed

1
2

symmetry factor
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Key step 2
• Use “sum=integral + [sum-integral]” if integrand has pole, and use identity [KSS]

�17

q* is relative momentum
of pair on left in CM

f & g evaluated for ON-SHELL momenta
Depend only on direction in CM

Kinematic function
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Z

dk0
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• Example of pole:
Focus on this loop

k

P-k

P = (E, ~P )

g is right-hand part 
of integrand

f is left-hand part 
of integrand

+ exp. suppressed

1
2

symmetry factor
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Key step 2
• Use “sum=integral + [sum-integral]” where integrand has pole, with [KSS]

�18

0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
)

• Diagrammatically

off-shell on-shell

1

L3

X

~k

Z

~k

A new type of “cut”

Functions on left and right
can be arbitrary but must

be smooth
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Variant of key step 2
• For generalization to 3 particles will use a PV prescription instead of iε

�19

0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
)

• Key properties of FPV : real and no unitary cusp at threshold

• These properties are important for the derivation of three-particle QC

PV

PV1
2
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More detail on key step 2 [HS14]
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0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
)

1
2

=
1
2

1
L3 ∑⃗

k

− ∫
d3k

(2π)3

f( ⃗k *)g( ⃗k *) h( ⃗k )
2ωk2ωP−k(E − ωk − ωP−k + iϵ)

+ 𝒪(e−mL)

=
1
2

1
L3 ∑⃗

k

− ∫
d3k

(2π)3
fℓ′�m′ �

𝒴ℓ′�m′ �( ⃗k *)𝒴*ℓm( ⃗k *) h( ⃗k )
2ωk2ωP−k(E − ωk − ωP−k + iϵ)

gℓm + 𝒪(e−mL)

≡ fℓ′�m′� Fℓ′�m′ �;ℓm(E, ⃗P , L) gℓm

Fℓ′�m′�;ℓm(E, ⃗P , L) =
1
2

1
L3 ∑⃗

k

− ∫
d3k

(2π)3

𝒴ℓ′ �m′�( ⃗k *)𝒴*ℓm( ⃗k *) h( ⃗k )
2ωk2ωP−k(E − ωk − ωP−k + iϵ)

Time integrals set k on shell
k* is on-shell k boosted to CM

Decompose f & g into 
spherical harmonics,

and evaluate with P-k on shell

𝒴ℓm( ⃗k *) = 4π ( k*
q* )

ℓ

Yℓm( ̂k*)

q* = E*2 /4 − m2

Smooth UV regulator
Equals unity on shell

More convenient to use
this matrix form

• Thus power-law volume dependence enters through geometrical function:
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More detail on key step 2 [HS14]
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Fℓ′�m′�;ℓm(E, ⃗P , L) =
1
2

1
L3 ∑⃗

k

− ∫
d3k

(2π)3

𝒴ℓ′ �m′�( ⃗k *)𝒴*ℓm( ⃗k *) h( ⃗k )
2ωk2ωP−k(E − ωk − ωP−k + iϵ)

• Similarly, the PV version is

FPV;ℓ′�m′ �;ℓm(E, ⃗P , L) =
1
2

1
L3 ∑⃗

k

− PV ∫
d3k

(2π)3

𝒴ℓ′ �m′�( ⃗k *)𝒴*ℓm( ⃗k *) h( ⃗k )
2ωk2ωP−k(E − ωk − ωP−k)

∝
x=q*L/(2π)

P)

= Fℓ′�m′�;ℓm(E, ⃗P , L) − iδℓ′ �ℓ δm′�m
q*

16πE*

“Lüscher zeta function”
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Kinematic functions

�22

= x2 = x2

[Luu & Savage, `11]Z4,0 & Z6,0 for P=0

=(q*L/2π)2=(q*L/2π)2

Divergences occur for values of E equal to the 
energy of two free particles in the box
[Exercise: why no divergence at x=0?]

Example:  
n1 = -n2 = (0,0,1) 
⇒ q*=2π/L ⇒ x=1
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Key step 3
• Identify potential singularities using time-ordered PT (i.e. do k0 integrals)

• Example (again assuming only even-legged vertices)

�23

��†
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Key step 3
• 2 out of 6 time orderings:

�24

�

�

�†

�†

1’

2’

3’

4’

2

1
1

2
3

4 5

6

E�!1�!2�!3�!4�!0
5

!j =
q
~k2j +M2On-shell energy

E�!0
1�!0

2�!0
3�!0

4�!5

1 1 1 1P
j=1,6 !jE�!1�!2�!5
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Key step 3
• 2 out of 6 time orderings:

�24

�

�

�†

�†

1’

2’

3’

4’

2

1
1

2
3

4 5

6

E�!1�!2�!3�!4�!0
5

E�!0
1�!0

2�!0
3�!0

4�!5

1 1 1 1P
j=1,6 !j

• If restrict 0 < E*< 4M (M < E* < 3M if have odd-legged vertices) then only 2-
particle “cuts” have singularities, and these occur only when both particles go 
simultaneously on shell

E�!1�!2�!5
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Combining key steps 1-3
• For each diagram, determine which momenta must be summed, and which can 

be integrated

• In our example, find:

�25

��†

Can integrate

Must sum momenta
passing through box
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Combining key steps 1-3
• For each diagram, determine which momenta must be summed, and which can 

be integrated

• Another example:

�26

Can replace sum with integral here

But not here
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Combining key steps 1-3
• For each diagram, determine which momenta must be summed, and which can 

be integrated

• Another example:

�26

• Then repeatedly use sum=integral + “sum-integral” to simplify 

Can replace sum with integral here

But not here
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Summary: the key “move”

�27

off-shell on-shell

1

L3

X

~k

Z

~k

finite-volume
residue

A new type of “cut”

+ exp. suppr.
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+

+ + + · · ·

�†

�†

�†

�†

�

�

�

�

CL(E, ~P ) = these loops are now
integrated

• Apply previous analysis to 2-particle correlator (0 < E* < 4M)

• Collect terms into infinite-volume Bethe-Salpeter kernels

�† �

+ · · ·�† �+ + + · · ·
�

+

⇢

CL(E, ~P ) = iB

B-S kernel: 2-particle irreducible in the s-channel, i.e. no 2-particle cuts
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• Apply previous analysis to 2-particle correlator

• Collect terms into infinite-volume Bethe-Salpeter kernels

�† �

+ · · ·�† �+ + + · · ·
�

+

⇢

CL(E, ~P ) =

+

+ · · ·+

�† � �† �

�† �

CL(E, ~P ) =

• Leading to

iB

iB

iB

iB

Similar structure to NREFT bubble-chain (e.g. in two nucleon system)

�29
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A0

⇢ ⇢
+ + · · ·� �

⇢
+ · · ·

F

iB iB + ...

�30

+

+ · · ·+

�† � �† �

�† �
+�† � �† �

CL(E, ~P ) =

�† � �† � �† � �† �+ + +

F

F F F F

• Next use sum identity

A

CL(E, ~P ) = C1(E, ~P )

+
⇢

+ �†�†

zero F cuts 

matrix elements: 

• And regroup according to number of  “F cuts”

iB iB

iB

iB iBiB iB

one F cut
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⇢ ⇢
+ + · · · + · · ·+

iM

A0A

CL(E, ~P ) = C1(E, ~P )+

two F 
cuts

A0A

F F

F

the infinite-volume, on-shell 2→2 
scattering amplitude

• And keep regrouping  according to number of  “F cuts”

�31

+

+ · · ·+

�† � �† �

�† �
+�† � �† �

CL(E, ~P ) =

�† � �† � �† � �† �+ + +

F

F F F F

• Next use sum identity

iB iB

iB

iB iBiB iB

iB iB iB
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⇢ ⇢
+ + · · · + · · ·+ A0A

CL(E, ~P ) = C1(E, ~P )+ A0A

F F

F

the infinite-volume, on-shell 
2→2 K-matrix 

• Alternate form if use PV-tilde prescription:

�32

+

+ · · ·+

�† � �† �

�† �
+�† � �† �

CL(E, ~P ) =

�† � �† � �† � �† �+ + +

F

F F F F

• Next use sum identity

iB iB

iB

iB iBiB iB

iB iB iB

gPV

gPVgPV

iK

gPV

gPV gPV

gPV gPV
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• Final result:

++

+ + · · ·

iM

iM iM

A0A0

A0

A

A

A

CL(E, ~P ) = C1(E, ~P )

CL(E, ~P ) = C1(E, ~P ) +
1X

n=0

A0iF [iM2!2iF ]nA

F F F

F F F

•  

• Correlator is expressed in terms of infinite-volume, physical quantities and 
kinematic functions encoding the finite-volume effects
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⇒ Poles in CL occur when

CL(E, ⃗P ) = C∞(E, ⃗P ) +
∞

∑
n=0

A′ �iF
1

1 + ℳ2 F
A•  

�34

• Final result:

++

+ + · · ·

iM

iM iM

A0A0

A0

A

A

A

CL(E, ~P ) = C1(E, ~P )

F F F

F F F

no poles,
only cuts

•  

no poles,
only cuts

matrices in l,m space

CL(E, ⃗P ) = C∞(E, ⃗P ) +
∞

∑
n=0

A′ �iF [iℳ2 iF]nA

det [F(E, ⃗P , L)−1 + ℳ2(E*)] = 0
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2-particle quantization condition

• At fixed L & P, the finite-volume spectrum E1, E2, ... is given by solutions of

�35

For P=0 this equivalent to original result by [Lüscher]

det [F(E, ⃗P , L)−1 + ℳ2(E*)] = 0

Generalization to moving frame first obtained using RQM by [Rummukainen & Gottlieb]
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2-particle quantization condition

• At fixed L & P, the finite-volume spectrum E1, E2, ... is given by solutions of

�35

For P=0 this equivalent to original result by [Lüscher]

det [F(E, ⃗P , L)−1 + ℳ2(E*)] = 0

Generalization to moving frame first obtained using RQM by [Rummukainen & Gottlieb]

• F and M2 are matrices in l,m space:

• M2  is diagonal; while F is off-diagonal, since the box violates rotation symmetry

• QC separates finite-volume (F) and infinite-volume quantities (M2)

• If M2 vanishes, solutions are free two-particle energies due to poles in F

• Each spectral energy gives information about all partial waves of M2(E*)



/56S. Sharpe, “Resonances from LQCD”, Lecture 2, 7/9/2019,  Peking U. Summer School

2-particle quantization condition

• Equivalent form, obtained by using PV prescription throughout derivation, is

�36

• I prefer this as both K2 , FPV  are real 

• K2 contains the same information as M2, but is real and smooth (no threshold 
branch points)

• These differences are irrelevant for the two-particle QC—the two QCs are 
identical—but turn out to be important for the three-particle QC

• Beware when reading the literature, as each collaboration uses different notation 
for what I call F: sometimes B (box function), sometimes M

det [FPV(E, ⃗P , L)−1 + 𝒦2(E*)] = 0
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Applications of QC2

�37
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Truncation

• Near threshold K2~ (q*)2l  [familiar from QM due to the angular-momentum 
barrier]

• In practice, for E* ≾ 1GeV, it is a good approximation to keep only the lowest 
one or two partial waves, i.e to set K2(l) = 0 for l > lmax

• If K2 (which is diagonal in l,m) vanishes for l > lmax then can show that need 

only keep l ≤ lmax in FPV (which is not diagonal)

• This leads to a finite-dimensional matrix condition that can be implemented 
numerically

• Can further reduce the dimensionality by projecting onto irreps of the cubic 
group [A1+, A2+, E+,…—no time to discuss here]

�38

det [FPV(E, ⃗P , L)−1 + 𝒦2(E*)] = 0
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Simplest case: single value of l

• If lmax=0, or if lmax=1 and one uses a cubic-group irrep that does not couple to 
l=0 (e.g. E+ if P=0),  then only a single value of l contributes, and QC2 
becomes algebraic, e.g.

�39

det [FPV(E, ⃗P , L)−1 + 𝒦2(E*)] = 0

𝒦(ℓ=0)
2 (E*n ) = −

1

FPV;00;00(En, ⃗P , L)

lmax=0
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Simplest case: single value of l

• If lmax=0, or if lmax=1 and one uses a cubic-group irrep that does not couple to 
l=0 (e.g. E+ if P=0),  then only a single value of l contributes, and QC2 
becomes algebraic, e.g.

�39

det [FPV(E, ⃗P , L)−1 + 𝒦2(E*)] = 0

𝒦(ℓ=0)
2 (E*n ) = −

1

FPV;00;00(En, ⃗P , L)

lmax=0
“measured” 

energy-level
CM energy 

E⇤
n =

q
E2

n � ~P 2

• One-to-one relation between energy levels and K2 ~ 1/(q* cot δ)
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Overview of effects on spectrum

�40
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FIG. 4 Finite volume spectrum in a rest-frame irrep and a moving-frame irrep for weak attractive (green) and repulsive (red)
elastic scattering. Non-interacting energy levels are indicated by the dashed black lines and the gray band shows the kinematic
threshold (2m⇡). Plotted is cm-frame energy, E? in MeV, against L in fm. Scattering particles have mass 300 MeV and the
scattering length is |a| = 0.32 fm. Rightmost panel shows the corresponding elastic phase-shift in degrees.

FIG. 5 Finite volume spectrum in two irreps for a Breit-Wigner resonance with three values of decay coupling. Plotted is cm-
frame energy, E? in MeV, against L in fm. Scattering particles have mass 300 MeV and Breit-Wigner mass is m = 1182 MeV.
Dashed black curves show non-interacting energy levels, and the gray band at 600 MeV indicates the kinematic threshold.
Rightmost panel shows the elastic phase-shift in degrees.

• Unphysical example for sake of illustration

• lmax=0, m=300 MeV, a0=±0.32fm (m a0=0.48)  

• Illustrates the power of using moving frames (P≠0) and multiple levels

L (fm)

E*  
(MeV)

P L/(2π)

mL=4.5

[Briceño, Dudek, Young, RMP17]

E=2m

Non-interacting levels

Attractive Repulsive
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Overview of effects on spectrum

�41

• Narrow Brett-Wigner resonance at 1182 MeV 

• Spectrum contains an additional level, and displays avoided level crossings

L (fm)

E*  
(MeV)

P L/(2π)

mL=4.5

[Briceño, Dudek, Young, RMP17]

E=2m

Non-interacting levels

13

FIG. 4 Finite volume spectrum in a rest-frame irrep and a moving-frame irrep for weak attractive (green) and repulsive (red)
elastic scattering. Non-interacting energy levels are indicated by the dashed black lines and the gray band shows the kinematic
threshold (2m⇡). Plotted is cm-frame energy, E? in MeV, against L in fm. Scattering particles have mass 300 MeV and the
scattering length is |a| = 0.32 fm. Rightmost panel shows the corresponding elastic phase-shift in degrees.

 600

 800

 1000

 1200

 1400

 1600

1.5 2.0 2.5 3.0 3.5 4.0

 600

 800

 1000

 1200

 1400

 1600

 600

 800

 1000

 1200

 1400

 1600

 600

 800

 1000

 1200

 1400

 1600

 0 4
5

 9
0

 1
35

 1
80

 600

 800

 1000

 1200

 1400

 1600

 0 4
5

 9
0

 1
35

 1
80

 600

 800

 1000

 1200

 1400

 1600

 0 4
5

 9
0

 1
35

 1
80

1.5 2.0 2.5 3.0 3.5 4.0 1.5 2.0 2.5 3.0 3.5 4.0

1.5 2.0 2.5 3.0 3.5 4.0 1.5 2.0 2.5 3.0 3.5 4.0

1.5 2.0 2.5 3.0 3.5 4.0 1.5 2.0 2.5 3.0 3.5 4.0
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Overview of effects on spectrum

�42

• Broad Brett-Wigner resonance at 1182 MeV 

• Association of levels with “resonance” or “almost-free particles” no longer 
holds

L (fm)

E*  
(MeV)

mL=4.5

[Briceño, Dudek, Young, RMP17]

E=2m

Non-interacting levels

13

FIG. 4 Finite volume spectrum in a rest-frame irrep and a moving-frame irrep for weak attractive (green) and repulsive (red)
elastic scattering. Non-interacting energy levels are indicated by the dashed black lines and the gray band shows the kinematic
threshold (2m⇡). Plotted is cm-frame energy, E? in MeV, against L in fm. Scattering particles have mass 300 MeV and the
scattering length is |a| = 0.32 fm. Rightmost panel shows the corresponding elastic phase-shift in degrees.
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ρ resonance from LQCD
• Most results to date assume lmax=1 and work with unphysical quark masses

�43

[Dudek, Edwards & Thomas, 1212.0830]

L/a

a E*

mπ ≈ 400 MeV

KEY POINT: there is an “extra” 
level here, and neither level is 

close to the free energy
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ρ resonance from LQCD
• Most results to date assume lmax=1 and work with unphysical quark masses

�44
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FIG. 13 Left: Elastic I = 1 ⇡⇡ scattering phase-shifts in P -wave determined from finite-volume spectra computed in a single
323 volume with m⇡ ⇠ 236 MeV. Right: Resonance pole position for a wide range of amplitude parameterizations constrained
to describe the finite-volume spectra. Energies expressed in units of the temporal lattice spacing, 1/at ⇠ 6.0 GeV. Figures
adapted from those in (Wilson et al., 2015a).
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FIG. 14 Elastic I = 1 ⇡⇡ scattering phase-shifts in P -wave
determined from finite-volume spectra computed the same
m⇡ ⇠ 236 MeV configurations as used in the calculation
presented in Figure 13, but using a di↵erent correlator con-
struction technique, operator basis and variational analysis
method. Color coding as in Figure 13. Figure adapted from
one appearing in (Bulava et al., 2016).

confirmed that such a pole is present and determined its
position with some precision (see (Pelaez, 2016) for a re-
view of the situation).

Very recently we have seen the first serious lattice QCD
determination of elastic ⇡⇡ scattering in the isospin=0
S-wave (Briceno et al., 2017a). Lattice QCD calculation
of this channel had long been considered extremely chal-
lenging owing to the need to compute diagrams in which
all the quarks and antiquarks annihilate, leading to some-
thing which is completely disconnected. By computing a
large number of propagation objects in the distillation

framework (Peardon et al., 2009), the Hadron Spectrum

Collaboration were able to compute the required corre-
lation functions and obtain finite-volume spectra at two
pion masses, m⇡ ⇠ 236, 391 MeV. The lattices are the
same ones used in the ⇢ extractions described above, with
three volumes at the heavier mass and a single larger vol-
ume at the lighter mass.

Figure 15 shows the elastic scattering phase-shift de-
termined from spectra on these lattices for the two pion
masses, and a clear change is observed between the
two. At the heavier quark mass, the behavior is that
of a bound-state lying just below threshold, while at the
lighter mass we observe something much closer to the ex-
perimental situation, with a slow increase in phase-shift
over the elastic region.

At the heavier quark mass, all analytic parameteri-
zations of the scattering amplitude capable of describ-
ing the finite-volume spectra feature a pole located
on the real energy axis, on the physical sheet, at
E? = 758(4) MeV, which is interpreted as a bound-state
� (lying below the ⇡⇡ threshold at 2 m⇡ = 782 MeV).
At the lighter quark mass, the situation is somewhat
less clear — many di↵erent parameterizations are ca-
pable of describing the spectra, and while they do fea-
ture a pole far into the complex plane on the unphysical
sheet, the position of that pole is not precisely deter-
mined, with considerable scatter observed as the ampli-
tude parameterization is varied. This observation is not
unique to the finite-volume situation — the same scat-
ter in pole position is observed when a variety of ampli-
tudes forms are constrained using only the experimental
elastic phase-shift data. It is only when amplitude forms
which build in the required constraints of analyticity and
crossing-symmetry are utilized that the pole position can
be pinned down with precision (Pelaez, 2016).

[Wilson, Briceño, Dudek, Edwards & Thomas, 1507.02599]

mπ ≈ 236 MeV
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ρ resonance from LQCD
• Most results to date assume lmax=1 and work with unphysical quark masses
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presented in Figure 13, but using a di↵erent correlator con-
struction technique, operator basis and variational analysis
method. Color coding as in Figure 13. Figure adapted from
one appearing in (Bulava et al., 2016).

confirmed that such a pole is present and determined its
position with some precision (see (Pelaez, 2016) for a re-
view of the situation).

Very recently we have seen the first serious lattice QCD
determination of elastic ⇡⇡ scattering in the isospin=0
S-wave (Briceno et al., 2017a). Lattice QCD calculation
of this channel had long been considered extremely chal-
lenging owing to the need to compute diagrams in which
all the quarks and antiquarks annihilate, leading to some-
thing which is completely disconnected. By computing a
large number of propagation objects in the distillation

framework (Peardon et al., 2009), the Hadron Spectrum

Collaboration were able to compute the required corre-
lation functions and obtain finite-volume spectra at two
pion masses, m⇡ ⇠ 236, 391 MeV. The lattices are the
same ones used in the ⇢ extractions described above, with
three volumes at the heavier mass and a single larger vol-
ume at the lighter mass.

Figure 15 shows the elastic scattering phase-shift de-
termined from spectra on these lattices for the two pion
masses, and a clear change is observed between the
two. At the heavier quark mass, the behavior is that
of a bound-state lying just below threshold, while at the
lighter mass we observe something much closer to the ex-
perimental situation, with a slow increase in phase-shift
over the elastic region.

At the heavier quark mass, all analytic parameteri-
zations of the scattering amplitude capable of describ-
ing the finite-volume spectra feature a pole located
on the real energy axis, on the physical sheet, at
E? = 758(4) MeV, which is interpreted as a bound-state
� (lying below the ⇡⇡ threshold at 2 m⇡ = 782 MeV).
At the lighter quark mass, the situation is somewhat
less clear — many di↵erent parameterizations are ca-
pable of describing the spectra, and while they do fea-
ture a pole far into the complex plane on the unphysical
sheet, the position of that pole is not precisely deter-
mined, with considerable scatter observed as the ampli-
tude parameterization is varied. This observation is not
unique to the finite-volume situation — the same scat-
ter in pole position is observed when a variety of ampli-
tudes forms are constrained using only the experimental
elastic phase-shift data. It is only when amplitude forms
which build in the required constraints of analyticity and
crossing-symmetry are utilized that the pole position can
be pinned down with precision (Pelaez, 2016).

[Wilson, Briceño, Dudek, Edwards & Thomas, 1507.02599]

mπ ≈ 236 MeV

Trouble lurking? 
QC2 formally 

fails above here
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ρ resonance from LQCD
• Some work includes higher partial waves, allowing better estimate of 

systematic errors

�45

[Wilson, Briceño, Dudek, Edwards & Thomas, 1507.02599]

mπ ≈ 200 MeV

Decay of ⇢

plot of phase shifts

C. Morningstar Multihadron challenges 76

[Talk at MIAPP, October 2018]
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ρ resonance from LQCD
• Pushing to physical quark masses (still with only a single lattice spacing)

�46

mπ ≈ 150 MeV

[Bali et al. RQCD collab, 1512.08678]
8

π/4

π/2

3π/4

π
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Kπ

FIG. 4. The phase shift as a function of the centre of momentum frame energy, Ecm, for p-wave ⇡⇡ scattering around the ⇢

resonance and K⇡ scattering around the K
⇤ resonance. The data correspond to the lab frame energies shown in Fig. 3, with

matched colours and symbols. The curves with error bands are Breit-Wigner parametrizations. The dashed error bar indicates
a point in ⇡⇡ scattering which lies above the four-pion threshold.

The ⇡⇡ and K⇡ phase shifts are each fitted to the
BW resonance form given in Eq. (15). Our fit to the ⇡⇡
phase shift results in �2/d.o.f = 8.9/7 and for the K⇡
phase shift we obtain �2/d.o.f. = 19.2/7. These fits are
included in Fig. 4 (the grey hashed band for ⇡⇡ scattering
and the solid orange one for K⇡ scattering). In the ⇡⇡
case the dashed data point of the figure is slightly above
the respective 4⇡ threshold. However, as discussed in
the introduction, the e↵ect of this inelastic threshold is
expected to be negligible. Moreover, excluding this point
from the fit only produces a hardly visible change. Since
we have exact isospin symmetry in place, decays into
three-pion final states are not possible.

Figures 3 and 4 clearly show an increase in statistical
noise when going to smaller quark masses: The ⇡⇡ scat-
tering data have considerably larger error bars than the

K⇡ data. From the BW fits shown, we find the values

m⇢ = 716(21)(21)MeV , mK⇤ = 868(8)(26)MeV ,
(18)

g⇢⇡⇡ = 5.64± 0.87 , gK⇤K⇡ = 4.79± 0.49 , (19)

�⇢ = 113(35)(3)MeV , �K⇤ = 30(6)(1)MeV , (20)

for ⇡⇡ and K⇡ scattering, where the first errors are sta-
tistical and the second errors reflect our 3% overall scale
uncertainty [25]. In the last row we also quote the cor-
responding decay widths, obtained via Eq. (16). From
a given parametrization of the p-wave phase shift, as-
suming partial wave unitarity and ignoring further in-
elastic thresholds, we can analytically continue to the
second (unphysical) Riemann sheet (see, e.g., Ref. [46])
and determine the position of the resonance pole. Us-
ing the BW parametrization, for the ⇢ and K⇤ res-
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Generalizations
• Multiple two-particle channels [Hu, Feng & Liu, hep-lat/0504019; Lage, Meissner & 

Rusetsky, 0905.0069; Hansen & SS, 1204.0826; Briceño & Davoudi, 1204.1110]

• e.g.

�47

det (
Fππ

PV(E, ⃗P , L)−1 0

0 FKK̄
PV (E, ⃗P , L)−1) + (𝒦ππ

2 (E*) 𝒦πK
2 (E*)

𝒦πK
2 (E*) 𝒦KK

2 (E*)) = 0

JPC = 0++ ππ + KK̄ (+ηη)
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Generalizations
• Multiple two-particle channels [Hu, Feng & Liu, hep-lat/0504019; Lage, Meissner & 

Rusetsky, 0905.0069; Hansen & SS, 1204.0826; Briceño & Davoudi, 1204.1110]

• e.g.

�47

det (
Fππ

PV(E, ⃗P , L)−1 0

0 FKK̄
PV (E, ⃗P , L)−1) + (𝒦ππ

2 (E*) 𝒦πK
2 (E*)

𝒦πK
2 (E*) 𝒦KK

2 (E*)) = 0

JPC = 0++ ππ + KK̄ (+ηη)

• Even if truncate to lmax=0, there is no longer a one-to-one relation between 
energy levels and K-matrix elements

• Must parametrize the (enlarged) K matrix in some way and fit parameters to 
multiple spectral levels

• Using these parametrizations can study pole structure of scattering amplitude

• Approach is very similar to that used analyzing scattering data
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 S-wave above 2m!, 2mK, and 2m𝜂

 Ansatz 

�2/Ndof =
44.0

57� 8
= 0.90~ “cross section”

K�1(s) =

0

@
a+ bs c+ ds e
c+ ds f g

e g h

1

A

[Briceño, Dudek, Edwards,
& Wilson

arXiv:1708.06667]

mπ = 391 MeV
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Multiple-channel results
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[Briceño, Dudek, Edwards & Wilson
arXiv:1708.06667]
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FIG. 15. Pole singularities for the 20 S-wave amplitudes
discussed in Section III B. Color indicates Riemann sheet of
pole: sheet I(purple), II(red), III(blue), and IV(green). Thick
black points indicate the particular amplitude defined by Eq. 3.
Upper panel: complex s-plane. Lower panel: complex kKK-
plane. Contours of constant complex energy plotted in lower
panel to aid visualization of proximity of poles to physical
scattering which occurs along the positive imaginary axis below
KK threshold and along the positive real axis above the KK
threshold.

observe ⇡⇡ and KK couplings of comparable magnitudes,
and a coupling to ⌘⌘ that is somewhat smaller, albeit
with some scatter under changes in parameterization.

3. The KK threshold region

The f0 resonance pole described in the previous section
dominates the amplitude in the energy region around the
KK threshold, and in this region, the e↵ect of the distant
� bound-state is limited to providing a smoothly varying

-0.2

-0.1

 0.1

 0.2

-0.1  0.1  0.2

FIG. 16. Couplings for the 20 S-wave amplitudes discussed
in Section III B from factorized residues at the sheet II pole.
Thick black points indicate the particular amplitude defined
by Eq. 3.

‘background’. Given this, it is worthwhile to attempt
to describe just that part of the spectrum lying above
atEcm = 0.17 using amplitudes that need not lead to
an explicit � bound-state pole. In Figure 17 we show 9
parameterizations which describe 41 levels in the energy
region 0.17 < atEcm < 0.24, all with �2/Ndof < 1.05. As
in the previous section we note that the degree of coupling
of the ⇡⇡,KK sector to the ⌘⌘ sector is somewhat impre-
cisely determined, but that otherwise there is very little
variation in amplitude with change in parameterization.
There is again always a sheet II pole, but we note that
it is systematically at a slightly lower mass than in the
previous section. We observe there to be somewhat less
scatter in the ⇡⇡ and KK couplings, which show a small
systematic shift in phase with respect to the previous
section, but which have very similar magnitudes.

Note that some, but not all, of these amplitudes do
feature a bound-state pole in roughly the position of the
�, but that this pole position is not precisely determined
due to the energy levels below atEcm = 0.17 not being
included in the fit. In those amplitudes which do not
feature a bound-state pole, the e↵ect of the � is being
handled by smooth energy dependences that we might
think of as ‘background’.

mπ = 391 MeV

~f0(980)

• Parametrization-dependence of pole positions

σ ~ f0(500)



/56S. Sharpe, “Resonances from LQCD”, Lecture 2, 7/9/2019,  Peking U. Summer School

Multiple-channel results
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mπ = 320 MeV

• Very hot off the press!

A coupled-channel lattice study on the resonance-like structure Zc(3900)

Ting Chen,1 Ying Chen,2 Ming Gong,2 Chuan Liu,3, ⇤ Liuming Liu,4 Yu-Bin
Liu,5 Zhaofeng Liu,2 Jian-Ping Ma,6 Markus Werner,7 and Jian-Bo Zhang8
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In this exploratory study, near-threshold scattering of D and D̄⇤ meson is investigated using
lattice QCD with Nf = 2+1+1 twisted mass fermion configurations. The calculation is performed
within the coupled-channel Lüscher’s finite-size formalism. The study focuses on the channel with
IG(JPC) = 1+(1+�) where the resonance-like structure Zc(3900) was discovered. We first identify
the most relevant two channels of the problem and the lattice study is performed within the two-
channel scattering model. Combined with a two-channel Ross-Shaw theory, scattering parameters
are extracted from the energy levels by solving the generalized eigenvalue problem. Our results on
the scattering length parameters suggest that, at the particular lattice parameters that we studied,
the best fitted parameters do not correspond to a peak behavior in the elastic scattering cross section
near the threshold. Furthermore, within the zero-range Ross-Shaw theory, the scenario of a narrow
resonance close to the threshold is disfavored beyond 3� level.

I. INTRODUCTION

In the past decade or so, various exotic hadronic
resonance-like structures have been witnessed by numer-
ous experimental groups. These structures, due to their
unknown nature, are generally called XY Z particles.
More interesting ones are the charged structures that
have been discovered in both charm and bottom sectors.
These structures necessarily bear a four valence quark
structure Q̄qq̄

0
Q with Q being a heavy-flavor quark while

q and q
0 being the light-flavored quark. For di↵erent light

flavors, these are charged objects. Another interesting
feature is that, they tend to appear close to the thresh-
old of two heavy mesons with valence structure Q̄q and
q̄
0
Q. The physical nature of these structures have been

contemplated and discussed in many phenomenological
studies. For example, they could be shallow bound states
of the two mesons due to residual color interactions or
some genuine tetraquark objects. However, even after so
many phenomenological studies, the nature of many of
these states remains obscure. A typical example is the
structure Zc(3900), which will be the main topic of this
paper. It was first discovered by BESIII [1] and Belle [2]
and soon also verified by CLEO collaborations [3]. The
nature of Zc(3900) remains in debate. For a recent re-
view on these matters, see e.g. Ref. [4, 5]. It is therefore

⇤ Corresponding author. Email: liuchuan@pku.edu.cn

highly desirable that non-perturbative methods like lat-
tice QCD could provide some information on the nature
of these states.

Quite contrary to many phenomenological studies, lat-
tice studies on these states are still relatively scarce. For
the state Zc(3900), it is readily observed that the in-
variant mass of the structure is close to the DD̄

⇤ thresh-
old, naturally suggesting a shallow molecular bound state
formed by the two corresponding charmed mesons. To
further investigate this possibility, the interaction be-
tween D

⇤ and D mesons near the threshold becomes cru-
cial.

A lattice study was performed by S. Prelovsek et al.
who investigated the energy levels of the two charmed
meson system in the channel where Zc appearing in a fi-
nite volume [6]. They used quite a number of operators,
including two-meson operators in the channel of J/ ⇡,
DD̄

⇤ etc. and even tetraquark operators. However, they
discovered no indication of extra new energy levels apart
from the almost free scattering states of the two mesons.
Taking DD̄

⇤ as the main relevant channel, CLQCD uti-
lized single-channel Lüscher scattering formalism [7–11]
to tackle the problem and also found slightly repulsive
interaction between the two charmed mesons [12, 13].
Therefore, it is also unlikely for them to form bound
states. A similar study using staggered quarks also finds
no clue for the existence of the state [14]. Thus, the
above mentioned lattice studies, whether it is inspecting
the energy levels alone or utilizing single-channel Lüscher
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Two-particle decays & matrix elements
• Can extend analysis to obtain relation between |ππ>L  and |ππ,in> (at same E*)

• In simplest case, involves phase shift and its derivative w.r.t. energy

• Usually referred to as the Lellouch-Lüscher relation, after original 
derivation in non-moving frame [Lellouch & Lüscher, 2001]

• Extended to moving frames in [KSS05; Kim, Christ & Yamazaki 2005]

• General derivation and improved understanding given in [Briceño, Hansen 
& Walker-Loud, 2015]

�51
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• First application: K→ππ decay amplitudes from 

• Does QCD reproduce ΔI=½ rule? What is the prediction for ε’/ε?

• Extensive work by [RBC-UKQCD collaboration]

L⟨ππ |HW |K⟩L

h⇡⇡, out|H|Ki ⌘
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Time-like form factors h⇡⇡, out|Jµ|0i ⌘
[Meyer, 2011]

Relevant for HVP contribution to muon g-2
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Time-like form factors h⇡⇡, out|Jµ|0i ⌘
[Meyer, 2011]

Relevant for HVP contribution to muon g-2

Photoproduction h⇡⇡, out|Jµ|⇡i ⌘

[Briceño, Hansen & Walker-Loud, 2015]
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Time-like form factors h⇡⇡, out|Jµ|0i ⌘
[Meyer, 2011]

Relevant for HVP contribution to muon g-2

Photoproduction h⇡⇡, out|Jµ|⇡i ⌘

[Briceño, Hansen & Walker-Loud, 2015]

`+

Resonance transition 
amplitudes

`�

hK⇡, out|J↵� |Bi ⌘
K⇤

Particles with spin hN⇡, out|Jµ|Ni ⌘

[Agadjanov et al., 2014; Briceño, Hansen & Walker-Loud, 2015; Briceño & Hansen, 2016]
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Numerical implementation
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⇡� ! ⇢

Briceño, Dudek, Edwards, Shultz, Thomas, Wilson [HadSpec collab.]
arXiv:1604.03530

• Results also from [Leskovic, …, Meinel, …., arXiv:1611:00282]

2.0 2.1 2.32.2 2.4 2.5

2.0 2.1 2.32.2 2.4 2.5

2.0

0

0
50
100

4.0

6.0

|A(⇡⇡ ! ⇡⇡)|

|A(⇡� ! ⇡⇡)|
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ρ EM form factor

Under development: [Briceño, Hansen, 2015; Baroni, Briceño, Hansen & Ortega-Gama, 2018]

Two-particle decays & matrix elements

⟨ππ, out |𝒥μ |ππ, in⟩ =
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Summary of lecture 2

�55
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Summary of lecture 2

det [FPV(E, ⃗P , L)−1 + 𝒦2(E*)] = 0

• Formalism for QC2 is developed, and widely implemented
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• Extensions to 2-particle matrix elements in various stages of development; 
expect all to reach maturity over next few years


