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1 Introdu
tionThese le
tures are intended to provide a basi
 introdu
tion to the latti
e methodsused today. They assume a working knowledge of �eld theory, and in parti
ularof gauge theories and fun
tional integrals, but no previous knowledge of the latti
eapproa
h. My aim is to provide the ba
kground ne
essary for understanding theappli
ations of latti
e methods, and in parti
ular the subje
ts dis
ussed in sub-sequent le
tures at this s
hool: phenomenologi
ally useful predi
tions from QCD(Paul Ma
kenzie) and �nite temperature physi
s (Akira Ukawa). I fo
us on thetheoreti
al formulation, and do not dis
uss numeri
al methods.In �ve le
tures one 
an only 
over a limited number of topi
s. Fortunately,there are now two ex
ellent books available on Latti
e Field Theory, by Rothe [1℄,and by Montvay and M�unster [2℄. These books take over where Creutz's seminalmonograph left o� a de
ade ago [3℄.Homework problems were provided with ea
h le
ture, and these have either beenintegrated into the text, or pla
ed at the end of the 
orresponding se
tion. Someproblems work out details not 
overed in the le
tures, while others illustrate new
on
epts.2 Eu
lidean Field TheoryI will fo
us mostly on the fun
tional integral de�nition of �eld theory, sin
e thisis the method used in most numeri
al simulations. Let me begin by reviewingsome basi
 results. All 
orrelation fun
tions 
an be determined from the partitionfun
tion (with sour
es). In Minkowski spa
e this isZM = Z [d�℄ expfiSM(�) + sour
e termsg ; (1)where � denotes a generi
 �eld. The Minkowski a
tion SM is real and thus theintegrand is 
omplex. The integral is therefore extremely diÆ
ult to evaluate nu-meri
ally be
ause of 
an
elations between di�erent regions of 
on�guration spa
e.The pra
ti
al alternative is to work in Eu
lidean spa
e whereZE = Z [d�℄ expf�SE(�E) + sour
e termsg : (2)In most theories the Eu
lidean a
tion is real, and also bounded from below, in whi
h
ase the exponential 
an be interpreted as a probability distribution on 
on�gurationspa
e. After we dis
retize the theory, we 
an 
ompute the integral using Monte-Carlo methods. QCD (without the CP-violating ��term) is an example of a theorywhi
h 
an be simulated in this way. Examples of theories whi
h 
annot be sosimulated, be
ause they have 
omplex a
tions, are QCD at �nite 
hemi
al potential2



(i.e. �nite baryon number density) and theories with a 
hiral representation offermions (e.g. the ele
troweak se
tor of the standard model).�What we a
tually 
al
ulate in Eu
lidean spa
e are 
orrelation fun
tionsC(xE1 ; xE2 ; : : : ; xEn ) = Z�1E Z [d�E℄e�SE�E(�1; ~x1)�E(�2; ~x2) : : : �E(�n; ~xn) ; (3)where � denotes Eu
lidean \time".To obtain physi
al quantities we have, in general,to analyti
ally 
ontinue the 
orrelation fun
tions ba
k to Minkowski spa
e, � ! it.It is worthwhile re
alling how this is done. The fun
tional integral is 
onstru
tedto give � -ordered expe
tation valuesC(xE1 ; xE2 ; : : : ; xEn ) = h0jT [�̂(�1; ~x1)�̂(�2; ~x2) : : : �̂(�n; ~xn)℄j0i ; (4)where �̂(�; ~x) is the Heisenberg operator 
orresponding to �. Assuming for simpli
itythat �1 > �2 > : : : �n, we 
an use Eu
lidean time translation (and Ĥj0i = 0) torewrite this expression asC(xE1 ; xE2 ; : : : ; xEn ) = h0j�̂(~x1)e�Ĥ(�1��2)�̂(~x2)e�Ĥ(�2��3) : : : e�Ĥ(�n�1��n)�̂(~xn)℄j0i : (5)Now the fa
tors of � are expli
it, we 
an perform an inverse Wi
k-rotation, � ! it.After some rewriting, this results in the Minkowski time-ordered produ
th0jT [�̂(t1; ~x1)�̂(t2; ~x2) : : : �̂(tn; ~xn)℄j0i : (6)These time-ordered produ
ts are suÆ
ient, via LSZ redu
tion, to determine allproperties of the theory i.e. the spe
trum and s
attering amplitudes. If we insertoperators other than �̂ in the 
orrelation fun
tions we 
an also obtain their matrixelements.This is �ne in prin
iple, but in pra
ti
e we have numeri
al results for 
orrelationfun
tions on a dis
rete set of points (either in position spa
e or momentum spa
e),and analyti
 
ontinuation is, at best, highly problemati
. Thus a 
ru
ial pra
ti
alissue is what 
an be learned dire
tly from Eu
lidean 
orrelation fun
tions. As Idemonstrate shortly, no analyti
 
ontinuation is needed to extra
t the low lyingspe
trum of hadrons or the matrix elements of lo
al operators involving single par-ti
les. Nearly all the phenomenologi
ally useful results from latti
e studies to dateinvolve su
h quantities.First, though, I want to mention a more formal point (see Refs. [2, 4℄ for furtherdis
ussion). It is quite possible for a Eu
lidean-spa
e fun
tional integral to yieldwell behaved 
orrelation fun
tions, and yet for these fun
tions not to be the ana-lyti
 
ontinuation of those of a physi
al Minkowski theory. By a physi
al theory Imean one having a Hilbert spa
e with positive norm, whose spe
trum is boundedfrom below, and on whi
h Poin
ar�e invarian
e is implemented by unitary operators.�In fa
t, the \fermion doubling problem", to be dis
ussed below, makes it diÆ
ult to even for-mulate 
hiral theories on the latti
e. 3



In parti
ular there is an hermitian Hamiltonian whi
h generates time translations.Sin
e in the latti
e enterprise we begin in Eu
lidean spa
e, it is important to knowunder what 
onditions the 
orresponding Minkowski theory is physi
al. This ques-tion was studied long ago by Osterwalder and S
hrader, who found the following [5℄.If the a
tion SE is Eu
lidean invariant, and expe
tation values su
h as C(xE1 ; : : : ; xEn )in Eq. 3 satisfy a property 
alled \re
e
tion positivity", plus some more te
hni-
al 
onditions, then there exists a physi
al Minkowski theory su
h that the stepsleading from Eq. 3 to Eq. 6 are valid. An important example of a theory whi
hdoes not satisfy these 
onditions is \quen
hed" QCD|i.e. QCD without internalfermion loops. This is an approximation used in many simulations at present.I do not have time to dis
uss re
e
tion positivity here|see, for example, Ref. [2℄for a 
lear exposition. What I will des
ribe (in Chapter 4) is a standard te
hniquefor a
tually 
onstru
ting the Hilbert spa
e and Hamiltonian operator, using the\transfer matrix". In this way one 
an see expli
itly the passage from Eq. 3 to Eq.6, in the 
ontext of a dis
retized theory.2.1 The spe
trumLet me now show how the spe
trum 
an be obtained dire
tly from two-point Eu-
lidean 
orrelation fun
tions, without the need for analyti
 
ontinuation. Translat-ing one of the points to the origin, we begin withC(xE) = Z�1 Z [d�℄e�SE�(�; ~x)�(0) ; (7)= h0jT [�̂(xE)�̂(0)℄j0i : (8)Assuming � > 0, and using the full Eu
lidean translation operator�̂(�; ~x) = eĤ��ib~p�~x�̂(0)e�Ĥ�+ib~p�~x ; (9)where b~p is the momentum operator, plus the fa
t that the va
uum has neither energynor momentum, we �nd C(xE) = h0j�̂(0)e�Ĥ�+ib~p�~x�̂(0)j0i : (10)Inserting a 
omplete set of states, we end up with the spe
tral de
ompositionC(xE) =XZn jh0j�̂(0)jnij2(2EnV )�1e�Enx4ei~pn�~xn : (11)Here I am assuming a �nite volume V, and using relativisti
ally normalized statesh~pj~qi = 2EV ÆpxqxÆpyqyÆpzqz V!1�! 2E(2�)3Æ3(~p� ~q) ; (12)where E2 = j~pj2 +m2. 4



Exer
ise: Show, assuming parity 
onservation, that for any �C(xE) =XZn jh0j�̂(0)jnij2(2EnV )�1e�Enj� jei~pn�~xn (13)From Eq. 13 we see that we 
an determine the spe
trum dire
tly from theexponential fall-o� of the Eu
lidean 
orrelator. To make things 
learer let us proje
tonto ~p = 0 Z d3xC(xE) = C(�; ~p = 0) =XZn;~p=0 jh0j�̂jnij2(2En)�1e�Enj� j : (14)If the lightest state produ
ed from the va
uum by �̂ (
all it j1i) is a single parti
le,then, for large j� jC(�; ~p = 0) = jh0j�̂j1ij2(2m)�1e�mjx4j + exponentially suppressed terms. (15)Thus one 
an just read o� the mass, along with the asso
iated matrix element to
reate the state from the va
uum.Clearly by judi
iously 
hoosing the operators in the two point fun
tion we 
anproje
t onto states having di�erent spin-parities and di�erent momenta. In ea
h
hannel it is simple to extra
t the energy of the lightest state, but progressivelyharder to pi
k out higher energy states, be
ause their 
ontributions are exponen-tially suppressed. Mu
h e�ort in latti
e simulations goes into �ddling with theoperators so as to in
rease the overlap with the desired states.Although one does not need to analyti
ally 
ontinue, it is nevertheless true thatpi
king out the exponential is equivalent to �nding the pole in the propagator. Forexample, 
onsider the Fourier transform of the 
ontribution of the lightest state tothe ~p = 0 propagatorC(E) = R d� eiE� e�mj� j2m = 12m(m� iE) + 12m(m+ iE)= 1m2 + E2 : (16)Analyti
ally 
ontinuing to Minkowski energies, E ! �iE0, we �nd the usual polein the propagator C(E0) = 1m2 � E20 : (17)One 
an also extra
t physi
al information dire
tly from Eu
lidean three-pointfun
tions. Consider the 
orrelatorC3(�1; �2; �3) = Z�1 Z [d�℄e�SEO1(�1)O2(�2)O3(�3)= h0jÔ1(�1)e�Ĥ(�1��2)Ô2(�2)e�Ĥ(�2��3)Ô3(�3)j0i ; (18)5



where Oi(�i) is a fun
tion of the �elds at time �i, and Ôi(�i) is the 
orrespondingHeisenberg operator. I have assumed �1 > �2 > �3 in the se
ond line. For �1 � �2and �2 � �3 large, the 
orrelator behaves asC3 / h0jÔ1j1i exp(�E1j�1 � �2j)h1jÔ2j3i exp(�E3j�2 � �3j)h3jÔ3j0i ; (19)where j1i and j3i are, respe
tively, the lightest states 
reated from the va
uum bythe operators Ô1 and Ô3. These operators might in
lude a proje
tion onto non-zerospatial momenta, whi
h is why I have written the 
oeÆ
ients in the exponents asenergies rather than masses. The 
reation and destru
tion matrix elements, togetherwith the energies, 
an be obtained from Eu
lidean two-point fun
tions. Thus one
an extra
t h1jÔ2j3i from C3 without analyti
 
ontinuation.Although it provides a way of thinking about four- and higher point fun
tions,Eq. 5 is not very useful in pra
ti
e. For example, one 
annot use it to extra
ts
attering amplitudes dire
tly from four-point fun
tions. Su
h amplitudes requireanalyti
 
ontinuation: they are real in Eu
lidean spa
e, yet 
omplex, in general,in Minkowski spa
e.y The result does, however, show the 
lose relationship to aHamiltonian approa
h, in whi
h one 
al
ulates matrix elements like h0jÔ1HnÔ2j0i.

yThere is, however, an elegant indire
t method due to L�us
her whi
h uses the volume dependen
eof two parti
le energies[6℄. 6



3 S
alar FieldsHaving understood what we 
an learn dire
tly Eu
lidean �eld theories, I now turnto business of 
arefully de�ning them. I begin with the simplest example, the reals
alar �eld. To de�ne a �eld theory requires regularization. Repla
ing 
ontinuousspa
e-time with a dis
rete latti
e is one option; it 
orresponds to a (
ompli
ated)
ut-o� in momentum spa
e. The messiness of the 
ut-o� is 
ompensated by thefa
t that one 
an perform the Eu
lidean fun
tional integral for any values of theparameters in the a
tion. In parti
ular, none of the 
oupling 
onstants need beassumed small, so that we 
an do non-perturbative 
al
ulations.Although it is not essential, most 
al
ulations use latti
es with equal spa
ing (a)in all four dire
tions spa
e 6 -time� � �� � �� � �� -a 6?aAsymmetri
 latti
es with di�erent spa
ing in spa
e and time 
an be useful in �nitetemperature 
al
ulations, as dis
ussed in Ukawa's le
tures.The 
ontinuum Eu
lidean a
tion for a real s
alar �eld isS = Z d4x[12��� ���+ V (�)℄ (20)where V (�) = 12m2ph�2 + ��4 + : : : (21)The subs
ript \ph" refers to the physi
al mass, to be distinguished from the latti
emass whi
h will be introdu
ed shortly. This a
tion may be dis
retized in manypossible ways. In the \
ontinuum limit", a ! 0, the 
hoi
e should be irrelevant,and we pi
k the simplest method. Continuous �elds are repla
ed by dimensionless�elds on the latti
e sites labeled by a ve
tor of integers n = (n1; n2; n3; n4)a�(x)! �n ; (22)and integrals be
ome sums Z d4x! a4Xn : (23)For latti
e derivatives there are several possibilitiesa2��� ! �+� �n = �n+�̂ � �n ; or (24)��� �n = �n � �n��̂ ; or (25)���n = 12�n+�̂ � �n��̂ ; : : : (26)7



We require the latti
e version of (���)2 to be positive. The most lo
al 
hoi
e isZ (���)2 !Xn (�n+�̂ � �n)2 =Xn (�+��n)2 =Xn (����n)2 : (27)Sometimes it is useful to rewrite this term as followsXn;�(�n+�̂ � �n)2 = �Xn;� �n(�n+�̂ � 2�n + �n��̂) ; (28)whi
h is the latti
e analogue of R (���)2 = � R �2�. Putting all this togetherS ! SL =Xn;� �12(�n+�̂ � 2�n + �n��̂)�n +Xn VL(�n) (29)with VL(�n) = 12(mpha)2�2n + ��4n + : : : (30)The produ
t mpha is the dimensionless latti
e mass m. Finally, the latti
e partitionfun
tion is Z =Yn [Z +1�1 d�n℄e�SL � Z� e�SL : (31)It is important to realize the meaning of the arrows in the above equations. Thelatti
e a
tion has the 
orre
t 
ontinuum limit for \
lassi
al" �elds, those varyingon s
ales mu
h longer than the latti
e spa
ing. The quantum theory, by 
ontrast,ne
essarily in
ludes the 
ontribution from \jagged" �elds, those that 
u
tuate onthe s
ale of the latti
e spa
ing. This is true even if one is 
al
ulating the responseto a smooth external �elds, sin
e intera
tions will 
ouple them to quantum �eldsof all wavelengths. Thus the 
ontinuum limit of the quantum theory need not bedes
ribed by the 
lassi
al 
ontinuum a
tion. In asymptoti
ally free theories thejagged modes 
an be studied using perturbation theory, and the 
ontinuum limit
an be understood, as des
ribed below. This is not possible for s
alar theories.Indeed, it is almost 
ertain that, whatever the size of the �4 
oupling � in thelatti
e Lagrangian, the parti
les do not intera
t in the 
ontinuum limit. This is
alled \triviality".3.1 The propagator for free �eld theoryTo study the properties of the latti
e theory, I begin by setting � = 0, and 
al
ulatingthe propagator from site n to site pC(n; p) = Z�1 Z� e�S�n�p : (32)For the free theory the a
tion is bilinear in the �eldsS = 12 Xn;p �nMnp�p ; (33)8



with M real and symmetri
Mnp = � 4X�=1(Æn;p+�̂ + Æn;p��̂) + Ænp(8 +m2) : (34)Performing the Gaussian integrals we obtainC(n; p) = [detM ℄�1=2(M�1)np[detM ℄�1=2 = (M�1)np : (35)As usual, it is easiest to Fourier transform�n = Z ��� d4k(2�)4 eikn�(k) � Zk eikn�(k) ; �(�k) = ��(k) ; (36)where the se
ond form of the integral is a useful abbreviation. Note that the latti
e
uts o� the momentum integral. All latti
e quantities are periodi
 in k� (separatelyfor ea
h �) with period 2�; I have 
hosen the range of integration to be symmetri
about the origin. Substituting Eq. 36 into the a
tion we �ndS = 12 Xn;p Zk;q eik�neiq�pMnp�(k)�(q) (37)= 12 Xn Zk Zq ei(k+q)�n[m2 +X� (2� eiq� � e�iq�)℄�(k)�(q)= 12 Zk �(k)�(�k)[m2 +X� 4 sin2 (k�2 )℄ : (38)M is now diagonal, so the propagator isC(n; p) =M�1np = Zk eik(n�p)m2 +P� 4 sin2 k�2 : (39)Various features of this result are noteworthy.� The latti
e and 
ontinuum propagators di�er only in that the momentum is
hanged k� �! 2 sin (k�2 ) � k̂� : (40)Although the latti
e momentum k̂� is anti-periodi
 when k� shifts by 2�, whatappears in the propagator is its square, whi
h is periodi
.� The latti
e propagator is symmetri
 under dis
rete Eu
lidean rotations (e.g.x ! y, y ! �x) but not under 
ontinuous rotations. One re
overs the fullsymmetry if the 
ontinuum limit is taken as follows:m = mpha! 0; k = kpha! 0 ; (41)9



with the physi
al mass and momentum, mph and kph, held �xed. In this limitk̂� ! (kph)�a ; a2C(k)! 1(mph)2 + (kph)2 ; (42)whi
h is the 
ontinuum free propagator. This 
ontinuum limit is rather trivial,but does illustrate one general point: one must adjust the parameters in theLagrangian in a parti
ular way to attain the 
ontinuum. Here, the latti
emass m must vanish, otherwise one ends up with in�nitely heavy 
ontinuums
alars.It is enlightening to 
al
ulate the propagator in position spa
e for a given spatialmomentum. As shown in the se
t. 2.1, this allows one to read o� the spe
trum.Consider then C(n4; ~q) = Z�1 Z [d�℄e�SLX~n e�i~q�~n�(~n; n4)�(0) (43)=X~n e�i~q�~n Zk eik4n4ei~k�~nm2 + k̂42 + ~̂k2= Z ��� dk42� eik4n4m2 + ~̂q2 + k̂24 (44)The integrand has poles on the imaginary axis. De�ning k4 = iE, so that k̂4 =2i sinh E2 , the poles are determined by2 sinh E2 = �rm2 + ~̂q 2 : (45)We 
an perform the integration by forming a 
losed 
ontour in the 
omplex k4 plane:

�� �>_ ^

Sin
e the integrand is periodi
 in k4, with period 2�, the two verti
al parts of the
ontour 
an
el, and so 
an be added to the original integral. For n4 > 0, onemust 
lose the 
ontour in the upper half plane, and one pi
ks up the 
orrespondingresidue, leading to C(n4; ~q) = e�En42 sinhE : (46)10



We see that, even with dis
retized time, the 
orrelator does fall o� exponentially.In fa
t, there is only one exponential, 
orresponding to the fa
t that the theory isfree, so there is only one state for ea
h momentum. Note that the latti
e energy(Eq. 45) di�ers from the 
ontinuum result E2 = m2 + ~q 2, although the two agreein the 
ontinuum limit (m; ~q ! 0).A very useful 
on
ept in latti
e 
al
ulations is the \
orrelation length", �. Thisis de�ned by the rate of exponential fall-o� of two point fun
tions in position spa
e:G(n; p) � exp(�jn � pj=�), up to powers of the separation jn � pj. Two pointfun
tions in
lude all possible values of ~q; at large distan
es the smallest value of E
ontrols the rate of de
ay. This is Emin = 2 sinh�1(m=2) � m, so that � � 1=m.One way of thinking about the 
ontinuum limit is that � must diverge in latti
eunits, so that the e�e
ts of dis
retization disappear. Sending m = mpha! 0 indeedmakes � !1.In an intera
ting theory, the 
orrelation length(s) are determined, in general,non-perturbatively in terms of the parameters in the latti
e a
tion. To �nd a
ontinuum limit one must dis
over a pla
e in the spa
e of parameters for whi
h the
orrelation length diverges.
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4 The Transfer MatrixThe nuts-and-bolts way in whi
h one 
onne
ts latti
e Eu
lidean fun
tional integralsand the 
orresponding Minkowski theory relies on the transfer matrix, T̂ . In otherwords, using T̂ allows one to see exa
tly what one is 
al
ulating when working at�nite latti
e spa
ing. In parti
ular, the symmetries of the spe
trum are those of T .The transfer matrix is also widely used in statisti
al me
hani
s 
al
ulations. Forthese reasons I have 
hosen to des
ribe its 
onstru
tion, for the simplest 
ase ofs
alar �elds. The generalizations to gauge theories and to theories with fermionsare more 
ompli
ated to work out, but the essential idea is the same.I begin with a homework problem whi
h serves as a warm-up for the a
tualanalysis.4.1 Problem 1|transfer matrix for one-dimensional �eldtheoryConsider a 1-dimensional latti
e with s
alar �elds �n; n = 1; 2; : : :N and periodi
boundary 
onditions �N+1 = �1. Find an operator T̂ su
h thatZ = Tr(T̂N) :Here T̂ is an operator a
ting on the Hilbert spa
e of square integrable fun
tions ofone variable, i.e. the usual spa
e for quantum me
hani
s of a single variable.A simple way to pro
eed is as follows.Step 1: Write the a
tion asS = SA(�1) + SB(�1; �2) + SA(�2) + SB(�2; �3) + : : : + SA(�N) + SB(�N ; �1)SB 
ontains terms 
onne
ting adja
ent �'s; it is advantageous to 
hoose SB tobe positive.Step 2: It is simplest to use a non-normalizable basis j�i for the Hilbert-spa
e :�̂j�i = �j�i ; h�0j�i = Æ(�0 � �)Introdu
e a 
onjugate momentum p̂ with [p̂; �℄ = �i, and show thate�ip̂�j�i = j�+�i:With all this in hand, �nd an operator T̂ whi
h satis�esh�0jT̂ j�i = eSB(�0;�)e 12SA(�)e 12SA(�0)12



Step 3: Given this de�nition of T̂ show thatZ = Tr(T̂N) � Z d�h�jT̂N j�i : (47)Step 4: Sin
e T̂ is the operator whi
h translates by one unit in Eu
lidean time, it isreasonable to de�ne T̂ = e�Ĥa (putting ba
k in the latti
e spa
ing). As a! 0,Ĥ ! Ĥ
ont + 0(a). Find the form of Ĥ
ont (it should be familiar).4.2 Transfer matrix in four dimensionsConstru
ting the transfer matrix in d � 2 di�ers from the one dimensional 
asemainly in the need for extra notation. I begin with the partition fun
tionZ = Z� e�S ; S =Xn 24 4X�=1 12(�n+� � �n)2 + V (�n)35 : (48)It is ne
essary to work with a latti
e having a �nite extent in time:Nz }| {
- time� �4I assume periodi
 boundary 
onditions, �~n;N+1 = �~n;1, where N is the number of\timesli
es". This amounts to working at a �nite temperature 1=Na, as dis
ussedbelow.The idea is to break the integrand of the fun
tional integral up into two parts:those living on individual timesli
es, and those 
onne
ting adja
ent sli
es. Sin
ethe a
tion in
ludes only nearest neighbor intera
tions, this is all one needs. Thus I
olle
t all the �elds at time �i (having all spatial positions) into a set denoted f��ig,and write the a
tion aszS = SA(f��Ng) + SB(f��Ng; f��N�1g) + SA(f��N�1g) + SB(f��N�1g; f��N�2g): : : + SA(f��1g) + SB(f��1g; f��Ng) (49)zNote that I am now using � instead of n4 to label dimensionless, dis
retized Eu
lidean time.This saves on subs
ripts, and should lead to no 
onfusion with my earlier use of � as dimensionful,
ontinuous Eu
lidean time. 13



where SA(f��ig) = X~n 24V (��i;~n) + 12 Xj=1;3(��i;~n+ĵ � ��i;~n)235 (50)SB(f��1g; f��2g) = 12X~n (��1;~n � ��2;~n)2 (51)Next de�ne the transfer fun
tionT2;1 = T (f��2g; f��1g) = e� 12SA(f��2g)e�SB(f��2g;f��1g)e� 12SA(f��1g); (52)whi
h allows one to express the partition fun
tion asZ = Z� e�S = Zf��1g:::f��N g T1;NTN;N�1 : : : T2;1 (53)We now introdu
e the Hilbert spa
e of square integrable fun
tions at ea
h site ~n with(non-normalizable) basis j�~ni, and \position" and momentum operators satisfying�̂~nj�~ni = �~nj�~ni ; h�0~nj�~ni = Æ(�0~n � �~n) ; (54)[�̂~n; �̂~n0℄ = 0 ; [p̂~n; �̂~n0℄ = �iÆ~n;~n0 ; e�ip̂~n�j�~ni = j�~n +�i : (55)The transfer matrix a
ts on the Hilbert spa
e of dire
t produ
t statesj�i �Y~n 
j�~ni : (56)The idea is to �nd an operator T̂ (�̂~n; p̂~n) satisfyingh�0jT̂ j�i = T (f�0g; f�g) ; (57)for then we 
an write the partition fun
tion asZ = Zf��1g:::f��N gh��1jT̂ j��N ih��N jT̂ j��N�1i : : : h��2jT̂ j��1i= Zf��1gh��1jT̂N j��1i= Tr(T̂N) : (58)Here the se
ond line follows from 
ompleteness, and the last from the de�nition ofthe tra
e.The 
onstru
tion of T̂ is similar to the one-dimensional 
ase. The tri
k is tonote that e� 12 (�0~n��~n)2 = Z 1�1 d�h�0~nje��22 e�ip̂~n�j�~ni= p2�h�0~nje� 12p2~nj�~ni ; (59)14



so that the following does the jobT̂ = e� 12SA(f�̂g)e� 12P~n p̂2~ne� 12SA(f�̂g)(2�)L32 : (60)What has been a
hieved here? We have rewritten the fun
tional integral interms of an operator T̂ whi
h \transfers" information from one time sli
e to thenext. As we will see more 
learly below, it 
orresponds to the Eu
lidean spa
e timetranslation operator for one latti
e unit, whi
h in the 
ontinuum is exp(�aĤ). T̂is of the form AyA, and so is hermitean and positive. It thus has real, positiveeigenvalues: T̂ jpi = �pjpi, �p � 0. Labeling the eigenvalues in order of de
reasingsizex �0 > �1 > : : : > 0the partition fun
tion be
omesZ = Tr T̂N = �N0 + �N1 + : : : N�!1! �N0 (1 + (�1�0 )N + : : : ) (61)The eigenstate with the largest eigenvalue is pi
ked out for large N. This state
orresponds in the 
ontinuum limit to that having the smallest eigenvalue of Ĥ. Itis the latti
e va
uum state, j0i.The signi�
an
e of T̂ 
an be seen more 
learly by applying the above 
onstru
tionto 
orrelation fun
tions. Consider the two-point fun
tionC2(n1; n2) = Z�1 Z� e�SL��2; ~n2��1;~n1 (�2 > �1) (62)whi
h 
an be rewritten in terms of the transfer matrixC2(n1; n2) = Z�1 Z� T̂1;N : : : T̂�2+1;�2��2;~n2T̂�2;�2�1 : : : T̂�1+1;�1��1;~n1T̂�1;�1�1 : : : T̂2;1 :(63)Using h�0j�̂~nT̂ j�i = �0~nT (f�0g; f�g) (64)we �ndC2(n1; n2) = Z�1 Z�h��1 jT̂ j��ni : : : h��2j�̂~n2T̂ j��2�1i : : : h��1 j�̂~n1T̂ j��1�1i : : : h��2jT̂ j��1i= Tr f�̂~n2T̂ �2��1 �̂~n1T̂N��2+�1g=Tr fT̂Ng= Tr f�̂~n2T �2��1 �̂~n1TN��2+�1g=Tr fTNg : (65)In the last step I have res
aled the transfer matrix so that the eigenvalues lie between0 and 1: T = T̂�0 has eigenvalues 1 > ��1 = �1�0 > : : : � 0 : (66)xFor a �nite system, with a potential V (�) bounded from below, there is a �nite maximumeigenvalue. 15



Taking the limit N ! 1, keeping �2 � �1 �xed, sele
ts the \va
uum" in bothnumerator and denominator sin
e TN j0i = 1 while TN j1i = ��N j1i N!1�! 0. ThusC2(n1; n2) N!1�! h0j�̂~n2T �2��1�̂~n1 j0i : (67)Comparing to the 
ontinuum expression (Eq. 5)C2 = h0j�̂~n2e�Ĥ(�2��1)a�̂~n1j0i; (68)we see that the 
orresponden
e is T = e�Ĥa. Clearly the same applies to multi-point
orrelation fun
tions. Thus it makes sense to de�ne a latti
e Hamiltonian byaĤ � � lnT : (69)Ĥ has the properties that we want for a Hamiltonian: it is hermitean, and itssmallest eigenvalue is 0Ĥj0i = E0j0i E0 = 0 ; (70)Ĥjpi = Epjpi Ep = � ln (��p) > 0 : (71)In addition, it a
ts on a Hilbert spa
e with positive norm. Thus we have su

eededin 
onstru
ting the dis
retized version of the operator expression Eq. 5.The a
tual form of Ĥ is horribly non-lo
al, be
ause the di�erent exponents inEq. 60 do not 
ommute, so that taking the logarithm is not simple. In the 
lassi
al
ontinuum limit (i.e. when we assume that the operators are smoothly varying),however, Ĥ indeed goes over into the 
ontinuum HamiltonianĤ ! Z d3x[12 p̂2ph + 12(�i�̂ph)2 + 12m2ph�̂2ph + ��̂4ph + : : : ℄ + 
onstant (72)where �̂ = a�̂ph and p̂ = a2p̂ph, and I have used the potential of Eq. 30.An alternative 
ontinuum limit uses asymmetri
 latti
es, in whi
h we take thespa
ing in the time dire
tion to zero, while keeping the spatial latti
e spa
ing �xed.In this way one obtains a dis
retized Hamiltonian theory, whi
h 
an be studiedusing various approximation s
hemes. This is dis
ussed in the texts.4.3 Finite TemperatureWe 
an now see the signi�
an
e of working on a latti
e of �nite time extent. Thepartition fun
tion is Z = Tr T̂N / Tre�NaĤ : (73)But this is nothing other than the partition fun
tion des
ribing the theory in equi-librium at a �nite temperature � = 1=kT = Na. The longer the latti
e in physi
alunits, the smaller the temperature. Inevitably, numeri
al simulations 
orrespond toa non-zero temperature, although it 
an be made very small in pra
ti
e. For furtherdis
ussion see the le
tures by Ukawa. 16



4.4 Symmetries of T̂ and ĤAs with any quantum me
hani
al problem, it is useful to study the symmetries ofthe Hamiltonian. On the latti
e, it makes more sense to phrase the dis
ussion interms of the symmetries of the transfer matrix (T̂ or T , it makes no di�eren
e).Given that aĤ = � lnT , Ĥ and T̂ have the same symmetries anyway.Given the de�nition of T̂ (Eqs. 57 and 52). its symmetries are those of thefun
tions SA and SB. These areA: dis
rete translations,B: 3-d rotations in the 
ubi
 group,C: spatial inversions.To ea
h symmetry transformation g there is a 
orresponding unitary operator U(g)whi
h represents the transformation, and whi
h 
ommutes with T̂j�i ! j�ig = U(g)j�i ; T̂ ! U(g)T̂U(g)�1 = T̂ : (74)Thus if jpi is an eigenstate of T̂ with eigenvalue �p, then so is U(g)jpi. Eigenstates
an be labeled not only by their \energies" (here �p) but also by the representationsof the symmetry groups in whi
h they lie. The labels 
orresponding to the abovesymmetries areA: momentum ~k, satisfying � < ki � �,B: representations of the 
ubi
 group|the dis
rete analog of angular momentum(see problem 2 below),{C: parity, P = �1.In a general theory there will also be internal symmetries, with 
orresponding rep-resentations. For example, if the �eld is 
omplex there is a U(1) symmetry, andstates are labeled by the 
orresponding 
harge.What use is this 
lassi�
ation of states? To see its utility, 
onsider the expressionfor the two-point fun
tion in the limit of in�nite time extent (
f. Eq. 67)C2(�2 � �1) = h0j bOyT �2��1 bOj0i : (75)Here I have 
onsidered a general operator, bO, 
omposed of the �elds in the theory.The point is that we 
an 
onstru
t this operator so that it belongs in a de�nite{I am being sloppy here. Rotations and translations do not 
ommute. Only for ~k = 0 
an onelabel the states by representations of the full 
ubi
 group. For ~k 6= 0, one must wheel out thete
hnology for representing semi-dire
t produ
ts.17



irredu
ible representation of the symmetry group, e.g. having de�nite momentum(e.g. bO(~p = 0) = P~n �̂~n). Inserting a 
omplete set of eigenstates of T̂ , one �ndsC2(�2 � �1) / 1Xp=0 jhpj bOj0ij2���2��1p : (76)Only states with the same symmetries as O 
ontribute to this sum, sin
e the va
uumlies in the trivial representation of the symmetry group. For large �2 � �1 the\lightest" su
h state (that with the largest �p) dominates the sum. Thus it isstraightforward, in prin
iple, to 
al
ulate the energy of the lightest state in ea
hrepresentation of the symmetry group. This allows one, for example, to study thelatti
e dispersion relation by 
al
ulate energies, E, at various momenta, ~k.Thus a latti
e pra
titioner must know something about dis
rete groups. Themost useful is the 
ubi
 group, the dis
retization of SO(3), whose representationsare the dis
rete version of angular momentum states. A ni
e dis
ussion of this group,its representations, and their relation to those of SO(3) is given by Mandula, Zweigand Govaerts [7℄. The following problem 
on
erns this group.4.5 Problem 2: the 
ubi
 (o
tahedral) group and its repre-sentationsThis is the group of 3-d rotations (not in
luding re
e
tions), whi
h you 
an thinkof as proper rotations of a 
ube. The problem is this: 
onstru
t the 
hara
ter tableof this group, and display examples of representations.Here are some useful fa
ts about dis
rete groups:� Elements fall into 
onjuga
y 
lasses. Given two elements of a 
onjuga
y 
lass,a and b, one 
an always �nd a group element, g, su
h that gag�1 = b.� The number of irredu
ible representations (\irreps") equals the number of
onjuga
y 
lasses.� For ea
h element of ea
h irrep there is a \
hara
ter", �(g), given by the tra
eof the matrix representing the element. Thus, for example, the 
hara
ter ofthe identity element is always the dimension of the irrep. It follows from the
y
li
ity of the tra
e that all elements in a 
onjuga
y 
lass have the same
hara
ter.� Chara
ter orthonormality:X
lasses 
 �
�r1(
)�r2(
) = Ær1r2N;where �
 = number of elements in 
lassN = number of elements in group�r(
) = 
hara
ter of elements of 
lass 
 in irrep r18



� Given a redu
ible representation with 
hara
ter �(
), the number of times anirredu
ible representation appears is1N X
 �
�(
)�r(
)� Another useful result is: Xirreps r �
�r(
)�r(
0) = Æ

0Nfor ea
h pair of 
lasses 
 and 
0. Pi
king 
 = 
0 = I, this gives Pr d2r = N ,where dr is the dimension of the representation r.In the following I outline a possible approa
h to this problem.Step 1: Enumerate and 
lassify elements of the group. Ref. [7℄ uses one method; hereis an alternative suggestion.Elements of the group 
an be generated by one 90Æ rotation R, e.g.Rxy : [x̂! ŷ ; ŷ ! �x̂ ; ẑ ! ẑ℄ ;and S, a rotation of the 
ube about a body diagonal by 120 degrees (sayx̂! ŷ; ŷ ! ẑ; ẑ ! x̂ ). Clearly, R4 = S3 = I. Show also that RSRS = I.These relations de�ne the group|all sequen
es of R and S 
an be simpli�edinto a �nite number of elements using them, e.g., RSR = S2. To enumeratethe elements it is easier, rather than using brute for
e, to 
olle
t them in
onjuga
y 
lasses, sin
e ea
h element of a 
lass 
arries out a similar type oftransformation. What are the di�erent types of elements? How many of ea
htype are there ?Step 2: One way to 
onstru
t the 
hara
ter table is to invent representations, 
onvin
eoneself that they are irredu
ible and 
al
ulate the 
hara
ters. The 
hara
terformulae given above a
t as a 
he
k.A good 
hoi
e of starting reps are those of the proper 3-d rotation groupSO(3). These reps are labeled by J = 0; 1; 2; : : : and have dimension 2J + 1.For example, the J = 0 rep is 1-dimensional and invariant under all transfor-mations, so �(
) = 1 ; 8
. This is an irrep of the 
ubi
 group too|the identityrepresentation I (also 
alled A1).Good lu
k!
19



5 Gauge Theories on the Latti
eIn this le
ture I explain how to dis
retize gauge theories, and in parti
ular QCD.While there are interesting non-perturbative questions asso
iated with the SU(2)L�U(1) part of the standard model, e.g. the nature of its �nite temperature phasetransition, the most important pra
ti
al appli
ation of latti
e methods is to QCD.The low-energy phenomena of QCD, in parti
ular 
on�nement and 
hiral symmetrybreaking, are non-perturbative, and the latti
e is the only method available forstudying them from �rst prin
iples. A 
ru
ial aspe
t of latti
e regularization is thatit maintains gauge invarian
e, for this guarantees that the theory is unitary.5.1 Continuum QCD, a brief overviewThe 
ontinuum a
tion is given bySE = � Xq=u;d;s;
;b;:::Zx �q(D= +mq)q + 12 Zx Tr(F��F��) ; (77)where the integrals run over Eu
lidean spa
e. The 
ovariant derivative isD� = �� � igA� ; (78)in whi
h the gauge �elds are 
olle
ted into a matrix A� = Aa�T a, with T a thegenerators of the SU(3) Lie Algebra[T a; T b℄ = ifab
T 
 ; tr(T aT b) = 12Æab : (79)The quark �elds are 
olor triplets, with an impli
it 
olor index. Finally, the gauge�eld strength isF�� = F a��T a = ig [D�; D�℄ = ��A� � ��A� � ig[A�; A�℄ : (80)A lo
al SU(3) gauge transformations is des
ribed by a spa
e-time dependentelement V (x) 2 SU(3) (V �1 = V y, det(V ) = 1):q(x)! V (x)q(x) ; �q(x)! �q(x)V �1(x) ; (81)A�(x)! V (x)A�(x)V �1(x) + igV (x)��V �1(x) ; (82)F��(x)! V (x)F��(x)V �1(x) ; (83)[D�q℄(x)! V (x)[D�q℄(x) : (84)Given the last two lines, it is simple to see that SE is invariant.It is useful to introdu
e the path-ordered integralsL(x; y) = P expfig Z xy dz�A�(z)g ; (85)20



whi
h are to be thought of as going from y to x. The ordering is su
h that, forexample, A�(x) is always to the left of A�(y). The reverse ordering is obtainedby hermitian 
onjugation, i.e. L(y; x) = L(x; y)y. The L's 
an be built from aprodu
t of in�nitessimal steps, (1 + igdz�A�(x0)), along the path. Using the gaugetransformations listed above, it is easy to see that these quantities transform as(1 + igdz�A�(x0))! V (x0 + dz�)(1 + igdz�A�(x0))V �1(x0) +O(dz2�) : (86)It follows that the gauge transformation properties depend only on the end pointsof L, and not on the path of integrationL(x; y)�!V (x)L(x; y)V �1(y) : (87)They thus transport the gauge rotation from one point to another, su
h that thequantity q(x)L(x; y)q(y) is gauge invariant:q(x)L(x; y)q(y) ! q(x)V �1(x)V (x)L(x; y)V �1(y)V (y)q(y)= q(x)L(x; y)q(y) : (88)Another gauge invariant quantity is the tra
e of the path-ordered integral aroundany 
losed pathTr[L(x; x)℄�!Tr[V (x)L(x; x)V �1(x)℄ = Tr[L(x; x)℄ (89)These obje
ts are 
alled Wilson loops.5.2 Dis
retizationWith these quantities in hand, we 
an now 
onstru
t a gauge invariant latti
e versionof QCD. Well, not quite. It turns out that dis
retizing fermions presents problemsunrelated to gauge invarian
e, problems whi
h I dis
uss in the last le
ture, In thisle
ture I avoid these problems by repla
ing the quarks with s
alar 
olour triplets,�. These are ne
essarily 
omplex, and their 
ontinuum a
tion isS
ont = Zx��yD�D��+ P (�y�) ; P (y) = m2y + �y2 + : : : : (90)Under gauge transformations they behave like quarks�y(x)! �y(x)V �1(x) ; �(x)! V (x)�(x) : (91)To 
onstru
t a latti
e theory, one 
annot simply pla
e quark and gauge �eldson the sites of the latti
e and dis
retize the derivatives appearing in SE. Instead,the gauge �elds, whi
h transmit information about gauge transformations from oneposition to another, live on the \links" or \bonds" 
onne
ting the sites. I will 
hoosethe latti
e to be hyper
ubi
al, sin
e this is the form most easily studied numeri
ally.21
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Figure 1: Notation for latti
e quantities. n is a ve
tor of integers.The notation for the sites and links on the latti
e is shown in Fig. 1. Note that Iam using n + � instead of n + �̂, to denote the point one latti
e spa
ing forwardfrom n in the �-dire
tion.We begin with the free a
tion for the s
alars, whi
h is dis
retized by a simplegeneralization of the result for a real s
alar �eld (Eqs. 28 and 29)S0lat =Xn X� [�yn+� � �yn℄[�n+� � �n℄ +Xn P (�yn�n) : (92)Next we introdu
e the gauge �elds. The dis
rete version of the gauge trans-formation fun
tion V (x) is Vn, a site dependent SU(3) matrix. Under a gaugetransform �yn ! �ynV �1n ; �n ! Vn�n ; �yn�n ! �yn�n : (93)Thus the potential term in Eq. 92 is invariant, while the kineti
 term is not.To �x this up, we introdu
e elements of SU(3), Un;�, asso
iated with the linkfrom site n to site n+�, and 
orresponding to the 
ontinuum line integral ba
kwardsalong the link: Un;� � L(an; an + a�̂)= P exp �ig Z anan+a�̂ dz�A�(z)� (94)= 1� igaA�(n+ 12 �̂) +O(a2) : (95)Figure 1 shows examples of the diagrammati
 representation of these link matri
esas arrows. We asso
iate U yn;� with the link from n+ � to n, in 
orresponden
e withthe 
ontinuum result L(x; y) = L(y; x)y. The \�" in the �rst line of Eq. 94 means\
orresponds to". The vagueness here is deliberate|on
e we put the theory on thelatti
e there are no gauge �elds A�: they are repla
ed by the U 's. The expansion in22



the last line (whi
h assumes the straight line path) is useful, however, for thinkingabout what the U 's mean, and also for taking the 
lassi
al 
ontinuum limit.The gauge transformation properties of the U 's are taken to be the same asthose of the 
orresponding L'sUn;� ! VnUn;�V yn+� ; U yn;� ! Vn+�U yn;�V yn : (96)Thus Un;��n+� transforms in the same way as �n,Un;��n+� ! VnUn;�V yn�Vn+��n+� = VnUn;��n+� ; (97)and �yn+�U yn;� transforms as does �yn. With these relations we 
an 
onstru
t a gaugeinvariant latti
e a
tionSlat =Xn X� [�yn+�U yn;� � �yn℄[Un;��n+� � �n℄ +Xn P (�yn�n) : (98)It is instru
tive to 
he
k that the kineti
 part of this a
tion has the 
orre
t
ontinuum limit. Using the result of Eq. 95 we �ndUn;��n+� � �n � a2[���℄(an + 12a�)� iga2A�(an + 12a�)�(an+ a�)= a2[D��℄(an+ 12a�) + 0(a3) (99)Combining this with its hermitian 
onjugate, we regain the kineti
 term in 
ontin-uum a
tion, R jD��j2.5.3 Pure Gauge A
tionWe 
an 
onstru
t a latti
e version of the pure gauge a
tion using the smallest Wilsonloop, that around an elementary square or \plaquette"P y�� = Un;�Un+�;�U yn+�;�U yn;� : (100)The geometry is illustrated here.
Un;�
U yn+�;�U yn;� Un+�;�^ _><It is reasonable that su
h a loop is related to F�� , be
ause the �eld strength is the
urvature asso
iated with the 
onne
tion A�. In any 
ase, using the 
orrespon-den
e given above for the U 's, and after some algebra, one �nds that the 
lassi
al
ontinuum limit of the plaquette isP�� = 1 + iga2F�� � g22 a4F 2�� + ia3G�� + ia4H�� + 0(a5); (101)23



where H�� and G�� and are hermitian (see Problem 3). Thus one 
an use the�� plaquette as a dis
retized version of the 
orresponding 
omponent of the �eldstrength, F�� . If we take the tra
e, so as to get a gauge invariant quantity, we �ndRe TrP�� = N
 � g22 a4 Tr(F 2��) + 0(a6) ; (102)where N
 = 3 is the number of 
olors. We then haveZ d4xX�� 12TrF��F�� � X2 2g2 (N
 � ReTr2) : (103)The fa
tor of 2 arises be
ause of the mismat
h between the number of plaquettesper site, 6, and the number of terms in the sum P��, 12.Standard notation in the �eld is to repla
e the 
oupling 
onstant with � = 2N
g2 ,so that Sg = ��X2 ReTr2N
 + irrelevant 
onstant : (104)This is 
alled the \Wilson (gauge) a
tion". Using the symbol � is unfortunate, asit leads to possible 
onfusion with 1=kT , but it is a notation that is well and truelyentren
hed.It is important to realize that there is nothing spe
ial about using the smallestloop to de�ne the a
tion. Any loop, e.g. a 1 � 2 re
tangle, 
ontains a term in itsexpansion proportional to a linear 
ombination of 
omponents of (F��)2. By takingan appropriate 
ombination of loops we 
an obtain the 
ontinuum a
tion as a! 0.The advantage of a small loop is that 
orre
tions proportional to powers of thelatti
e spa
ing are typi
ally smaller than with a larger loop.To 
omplete the de�nition of the theory I need to spe
ify the measure. Ea
hlink variable is integrated with the Haar measure over the group manifold. Thismeasure satis�es (V and W are arbitrary group elements)Z dUF (U) = Z dUF (UV ) = Z dUF (WU) : (105)Given this, it is simple to see that the fun
tional integralZgauge = Z Ylinks dUn;�Yn (d�nd�yn) exp �X2 1N
Re Tr2� Slat(�y; �; U)! (106)is gauge invariant. Note that the U matri
es live on a group manifold with �nitevolume, in 
ontrast to the in�nite range of A� in the 
ontinuum.What has been a

omplished here is a non-perturbative, gauge invariant regu-larization of gauge theories 
oupled to s
alars. What has been sa
ri�
ed is full Eu-
lidean invarian
e: rotations and translations. The hope is that, as one approa
hesthe 
ontinuum limit, these symmetries are restored.24



5.4 Problem 3: the expansion of the plaquette.Cal
ulate the expansion of the plaquette P�� , and its tra
e, in powers of a.Step 1: The 
al
ulation is simpli�ed if one de�nes the 
ontinuum �eld byUn;� = exp h�iagA�(an+ 12a�)i ; et
;and expands the 
ontinuum �elds above the 
enter of the plaquette. WritingP�� = exp(X) 
al
ulate X expli
itly through 0(a2). What are the propertiesof the higher order terms?Step 2: Consider Re Tr P�� . Expand up to quarti
 terms in a. Show that 0(a3; a4)terms in X do not 
ontribute at this order.Step 3: Show that Tr(P��) has an expansion in even powers of a, so that the 
orre
tionsto the a4 terms from step 2 are of O(a6).6 Appli
ations of Latti
e Gauge TheoriesBefore pro
eeding to study fermions, and thus to a latti
e version of QCD in
ludingquarks, I will dis
uss what one 
an learn from pure SU(3) gauge theory. This is anon-trivial theory in its own right, sharing some properties in 
ommon with QCD.In parti
ular, its spe
trum 
onsists of massive glueballs, in whi
h the gluons are
on�ned by their self-intera
tions. First, though, let me dis
uss one of the 
lassi
results of latti
e gauge theory : : :6.1 Con�nementLong ago, Wilson introdu
ed a test for 
on�nement in gauge theories. Imaginethat there is a very heavy quark, and a 
orresponding antiquark, separated by adistan
e R. Cal
ulate the energy V (R) of the pair as a fun
tion of R. If there is
on�nement, then V (R) grows monotoni
ally with R for large R. The pi
ture isthat there is (
olor) ele
tri
 
ux between the quark and antiquark, whi
h does notspread out like in QED, but is for
ed into a \string":q q>>>>� �& %� �' $
This pi
ture implies linear growth V (R) / �R for large R, where � is the \stringtension". 25



The heaviness of the quark plays three roles. First, it means that the quark doesnot move|it has in�nite inertia|so it makes sense to 
onsider a stati
 potential.Se
ond, �qq pair 
reation is suppressed (by terms of O(1=m2)), so that one need not
onsider loops of the heavy quark. Su
h quark loops would, in fa
t, 
ause the stringto break, and thus remove the possibility for a 
lean test of 
on�nement. And,third, at leading order in 1=m, the 
oupling of quark to gluons does not involve itsspin. The quark a
ts as a stati
 s
alar 
olor sour
e. This means that one 
an justas well use s
alar quarks to extra
t V (R).To 
al
ulate the potential 
onsider the 
orrelator (written in 
ontinuum lan-guage for the moment)
ψ (x+R,t)

x

C(t) =

(0,0)φ

(R,0)

(x,t)φ

ψ

The expe
tation value indi
ates the fun
tional integral over gauge and s
alar �elds,and the thi
k lines with arrows represent the line integrals L. Thus this is a gaugeinvariant 
orrelator. I have introdu
ed two heavy s
alar �elds � and  , for reasonswhi
h will be 
lear shortly. And, �nally, I have used t instead of � to representEu
lidean time|as we will remain in Eu
lidean spa
e hen
eforth, the distin
tion isno longer ne
essary.This 
orrelator is just a more 
ompli
ated version of the two-point fun
tion 
on-sidered earlier, Eq. 8; instead of a s
alar �eld there is a quark-antiquark operator,joined by a line of gauge �elds. The analysis of the two-point fun
tion remains thesame. For large t, it is dominated by the lightest state 
reated from the va
uum bythe quark-antiquark operator. The sum over ~x proje
ts onto states at rest, althoughas we will see, this sum is unne
essary as the only ~x = 0 
ontributes when m!1.If the lightest state has energy E, then C(t) / exp(�Et). But E is nothing otherthan V (R). Thus, for large enough R, we expe
tC(t) t!1�! e�tV (R) R!1�! e�tR� = e�[ (area)��℄ ; (107)where the area is that of the re
tangle formed by the �elds when ~x = 0. This is(almost) the famous area law 
riterion for 
on�nement.26



The most straightforward way to pro
eed is to do the fun
tional integral overthe s
alar �elds in the 
ontinuum and then dis
retize the result. Let me sket
h theargument. Imagine that the 
orrelator is in Minkowski spa
e. In the limit m!1,one 
an use the heavy quark e�e
tive theory dis
ussed in the le
tures of Isgur.Quarks, whether s
alars or fermions, just maintain their velo
ities. Now the �eld�y 
reates quarks with all velo
ities, but what we are interested in, to obtain V (R),is those with ~v = 0. So what we really mean by � is �~v=0. Given that the quarksare stati
, only the ~x = 0 term in the sum 
ontributes. The propagator for a stati
quark at site ~R in a ba
kground gauge �eld is exp(�imt)P exp[ig R t0 dt0A0(~R; t0)℄,i.e. the line integral L(~x; t; ~x; 0) (along a straight path) up to a kinemati
al fa
torwhi
h is independent of R and thus irrelevant to the determination of �. Theantiquark propagator is proportional to the line integral in the opposite dire
tionL(~0; 0;~0; t). Putting these together with the line integrals in the operators, oneobtains a re
tangular Wilson loop. Wi
k rotation yields a Eu
lidean Wilson loop.This is then simple to dis
retize in terms of the U matri
es.I have 
hosen to obtain this result by a more 
ir
uitous route, sin
e doing soallows me to introdu
es a useful te
hnique, the hopping parameter expansion. Wedis
retize the 
orrelator before integrating over the s
alars. Assuming that ~R is alatti
e ve
tor lying along the positive j-th dire
tion, we haveC(t) = X~n 1Z Z [dU ℄e�SG Z [d�℄[d�y℄[d ℄[d y℄e�S��S � (�y~n;tU(~n;t)j : : : �~n+~R;t)( y~R;0 : : : U y0;j�0) : (108)It is useful to res
ale the s
alar �elds�! m� ;  ! m : (109)for then the s
alar a
tion be
omesS� = Pnp �ynKnp�p + �m4 (�0y�)2 (110)where Knp = Ænp + 1m2 X� [2Ænp � Un;�Æn+�;p � U yn;�Æn;p+�℄ : (111)We see that the intera
tion term is suppressed by 1=m4; it 
an be ignored asm!1.It is useful to rewrite the kernel asm2Knp = Ænp(m2 + 8)(1� Hnpm2 + 8) ; (112)where Hnp is 
alled the \hopping matrix" as it hops �elds from one site to anotherHnp =X� Un;�Æn+�;p + U yn;�Æn;p+� : (113)27



Now that the s
alars are free, we 
an integrate them out usingZ [d�℄[d�y℄[d ℄[d y℄e�S��S  yn1�n2 n3�yn4 = G n3n1G�n4n2 Z [d�℄[d�y℄[d ℄[d y℄e�S��S (114)where G denotes the propagator. The reason for having two �elds � and  is nowapparent: there is only one Wi
k 
ontra
tion. The propagator 
an be obtained bya \hopping expansion"G = K�1m2 = 1m2 + 8(1 + Hm2 + 8 + H2(m2 + 8)2 + : : : ) : (115)It turns out that similar expansions apply for quark propagators, as we will see be-low. Ea
h \hop" 
osts a fa
tor of 1m2 (the \8" is irrelevant when m!1) and givesa matrix U or U y. The minimum 
ost is a
hieved by hopping along the shortestpath. This pi
ks out ~n = 0 in the sum in Eq. 108, and gives rise to a dis
retizedWilson loop
2 m

1
C(t) =

2t+2

R

t
Uup to 
orre
tions suppressed by powers of 1=m2. The subs
ript U indi
ates thatonly the fun
tional integral over gauge �elds remains.Re
all that if there is 
on�nement, we expe
t C(t) / exp(�Rt�) for large t andR. The only way this 
an happen is if the expe
tation value of the R � t Wilsonloop falls o� in this way. This is Wilson's area law test for 
on�nement.In fa
t, one 
an show that latti
e gauge theories do 
on�ne in the strong 
ouplinglimit, � ! 0 or equivalently g2 ! 1. One 
an 
al
ulate expe
tation values ofWilson loops analyti
ally, in an expansion in powers of �. One �nds (problem 4)� = �ln( �2N2
 ) + 0(�) : (116)This 
annot be used as a dire
t indi
ation of what happens to the 
ontinuum theory,be
ause, as I dis
uss below, the 
ontinuum limit o

urs for weak 
oupling, g2 !0. The strong 
oupling expansion has a �nite radius of 
onvergen
e, and presentattempts to extrapolate using tri
ks su
h as Pad�e approximants break down at
ouplings g2 � 1. Thus the only way to test for 
on�nement near the 
ontinuum28



Figure 2: The heavy quark potential, in latti
e units. The horizontal s
ale is in unitsof latti
e spa
ing, whi
h is a � 0:06 fm. The short distan
e points have been 
orre
tedfor latti
e artifa
ts using the latti
e Coulomb propagator.limit is to 
al
ulate the expe
tation value of Wilson loops numeri
ally. I give anexample of the results for the potential, from Ref. [8℄, in Fig. 2. The linear rise inV is 
lear, starting at about 0:5 fm.The behavior of non-abelian (and thus asymptoti
ally free) gauge theories isquite di�erent from that of abelian theories, the simplest example of whi
h has thegauge group U(1). In strong 
oupling, the result of Eq. 116 applies also for U(1),with N
 = 1, Thus the theory 
on�nes. By 
ontrast, the 
ontinuum U(1) theoryinvolves non-intera
ting photons, and does not 
on�ne. How are these two limitsre
on
iled? It turns out that, unlike for non-abelian theories, there is a (�rst order)phase transition at �nite g. Indeed, for a 
ertain 
hoi
e of the a
tion this 
an beproved to exist. At the transition, one goes from a 
on�ning to a non-
on�ningphase. The issue with non-abelian groups is whether there is a similar transition,and the eviden
e strongly suggests that there is not.6.2 Problem 4|strong 
oupling expansionCal
ulate the string tension � in pure gauge SU(3) theory in the strong 
ouplinglimit (� ! 0), i.e., evaluatehW (R; T )i = R Qn;� dUn;� exp h �N
 P2 ReTr2iW (R; T )R Qn;� dUn;� exp h �N
 P2 ReTr2i (117)
29



where W (R; T ) is an R� T Wilson loop, and uselnhW (R; T )i R;T!1�! ��RT + 
1R + 
2T + 
3 + : : : : (118)To do this you will need the integrals (valid for SU(N
 � 3))� R dU(1) = 1� R dU(Uij) = 0� R dU(UijUkl) = 0 = R dU(U yijU ykl)� R dU(UijU ykl) = 1N
 ÆjkÆilThe latti
e result is for the dimensionless string tension�(g2) = a2�phys :This equation has 
orre
tions of higher order in a2, whi
h 
ome from dis
retizationerrors, and whi
h are not small at strong 
oupling. Nevertheless, for purposes ofillustration, we will ignore them. Then, as we vary g2 we 
an adjust a su
h that�phys is 
onstant, whi
h is what we want in the 
ontinuum limit (see below). Usingthis method, 
al
ulate the �-fun
tion, i.e. dg2d ln a .6.3 Glueball massesThe spe
trum of pure gauge theory has been studied extensively, for gauge groupsSU(2) and SU(3), using numeri
al methods. The low lying spe
trum 
lose to the
ontinuum limit has been established with small errors, as shown in Fig. 3 (Ref.[9℄). One 
an only extra
t ratios of dimensionful quantities; here, the masses aregiven (the left hand s
ale) in units of the square root of the string tension. TheJPC of the 
orresponding 
ontinuum states is noted on the plots.The spe
trum is obtained from two point fun
tions su
h asC(t) = 1Z Z Yn;�(dUn;�)e�SgaugeX~n TrPkl(t; ~n)TrPij(0); (119)where P is a plaquette, and 1 � i; j; k; l � 3. Pro
eeding as above yieldsC(t) =Xg 12mgV h0jP̂kljg;~k = 0ihg;~k = 0jP̂ijj0ie�mgjtj : (120)I do not have time to 
onstru
t the transfer matrix for gauge theories. The methodis similar to that for s
alars, yielding operators Ûn;i (and 
orresponding momenta)whi
h a
t on the Hilbert spa
e of square integrable fun
tions on the group. Theoperators P̂ij are made up of operators Ûn;i just as in Eq. 100, All that matters here30
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Figure 3: Spe
trum of pure gauge SU(3) theory at � = 6:4. Open symbols representupper limits.is that the symmetries of the P̂ 's are the same as those of the P 's. By 
ombiningplaquettes appropriately one 
an proje
t onto di�erent representations of the 
ubi
group. The simplest examples ares
alar glueball � P12 + P21 + P13 + P31 + P23 + P32 ; (121)transforming in the identity, or A1, representation, andtensor glueball � Re(P12 � P13) ; (122)transforming as part of the two dimensional E irrep. For more examples see Ref.[7℄.Why have I 
alled these \s
alar" (i.e. JP = 0+) and \tensor" (2+) glueballoperators? The 
ubi
 group is a subgroup of the 
ontinuum rotation group, SO(3).The representations of SO(3) (J = 0; 1; 2; : : :) form, in general, redu
ible represen-tations of its 
ubi
 subgroup. For example, the J = 2 representation breaks up intoE + T2, where T2 is a three dimensional irrep of the 
ubi
 group.k Conversely, ea
hkThere is a parity symmetry on the latti
e just as in the 
ontinuum, so all states 
ome with anadditional parity label. The s
alar and tensor glueball operators have positive latti
e parity, andthus must 
orrespond to positive parity 
ontinuum glueballs.31




ubi
 group irrep re
eives 
ontributions from an in�nite tower of SO(3) irreps: e.g.A1 � J = 0; 4; 6; : : :, E � J = 2; 4; 5; 6; : : :, and T2 � J = 2; 3; 4; 5; 6; : : :. Thus, ifwe measure a two point 
orrelator of the \s
alar" operator of Eq. 121, and extra
tthe mass of the lightest parti
le, we do not know a priori whether it 
orresponds inthe 
ontinuum to a parti
le with spin-0 or with spin-4, et
. We must assume thatthe lightest parti
le has the lowest spin. We 
an test this assumption by 
omparingthe results in di�erent 
hannels. For example, if the lightest states in the E and T2irreps are di�erent polarizations of the same tensor glueball in the 
ontinuum limit,their masses must 
onverge as a! 0. This indeed seems to happen.Exer
ise: Show that in the strong 
oupling limit the s
alar glueball mass ismg = �4 ln( �2N2
 ) : (123)Use this to extra
t a �-fun
tion. How does this 
ompare to that obtained from thestring tension?6.4 Perturbation Theory and the Continuum LimitIt is important to understand the stu
ture of latti
e perturbation theory (i.e. theexpansion about g2 = 0), for several reasons. First, it tells one how to take the
ontinuum limit. Se
ond, it is a 
ru
ial part of some phenomenologi
al appli
a-tions of latti
e QCD, those in whi
h one 
al
ulates the matrix elements of externaloperators (e.g. those of the ele
troweak e�e
tive Hamiltonian) between hadroni
states. Third, it allows one to relate latti
e and 
ontinuum 
oupling 
onstants, andin this way use non-perturbative 
al
ulations of the spe
trum to predi
t the value of�S(MZ) measured in high energy perturbative pro
esses su
h as jet 
ross se
tions.Re
all the form of the pure gauge latti
e a
tionSgauge = ��X2 ReTrP2N
 = � 2g2 X2 ReTrP2 : (124)We will expand in powers of g2 = 0. In this limit the plaquettes all tend to the unitmatrix, P ! I, so as to maximize the tra
e and thus minimize the a
tion. Thisis stri
tly true only in �nite volume|a point I return to below. But P ! I doesnot imply that Un;� = I, only that the U 's must be gauge equivalent to the identity
on�guration. For example, if we start with Un;� = I everywhere, and do a lo
algauge transformation, we will �nd Un;� = VnV �1n;n+�, whi
h 
an be as far as we wantfrom the identity. The plaquettes, whi
h are gauge invariant, of 
ourse remain atP = I. We would like to expand the U 's about I, but to do this we must �x thegauge, just as in the 
ontinuum. This is in 
ontrast to numeri
al simulations (andthe strong 
oupling expansion) whi
h do not require gauge-�xing.One 
hoi
e of gauge-�xing 
ondition is to maximizeXn;� ReTr(Un;�) : (125)32



This brings the U 's as 
lose to the identity as possible on average. It is the latti
eLandau gauge. In an a
tual simulation at �nite g2, there are many maxima ofthis fun
tion|whi
h is nothing other than the Gribov ambiguity on the latti
e.This makes it problemati
 to use this 
ondition in a non-perturbative simulation|a subje
t re
eiving 
onsiderable attention at present [10℄. As in the 
ontinuum,however, there is no Gribov ambiguity in perturbation theory.Assuming we have �xed the gauge appropriately, we 
an expand the links aboutthe identity Un;� = e�igA�(n) = 1� igA�(n)� 12g2A2�(n) + : : : ; (126)where the �rst equality de�nes A�. For notational simpli
ity, I have set a = 1 andput the �eld A� at the site n and not at n + �2 . Using this expansion, we �nd(essentially a repeat of the derivation of the latti
e a
tion)Sgauge = Xn;� 12Tr[(�+�A�(n)��+� A�(n))(�+�A�(n)��+� A�(n))℄ + 0(A3)= SA2 + 0(A3); (127)where �+�A�(n) = A�(n+ �)� A�(n) (128)Using \summation by parts"Xn g(n)�+� h(n) = �Xn (��� g(n))h(n) ; (129)where ��� g(n) = g(n)� g(n� �) ; �+���� g(n) = ����+� g(n) ; (130)we �nd SA2 =Xn Tr[ (���� A�)(���A�)| {z }remove by gauge-�xing�A� like a 2z }| {����+� A�℄ : (131)To remove the unwanted term (whi
h, as in the 
ontinuum, makes the quadrati
term in the a
tion non-invertible), we follow the latti
e version of the Fadeev-Popovpro
edure. We assume a gauge 
ondition of the formfn(U) = �n; 8n ; (132)where fn is a fun
tion only of the link matri
es adja
ent to the site n, i.e. those U 'swhi
h are rotated by the gauge transformation matrix Vn. A useful quantity is theJa
obian Jn(U) = jdet[�fn�Vn ℄(U)j : (133)We 
onsider the fun
tionalI(V; �) = Z Yn;� dUn;�e�Sgauge(U)Yn hÆ(fn(UVn)� �n)Jn(UVn)i℄; ; (134)33



where UV means U after gauge rotation by V. Despite appearan
es, I(V; �) doesnot depend upon V . This is be
ause dU = dUV and Sgauge(UV ) = Sgauge(U), so we
an 
hange variables to U 0 = UV and remove all referen
e to V . Furthermore, thefun
tional is 
onstru
ted to satisfyZ Yn DVnI(V; �) = Z Yn;� dUn;�e�Sgauge = Z : (135)Sin
e we use a normalized group integration measure (R dU = 1), it follows thatZ = I(V; �n) for any V; �n/ Yn Z d�ne�Tr(�2n)I(1; �n)= Z Yn;� dUn;�e�Sgauge e�PnTr[fn(U)2℄| {z }gauge-�xing ghostz }| {Yn Jn(U) : (136)The produ
t of ja
obians 
an be written in more familiar form asYn Jn(U) = det " �f�V # : (137)Now we return to the 
hoi
e of gauge 
ondition. It is 
onvenient to write it interms of A's. The simplest and most 
ommonly used 
hoi
e isfn =X� ���A�(n) ; (138)the dis
rete version of ��A�. As advertized above, this does involve only the linksemanating from the site n. The resulting gauge-�xing term 
an
els the unwantedpart of SA2 SA2 + Sg:f: = �Xn�� Tr[A�����+�A�℄ (139)This is the latti
e version of Feynman gauge.Exer
ise: Show that the latti
e gluon propagator in Feynman gauge isÆ��Æab4P� sin2 (k�2 ) ; (140)where a; b = 1; 8 are 
olor indi
es. The denominator is the latti
e version of k2.If instead we take fn = 
P����A�(n), and send 
 ! 1, we obtain latti
eLandau gauge. If you think about the Fadeev-Popov pro
edure, you will see thatthis limit amounts to setting P����A�(n) = 0. This is nothing other than thedi�erential form of the 
ondition Eq. 125, expressed in terms of A's, where we keeponly the O(a) term. 34



To 
omplete the 
onstru
tion of latti
e perturbation theory, we need the expan-sion of the measuredUn;� / Y�=1;8 dA�� � (1 + higher order terms, not needed here) : (141)Thus 
al
ulations pro
eed just as in the 
ontinuum, ex
ept that (i) integrals areautomati
ally regularized in the ultraviolet be
ause (reinserting the a)Z d4k(2�)4 ! Z �a��a d4k(2�)4 ; (142)and (ii) the form of the propagators and verti
es are altered. In parti
ular, there isan in�nite sequen
e of verti
es 
oming from the expansion of Sgauge in powers of A
+ . . .

g g2 3g

and a similar in�nite tower of verti
es involving ghosts. We 
ould do all the familiar
al
ulations of perturbative QCD using latti
e regularized perturbation theory in-stead of, say, dimensional regularization. Power 
ounting for UV divergen
es worksas usual [11℄. It would just be very messy.Let me 
onsider, s
hemati
ally, the 
al
ulation of the �-fun
tion. To do thiswe 
al
ulate gR(p), the renormalized three-point fun
tion with a de�nite 
hoi
e ofexternal momenta having magnitude � p. At one-loop the graphs are
gR

3g 3g 3g
= + + + . . . +

g

where the last diagram (the \tadpole diagram") is spe
i�
 to the latti
e. Thediagrams are �nite|ultra-violet divergen
es are 
ut-o� by the latti
e spa
ing, infra-red divergen
es by the external momenta. The result has the formgR(p) = g n1 + g2[��0ln(ap) + CL + 0(a2p2ln(ap))℄ + 0(g4)o : (143)This should be reliable as long as �=a � p � �QCD. The upper limit must besatis�ed so that 
ut-o� e�e
ts (su
h as that proportional to (ap)2 in Eq. 143) aresmall. The lower limit ensures that g(p) is small enough that perturbation theory
an be used. 35



The form of Eq. 143 is the same for all regulators| in parti
ular, the 
onstant�0 is the universal �rst 
oeÆ
ient of the �-fun
tion�0 = 13(16�2)(11N
 � 2Nf) : (144)It governs the way in whi
h gR(p) de
reases as p in
reasesdgR(p)dlnp ���a;g = ��0g3[1 + 0(g2) + 0(a2)℄ : (145)What di�ers between regulators is the value of the 
onstant. In parti
ular, thetadpole diagram, whi
h is spe
i�
 to the latti
e, 
ontributes only to CL and notto �0. This is be
ause the tadpole loop is quadrati
ally and not logarithmi
allydivergent: a2 R d4kk2 / �2, where the fa
tor of a2 
omes from the vertex.6.5 Continuum Limit of Pure Gauge TheoriesWe 
an use the perturbative result Eq. 143 to understand the \quantum" 
ontinuumlimit. We want to take this limit in su
h a way that physi
al quantities, evaluatedat de�nite physi
al momenta, remain �xed. In perturbation theory, gR(p) is su
h a\physi
al" quantity. To keep it �xed, we must vary the bare latti
e 
oupling g withlatti
e spa
ing:dgR(p)dlna = 0 ) dgdlna = �0g3[1 + 0(g2) + 0(a2)℄) d( 1g2 )dlna = �2�0[1 + 0(g2) + 0(a2)℄) 1g2 = �2�0ln(a�lat)[1 + 0(g2) + 0(a2)℄ ; (146)where �lat is the integration 
onstant. If g2 is small enough that we 
an trust this
al
ulation, it tells us how a must be varied with g2: a�lat = exp(�1=2�0g2).Exer
ise: show that in
luding the next order term in the �-fun
tiondgdlna = �0g3 + �1g5 +O(g7) ; (147)leads to a�lat = exp "� 12�0g2# (g2�0)� �12�20 [1 + 0(g2)℄ : (148)(The in
lusion of ���1=2�200 on the right hand side is a 
onvention.) Here I amassuming that O(a2) terms 
an be ignored.There are a number of important features of this result.36



� The integration 
onstant �lat is not determined|i.e. we do not know a prioriwhat value of a is asso
iated with, say, g2 = 1. This must be determined by
omparison with experiment. It turns out that (in the quen
hed approxima-tion dis
ussed in Ma
kenzie's le
tures) a(g2 = 1) � 0:1 fm.� Identi
al equations de�ne a �-parameter in any regularization s
heme, e.g.there is a �MOM, a �MS, et
. These all serve the same purpose, that of spe
i-fying what the 
oupling 
onstant is in the given s
heme at a parti
ular s
ale.We 
an use perturbation theory to relate the �-parameters (i.e. the 
oupling
onstants) in di�erent s
hemes. See below.� Numeri
al simulations are restri
ted to a range of latti
e spa
ings whi
h isroughly 0:2 fm > a > 0:05 fm at present: O(a2) errors be
ome too large abovethe upper limit, while the latti
e volume (Nsa, where Ns is the number ofpoints a
ross the latti
e) be
omes too small to 
ontain hadrons below thelower limit. The rapid de
rease of a as g ! 0 means that this 
orresponds toa very small range of g2. In the quen
hed approximation, it turns out to be5:7 < � < 6:5We expe
t the pure gauge theory to have a spe
trum of glueballs, with \physi
al"masses mg;n. (Physi
al is in quotes as the real world is not a pure gauge theory,though we 
an imagine that it might have been.) We 
al
ulate these masses inlatti
e units (numeri
ally, say), at a number of values of g2. To have a 
ontinuumlimit they should behave asmlat;n = amg;n = mg;n�lat exp "� 12�0g2# (g2�0)� �12�20 [1 + 0(g2) +O(a2)℄ ; (149)where I have reinserted the expe
ted O(a2) 
orre
tions. This equation is quiteremarkable. The masses mlat;n are non-perturbative|the RHS of the equation hasan essential zero at g2 = 0|but, using perturbation theory, we 
an predi
t how themasses de
rease as g ! 0. Stri
tly speaking, what we are assuming here is thatthere is a 
ontinuum limit in whi
h both perturbative quantities (su
h as gR(p)) andnon-perturbative quantities simultaneously have well de�ned limits. Another wayof saying this is that all dimensionful quantities must be proportional to �lat, asthere are no other s
ales in the theory. Aside from 
orre
tions whi
h fall as O(a2),the output from simulations is a set of pure numbers 
nmg;n�lat = 
glue;n p��lat = 
� : (150)I should mention that there is a small segment of the latti
e 
ommunity whi
hdoes not a

ept the above[12℄. It is logi
ally possible that there is no 
on�nementand that 
� = 
glue = 0, et
. How would this happen? We know that there is
on�nement for strong 
oupling, and numeri
al simulations extend this result up to� � 6:5. Furthermore, in the region � � 6� 6:5 the expe
ted dependen
e of masses37



on g2 (Eq. 149) has been veri�ed (as long as one implements perturbation theory
orre
tly[13℄). Nevertheless, it remains possible that there is a phase transition atweaker 
oupling, beyond whi
h the 
n = 0.There is a potential 
onfusion that I wish to dispel. If we 
al
ulate � and mg;n inperturbation theory, we �nd that they vanish, to all orders in g2. This is 
onsistentwith Eq. 149, as the result is non-perturbative. But how does perturbation theoryfail to get the 
orre
t result? The point is that perturbation theory assumes the linkmatri
es Un;� 
an all be rotated to lie 
lose to the identity. This is false on s
ales of� = 1m / exp(1=2�0g2) or greater. On
e we get out to these length s
ales, importantnon-perturbative 
u
tuations are o

urring, those that build up the hadrons. Thisis not important for gR(p), however, as long as p� m, for then gR(p) is only sensitiveto distan
es mu
h shorter than 1=m.6.6 Comparison to 
riti
al phenomenaThere is a large overlap between the analyses of 
riti
al phenomena and the 
on-tinuum limit of latti
e theories. As a 
riti
al temperature T
 is approa
hed, the
orrelation length, de�ned by the two point fun
tion of some operator,hO(x)O(0)i � e�x� ; (151)diverges as � = jT �T
j��. The 
orrelation-length exponent � is one of a number of
riti
al exponents. If there are no other s
ales (\relevant parameters") all 
orrelationlengths are proportional to �. The latti
e granularity be
omes irrelevant as � !1,
orresponding to a 
ontinuum limit.In this way of looking at the 
ontinuum limit, we hold the latti
e spa
ing �xed,and adjust the 
oupling T su
h that the length s
ale of physi
al quantities diverges.This is not the way we are used to thinking about the 
ontinuum limit of latti
etheories. Instead we keep physi
al sizes �xed, and imagine redu
ing the latti
espa
ing. The viewpoints are, however, entirely equivalent.The detailed form of the 
riti
al behavior does di�er for a gauge theory. First,there is the trivial 
hange of using repla
ing T with g2. Se
ond, we know thatg
 = 0. But most importantly, the power law divergen
e is repla
ed by� = 1=m / exp[1=2�0g2℄ ; (152)i.e. an essential singularity.6.7 Relating latti
e and 
ontinuum 
oupling 
onstantsAn important appli
ation of perturbation theory is to relate 
oupling 
onstants indi�erent s
hemes. I will dis
uss how this works for an SU(3) pure gauge theory|the generalization to QCD involves simply 
hanging some numeri
al fa
tors. I ampoa
hing somewhat on the subje
t matter of Paul Ma
kenzie's le
tures, but I 
an'tresist as the result is one of the present triumphs of latti
e QCD.38



Physi
al quantities must be independent of the regularization used to de�ne thetheory. Thus, if we 
al
ulate the renormalized 
oupling gR(p) in the MS s
heme,gR(p) = gMS(1 + g2MS(�)[�0ln(�p ) + CMS℄ + 0(g4)) ; (153)and equate it with the latti
e result, Eq. 143, we �nd the relation between the
ouplings in the two s
hemesg = gMS(�)8><>:1 + g2[(CMS � CL)| {z }�C=�0:234 +�0ln(�a)℄ + 0(g4) +O(a2)9>=>; : (154)At this order, one 
an use equally well use g2 or g2MS in the 
orre
tion term.This 
orre
tion is quite large|if we take g = 1, a typi
al value in present sim-ulations, 
orresponding to 1=a � 2GeV, the latti
e value of g2 is 47% smaller thangMS(� = 1=a)2. The size of this 
orre
tion is well understood [13℄|it is mainly dueto the tadpole diagram. This large 
orre
tion means that only one of the 
oupling
onstants 
an be a good expansion parameter for quantities involving momentum
ows of p � 2GeV. Experien
e with perturbative QCD indi
ates that expansionsin �MS = g2MS=4� work well for jet 
ross se
tions and other su
h quantities. Thus�lat(a = 1=p) = g2(a = 1=p)=4� will be a poor expansion parameter for su
h pro-
esses, and is likely to be poor expansion parameter in general. This is true inpra
ti
e| 1- and 2-loop perturbative results for small Wilson loops, expressed interms of �lat , disagree signi�
antly with results obtained from numeri
al simula-tions. Lepage and Ma
kenzie have shown, however, that the perturbative resultswork well if reexpressed in terms of �MS[13℄. See Ma
kenzie's le
tures for moredetails.Using an improved form of Eq. 154 suggested by Ref. [13℄, one 
an 
onvertreliably from �lat to �MS. If one has established the latti
e spa
ing a by 
omparinga physi
al quantity su
h as f� to its latti
e value, a = f lat� =fphys� , then the out
omeis a predi
tion for �MS at a known physi
al s
ale. This 
an then be run to any others
ale using the renormalization group. The latest result is [14℄�(5)MS(mZ) = 0:115� 0:002 ; (155)where the error is 
laimed to a

ount for all systemati
 and statisti
al e�e
ts. Thisis a very impressive result, and is 
onsistent with the latest world average obtaindefrom 
omparisons of high-energy experiments with perturbative expansions[15℄ �(5)MS(mZ) =0:117� 0:005. This is a ni
e demonstration that QCD works simultaneously in theperturbative and non-perturbative regimes.7 Fermions on the Latti
eFermions are notoriously diÆ
ult to dis
retize in a satisfa
tory way, be
ause ofthe so-
alled \doubling" problem. I devote the last le
ture to an explanation of39



this problem, and a brief dis
ussion of possible resolutions. I mainly fo
us onfree fermions, be
ause most aspe
ts of the problem 
an be understood without
oupling them to gauge �elds. I work entirely in Eu
lidean spa
e|it is worth noting,however, that the problem 
annot be over
ome by working in the Hamiltonianformulation where one dis
retizes spa
e but not time.Let me begin with a reminder of the Eu
lidean-spa
e fermion a
tion. In Minkowski-spa
e the a
tion isSM = Zx  (i�= �mphys) ; where  =  y
0M ; f
�M ; 
�Mg = 2g�� (156)SM is hermitian be
ause the Dira
 matri
es satisfy 
� yM 
0 yM = 
0M
�M . Now go toEu
lidean spa
e by the Wi
k rotation x0 ! �ix4, so thatSM = Zx d4xM (i
0M ��x0 + i
iM ��xi �mphys) �!SE = � Z d4xE (
4E ��x4 + 
iE ��xi +mphys) (157)where the Eu
lidean Dira
 matri
es are
4E = 
0M ; 
iE = �i
iM ; f
�E; 
�Eg = 2Æ�� ; 
�E = (
�E)y : (158)Thus the Eu
lidean a
tion is SE = � R  (�= E +mphys) . From now on I will dropthe subs
ript E.In the fun
tional integral representation for the Eu
lidean partition fun
tion,fermions are Grassman variables, and we must treat  and  as independent �elds.The rules of Grassman integration then yieldZ = Z [d ℄[d ℄ exp[Z  (�= +mphys) ℄ = det(�= +mphys) ; (159)G(x; y) = �Z�1 Z [d ℄[d ℄ exp[Z  (�= +mphys) ℄ (x) (y) = [ 1�= +mphys ℄xy : (160)The appearan
e of the determinant in the numerator, rather than the denominatoras for s
alar �elds, 
orresponds to the minus sign for fermion loops. For a gen-eral Greens fun
tion the anti
ommuting nature of Grassman variables ensures the
orre
t relative sign between di�erent Wi
k 
ontra
tions.Now to the issue of dis
retization. We pla
e fermions and antifermions on sitesa3=2  (x)!  n ; a3=2  (x)!  n ; (161)Possible options for the derivative area5=2�� (x)! 8><>: �+� n =  n+� �  n (A) ;��� n =  n �  n�� (B) ;�� n = 12(�+ +��) n = 12( n+� �  n��) (C) : (162)40



When dis
retizing the s
alar kineti
 term (j���j2), (A) and (B) are equivalent, andpreferable to (C), be
ause they are more lo
al. For fermions, note that the Eu
lidean�= is anti-hermitean. This is a property we wish to preserve, as it tra
es ba
k tothe Hermiti
ity of the Hamiltonian. This eliminates options (A) and (B), sin
e��(�+� )y = �(��� ) : (163)If we insist on nearest neighbors, we are for
ed to use (C), whi
h leads toZ  (�= +mphys) �!Xn;� 12 n
�( n+� �  n��) +Xn m n n = �SN ; (164)where the latti
e mass is m = mphysa. This straightforward dis
retization gives riseto what are 
alled \naive" latti
e fermions.To study naive fermions we look at the two-point fun
tion, G = 1=(�= +m). Asin the 
ontinuum, �= is diagonal in momentum spa
e. Introdu
ing n = Z ��� d4k(2�)4 eikn  (k) and  n = Z ��� d4k(2�)4 e�ikn  (k) (165)we �nd (Rk � R ��� d4k=(2�)4)� SN = Zk  (k)(iX� s�
� +m) (k) : (166)Note that the dis
rete form of k� is s� = sin k�, rather than the 2 sin k�2 we foundwith s
alars. Thus the propagator in momentum spa
e isG(k) = 1is= +m = �is= +ms2 +m2 : (167)If we take the 
ontinuum limit with �xed physi
al mass and momenta, then k =kphysa! 0 and m = mphysa! 0. We 
an expand the sine, s� = ak�;phys(1 +O(a2)),yielding aG(k) � �i
�k�;phys +mphysk2phys +m2phys : (168)This has a pole at k2phys = �m2phys , representing the fermion that we expe
ted to�nd.Now we 
ome to doubling. The latti
e momentum fun
tion s� vanishes fork� = � as well as k� = 0. In the neighborhood of the momentum (�; 0; 0; 0), if wede�ne new variables by k01 = � � k1, k0i = ki, i = 2� 4, thenG(k0) � �iP� k0�
0� +mk02 +m2 : (169)��One 
an see that (A) and (B) are unphysi
al by noting that they 
orrespond to propagationonly forwards or ba
kwards, respe
tively, but not in both dire
tions. They 
annot yield a Lorentzinvariant Minkowski theory. 41



To bring the propagator into the standard 
ontinuum form, I have introdu
ed newgamma-matri
es, 
01 = �
1, 
0i = 
i, i = 2� 4, unitarily equivalent to the standardset 
0� = (
�
5)
�(
�
5)y (no sum on �): (170)Equation 169 shows that there is a se
ond pole, at k02 = �m2, whi
h also representsa 
ontinuum fermion. This is our �rst \doubler".yyThe saga 
ontinues in an obvious way: s2 vanishes if ea
h of the four 
omponentsof k� equals 0 or �. There is a pole near ea
h of these 16 possible positions. Oursingle latti
e fermion turns out to represent 16 degenerate states.To further illuminate the doublers let us Fourier transform the propagator ba
kto Eu
lidean time G(~k; n4) = Z 3�2��2 dk42� eik4n4�is= +ms2 +m2 (171)To evaluate the integral we �rst lo
ate the poles. These o

ur when �s24 = ~s �~s+m2.Thus sin(k4) is pure imaginary, implyingk4 = n� + iE ; n = integer ; E = � sinh�1[p~s � ~s+m2℄ : (172)The relevant poles are thus as shown here

 

 
��2 3�2>_ ^

We 
an 
lose the 
ontour as shown be
ause of the periodi
ity of the integrand. Ifn4 > 0 we pi
k up the two upper poles, while if n4 < 0 we pi
k up the lower poles.A little work leads to the resultG(~k; n4) = m� sinh [E
4℄� i~
 � ~ssinh[2E℄ e�Ejn4j+ m� sinh [E
0℄� i~
 � ~ssinh[2E℄ (�1)n4e�Ejn4j ; (173)where the + (�) sign 
orresponds to n4 > 0 (< 0). To interpret this result, re
allthe expression for the two point fun
tion in terms of the transfer matrix, Eq. 67.yyNote that due to the periodi
ity of the latti
e one 
an shift integration in momentum spa
e fromR ��� to R 3�=2��=2, so there is no problem of k0 lying near the boundary.42



One 
an derive an analogous result for fermionsG(~k; n4) = h0j ^ (~k)T n4 ̂0j0i /Xp jh0j ^ (~k)jpij2�n4p ; (174)where I have 
hosen n4 > 0, and �p are the eigenvalues of the transfer matrix. Thetwo terms in Eq. 173 thus 
orrespond to two states. This is the doubling in thetime dire
tion. Note, however, that �p = � exp(�E), so the transfer matrix is notpositive, and we 
annot de�ne a Hamiltonian by Ĥa = � lnT . We 
an over
omethis problem by noting that the transfer matrix for two steps in the time dire
tionis positive, so that a sensible de�nition of a hermitian Hamiltonian isT 2 = e�2Ĥa : (175)In this 
ase our two states have the same energy E.The remaining o
tupling in the spa
e dire
tions is hidden in the expression forE. E has a minimum (sinh(E)min = m), when ~s = 0, whi
h o

urs for eight valuesof ~k in the integration range: ~k = (0; 0; 0), (�; 0; 0), et
. Ea
h of these 
orrespondsto a fermion at rest, whose mass, in the 
ontinuum limit is m=a = mphys .7.1 Generality of the doubling problemIt is not, in fa
t, the repli
ation of fermions whi
h is the hard part of the problem,but rather the way in whi
h the 
hiralities of the states work out. If m = 0, thenwe 
an introdu
e a 
hiral proje
tion into the a
tion
� ! 
L� = 
�(1 + 
5)=2 ; (176)whi
h in the 
ontinuum restri
ts one to left-handed (LH) �elds. On the latti
e, thepole near k = 0 is then LH. The se
ond pole I un
overed, however, represents a RH�eld. This is plausible, be
ause
05 = 
01
02
03
04 = �
1
2
3
4 = �
5 ) (1 + 
5) = (1� 
05) : (177)To a
tually show this one must 
onsider the 
oupling to external 
urrents.Extending this analysis, it is easy to see that the 
hirality 
ips sign for ea
h ofthe 
omponents of k that is near �. Thus one ends up with eight LH and eightRH fermions. This means that, when one introdu
es gauge �elds (to be dis
ussedbelow), one always obtains a \ve
tor" representation of fermions, i.e. one in whi
hLH and RH �elds lie in the same representation of the gauge group.How general is this result? Karsten and Smit have shown that LH and RHfermions always 
ome in pairs[16℄, provided� �= is dis
retized into an antihermitean operator, so that its eigenvalues areimaginary; 43
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Figure 4: Possible forms of the fun
tion F(k).� the intera
tions are lo
al, whi
h implies that the propagator is 
ontinuous inmomentum spa
e;� the spa
e-time volume is in�nite, whi
h implies that momentum spa
e is 
on-tinuous;� the a
tion is translationally invariant, from whi
h follows that momentumspa
e is periodi
 (a torus with period 2� in ea
h dire
tion).This result is easy to understand in 1 dimension. The propagator is of the formG�1 = i
1F (k) (178)where k = k1 is the single momentum variable, and F is real, 
ontinuous fun
tion ofk with period 2�. We are interested in the poles of G, and thus the zeroes of F (k).Possible forms for F are shown in Fig. 4. It is 
lear that, if there are only �rst orderzeroes, there must be an even number in the interval [��=2; 3�=2℄. Furthermore,they 
ome in pairs with opposite slopes. Following the above dis
ussion, the slope
orresponds to the 
hirality, so one always has an equal number of LH and RHfermions. The only alternative is to have a higher order zero, e.g. a zero with�F�k = 0. This, however, gives a double pole in G, whi
h does not 
orrespond to aphysi
al parti
le.Returning to four dimensions, it is worth noting that one 
an truely redu
e theissue to a doubling problem. Wil
zek has given an example with only two states,at the pri
e of using an a
tion whi
h breaks Eu
lidean rotation invarian
e [17℄.44



7.2 Consequen
es of the doubling problemWhat are the 
onsequen
es of Karsten and Smit's result?� One 
annot dis
retize a 
hiral gauge theory, i.e. one in whi
h the LH and RHfermions lie in di�erent representations of the gauge group. These theoriesare well de�ned perturbatively, be
ause one 
hooses the representations sothat triangle anomalies 
an
el. But no satisfa
tory non-perturbative regulatorexists, and the Karsten-Smit result rules out a simple latti
e implementation.This means that one 
annot dis
retize the ele
troweak se
tor of the standardmodel, whi
h is 
hiral. If one tried, ea
h (eL; �L) doublet, for example, would
ome with an (eR; �R) partner, whi
h is not part of the standard model.� Latti
e regularization automati
ally takes 
are of the fa
t that theories withanomalous 
hiral representations of fermions (e.g. SU(N
) with a single left-handed fermion) 
annot be de�ned.� One 
annot dis
retize QCD with (nf ) massless quarks, in the following sense.Su
h a theory should have an SU(nf )L � SU(nf )R 
hiral symmetry, underwhi
h the LH and RH quarks rotate with independent phases. But the latti
efermions are all begotten of the same latti
e �eld, and so 
annot be rotatedindependently.In summary, then, the latti
e theory la
ks 
hiral symmetries.Can we evade the general result? Can we simulate 
hiral theories? Can we sim-ulate QCD with massless quarks? Mu
h e�ort has been devoted to these questions.Notable among the attempts are:� Avoid the Karsten-Smit result using a random latti
e [18℄. This breaks trans-lation invarian
e, and thus the ne
essity of periodi
ity of the propagator. Thisidea is very diÆ
ult to analyze; even free fermions must be studied numeri-
ally. Little progress has been made|see Ref. [19℄ for a re
ent study.� Use a non-lo
al derivative, whi
h allows the Fourier transform to be dis
on-tinuous, so, for example, one need have only one zero in F (k). An exampleis the \SLAC derivative" [20℄. This fails when one introdu
es intera
tionswith gauge �elds|the doublers reappear be
ause of the non-lo
ality of theintera
tions[21℄.� One 
an expli
itly break 
hiral symmetry right from the start, and aim tore
over it only in the 
ontinuum limit. This is, after all, what one does withthe rotations and translations. For fermions in ve
tor representations, thisis the approa
h originally taken by Wilson, whi
h I dis
uss in more detailbelow. For 
hiral theories, this is the approa
h advo
ated by the Rome group,and involves breaking the gauge symmetry at �nite latti
e spa
ing [22℄. Theapproa
h has been shown to work in low-order perturbation theory. What45



one is really interested in, however, is a non-perturbative simulation, and thetheory is too 
ompli
ated to simulate at present.� The most exoti
 and interesting proposals are the des
endants of Kaplan's\domain-wall fermions"[24℄, whi
h all involve an in�nite number of extra reg-ulator �elds. For a summary see Ref. [25℄; the methods appear to work ifthere truely is an in�nite number of �elds. As for pra
ti
al methods (ne
es-sarily restri
ted to �nite numbers of �elds), things are not yet 
lear. It doesappear that one 
an simulate QCD with massless quarks, maintaining a gen-uine 
hiral symmetry. The question of whether the method is pra
ti
al for
hiral theories is being hotly debated.It is worth noting that, even if a viable method for dis
retizing 
hiral fermions on�nite latti
es is developed, simulations will be hampered by the fa
t that the a
tionis 
omplex for su
h theories. This means that the fa
tor exp(�S) in the fun
tionalintergral 
annot be interpreted as a probability.What does one do if one wants to simulate QCD? In pra
ti
e, one either gives upon 
hiral symmetry entirely, and uses Wilson fermions, whi
h I dis
uss in the nextsubse
tion, or one uses \staggered" fermions. One 
an show that naive fermionsbrake up into four sets of four Dira
 fermions, of whi
h three 
an be ignored. Theresult is staggered fermions, whi
h 
orrespond to four degenerate fermions in the
ontinuum limit. Su
h a theory, if m = 0, would have an SU(4)L � SU(4)R 
hiralsymmetry. At �nite latti
e spa
ing, this is broken down to a 
avor non-singletaxial U(1) symmetry. This is not mu
h, but it is enough to guarantee that m isonly multipli
atively, and not additively, renormalized. It is also important when
al
ulating matrix elements whi
h are 
onstrained by 
hiral symmetry, su
h asK ! �� amplitudes. Indeed, staggered fermions are the method of 
hoi
e to studysu
h quantities. For futher details of staggered fermions, see Ukawa's le
tures, orRef. [26℄.7.3 Wilson fermionsI end these le
tures with a des
ription of the fermions used in most present simula-tions of QCD.The simple way to understand why doublers o

ur is to note that the latti
ederivative �� n =  n+� �  n�� is small both for fun
tions that are smooth, andfor those that alternate in sign but are otherwise smooth. By 
ontrast the bosoni
derivative �+���� n =  n+� � 2 n +  n�� (179)is small only for smooth fun
tions. Thus we try adding the \Wilson term"SW =Xn� r2 n�+���� n (180)46



to the a
tion, yieldingSF = �Xn  n(m +X� 
���) n + SW : (181)Exer
ise: show that the momentum spa
e propagator isG(k) = 1is= +m + r2 k̂2 (182)= �is= + (m� r2 k̂2)s2 + (m+ r2 k̂2)2 ; (183)where s� = sin(k�), and k̂ = 2 sin(k�=2).If k� = �, then s� = 0, whi
h is the 
ause of doubling, but k̂� = 2. Thus thewould-be doubler poles pi
ks up an e�e
tive mass me� = m + 2rn, where n is thenumber of 
omponents of k� 
lose to �. If one keeps r �nite in the 
ontinuum limit,when m = mphysa ! 0, the e�e
tive latti
e masses of the doublers stay �nite, andso the e�e
tive physi
al masses be
ome in�nite. Thus only the single Dira
 fermion
orresponding to the pole near ~k = 0 survives in the 
ontinuum limit.Exer
ise: 
on�rm this dis
ussion by looking at the propagator as a fun
tion ofEu
lidean time. Take r = 1, whi
h simpli�es the 
al
ulation, and is the value usedin most numeri
al simulations. One reason for this is that, for r = 1, one 
an derivea hermitean positive transfer matrix [27℄.The drawba
k with Wilson fermions is that 
hiral symmetry is expli
itly brokenby the Wilson term, even when m = 0. This symmetry pla
es important 
onstraintson matrix elements involving pions, kaons and �'s, 
onstraints whi
h are thereforeabsent on the latti
e. This makes it diÆ
ult to 
al
ulate some of these matrixelements, and for these one 
an do better with staggered fermions. The symmetryis regained in the 
ontinuum limit, be
ause SW vanishes: SW � a R  2 .It is straightforward to make the a
tion gauge invariant by inserting appropriatelink matri
es in the derivatives n n+� �!  nUn;� n+� ;  n n�� �!  nU yn��;� n�� : (184)For r = 1, the total gauged fermion a
tion is thus (in d dimensions)SF = �Xn  n n(m+d) +Xn [ n(1� 
�2 )Un;� n+� +  n(1 + 
�2 )U yn��;� n��℄= �Xn  0n 0n + �Xn [ 0(1� 
�)Un;� 0n+� +  0n(1 + 
0�)U yn��;� 0n��℄ (185)where I have introdu
ed a res
aled �eld and a hopping parameter � 0n = q(m + d) n ; � = 12(m+ d) : (186)47



The last form of the a
tion is that used in most simulations. The quark mass isspe
i�ed indire
tly by m = 1=(2�) � d. Large mass 
orresponds to � ! 0, and inthis limit one 
an 
al
ulate propagators using a hopping parameter expansion verysimilar to that dis
ussed above for s
alars.The quark mass m vanishes when � = �
 = 1=2d, so this is the 
riti
al valueto whi
h � should be tuned to take the 
ontinuum limit with free fermions. Gaugeintera
tions additively renormalize �
|for �nite a one must determine �
 from thesimulation itself. This is typi
ally done by �nding the value at whi
h the pion massvanishes, sin
e m2� / mq. This renormalization is an example of the Applequist-Carrazone de
oupling theorem. In the presen
e of intera
tions, one 
an de
ouple thedoublers, but they 
ause �nite renormalizations in the parameters of the remaininge�e
tive a
tion. There is no reason why m (and thus �) should not be renormalizedadditively, sin
e there is no 
hiral symmetry when m! 0.8 Referen
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