
UW/PT 95-04Introdution to lattie �eld theory
Stephen R. SharpePhysis Department, University of WashingtonSeattle, WA 98195, USAABSTRACTThis is the written version of �ve letures given at the Uehling SummerShool for Phenomenology and Lattie QCD, University of Washington,June 21 - July 2, 1993. The letures were initially transribed by HenningHoeber.

To appear in\Phenomenology and Lattie QCD",Eds. G. Kilup and S. Sharpe, to be published by World Sienti�.
February 1995
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1 IntrodutionThese letures are intended to provide a basi introdution to the lattie methodsused today. They assume a working knowledge of �eld theory, and in partiularof gauge theories and funtional integrals, but no previous knowledge of the lattieapproah. My aim is to provide the bakground neessary for understanding theappliations of lattie methods, and in partiular the subjets disussed in sub-sequent letures at this shool: phenomenologially useful preditions from QCD(Paul Makenzie) and �nite temperature physis (Akira Ukawa). I fous on thetheoretial formulation, and do not disuss numerial methods.In �ve letures one an only over a limited number of topis. Fortunately,there are now two exellent books available on Lattie Field Theory, by Rothe [1℄,and by Montvay and M�unster [2℄. These books take over where Creutz's seminalmonograph left o� a deade ago [3℄.Homework problems were provided with eah leture, and these have either beenintegrated into the text, or plaed at the end of the orresponding setion. Someproblems work out details not overed in the letures, while others illustrate newonepts.2 Eulidean Field TheoryI will fous mostly on the funtional integral de�nition of �eld theory, sine thisis the method used in most numerial simulations. Let me begin by reviewingsome basi results. All orrelation funtions an be determined from the partitionfuntion (with soures). In Minkowski spae this isZM = Z [d�℄ expfiSM(�) + soure termsg ; (1)where � denotes a generi �eld. The Minkowski ation SM is real and thus theintegrand is omplex. The integral is therefore extremely diÆult to evaluate nu-merially beause of anelations between di�erent regions of on�guration spae.The pratial alternative is to work in Eulidean spae whereZE = Z [d�℄ expf�SE(�E) + soure termsg : (2)In most theories the Eulidean ation is real, and also bounded from below, in whihase the exponential an be interpreted as a probability distribution on on�gurationspae. After we disretize the theory, we an ompute the integral using Monte-Carlo methods. QCD (without the CP-violating ��term) is an example of a theorywhih an be simulated in this way. Examples of theories whih annot be sosimulated, beause they have omplex ations, are QCD at �nite hemial potential2



(i.e. �nite baryon number density) and theories with a hiral representation offermions (e.g. the eletroweak setor of the standard model).�What we atually alulate in Eulidean spae are orrelation funtionsC(xE1 ; xE2 ; : : : ; xEn ) = Z�1E Z [d�E℄e�SE�E(�1; ~x1)�E(�2; ~x2) : : : �E(�n; ~xn) ; (3)where � denotes Eulidean \time".To obtain physial quantities we have, in general,to analytially ontinue the orrelation funtions bak to Minkowski spae, � ! it.It is worthwhile realling how this is done. The funtional integral is onstrutedto give � -ordered expetation valuesC(xE1 ; xE2 ; : : : ; xEn ) = h0jT [�̂(�1; ~x1)�̂(�2; ~x2) : : : �̂(�n; ~xn)℄j0i ; (4)where �̂(�; ~x) is the Heisenberg operator orresponding to �. Assuming for simpliitythat �1 > �2 > : : : �n, we an use Eulidean time translation (and Ĥj0i = 0) torewrite this expression asC(xE1 ; xE2 ; : : : ; xEn ) = h0j�̂(~x1)e�Ĥ(�1��2)�̂(~x2)e�Ĥ(�2��3) : : : e�Ĥ(�n�1��n)�̂(~xn)℄j0i : (5)Now the fators of � are expliit, we an perform an inverse Wik-rotation, � ! it.After some rewriting, this results in the Minkowski time-ordered produth0jT [�̂(t1; ~x1)�̂(t2; ~x2) : : : �̂(tn; ~xn)℄j0i : (6)These time-ordered produts are suÆient, via LSZ redution, to determine allproperties of the theory i.e. the spetrum and sattering amplitudes. If we insertoperators other than �̂ in the orrelation funtions we an also obtain their matrixelements.This is �ne in priniple, but in pratie we have numerial results for orrelationfuntions on a disrete set of points (either in position spae or momentum spae),and analyti ontinuation is, at best, highly problemati. Thus a ruial pratialissue is what an be learned diretly from Eulidean orrelation funtions. As Idemonstrate shortly, no analyti ontinuation is needed to extrat the low lyingspetrum of hadrons or the matrix elements of loal operators involving single par-tiles. Nearly all the phenomenologially useful results from lattie studies to dateinvolve suh quantities.First, though, I want to mention a more formal point (see Refs. [2, 4℄ for furtherdisussion). It is quite possible for a Eulidean-spae funtional integral to yieldwell behaved orrelation funtions, and yet for these funtions not to be the ana-lyti ontinuation of those of a physial Minkowski theory. By a physial theory Imean one having a Hilbert spae with positive norm, whose spetrum is boundedfrom below, and on whih Poinar�e invariane is implemented by unitary operators.�In fat, the \fermion doubling problem", to be disussed below, makes it diÆult to even for-mulate hiral theories on the lattie. 3



In partiular there is an hermitian Hamiltonian whih generates time translations.Sine in the lattie enterprise we begin in Eulidean spae, it is important to knowunder what onditions the orresponding Minkowski theory is physial. This ques-tion was studied long ago by Osterwalder and Shrader, who found the following [5℄.If the ation SE is Eulidean invariant, and expetation values suh as C(xE1 ; : : : ; xEn )in Eq. 3 satisfy a property alled \reetion positivity", plus some more tehni-al onditions, then there exists a physial Minkowski theory suh that the stepsleading from Eq. 3 to Eq. 6 are valid. An important example of a theory whihdoes not satisfy these onditions is \quenhed" QCD|i.e. QCD without internalfermion loops. This is an approximation used in many simulations at present.I do not have time to disuss reetion positivity here|see, for example, Ref. [2℄for a lear exposition. What I will desribe (in Chapter 4) is a standard tehniquefor atually onstruting the Hilbert spae and Hamiltonian operator, using the\transfer matrix". In this way one an see expliitly the passage from Eq. 3 to Eq.6, in the ontext of a disretized theory.2.1 The spetrumLet me now show how the spetrum an be obtained diretly from two-point Eu-lidean orrelation funtions, without the need for analyti ontinuation. Translat-ing one of the points to the origin, we begin withC(xE) = Z�1 Z [d�℄e�SE�(�; ~x)�(0) ; (7)= h0jT [�̂(xE)�̂(0)℄j0i : (8)Assuming � > 0, and using the full Eulidean translation operator�̂(�; ~x) = eĤ��ib~p�~x�̂(0)e�Ĥ�+ib~p�~x ; (9)where b~p is the momentum operator, plus the fat that the vauum has neither energynor momentum, we �nd C(xE) = h0j�̂(0)e�Ĥ�+ib~p�~x�̂(0)j0i : (10)Inserting a omplete set of states, we end up with the spetral deompositionC(xE) =XZn jh0j�̂(0)jnij2(2EnV )�1e�Enx4ei~pn�~xn : (11)Here I am assuming a �nite volume V, and using relativistially normalized statesh~pj~qi = 2EV ÆpxqxÆpyqyÆpzqz V!1�! 2E(2�)3Æ3(~p� ~q) ; (12)where E2 = j~pj2 +m2. 4



Exerise: Show, assuming parity onservation, that for any �C(xE) =XZn jh0j�̂(0)jnij2(2EnV )�1e�Enj� jei~pn�~xn (13)From Eq. 13 we see that we an determine the spetrum diretly from theexponential fall-o� of the Eulidean orrelator. To make things learer let us projetonto ~p = 0 Z d3xC(xE) = C(�; ~p = 0) =XZn;~p=0 jh0j�̂jnij2(2En)�1e�Enj� j : (14)If the lightest state produed from the vauum by �̂ (all it j1i) is a single partile,then, for large j� jC(�; ~p = 0) = jh0j�̂j1ij2(2m)�1e�mjx4j + exponentially suppressed terms. (15)Thus one an just read o� the mass, along with the assoiated matrix element toreate the state from the vauum.Clearly by judiiously hoosing the operators in the two point funtion we anprojet onto states having di�erent spin-parities and di�erent momenta. In eahhannel it is simple to extrat the energy of the lightest state, but progressivelyharder to pik out higher energy states, beause their ontributions are exponen-tially suppressed. Muh e�ort in lattie simulations goes into �ddling with theoperators so as to inrease the overlap with the desired states.Although one does not need to analytially ontinue, it is nevertheless true thatpiking out the exponential is equivalent to �nding the pole in the propagator. Forexample, onsider the Fourier transform of the ontribution of the lightest state tothe ~p = 0 propagatorC(E) = R d� eiE� e�mj� j2m = 12m(m� iE) + 12m(m+ iE)= 1m2 + E2 : (16)Analytially ontinuing to Minkowski energies, E ! �iE0, we �nd the usual polein the propagator C(E0) = 1m2 � E20 : (17)One an also extrat physial information diretly from Eulidean three-pointfuntions. Consider the orrelatorC3(�1; �2; �3) = Z�1 Z [d�℄e�SEO1(�1)O2(�2)O3(�3)= h0jÔ1(�1)e�Ĥ(�1��2)Ô2(�2)e�Ĥ(�2��3)Ô3(�3)j0i ; (18)5



where Oi(�i) is a funtion of the �elds at time �i, and Ôi(�i) is the orrespondingHeisenberg operator. I have assumed �1 > �2 > �3 in the seond line. For �1 � �2and �2 � �3 large, the orrelator behaves asC3 / h0jÔ1j1i exp(�E1j�1 � �2j)h1jÔ2j3i exp(�E3j�2 � �3j)h3jÔ3j0i ; (19)where j1i and j3i are, respetively, the lightest states reated from the vauum bythe operators Ô1 and Ô3. These operators might inlude a projetion onto non-zerospatial momenta, whih is why I have written the oeÆients in the exponents asenergies rather than masses. The reation and destrution matrix elements, togetherwith the energies, an be obtained from Eulidean two-point funtions. Thus onean extrat h1jÔ2j3i from C3 without analyti ontinuation.Although it provides a way of thinking about four- and higher point funtions,Eq. 5 is not very useful in pratie. For example, one annot use it to extratsattering amplitudes diretly from four-point funtions. Suh amplitudes requireanalyti ontinuation: they are real in Eulidean spae, yet omplex, in general,in Minkowski spae.y The result does, however, show the lose relationship to aHamiltonian approah, in whih one alulates matrix elements like h0jÔ1HnÔ2j0i.

yThere is, however, an elegant indiret method due to L�usher whih uses the volume dependeneof two partile energies[6℄. 6



3 Salar FieldsHaving understood what we an learn diretly Eulidean �eld theories, I now turnto business of arefully de�ning them. I begin with the simplest example, the realsalar �eld. To de�ne a �eld theory requires regularization. Replaing ontinuousspae-time with a disrete lattie is one option; it orresponds to a (ompliated)ut-o� in momentum spae. The messiness of the ut-o� is ompensated by thefat that one an perform the Eulidean funtional integral for any values of theparameters in the ation. In partiular, none of the oupling onstants need beassumed small, so that we an do non-perturbative alulations.Although it is not essential, most alulations use latties with equal spaing (a)in all four diretions spae 6 -time� � �� � �� � �� -a 6?aAsymmetri latties with di�erent spaing in spae and time an be useful in �nitetemperature alulations, as disussed in Ukawa's letures.The ontinuum Eulidean ation for a real salar �eld isS = Z d4x[12��� ���+ V (�)℄ (20)where V (�) = 12m2ph�2 + ��4 + : : : (21)The subsript \ph" refers to the physial mass, to be distinguished from the lattiemass whih will be introdued shortly. This ation may be disretized in manypossible ways. In the \ontinuum limit", a ! 0, the hoie should be irrelevant,and we pik the simplest method. Continuous �elds are replaed by dimensionless�elds on the lattie sites labeled by a vetor of integers n = (n1; n2; n3; n4)a�(x)! �n ; (22)and integrals beome sums Z d4x! a4Xn : (23)For lattie derivatives there are several possibilitiesa2��� ! �+� �n = �n+�̂ � �n ; or (24)��� �n = �n � �n��̂ ; or (25)���n = 12�n+�̂ � �n��̂ ; : : : (26)7



We require the lattie version of (���)2 to be positive. The most loal hoie isZ (���)2 !Xn (�n+�̂ � �n)2 =Xn (�+��n)2 =Xn (����n)2 : (27)Sometimes it is useful to rewrite this term as followsXn;�(�n+�̂ � �n)2 = �Xn;� �n(�n+�̂ � 2�n + �n��̂) ; (28)whih is the lattie analogue of R (���)2 = � R �2�. Putting all this togetherS ! SL =Xn;� �12(�n+�̂ � 2�n + �n��̂)�n +Xn VL(�n) (29)with VL(�n) = 12(mpha)2�2n + ��4n + : : : (30)The produt mpha is the dimensionless lattie mass m. Finally, the lattie partitionfuntion is Z =Yn [Z +1�1 d�n℄e�SL � Z� e�SL : (31)It is important to realize the meaning of the arrows in the above equations. Thelattie ation has the orret ontinuum limit for \lassial" �elds, those varyingon sales muh longer than the lattie spaing. The quantum theory, by ontrast,neessarily inludes the ontribution from \jagged" �elds, those that utuate onthe sale of the lattie spaing. This is true even if one is alulating the responseto a smooth external �elds, sine interations will ouple them to quantum �eldsof all wavelengths. Thus the ontinuum limit of the quantum theory need not bedesribed by the lassial ontinuum ation. In asymptotially free theories thejagged modes an be studied using perturbation theory, and the ontinuum limitan be understood, as desribed below. This is not possible for salar theories.Indeed, it is almost ertain that, whatever the size of the �4 oupling � in thelattie Lagrangian, the partiles do not interat in the ontinuum limit. This isalled \triviality".3.1 The propagator for free �eld theoryTo study the properties of the lattie theory, I begin by setting � = 0, and alulatingthe propagator from site n to site pC(n; p) = Z�1 Z� e�S�n�p : (32)For the free theory the ation is bilinear in the �eldsS = 12 Xn;p �nMnp�p ; (33)8



with M real and symmetriMnp = � 4X�=1(Æn;p+�̂ + Æn;p��̂) + Ænp(8 +m2) : (34)Performing the Gaussian integrals we obtainC(n; p) = [detM ℄�1=2(M�1)np[detM ℄�1=2 = (M�1)np : (35)As usual, it is easiest to Fourier transform�n = Z ��� d4k(2�)4 eikn�(k) � Zk eikn�(k) ; �(�k) = ��(k) ; (36)where the seond form of the integral is a useful abbreviation. Note that the lattieuts o� the momentum integral. All lattie quantities are periodi in k� (separatelyfor eah �) with period 2�; I have hosen the range of integration to be symmetriabout the origin. Substituting Eq. 36 into the ation we �ndS = 12 Xn;p Zk;q eik�neiq�pMnp�(k)�(q) (37)= 12 Xn Zk Zq ei(k+q)�n[m2 +X� (2� eiq� � e�iq�)℄�(k)�(q)= 12 Zk �(k)�(�k)[m2 +X� 4 sin2 (k�2 )℄ : (38)M is now diagonal, so the propagator isC(n; p) =M�1np = Zk eik(n�p)m2 +P� 4 sin2 k�2 : (39)Various features of this result are noteworthy.� The lattie and ontinuum propagators di�er only in that the momentum ishanged k� �! 2 sin (k�2 ) � k̂� : (40)Although the lattie momentum k̂� is anti-periodi when k� shifts by 2�, whatappears in the propagator is its square, whih is periodi.� The lattie propagator is symmetri under disrete Eulidean rotations (e.g.x ! y, y ! �x) but not under ontinuous rotations. One reovers the fullsymmetry if the ontinuum limit is taken as follows:m = mpha! 0; k = kpha! 0 ; (41)9



with the physial mass and momentum, mph and kph, held �xed. In this limitk̂� ! (kph)�a ; a2C(k)! 1(mph)2 + (kph)2 ; (42)whih is the ontinuum free propagator. This ontinuum limit is rather trivial,but does illustrate one general point: one must adjust the parameters in theLagrangian in a partiular way to attain the ontinuum. Here, the lattiemass m must vanish, otherwise one ends up with in�nitely heavy ontinuumsalars.It is enlightening to alulate the propagator in position spae for a given spatialmomentum. As shown in the set. 2.1, this allows one to read o� the spetrum.Consider then C(n4; ~q) = Z�1 Z [d�℄e�SLX~n e�i~q�~n�(~n; n4)�(0) (43)=X~n e�i~q�~n Zk eik4n4ei~k�~nm2 + k̂42 + ~̂k2= Z ��� dk42� eik4n4m2 + ~̂q2 + k̂24 (44)The integrand has poles on the imaginary axis. De�ning k4 = iE, so that k̂4 =2i sinh E2 , the poles are determined by2 sinh E2 = �rm2 + ~̂q 2 : (45)We an perform the integration by forming a losed ontour in the omplex k4 plane:

�� �>_ ^

Sine the integrand is periodi in k4, with period 2�, the two vertial parts of theontour anel, and so an be added to the original integral. For n4 > 0, onemust lose the ontour in the upper half plane, and one piks up the orrespondingresidue, leading to C(n4; ~q) = e�En42 sinhE : (46)10



We see that, even with disretized time, the orrelator does fall o� exponentially.In fat, there is only one exponential, orresponding to the fat that the theory isfree, so there is only one state for eah momentum. Note that the lattie energy(Eq. 45) di�ers from the ontinuum result E2 = m2 + ~q 2, although the two agreein the ontinuum limit (m; ~q ! 0).A very useful onept in lattie alulations is the \orrelation length", �. Thisis de�ned by the rate of exponential fall-o� of two point funtions in position spae:G(n; p) � exp(�jn � pj=�), up to powers of the separation jn � pj. Two pointfuntions inlude all possible values of ~q; at large distanes the smallest value of Eontrols the rate of deay. This is Emin = 2 sinh�1(m=2) � m, so that � � 1=m.One way of thinking about the ontinuum limit is that � must diverge in lattieunits, so that the e�ets of disretization disappear. Sending m = mpha! 0 indeedmakes � !1.In an interating theory, the orrelation length(s) are determined, in general,non-perturbatively in terms of the parameters in the lattie ation. To �nd aontinuum limit one must disover a plae in the spae of parameters for whih theorrelation length diverges.
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4 The Transfer MatrixThe nuts-and-bolts way in whih one onnets lattie Eulidean funtional integralsand the orresponding Minkowski theory relies on the transfer matrix, T̂ . In otherwords, using T̂ allows one to see exatly what one is alulating when working at�nite lattie spaing. In partiular, the symmetries of the spetrum are those of T .The transfer matrix is also widely used in statistial mehanis alulations. Forthese reasons I have hosen to desribe its onstrution, for the simplest ase ofsalar �elds. The generalizations to gauge theories and to theories with fermionsare more ompliated to work out, but the essential idea is the same.I begin with a homework problem whih serves as a warm-up for the atualanalysis.4.1 Problem 1|transfer matrix for one-dimensional �eldtheoryConsider a 1-dimensional lattie with salar �elds �n; n = 1; 2; : : :N and periodiboundary onditions �N+1 = �1. Find an operator T̂ suh thatZ = Tr(T̂N) :Here T̂ is an operator ating on the Hilbert spae of square integrable funtions ofone variable, i.e. the usual spae for quantum mehanis of a single variable.A simple way to proeed is as follows.Step 1: Write the ation asS = SA(�1) + SB(�1; �2) + SA(�2) + SB(�2; �3) + : : : + SA(�N) + SB(�N ; �1)SB ontains terms onneting adjaent �'s; it is advantageous to hoose SB tobe positive.Step 2: It is simplest to use a non-normalizable basis j�i for the Hilbert-spae :�̂j�i = �j�i ; h�0j�i = Æ(�0 � �)Introdue a onjugate momentum p̂ with [p̂; �℄ = �i, and show thate�ip̂�j�i = j�+�i:With all this in hand, �nd an operator T̂ whih satis�esh�0jT̂ j�i = eSB(�0;�)e 12SA(�)e 12SA(�0)12



Step 3: Given this de�nition of T̂ show thatZ = Tr(T̂N) � Z d�h�jT̂N j�i : (47)Step 4: Sine T̂ is the operator whih translates by one unit in Eulidean time, it isreasonable to de�ne T̂ = e�Ĥa (putting bak in the lattie spaing). As a! 0,Ĥ ! Ĥont + 0(a). Find the form of Ĥont (it should be familiar).4.2 Transfer matrix in four dimensionsConstruting the transfer matrix in d � 2 di�ers from the one dimensional asemainly in the need for extra notation. I begin with the partition funtionZ = Z� e�S ; S =Xn 24 4X�=1 12(�n+� � �n)2 + V (�n)35 : (48)It is neessary to work with a lattie having a �nite extent in time:Nz }| {
- time� �4I assume periodi boundary onditions, �~n;N+1 = �~n;1, where N is the number of\timeslies". This amounts to working at a �nite temperature 1=Na, as disussedbelow.The idea is to break the integrand of the funtional integral up into two parts:those living on individual timeslies, and those onneting adjaent slies. Sinethe ation inludes only nearest neighbor interations, this is all one needs. Thus Iollet all the �elds at time �i (having all spatial positions) into a set denoted f��ig,and write the ation aszS = SA(f��Ng) + SB(f��Ng; f��N�1g) + SA(f��N�1g) + SB(f��N�1g; f��N�2g): : : + SA(f��1g) + SB(f��1g; f��Ng) (49)zNote that I am now using � instead of n4 to label dimensionless, disretized Eulidean time.This saves on subsripts, and should lead to no onfusion with my earlier use of � as dimensionful,ontinuous Eulidean time. 13



where SA(f��ig) = X~n 24V (��i;~n) + 12 Xj=1;3(��i;~n+ĵ � ��i;~n)235 (50)SB(f��1g; f��2g) = 12X~n (��1;~n � ��2;~n)2 (51)Next de�ne the transfer funtionT2;1 = T (f��2g; f��1g) = e� 12SA(f��2g)e�SB(f��2g;f��1g)e� 12SA(f��1g); (52)whih allows one to express the partition funtion asZ = Z� e�S = Zf��1g:::f��N g T1;NTN;N�1 : : : T2;1 (53)We now introdue the Hilbert spae of square integrable funtions at eah site ~n with(non-normalizable) basis j�~ni, and \position" and momentum operators satisfying�̂~nj�~ni = �~nj�~ni ; h�0~nj�~ni = Æ(�0~n � �~n) ; (54)[�̂~n; �̂~n0℄ = 0 ; [p̂~n; �̂~n0℄ = �iÆ~n;~n0 ; e�ip̂~n�j�~ni = j�~n +�i : (55)The transfer matrix ats on the Hilbert spae of diret produt statesj�i �Y~n 
j�~ni : (56)The idea is to �nd an operator T̂ (�̂~n; p̂~n) satisfyingh�0jT̂ j�i = T (f�0g; f�g) ; (57)for then we an write the partition funtion asZ = Zf��1g:::f��N gh��1jT̂ j��N ih��N jT̂ j��N�1i : : : h��2jT̂ j��1i= Zf��1gh��1jT̂N j��1i= Tr(T̂N) : (58)Here the seond line follows from ompleteness, and the last from the de�nition ofthe trae.The onstrution of T̂ is similar to the one-dimensional ase. The trik is tonote that e� 12 (�0~n��~n)2 = Z 1�1 d�h�0~nje��22 e�ip̂~n�j�~ni= p2�h�0~nje� 12p2~nj�~ni ; (59)14



so that the following does the jobT̂ = e� 12SA(f�̂g)e� 12P~n p̂2~ne� 12SA(f�̂g)(2�)L32 : (60)What has been ahieved here? We have rewritten the funtional integral interms of an operator T̂ whih \transfers" information from one time slie to thenext. As we will see more learly below, it orresponds to the Eulidean spae timetranslation operator for one lattie unit, whih in the ontinuum is exp(�aĤ). T̂is of the form AyA, and so is hermitean and positive. It thus has real, positiveeigenvalues: T̂ jpi = �pjpi, �p � 0. Labeling the eigenvalues in order of dereasingsizex �0 > �1 > : : : > 0the partition funtion beomesZ = Tr T̂N = �N0 + �N1 + : : : N�!1! �N0 (1 + (�1�0 )N + : : : ) (61)The eigenstate with the largest eigenvalue is piked out for large N. This stateorresponds in the ontinuum limit to that having the smallest eigenvalue of Ĥ. Itis the lattie vauum state, j0i.The signi�ane of T̂ an be seen more learly by applying the above onstrutionto orrelation funtions. Consider the two-point funtionC2(n1; n2) = Z�1 Z� e�SL��2; ~n2��1;~n1 (�2 > �1) (62)whih an be rewritten in terms of the transfer matrixC2(n1; n2) = Z�1 Z� T̂1;N : : : T̂�2+1;�2��2;~n2T̂�2;�2�1 : : : T̂�1+1;�1��1;~n1T̂�1;�1�1 : : : T̂2;1 :(63)Using h�0j�̂~nT̂ j�i = �0~nT (f�0g; f�g) (64)we �ndC2(n1; n2) = Z�1 Z�h��1 jT̂ j��ni : : : h��2j�̂~n2T̂ j��2�1i : : : h��1 j�̂~n1T̂ j��1�1i : : : h��2jT̂ j��1i= Tr f�̂~n2T̂ �2��1 �̂~n1T̂N��2+�1g=Tr fT̂Ng= Tr f�̂~n2T �2��1 �̂~n1TN��2+�1g=Tr fTNg : (65)In the last step I have resaled the transfer matrix so that the eigenvalues lie between0 and 1: T = T̂�0 has eigenvalues 1 > ��1 = �1�0 > : : : � 0 : (66)xFor a �nite system, with a potential V (�) bounded from below, there is a �nite maximumeigenvalue. 15



Taking the limit N ! 1, keeping �2 � �1 �xed, selets the \vauum" in bothnumerator and denominator sine TN j0i = 1 while TN j1i = ��N j1i N!1�! 0. ThusC2(n1; n2) N!1�! h0j�̂~n2T �2��1�̂~n1 j0i : (67)Comparing to the ontinuum expression (Eq. 5)C2 = h0j�̂~n2e�Ĥ(�2��1)a�̂~n1j0i; (68)we see that the orrespondene is T = e�Ĥa. Clearly the same applies to multi-pointorrelation funtions. Thus it makes sense to de�ne a lattie Hamiltonian byaĤ � � lnT : (69)Ĥ has the properties that we want for a Hamiltonian: it is hermitean, and itssmallest eigenvalue is 0Ĥj0i = E0j0i E0 = 0 ; (70)Ĥjpi = Epjpi Ep = � ln (��p) > 0 : (71)In addition, it ats on a Hilbert spae with positive norm. Thus we have sueededin onstruting the disretized version of the operator expression Eq. 5.The atual form of Ĥ is horribly non-loal, beause the di�erent exponents inEq. 60 do not ommute, so that taking the logarithm is not simple. In the lassialontinuum limit (i.e. when we assume that the operators are smoothly varying),however, Ĥ indeed goes over into the ontinuum HamiltonianĤ ! Z d3x[12 p̂2ph + 12(�i�̂ph)2 + 12m2ph�̂2ph + ��̂4ph + : : : ℄ + onstant (72)where �̂ = a�̂ph and p̂ = a2p̂ph, and I have used the potential of Eq. 30.An alternative ontinuum limit uses asymmetri latties, in whih we take thespaing in the time diretion to zero, while keeping the spatial lattie spaing �xed.In this way one obtains a disretized Hamiltonian theory, whih an be studiedusing various approximation shemes. This is disussed in the texts.4.3 Finite TemperatureWe an now see the signi�ane of working on a lattie of �nite time extent. Thepartition funtion is Z = Tr T̂N / Tre�NaĤ : (73)But this is nothing other than the partition funtion desribing the theory in equi-librium at a �nite temperature � = 1=kT = Na. The longer the lattie in physialunits, the smaller the temperature. Inevitably, numerial simulations orrespond toa non-zero temperature, although it an be made very small in pratie. For furtherdisussion see the letures by Ukawa. 16



4.4 Symmetries of T̂ and ĤAs with any quantum mehanial problem, it is useful to study the symmetries ofthe Hamiltonian. On the lattie, it makes more sense to phrase the disussion interms of the symmetries of the transfer matrix (T̂ or T , it makes no di�erene).Given that aĤ = � lnT , Ĥ and T̂ have the same symmetries anyway.Given the de�nition of T̂ (Eqs. 57 and 52). its symmetries are those of thefuntions SA and SB. These areA: disrete translations,B: 3-d rotations in the ubi group,C: spatial inversions.To eah symmetry transformation g there is a orresponding unitary operator U(g)whih represents the transformation, and whih ommutes with T̂j�i ! j�ig = U(g)j�i ; T̂ ! U(g)T̂U(g)�1 = T̂ : (74)Thus if jpi is an eigenstate of T̂ with eigenvalue �p, then so is U(g)jpi. Eigenstatesan be labeled not only by their \energies" (here �p) but also by the representationsof the symmetry groups in whih they lie. The labels orresponding to the abovesymmetries areA: momentum ~k, satisfying � < ki � �,B: representations of the ubi group|the disrete analog of angular momentum(see problem 2 below),{C: parity, P = �1.In a general theory there will also be internal symmetries, with orresponding rep-resentations. For example, if the �eld is omplex there is a U(1) symmetry, andstates are labeled by the orresponding harge.What use is this lassi�ation of states? To see its utility, onsider the expressionfor the two-point funtion in the limit of in�nite time extent (f. Eq. 67)C2(�2 � �1) = h0j bOyT �2��1 bOj0i : (75)Here I have onsidered a general operator, bO, omposed of the �elds in the theory.The point is that we an onstrut this operator so that it belongs in a de�nite{I am being sloppy here. Rotations and translations do not ommute. Only for ~k = 0 an onelabel the states by representations of the full ubi group. For ~k 6= 0, one must wheel out thetehnology for representing semi-diret produts.17



irreduible representation of the symmetry group, e.g. having de�nite momentum(e.g. bO(~p = 0) = P~n �̂~n). Inserting a omplete set of eigenstates of T̂ , one �ndsC2(�2 � �1) / 1Xp=0 jhpj bOj0ij2���2��1p : (76)Only states with the same symmetries as O ontribute to this sum, sine the vauumlies in the trivial representation of the symmetry group. For large �2 � �1 the\lightest" suh state (that with the largest �p) dominates the sum. Thus it isstraightforward, in priniple, to alulate the energy of the lightest state in eahrepresentation of the symmetry group. This allows one, for example, to study thelattie dispersion relation by alulate energies, E, at various momenta, ~k.Thus a lattie pratitioner must know something about disrete groups. Themost useful is the ubi group, the disretization of SO(3), whose representationsare the disrete version of angular momentum states. A nie disussion of this group,its representations, and their relation to those of SO(3) is given by Mandula, Zweigand Govaerts [7℄. The following problem onerns this group.4.5 Problem 2: the ubi (otahedral) group and its repre-sentationsThis is the group of 3-d rotations (not inluding reetions), whih you an thinkof as proper rotations of a ube. The problem is this: onstrut the harater tableof this group, and display examples of representations.Here are some useful fats about disrete groups:� Elements fall into onjugay lasses. Given two elements of a onjugay lass,a and b, one an always �nd a group element, g, suh that gag�1 = b.� The number of irreduible representations (\irreps") equals the number ofonjugay lasses.� For eah element of eah irrep there is a \harater", �(g), given by the traeof the matrix representing the element. Thus, for example, the harater ofthe identity element is always the dimension of the irrep. It follows from theyliity of the trae that all elements in a onjugay lass have the sameharater.� Charater orthonormality:Xlasses  ��r1()�r2() = Ær1r2N;where � = number of elements in lassN = number of elements in group�r() = harater of elements of lass  in irrep r18



� Given a reduible representation with harater �(), the number of times anirreduible representation appears is1N X ��()�r()� Another useful result is: Xirreps r ��r()�r(0) = Æ0Nfor eah pair of lasses  and 0. Piking  = 0 = I, this gives Pr d2r = N ,where dr is the dimension of the representation r.In the following I outline a possible approah to this problem.Step 1: Enumerate and lassify elements of the group. Ref. [7℄ uses one method; hereis an alternative suggestion.Elements of the group an be generated by one 90Æ rotation R, e.g.Rxy : [x̂! ŷ ; ŷ ! �x̂ ; ẑ ! ẑ℄ ;and S, a rotation of the ube about a body diagonal by 120 degrees (sayx̂! ŷ; ŷ ! ẑ; ẑ ! x̂ ). Clearly, R4 = S3 = I. Show also that RSRS = I.These relations de�ne the group|all sequenes of R and S an be simpli�edinto a �nite number of elements using them, e.g., RSR = S2. To enumeratethe elements it is easier, rather than using brute fore, to ollet them inonjugay lasses, sine eah element of a lass arries out a similar type oftransformation. What are the di�erent types of elements? How many of eahtype are there ?Step 2: One way to onstrut the harater table is to invent representations, onvineoneself that they are irreduible and alulate the haraters. The haraterformulae given above at as a hek.A good hoie of starting reps are those of the proper 3-d rotation groupSO(3). These reps are labeled by J = 0; 1; 2; : : : and have dimension 2J + 1.For example, the J = 0 rep is 1-dimensional and invariant under all transfor-mations, so �() = 1 ; 8. This is an irrep of the ubi group too|the identityrepresentation I (also alled A1).Good luk!
19



5 Gauge Theories on the LattieIn this leture I explain how to disretize gauge theories, and in partiular QCD.While there are interesting non-perturbative questions assoiated with the SU(2)L�U(1) part of the standard model, e.g. the nature of its �nite temperature phasetransition, the most important pratial appliation of lattie methods is to QCD.The low-energy phenomena of QCD, in partiular on�nement and hiral symmetrybreaking, are non-perturbative, and the lattie is the only method available forstudying them from �rst priniples. A ruial aspet of lattie regularization is thatit maintains gauge invariane, for this guarantees that the theory is unitary.5.1 Continuum QCD, a brief overviewThe ontinuum ation is given bySE = � Xq=u;d;s;;b;:::Zx �q(D= +mq)q + 12 Zx Tr(F��F��) ; (77)where the integrals run over Eulidean spae. The ovariant derivative isD� = �� � igA� ; (78)in whih the gauge �elds are olleted into a matrix A� = Aa�T a, with T a thegenerators of the SU(3) Lie Algebra[T a; T b℄ = ifabT  ; tr(T aT b) = 12Æab : (79)The quark �elds are olor triplets, with an impliit olor index. Finally, the gauge�eld strength isF�� = F a��T a = ig [D�; D�℄ = ��A� � ��A� � ig[A�; A�℄ : (80)A loal SU(3) gauge transformations is desribed by a spae-time dependentelement V (x) 2 SU(3) (V �1 = V y, det(V ) = 1):q(x)! V (x)q(x) ; �q(x)! �q(x)V �1(x) ; (81)A�(x)! V (x)A�(x)V �1(x) + igV (x)��V �1(x) ; (82)F��(x)! V (x)F��(x)V �1(x) ; (83)[D�q℄(x)! V (x)[D�q℄(x) : (84)Given the last two lines, it is simple to see that SE is invariant.It is useful to introdue the path-ordered integralsL(x; y) = P expfig Z xy dz�A�(z)g ; (85)20



whih are to be thought of as going from y to x. The ordering is suh that, forexample, A�(x) is always to the left of A�(y). The reverse ordering is obtainedby hermitian onjugation, i.e. L(y; x) = L(x; y)y. The L's an be built from aprodut of in�nitessimal steps, (1 + igdz�A�(x0)), along the path. Using the gaugetransformations listed above, it is easy to see that these quantities transform as(1 + igdz�A�(x0))! V (x0 + dz�)(1 + igdz�A�(x0))V �1(x0) +O(dz2�) : (86)It follows that the gauge transformation properties depend only on the end pointsof L, and not on the path of integrationL(x; y)�!V (x)L(x; y)V �1(y) : (87)They thus transport the gauge rotation from one point to another, suh that thequantity q(x)L(x; y)q(y) is gauge invariant:q(x)L(x; y)q(y) ! q(x)V �1(x)V (x)L(x; y)V �1(y)V (y)q(y)= q(x)L(x; y)q(y) : (88)Another gauge invariant quantity is the trae of the path-ordered integral aroundany losed pathTr[L(x; x)℄�!Tr[V (x)L(x; x)V �1(x)℄ = Tr[L(x; x)℄ (89)These objets are alled Wilson loops.5.2 DisretizationWith these quantities in hand, we an now onstrut a gauge invariant lattie versionof QCD. Well, not quite. It turns out that disretizing fermions presents problemsunrelated to gauge invariane, problems whih I disuss in the last leture, In thisleture I avoid these problems by replaing the quarks with salar olour triplets,�. These are neessarily omplex, and their ontinuum ation isSont = Zx��yD�D��+ P (�y�) ; P (y) = m2y + �y2 + : : : : (90)Under gauge transformations they behave like quarks�y(x)! �y(x)V �1(x) ; �(x)! V (x)�(x) : (91)To onstrut a lattie theory, one annot simply plae quark and gauge �eldson the sites of the lattie and disretize the derivatives appearing in SE. Instead,the gauge �elds, whih transmit information about gauge transformations from oneposition to another, live on the \links" or \bonds" onneting the sites. I will hoosethe lattie to be hyperubial, sine this is the form most easily studied numerially.21
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Figure 1: Notation for lattie quantities. n is a vetor of integers.The notation for the sites and links on the lattie is shown in Fig. 1. Note that Iam using n + � instead of n + �̂, to denote the point one lattie spaing forwardfrom n in the �-diretion.We begin with the free ation for the salars, whih is disretized by a simplegeneralization of the result for a real salar �eld (Eqs. 28 and 29)S0lat =Xn X� [�yn+� � �yn℄[�n+� � �n℄ +Xn P (�yn�n) : (92)Next we introdue the gauge �elds. The disrete version of the gauge trans-formation funtion V (x) is Vn, a site dependent SU(3) matrix. Under a gaugetransform �yn ! �ynV �1n ; �n ! Vn�n ; �yn�n ! �yn�n : (93)Thus the potential term in Eq. 92 is invariant, while the kineti term is not.To �x this up, we introdue elements of SU(3), Un;�, assoiated with the linkfrom site n to site n+�, and orresponding to the ontinuum line integral bakwardsalong the link: Un;� � L(an; an + a�̂)= P exp �ig Z anan+a�̂ dz�A�(z)� (94)= 1� igaA�(n+ 12 �̂) +O(a2) : (95)Figure 1 shows examples of the diagrammati representation of these link matriesas arrows. We assoiate U yn;� with the link from n+ � to n, in orrespondene withthe ontinuum result L(x; y) = L(y; x)y. The \�" in the �rst line of Eq. 94 means\orresponds to". The vagueness here is deliberate|one we put the theory on thelattie there are no gauge �elds A�: they are replaed by the U 's. The expansion in22



the last line (whih assumes the straight line path) is useful, however, for thinkingabout what the U 's mean, and also for taking the lassial ontinuum limit.The gauge transformation properties of the U 's are taken to be the same asthose of the orresponding L'sUn;� ! VnUn;�V yn+� ; U yn;� ! Vn+�U yn;�V yn : (96)Thus Un;��n+� transforms in the same way as �n,Un;��n+� ! VnUn;�V yn�Vn+��n+� = VnUn;��n+� ; (97)and �yn+�U yn;� transforms as does �yn. With these relations we an onstrut a gaugeinvariant lattie ationSlat =Xn X� [�yn+�U yn;� � �yn℄[Un;��n+� � �n℄ +Xn P (�yn�n) : (98)It is instrutive to hek that the kineti part of this ation has the orretontinuum limit. Using the result of Eq. 95 we �ndUn;��n+� � �n � a2[���℄(an + 12a�)� iga2A�(an + 12a�)�(an+ a�)= a2[D��℄(an+ 12a�) + 0(a3) (99)Combining this with its hermitian onjugate, we regain the kineti term in ontin-uum ation, R jD��j2.5.3 Pure Gauge AtionWe an onstrut a lattie version of the pure gauge ation using the smallest Wilsonloop, that around an elementary square or \plaquette"P y�� = Un;�Un+�;�U yn+�;�U yn;� : (100)The geometry is illustrated here.
Un;�
U yn+�;�U yn;� Un+�;�^ _><It is reasonable that suh a loop is related to F�� , beause the �eld strength is theurvature assoiated with the onnetion A�. In any ase, using the orrespon-dene given above for the U 's, and after some algebra, one �nds that the lassialontinuum limit of the plaquette isP�� = 1 + iga2F�� � g22 a4F 2�� + ia3G�� + ia4H�� + 0(a5); (101)23



where H�� and G�� and are hermitian (see Problem 3). Thus one an use the�� plaquette as a disretized version of the orresponding omponent of the �eldstrength, F�� . If we take the trae, so as to get a gauge invariant quantity, we �ndRe TrP�� = N � g22 a4 Tr(F 2��) + 0(a6) ; (102)where N = 3 is the number of olors. We then haveZ d4xX�� 12TrF��F�� � X2 2g2 (N � ReTr2) : (103)The fator of 2 arises beause of the mismath between the number of plaquettesper site, 6, and the number of terms in the sum P��, 12.Standard notation in the �eld is to replae the oupling onstant with � = 2Ng2 ,so that Sg = ��X2 ReTr2N + irrelevant onstant : (104)This is alled the \Wilson (gauge) ation". Using the symbol � is unfortunate, asit leads to possible onfusion with 1=kT , but it is a notation that is well and truelyentrenhed.It is important to realize that there is nothing speial about using the smallestloop to de�ne the ation. Any loop, e.g. a 1 � 2 retangle, ontains a term in itsexpansion proportional to a linear ombination of omponents of (F��)2. By takingan appropriate ombination of loops we an obtain the ontinuum ation as a! 0.The advantage of a small loop is that orretions proportional to powers of thelattie spaing are typially smaller than with a larger loop.To omplete the de�nition of the theory I need to speify the measure. Eahlink variable is integrated with the Haar measure over the group manifold. Thismeasure satis�es (V and W are arbitrary group elements)Z dUF (U) = Z dUF (UV ) = Z dUF (WU) : (105)Given this, it is simple to see that the funtional integralZgauge = Z Ylinks dUn;�Yn (d�nd�yn) exp �X2 1NRe Tr2� Slat(�y; �; U)! (106)is gauge invariant. Note that the U matries live on a group manifold with �nitevolume, in ontrast to the in�nite range of A� in the ontinuum.What has been aomplished here is a non-perturbative, gauge invariant regu-larization of gauge theories oupled to salars. What has been sari�ed is full Eu-lidean invariane: rotations and translations. The hope is that, as one approahesthe ontinuum limit, these symmetries are restored.24



5.4 Problem 3: the expansion of the plaquette.Calulate the expansion of the plaquette P�� , and its trae, in powers of a.Step 1: The alulation is simpli�ed if one de�nes the ontinuum �eld byUn;� = exp h�iagA�(an+ 12a�)i ; et;and expands the ontinuum �elds above the enter of the plaquette. WritingP�� = exp(X) alulate X expliitly through 0(a2). What are the propertiesof the higher order terms?Step 2: Consider Re Tr P�� . Expand up to quarti terms in a. Show that 0(a3; a4)terms in X do not ontribute at this order.Step 3: Show that Tr(P��) has an expansion in even powers of a, so that the orretionsto the a4 terms from step 2 are of O(a6).6 Appliations of Lattie Gauge TheoriesBefore proeeding to study fermions, and thus to a lattie version of QCD inludingquarks, I will disuss what one an learn from pure SU(3) gauge theory. This is anon-trivial theory in its own right, sharing some properties in ommon with QCD.In partiular, its spetrum onsists of massive glueballs, in whih the gluons areon�ned by their self-interations. First, though, let me disuss one of the lassiresults of lattie gauge theory : : :6.1 Con�nementLong ago, Wilson introdued a test for on�nement in gauge theories. Imaginethat there is a very heavy quark, and a orresponding antiquark, separated by adistane R. Calulate the energy V (R) of the pair as a funtion of R. If there ison�nement, then V (R) grows monotonially with R for large R. The piture isthat there is (olor) eletri ux between the quark and antiquark, whih does notspread out like in QED, but is fored into a \string":q q>>>>� �& %� �' $
This piture implies linear growth V (R) / �R for large R, where � is the \stringtension". 25



The heaviness of the quark plays three roles. First, it means that the quark doesnot move|it has in�nite inertia|so it makes sense to onsider a stati potential.Seond, �qq pair reation is suppressed (by terms of O(1=m2)), so that one need notonsider loops of the heavy quark. Suh quark loops would, in fat, ause the stringto break, and thus remove the possibility for a lean test of on�nement. And,third, at leading order in 1=m, the oupling of quark to gluons does not involve itsspin. The quark ats as a stati salar olor soure. This means that one an justas well use salar quarks to extrat V (R).To alulate the potential onsider the orrelator (written in ontinuum lan-guage for the moment)
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The expetation value indiates the funtional integral over gauge and salar �elds,and the thik lines with arrows represent the line integrals L. Thus this is a gaugeinvariant orrelator. I have introdued two heavy salar �elds � and  , for reasonswhih will be lear shortly. And, �nally, I have used t instead of � to representEulidean time|as we will remain in Eulidean spae heneforth, the distintion isno longer neessary.This orrelator is just a more ompliated version of the two-point funtion on-sidered earlier, Eq. 8; instead of a salar �eld there is a quark-antiquark operator,joined by a line of gauge �elds. The analysis of the two-point funtion remains thesame. For large t, it is dominated by the lightest state reated from the vauum bythe quark-antiquark operator. The sum over ~x projets onto states at rest, althoughas we will see, this sum is unneessary as the only ~x = 0 ontributes when m!1.If the lightest state has energy E, then C(t) / exp(�Et). But E is nothing otherthan V (R). Thus, for large enough R, we expetC(t) t!1�! e�tV (R) R!1�! e�tR� = e�[ (area)��℄ ; (107)where the area is that of the retangle formed by the �elds when ~x = 0. This is(almost) the famous area law riterion for on�nement.26



The most straightforward way to proeed is to do the funtional integral overthe salar �elds in the ontinuum and then disretize the result. Let me sketh theargument. Imagine that the orrelator is in Minkowski spae. In the limit m!1,one an use the heavy quark e�etive theory disussed in the letures of Isgur.Quarks, whether salars or fermions, just maintain their veloities. Now the �eld�y reates quarks with all veloities, but what we are interested in, to obtain V (R),is those with ~v = 0. So what we really mean by � is �~v=0. Given that the quarksare stati, only the ~x = 0 term in the sum ontributes. The propagator for a statiquark at site ~R in a bakground gauge �eld is exp(�imt)P exp[ig R t0 dt0A0(~R; t0)℄,i.e. the line integral L(~x; t; ~x; 0) (along a straight path) up to a kinematial fatorwhih is independent of R and thus irrelevant to the determination of �. Theantiquark propagator is proportional to the line integral in the opposite diretionL(~0; 0;~0; t). Putting these together with the line integrals in the operators, oneobtains a retangular Wilson loop. Wik rotation yields a Eulidean Wilson loop.This is then simple to disretize in terms of the U matries.I have hosen to obtain this result by a more iruitous route, sine doing soallows me to introdues a useful tehnique, the hopping parameter expansion. Wedisretize the orrelator before integrating over the salars. Assuming that ~R is alattie vetor lying along the positive j-th diretion, we haveC(t) = X~n 1Z Z [dU ℄e�SG Z [d�℄[d�y℄[d ℄[d y℄e�S��S � (�y~n;tU(~n;t)j : : : �~n+~R;t)( y~R;0 : : : U y0;j�0) : (108)It is useful to resale the salar �elds�! m� ;  ! m : (109)for then the salar ation beomesS� = Pnp �ynKnp�p + �m4 (�0y�)2 (110)where Knp = Ænp + 1m2 X� [2Ænp � Un;�Æn+�;p � U yn;�Æn;p+�℄ : (111)We see that the interation term is suppressed by 1=m4; it an be ignored asm!1.It is useful to rewrite the kernel asm2Knp = Ænp(m2 + 8)(1� Hnpm2 + 8) ; (112)where Hnp is alled the \hopping matrix" as it hops �elds from one site to anotherHnp =X� Un;�Æn+�;p + U yn;�Æn;p+� : (113)27



Now that the salars are free, we an integrate them out usingZ [d�℄[d�y℄[d ℄[d y℄e�S��S  yn1�n2 n3�yn4 = G n3n1G�n4n2 Z [d�℄[d�y℄[d ℄[d y℄e�S��S (114)where G denotes the propagator. The reason for having two �elds � and  is nowapparent: there is only one Wik ontration. The propagator an be obtained bya \hopping expansion"G = K�1m2 = 1m2 + 8(1 + Hm2 + 8 + H2(m2 + 8)2 + : : : ) : (115)It turns out that similar expansions apply for quark propagators, as we will see be-low. Eah \hop" osts a fator of 1m2 (the \8" is irrelevant when m!1) and givesa matrix U or U y. The minimum ost is ahieved by hopping along the shortestpath. This piks out ~n = 0 in the sum in Eq. 108, and gives rise to a disretizedWilson loop
2 m

1
C(t) =

2t+2

R

t
Uup to orretions suppressed by powers of 1=m2. The subsript U indiates thatonly the funtional integral over gauge �elds remains.Reall that if there is on�nement, we expet C(t) / exp(�Rt�) for large t andR. The only way this an happen is if the expetation value of the R � t Wilsonloop falls o� in this way. This is Wilson's area law test for on�nement.In fat, one an show that lattie gauge theories do on�ne in the strong ouplinglimit, � ! 0 or equivalently g2 ! 1. One an alulate expetation values ofWilson loops analytially, in an expansion in powers of �. One �nds (problem 4)� = �ln( �2N2 ) + 0(�) : (116)This annot be used as a diret indiation of what happens to the ontinuum theory,beause, as I disuss below, the ontinuum limit ours for weak oupling, g2 !0. The strong oupling expansion has a �nite radius of onvergene, and presentattempts to extrapolate using triks suh as Pad�e approximants break down atouplings g2 � 1. Thus the only way to test for on�nement near the ontinuum28



Figure 2: The heavy quark potential, in lattie units. The horizontal sale is in unitsof lattie spaing, whih is a � 0:06 fm. The short distane points have been orretedfor lattie artifats using the lattie Coulomb propagator.limit is to alulate the expetation value of Wilson loops numerially. I give anexample of the results for the potential, from Ref. [8℄, in Fig. 2. The linear rise inV is lear, starting at about 0:5 fm.The behavior of non-abelian (and thus asymptotially free) gauge theories isquite di�erent from that of abelian theories, the simplest example of whih has thegauge group U(1). In strong oupling, the result of Eq. 116 applies also for U(1),with N = 1, Thus the theory on�nes. By ontrast, the ontinuum U(1) theoryinvolves non-interating photons, and does not on�ne. How are these two limitsreoniled? It turns out that, unlike for non-abelian theories, there is a (�rst order)phase transition at �nite g. Indeed, for a ertain hoie of the ation this an beproved to exist. At the transition, one goes from a on�ning to a non-on�ningphase. The issue with non-abelian groups is whether there is a similar transition,and the evidene strongly suggests that there is not.6.2 Problem 4|strong oupling expansionCalulate the string tension � in pure gauge SU(3) theory in the strong ouplinglimit (� ! 0), i.e., evaluatehW (R; T )i = R Qn;� dUn;� exp h �N P2 ReTr2iW (R; T )R Qn;� dUn;� exp h �N P2 ReTr2i (117)
29



where W (R; T ) is an R� T Wilson loop, and uselnhW (R; T )i R;T!1�! ��RT + 1R + 2T + 3 + : : : : (118)To do this you will need the integrals (valid for SU(N � 3))� R dU(1) = 1� R dU(Uij) = 0� R dU(UijUkl) = 0 = R dU(U yijU ykl)� R dU(UijU ykl) = 1N ÆjkÆilThe lattie result is for the dimensionless string tension�(g2) = a2�phys :This equation has orretions of higher order in a2, whih ome from disretizationerrors, and whih are not small at strong oupling. Nevertheless, for purposes ofillustration, we will ignore them. Then, as we vary g2 we an adjust a suh that�phys is onstant, whih is what we want in the ontinuum limit (see below). Usingthis method, alulate the �-funtion, i.e. dg2d ln a .6.3 Glueball massesThe spetrum of pure gauge theory has been studied extensively, for gauge groupsSU(2) and SU(3), using numerial methods. The low lying spetrum lose to theontinuum limit has been established with small errors, as shown in Fig. 3 (Ref.[9℄). One an only extrat ratios of dimensionful quantities; here, the masses aregiven (the left hand sale) in units of the square root of the string tension. TheJPC of the orresponding ontinuum states is noted on the plots.The spetrum is obtained from two point funtions suh asC(t) = 1Z Z Yn;�(dUn;�)e�SgaugeX~n TrPkl(t; ~n)TrPij(0); (119)where P is a plaquette, and 1 � i; j; k; l � 3. Proeeding as above yieldsC(t) =Xg 12mgV h0jP̂kljg;~k = 0ihg;~k = 0jP̂ijj0ie�mgjtj : (120)I do not have time to onstrut the transfer matrix for gauge theories. The methodis similar to that for salars, yielding operators Ûn;i (and orresponding momenta)whih at on the Hilbert spae of square integrable funtions on the group. Theoperators P̂ij are made up of operators Ûn;i just as in Eq. 100, All that matters here30



0

5

10

15

0++

2++

0-+

1+-

0+-

2-+

1-+

3++
2+-

2--

1++

1--

0--

3--

3-+

3+-

m

σ1/2

JPC

2000

4000

6000

MeV

Figure 3: Spetrum of pure gauge SU(3) theory at � = 6:4. Open symbols representupper limits.is that the symmetries of the P̂ 's are the same as those of the P 's. By ombiningplaquettes appropriately one an projet onto di�erent representations of the ubigroup. The simplest examples aresalar glueball � P12 + P21 + P13 + P31 + P23 + P32 ; (121)transforming in the identity, or A1, representation, andtensor glueball � Re(P12 � P13) ; (122)transforming as part of the two dimensional E irrep. For more examples see Ref.[7℄.Why have I alled these \salar" (i.e. JP = 0+) and \tensor" (2+) glueballoperators? The ubi group is a subgroup of the ontinuum rotation group, SO(3).The representations of SO(3) (J = 0; 1; 2; : : :) form, in general, reduible represen-tations of its ubi subgroup. For example, the J = 2 representation breaks up intoE + T2, where T2 is a three dimensional irrep of the ubi group.k Conversely, eahkThere is a parity symmetry on the lattie just as in the ontinuum, so all states ome with anadditional parity label. The salar and tensor glueball operators have positive lattie parity, andthus must orrespond to positive parity ontinuum glueballs.31



ubi group irrep reeives ontributions from an in�nite tower of SO(3) irreps: e.g.A1 � J = 0; 4; 6; : : :, E � J = 2; 4; 5; 6; : : :, and T2 � J = 2; 3; 4; 5; 6; : : :. Thus, ifwe measure a two point orrelator of the \salar" operator of Eq. 121, and extratthe mass of the lightest partile, we do not know a priori whether it orresponds inthe ontinuum to a partile with spin-0 or with spin-4, et. We must assume thatthe lightest partile has the lowest spin. We an test this assumption by omparingthe results in di�erent hannels. For example, if the lightest states in the E and T2irreps are di�erent polarizations of the same tensor glueball in the ontinuum limit,their masses must onverge as a! 0. This indeed seems to happen.Exerise: Show that in the strong oupling limit the salar glueball mass ismg = �4 ln( �2N2 ) : (123)Use this to extrat a �-funtion. How does this ompare to that obtained from thestring tension?6.4 Perturbation Theory and the Continuum LimitIt is important to understand the stuture of lattie perturbation theory (i.e. theexpansion about g2 = 0), for several reasons. First, it tells one how to take theontinuum limit. Seond, it is a ruial part of some phenomenologial applia-tions of lattie QCD, those in whih one alulates the matrix elements of externaloperators (e.g. those of the eletroweak e�etive Hamiltonian) between hadronistates. Third, it allows one to relate lattie and ontinuum oupling onstants, andin this way use non-perturbative alulations of the spetrum to predit the value of�S(MZ) measured in high energy perturbative proesses suh as jet ross setions.Reall the form of the pure gauge lattie ationSgauge = ��X2 ReTrP2N = � 2g2 X2 ReTrP2 : (124)We will expand in powers of g2 = 0. In this limit the plaquettes all tend to the unitmatrix, P ! I, so as to maximize the trae and thus minimize the ation. Thisis stritly true only in �nite volume|a point I return to below. But P ! I doesnot imply that Un;� = I, only that the U 's must be gauge equivalent to the identityon�guration. For example, if we start with Un;� = I everywhere, and do a loalgauge transformation, we will �nd Un;� = VnV �1n;n+�, whih an be as far as we wantfrom the identity. The plaquettes, whih are gauge invariant, of ourse remain atP = I. We would like to expand the U 's about I, but to do this we must �x thegauge, just as in the ontinuum. This is in ontrast to numerial simulations (andthe strong oupling expansion) whih do not require gauge-�xing.One hoie of gauge-�xing ondition is to maximizeXn;� ReTr(Un;�) : (125)32



This brings the U 's as lose to the identity as possible on average. It is the lattieLandau gauge. In an atual simulation at �nite g2, there are many maxima ofthis funtion|whih is nothing other than the Gribov ambiguity on the lattie.This makes it problemati to use this ondition in a non-perturbative simulation|a subjet reeiving onsiderable attention at present [10℄. As in the ontinuum,however, there is no Gribov ambiguity in perturbation theory.Assuming we have �xed the gauge appropriately, we an expand the links aboutthe identity Un;� = e�igA�(n) = 1� igA�(n)� 12g2A2�(n) + : : : ; (126)where the �rst equality de�nes A�. For notational simpliity, I have set a = 1 andput the �eld A� at the site n and not at n + �2 . Using this expansion, we �nd(essentially a repeat of the derivation of the lattie ation)Sgauge = Xn;� 12Tr[(�+�A�(n)��+� A�(n))(�+�A�(n)��+� A�(n))℄ + 0(A3)= SA2 + 0(A3); (127)where �+�A�(n) = A�(n+ �)� A�(n) (128)Using \summation by parts"Xn g(n)�+� h(n) = �Xn (��� g(n))h(n) ; (129)where ��� g(n) = g(n)� g(n� �) ; �+���� g(n) = ����+� g(n) ; (130)we �nd SA2 =Xn Tr[ (���� A�)(���A�)| {z }remove by gauge-�xing�A� like a 2z }| {����+� A�℄ : (131)To remove the unwanted term (whih, as in the ontinuum, makes the quadratiterm in the ation non-invertible), we follow the lattie version of the Fadeev-Popovproedure. We assume a gauge ondition of the formfn(U) = �n; 8n ; (132)where fn is a funtion only of the link matries adjaent to the site n, i.e. those U 'swhih are rotated by the gauge transformation matrix Vn. A useful quantity is theJaobian Jn(U) = jdet[�fn�Vn ℄(U)j : (133)We onsider the funtionalI(V; �) = Z Yn;� dUn;�e�Sgauge(U)Yn hÆ(fn(UVn)� �n)Jn(UVn)i℄; ; (134)33



where UV means U after gauge rotation by V. Despite appearanes, I(V; �) doesnot depend upon V . This is beause dU = dUV and Sgauge(UV ) = Sgauge(U), so wean hange variables to U 0 = UV and remove all referene to V . Furthermore, thefuntional is onstruted to satisfyZ Yn DVnI(V; �) = Z Yn;� dUn;�e�Sgauge = Z : (135)Sine we use a normalized group integration measure (R dU = 1), it follows thatZ = I(V; �n) for any V; �n/ Yn Z d�ne�Tr(�2n)I(1; �n)= Z Yn;� dUn;�e�Sgauge e�PnTr[fn(U)2℄| {z }gauge-�xing ghostz }| {Yn Jn(U) : (136)The produt of jaobians an be written in more familiar form asYn Jn(U) = det " �f�V # : (137)Now we return to the hoie of gauge ondition. It is onvenient to write it interms of A's. The simplest and most ommonly used hoie isfn =X� ���A�(n) ; (138)the disrete version of ��A�. As advertized above, this does involve only the linksemanating from the site n. The resulting gauge-�xing term anels the unwantedpart of SA2 SA2 + Sg:f: = �Xn�� Tr[A�����+�A�℄ (139)This is the lattie version of Feynman gauge.Exerise: Show that the lattie gluon propagator in Feynman gauge isÆ��Æab4P� sin2 (k�2 ) ; (140)where a; b = 1; 8 are olor indies. The denominator is the lattie version of k2.If instead we take fn = P����A�(n), and send  ! 1, we obtain lattieLandau gauge. If you think about the Fadeev-Popov proedure, you will see thatthis limit amounts to setting P����A�(n) = 0. This is nothing other than thedi�erential form of the ondition Eq. 125, expressed in terms of A's, where we keeponly the O(a) term. 34



To omplete the onstrution of lattie perturbation theory, we need the expan-sion of the measuredUn;� / Y�=1;8 dA�� � (1 + higher order terms, not needed here) : (141)Thus alulations proeed just as in the ontinuum, exept that (i) integrals areautomatially regularized in the ultraviolet beause (reinserting the a)Z d4k(2�)4 ! Z �a��a d4k(2�)4 ; (142)and (ii) the form of the propagators and verties are altered. In partiular, there isan in�nite sequene of verties oming from the expansion of Sgauge in powers of A
+ . . .

g g2 3g

and a similar in�nite tower of verties involving ghosts. We ould do all the familiaralulations of perturbative QCD using lattie regularized perturbation theory in-stead of, say, dimensional regularization. Power ounting for UV divergenes worksas usual [11℄. It would just be very messy.Let me onsider, shematially, the alulation of the �-funtion. To do thiswe alulate gR(p), the renormalized three-point funtion with a de�nite hoie ofexternal momenta having magnitude � p. At one-loop the graphs are
gR

3g 3g 3g
= + + + . . . +

g

where the last diagram (the \tadpole diagram") is spei� to the lattie. Thediagrams are �nite|ultra-violet divergenes are ut-o� by the lattie spaing, infra-red divergenes by the external momenta. The result has the formgR(p) = g n1 + g2[��0ln(ap) + CL + 0(a2p2ln(ap))℄ + 0(g4)o : (143)This should be reliable as long as �=a � p � �QCD. The upper limit must besatis�ed so that ut-o� e�ets (suh as that proportional to (ap)2 in Eq. 143) aresmall. The lower limit ensures that g(p) is small enough that perturbation theoryan be used. 35



The form of Eq. 143 is the same for all regulators| in partiular, the onstant�0 is the universal �rst oeÆient of the �-funtion�0 = 13(16�2)(11N � 2Nf) : (144)It governs the way in whih gR(p) dereases as p inreasesdgR(p)dlnp ���a;g = ��0g3[1 + 0(g2) + 0(a2)℄ : (145)What di�ers between regulators is the value of the onstant. In partiular, thetadpole diagram, whih is spei� to the lattie, ontributes only to CL and notto �0. This is beause the tadpole loop is quadratially and not logarithmiallydivergent: a2 R d4kk2 / �2, where the fator of a2 omes from the vertex.6.5 Continuum Limit of Pure Gauge TheoriesWe an use the perturbative result Eq. 143 to understand the \quantum" ontinuumlimit. We want to take this limit in suh a way that physial quantities, evaluatedat de�nite physial momenta, remain �xed. In perturbation theory, gR(p) is suh a\physial" quantity. To keep it �xed, we must vary the bare lattie oupling g withlattie spaing:dgR(p)dlna = 0 ) dgdlna = �0g3[1 + 0(g2) + 0(a2)℄) d( 1g2 )dlna = �2�0[1 + 0(g2) + 0(a2)℄) 1g2 = �2�0ln(a�lat)[1 + 0(g2) + 0(a2)℄ ; (146)where �lat is the integration onstant. If g2 is small enough that we an trust thisalulation, it tells us how a must be varied with g2: a�lat = exp(�1=2�0g2).Exerise: show that inluding the next order term in the �-funtiondgdlna = �0g3 + �1g5 +O(g7) ; (147)leads to a�lat = exp "� 12�0g2# (g2�0)� �12�20 [1 + 0(g2)℄ : (148)(The inlusion of ���1=2�200 on the right hand side is a onvention.) Here I amassuming that O(a2) terms an be ignored.There are a number of important features of this result.36



� The integration onstant �lat is not determined|i.e. we do not know a prioriwhat value of a is assoiated with, say, g2 = 1. This must be determined byomparison with experiment. It turns out that (in the quenhed approxima-tion disussed in Makenzie's letures) a(g2 = 1) � 0:1 fm.� Idential equations de�ne a �-parameter in any regularization sheme, e.g.there is a �MOM, a �MS, et. These all serve the same purpose, that of spei-fying what the oupling onstant is in the given sheme at a partiular sale.We an use perturbation theory to relate the �-parameters (i.e. the ouplingonstants) in di�erent shemes. See below.� Numerial simulations are restrited to a range of lattie spaings whih isroughly 0:2 fm > a > 0:05 fm at present: O(a2) errors beome too large abovethe upper limit, while the lattie volume (Nsa, where Ns is the number ofpoints aross the lattie) beomes too small to ontain hadrons below thelower limit. The rapid derease of a as g ! 0 means that this orresponds toa very small range of g2. In the quenhed approximation, it turns out to be5:7 < � < 6:5We expet the pure gauge theory to have a spetrum of glueballs, with \physial"masses mg;n. (Physial is in quotes as the real world is not a pure gauge theory,though we an imagine that it might have been.) We alulate these masses inlattie units (numerially, say), at a number of values of g2. To have a ontinuumlimit they should behave asmlat;n = amg;n = mg;n�lat exp "� 12�0g2# (g2�0)� �12�20 [1 + 0(g2) +O(a2)℄ ; (149)where I have reinserted the expeted O(a2) orretions. This equation is quiteremarkable. The masses mlat;n are non-perturbative|the RHS of the equation hasan essential zero at g2 = 0|but, using perturbation theory, we an predit how themasses derease as g ! 0. Stritly speaking, what we are assuming here is thatthere is a ontinuum limit in whih both perturbative quantities (suh as gR(p)) andnon-perturbative quantities simultaneously have well de�ned limits. Another wayof saying this is that all dimensionful quantities must be proportional to �lat, asthere are no other sales in the theory. Aside from orretions whih fall as O(a2),the output from simulations is a set of pure numbers nmg;n�lat = glue;n p��lat = � : (150)I should mention that there is a small segment of the lattie ommunity whihdoes not aept the above[12℄. It is logially possible that there is no on�nementand that � = glue = 0, et. How would this happen? We know that there ison�nement for strong oupling, and numerial simulations extend this result up to� � 6:5. Furthermore, in the region � � 6� 6:5 the expeted dependene of masses37



on g2 (Eq. 149) has been veri�ed (as long as one implements perturbation theoryorretly[13℄). Nevertheless, it remains possible that there is a phase transition atweaker oupling, beyond whih the n = 0.There is a potential onfusion that I wish to dispel. If we alulate � and mg;n inperturbation theory, we �nd that they vanish, to all orders in g2. This is onsistentwith Eq. 149, as the result is non-perturbative. But how does perturbation theoryfail to get the orret result? The point is that perturbation theory assumes the linkmatries Un;� an all be rotated to lie lose to the identity. This is false on sales of� = 1m / exp(1=2�0g2) or greater. One we get out to these length sales, importantnon-perturbative utuations are ourring, those that build up the hadrons. Thisis not important for gR(p), however, as long as p� m, for then gR(p) is only sensitiveto distanes muh shorter than 1=m.6.6 Comparison to ritial phenomenaThere is a large overlap between the analyses of ritial phenomena and the on-tinuum limit of lattie theories. As a ritial temperature T is approahed, theorrelation length, de�ned by the two point funtion of some operator,hO(x)O(0)i � e�x� ; (151)diverges as � = jT �Tj��. The orrelation-length exponent � is one of a number ofritial exponents. If there are no other sales (\relevant parameters") all orrelationlengths are proportional to �. The lattie granularity beomes irrelevant as � !1,orresponding to a ontinuum limit.In this way of looking at the ontinuum limit, we hold the lattie spaing �xed,and adjust the oupling T suh that the length sale of physial quantities diverges.This is not the way we are used to thinking about the ontinuum limit of lattietheories. Instead we keep physial sizes �xed, and imagine reduing the lattiespaing. The viewpoints are, however, entirely equivalent.The detailed form of the ritial behavior does di�er for a gauge theory. First,there is the trivial hange of using replaing T with g2. Seond, we know thatg = 0. But most importantly, the power law divergene is replaed by� = 1=m / exp[1=2�0g2℄ ; (152)i.e. an essential singularity.6.7 Relating lattie and ontinuum oupling onstantsAn important appliation of perturbation theory is to relate oupling onstants indi�erent shemes. I will disuss how this works for an SU(3) pure gauge theory|the generalization to QCD involves simply hanging some numerial fators. I ampoahing somewhat on the subjet matter of Paul Makenzie's letures, but I an'tresist as the result is one of the present triumphs of lattie QCD.38



Physial quantities must be independent of the regularization used to de�ne thetheory. Thus, if we alulate the renormalized oupling gR(p) in the MS sheme,gR(p) = gMS(1 + g2MS(�)[�0ln(�p ) + CMS℄ + 0(g4)) ; (153)and equate it with the lattie result, Eq. 143, we �nd the relation between theouplings in the two shemesg = gMS(�)8><>:1 + g2[(CMS � CL)| {z }�C=�0:234 +�0ln(�a)℄ + 0(g4) +O(a2)9>=>; : (154)At this order, one an use equally well use g2 or g2MS in the orretion term.This orretion is quite large|if we take g = 1, a typial value in present sim-ulations, orresponding to 1=a � 2GeV, the lattie value of g2 is 47% smaller thangMS(� = 1=a)2. The size of this orretion is well understood [13℄|it is mainly dueto the tadpole diagram. This large orretion means that only one of the ouplingonstants an be a good expansion parameter for quantities involving momentumows of p � 2GeV. Experiene with perturbative QCD indiates that expansionsin �MS = g2MS=4� work well for jet ross setions and other suh quantities. Thus�lat(a = 1=p) = g2(a = 1=p)=4� will be a poor expansion parameter for suh pro-esses, and is likely to be poor expansion parameter in general. This is true inpratie| 1- and 2-loop perturbative results for small Wilson loops, expressed interms of �lat , disagree signi�antly with results obtained from numerial simula-tions. Lepage and Makenzie have shown, however, that the perturbative resultswork well if reexpressed in terms of �MS[13℄. See Makenzie's letures for moredetails.Using an improved form of Eq. 154 suggested by Ref. [13℄, one an onvertreliably from �lat to �MS. If one has established the lattie spaing a by omparinga physial quantity suh as f� to its lattie value, a = f lat� =fphys� , then the outomeis a predition for �MS at a known physial sale. This an then be run to any othersale using the renormalization group. The latest result is [14℄�(5)MS(mZ) = 0:115� 0:002 ; (155)where the error is laimed to aount for all systemati and statistial e�ets. Thisis a very impressive result, and is onsistent with the latest world average obtaindefrom omparisons of high-energy experiments with perturbative expansions[15℄ �(5)MS(mZ) =0:117� 0:005. This is a nie demonstration that QCD works simultaneously in theperturbative and non-perturbative regimes.7 Fermions on the LattieFermions are notoriously diÆult to disretize in a satisfatory way, beause ofthe so-alled \doubling" problem. I devote the last leture to an explanation of39



this problem, and a brief disussion of possible resolutions. I mainly fous onfree fermions, beause most aspets of the problem an be understood withoutoupling them to gauge �elds. I work entirely in Eulidean spae|it is worth noting,however, that the problem annot be overome by working in the Hamiltonianformulation where one disretizes spae but not time.Let me begin with a reminder of the Eulidean-spae fermion ation. In Minkowski-spae the ation isSM = Zx  (i�= �mphys) ; where  =  y0M ; f�M ; �Mg = 2g�� (156)SM is hermitian beause the Dira matries satisfy � yM 0 yM = 0M�M . Now go toEulidean spae by the Wik rotation x0 ! �ix4, so thatSM = Zx d4xM (i0M ��x0 + iiM ��xi �mphys) �!SE = � Z d4xE (4E ��x4 + iE ��xi +mphys) (157)where the Eulidean Dira matries are4E = 0M ; iE = �iiM ; f�E; �Eg = 2Æ�� ; �E = (�E)y : (158)Thus the Eulidean ation is SE = � R  (�= E +mphys) . From now on I will dropthe subsript E.In the funtional integral representation for the Eulidean partition funtion,fermions are Grassman variables, and we must treat  and  as independent �elds.The rules of Grassman integration then yieldZ = Z [d ℄[d ℄ exp[Z  (�= +mphys) ℄ = det(�= +mphys) ; (159)G(x; y) = �Z�1 Z [d ℄[d ℄ exp[Z  (�= +mphys) ℄ (x) (y) = [ 1�= +mphys ℄xy : (160)The appearane of the determinant in the numerator, rather than the denominatoras for salar �elds, orresponds to the minus sign for fermion loops. For a gen-eral Greens funtion the antiommuting nature of Grassman variables ensures theorret relative sign between di�erent Wik ontrations.Now to the issue of disretization. We plae fermions and antifermions on sitesa3=2  (x)!  n ; a3=2  (x)!  n ; (161)Possible options for the derivative area5=2�� (x)! 8><>: �+� n =  n+� �  n (A) ;��� n =  n �  n�� (B) ;�� n = 12(�+ +��) n = 12( n+� �  n��) (C) : (162)40



When disretizing the salar kineti term (j���j2), (A) and (B) are equivalent, andpreferable to (C), beause they are more loal. For fermions, note that the Eulidean�= is anti-hermitean. This is a property we wish to preserve, as it traes bak tothe Hermitiity of the Hamiltonian. This eliminates options (A) and (B), sine��(�+� )y = �(��� ) : (163)If we insist on nearest neighbors, we are fored to use (C), whih leads toZ  (�= +mphys) �!Xn;� 12 n�( n+� �  n��) +Xn m n n = �SN ; (164)where the lattie mass is m = mphysa. This straightforward disretization gives riseto what are alled \naive" lattie fermions.To study naive fermions we look at the two-point funtion, G = 1=(�= +m). Asin the ontinuum, �= is diagonal in momentum spae. Introduing n = Z ��� d4k(2�)4 eikn  (k) and  n = Z ��� d4k(2�)4 e�ikn  (k) (165)we �nd (Rk � R ��� d4k=(2�)4)� SN = Zk  (k)(iX� s�� +m) (k) : (166)Note that the disrete form of k� is s� = sin k�, rather than the 2 sin k�2 we foundwith salars. Thus the propagator in momentum spae isG(k) = 1is= +m = �is= +ms2 +m2 : (167)If we take the ontinuum limit with �xed physial mass and momenta, then k =kphysa! 0 and m = mphysa! 0. We an expand the sine, s� = ak�;phys(1 +O(a2)),yielding aG(k) � �i�k�;phys +mphysk2phys +m2phys : (168)This has a pole at k2phys = �m2phys , representing the fermion that we expeted to�nd.Now we ome to doubling. The lattie momentum funtion s� vanishes fork� = � as well as k� = 0. In the neighborhood of the momentum (�; 0; 0; 0), if wede�ne new variables by k01 = � � k1, k0i = ki, i = 2� 4, thenG(k0) � �iP� k0�0� +mk02 +m2 : (169)��One an see that (A) and (B) are unphysial by noting that they orrespond to propagationonly forwards or bakwards, respetively, but not in both diretions. They annot yield a Lorentzinvariant Minkowski theory. 41



To bring the propagator into the standard ontinuum form, I have introdued newgamma-matries, 01 = �1, 0i = i, i = 2� 4, unitarily equivalent to the standardset 0� = (�5)�(�5)y (no sum on �): (170)Equation 169 shows that there is a seond pole, at k02 = �m2, whih also representsa ontinuum fermion. This is our �rst \doubler".yyThe saga ontinues in an obvious way: s2 vanishes if eah of the four omponentsof k� equals 0 or �. There is a pole near eah of these 16 possible positions. Oursingle lattie fermion turns out to represent 16 degenerate states.To further illuminate the doublers let us Fourier transform the propagator bakto Eulidean time G(~k; n4) = Z 3�2��2 dk42� eik4n4�is= +ms2 +m2 (171)To evaluate the integral we �rst loate the poles. These our when �s24 = ~s �~s+m2.Thus sin(k4) is pure imaginary, implyingk4 = n� + iE ; n = integer ; E = � sinh�1[p~s � ~s+m2℄ : (172)The relevant poles are thus as shown here

 

 
��2 3�2>_ ^

We an lose the ontour as shown beause of the periodiity of the integrand. Ifn4 > 0 we pik up the two upper poles, while if n4 < 0 we pik up the lower poles.A little work leads to the resultG(~k; n4) = m� sinh [E4℄� i~ � ~ssinh[2E℄ e�Ejn4j+ m� sinh [E0℄� i~ � ~ssinh[2E℄ (�1)n4e�Ejn4j ; (173)where the + (�) sign orresponds to n4 > 0 (< 0). To interpret this result, reallthe expression for the two point funtion in terms of the transfer matrix, Eq. 67.yyNote that due to the periodiity of the lattie one an shift integration in momentum spae fromR ��� to R 3�=2��=2, so there is no problem of k0 lying near the boundary.42



One an derive an analogous result for fermionsG(~k; n4) = h0j ^ (~k)T n4 ̂0j0i /Xp jh0j ^ (~k)jpij2�n4p ; (174)where I have hosen n4 > 0, and �p are the eigenvalues of the transfer matrix. Thetwo terms in Eq. 173 thus orrespond to two states. This is the doubling in thetime diretion. Note, however, that �p = � exp(�E), so the transfer matrix is notpositive, and we annot de�ne a Hamiltonian by Ĥa = � lnT . We an overomethis problem by noting that the transfer matrix for two steps in the time diretionis positive, so that a sensible de�nition of a hermitian Hamiltonian isT 2 = e�2Ĥa : (175)In this ase our two states have the same energy E.The remaining otupling in the spae diretions is hidden in the expression forE. E has a minimum (sinh(E)min = m), when ~s = 0, whih ours for eight valuesof ~k in the integration range: ~k = (0; 0; 0), (�; 0; 0), et. Eah of these orrespondsto a fermion at rest, whose mass, in the ontinuum limit is m=a = mphys .7.1 Generality of the doubling problemIt is not, in fat, the repliation of fermions whih is the hard part of the problem,but rather the way in whih the hiralities of the states work out. If m = 0, thenwe an introdue a hiral projetion into the ation� ! L� = �(1 + 5)=2 ; (176)whih in the ontinuum restrits one to left-handed (LH) �elds. On the lattie, thepole near k = 0 is then LH. The seond pole I unovered, however, represents a RH�eld. This is plausible, beause05 = 01020304 = �1234 = �5 ) (1 + 5) = (1� 05) : (177)To atually show this one must onsider the oupling to external urrents.Extending this analysis, it is easy to see that the hirality ips sign for eah ofthe omponents of k that is near �. Thus one ends up with eight LH and eightRH fermions. This means that, when one introdues gauge �elds (to be disussedbelow), one always obtains a \vetor" representation of fermions, i.e. one in whihLH and RH �elds lie in the same representation of the gauge group.How general is this result? Karsten and Smit have shown that LH and RHfermions always ome in pairs[16℄, provided� �= is disretized into an antihermitean operator, so that its eigenvalues areimaginary; 43
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Figure 4: Possible forms of the funtion F(k).� the interations are loal, whih implies that the propagator is ontinuous inmomentum spae;� the spae-time volume is in�nite, whih implies that momentum spae is on-tinuous;� the ation is translationally invariant, from whih follows that momentumspae is periodi (a torus with period 2� in eah diretion).This result is easy to understand in 1 dimension. The propagator is of the formG�1 = i1F (k) (178)where k = k1 is the single momentum variable, and F is real, ontinuous funtion ofk with period 2�. We are interested in the poles of G, and thus the zeroes of F (k).Possible forms for F are shown in Fig. 4. It is lear that, if there are only �rst orderzeroes, there must be an even number in the interval [��=2; 3�=2℄. Furthermore,they ome in pairs with opposite slopes. Following the above disussion, the slopeorresponds to the hirality, so one always has an equal number of LH and RHfermions. The only alternative is to have a higher order zero, e.g. a zero with�F�k = 0. This, however, gives a double pole in G, whih does not orrespond to aphysial partile.Returning to four dimensions, it is worth noting that one an truely redue theissue to a doubling problem. Wilzek has given an example with only two states,at the prie of using an ation whih breaks Eulidean rotation invariane [17℄.44



7.2 Consequenes of the doubling problemWhat are the onsequenes of Karsten and Smit's result?� One annot disretize a hiral gauge theory, i.e. one in whih the LH and RHfermions lie in di�erent representations of the gauge group. These theoriesare well de�ned perturbatively, beause one hooses the representations sothat triangle anomalies anel. But no satisfatory non-perturbative regulatorexists, and the Karsten-Smit result rules out a simple lattie implementation.This means that one annot disretize the eletroweak setor of the standardmodel, whih is hiral. If one tried, eah (eL; �L) doublet, for example, wouldome with an (eR; �R) partner, whih is not part of the standard model.� Lattie regularization automatially takes are of the fat that theories withanomalous hiral representations of fermions (e.g. SU(N) with a single left-handed fermion) annot be de�ned.� One annot disretize QCD with (nf ) massless quarks, in the following sense.Suh a theory should have an SU(nf )L � SU(nf )R hiral symmetry, underwhih the LH and RH quarks rotate with independent phases. But the lattiefermions are all begotten of the same lattie �eld, and so annot be rotatedindependently.In summary, then, the lattie theory laks hiral symmetries.Can we evade the general result? Can we simulate hiral theories? Can we sim-ulate QCD with massless quarks? Muh e�ort has been devoted to these questions.Notable among the attempts are:� Avoid the Karsten-Smit result using a random lattie [18℄. This breaks trans-lation invariane, and thus the neessity of periodiity of the propagator. Thisidea is very diÆult to analyze; even free fermions must be studied numeri-ally. Little progress has been made|see Ref. [19℄ for a reent study.� Use a non-loal derivative, whih allows the Fourier transform to be dison-tinuous, so, for example, one need have only one zero in F (k). An exampleis the \SLAC derivative" [20℄. This fails when one introdues interationswith gauge �elds|the doublers reappear beause of the non-loality of theinterations[21℄.� One an expliitly break hiral symmetry right from the start, and aim toreover it only in the ontinuum limit. This is, after all, what one does withthe rotations and translations. For fermions in vetor representations, thisis the approah originally taken by Wilson, whih I disuss in more detailbelow. For hiral theories, this is the approah advoated by the Rome group,and involves breaking the gauge symmetry at �nite lattie spaing [22℄. Theapproah has been shown to work in low-order perturbation theory. What45



one is really interested in, however, is a non-perturbative simulation, and thetheory is too ompliated to simulate at present.� The most exoti and interesting proposals are the desendants of Kaplan's\domain-wall fermions"[24℄, whih all involve an in�nite number of extra reg-ulator �elds. For a summary see Ref. [25℄; the methods appear to work ifthere truely is an in�nite number of �elds. As for pratial methods (nees-sarily restrited to �nite numbers of �elds), things are not yet lear. It doesappear that one an simulate QCD with massless quarks, maintaining a gen-uine hiral symmetry. The question of whether the method is pratial forhiral theories is being hotly debated.It is worth noting that, even if a viable method for disretizing hiral fermions on�nite latties is developed, simulations will be hampered by the fat that the ationis omplex for suh theories. This means that the fator exp(�S) in the funtionalintergral annot be interpreted as a probability.What does one do if one wants to simulate QCD? In pratie, one either gives upon hiral symmetry entirely, and uses Wilson fermions, whih I disuss in the nextsubsetion, or one uses \staggered" fermions. One an show that naive fermionsbrake up into four sets of four Dira fermions, of whih three an be ignored. Theresult is staggered fermions, whih orrespond to four degenerate fermions in theontinuum limit. Suh a theory, if m = 0, would have an SU(4)L � SU(4)R hiralsymmetry. At �nite lattie spaing, this is broken down to a avor non-singletaxial U(1) symmetry. This is not muh, but it is enough to guarantee that m isonly multipliatively, and not additively, renormalized. It is also important whenalulating matrix elements whih are onstrained by hiral symmetry, suh asK ! �� amplitudes. Indeed, staggered fermions are the method of hoie to studysuh quantities. For futher details of staggered fermions, see Ukawa's letures, orRef. [26℄.7.3 Wilson fermionsI end these letures with a desription of the fermions used in most present simula-tions of QCD.The simple way to understand why doublers our is to note that the lattiederivative �� n =  n+� �  n�� is small both for funtions that are smooth, andfor those that alternate in sign but are otherwise smooth. By ontrast the bosoniderivative �+���� n =  n+� � 2 n +  n�� (179)is small only for smooth funtions. Thus we try adding the \Wilson term"SW =Xn� r2 n�+���� n (180)46



to the ation, yieldingSF = �Xn  n(m +X� ���) n + SW : (181)Exerise: show that the momentum spae propagator isG(k) = 1is= +m + r2 k̂2 (182)= �is= + (m� r2 k̂2)s2 + (m+ r2 k̂2)2 ; (183)where s� = sin(k�), and k̂ = 2 sin(k�=2).If k� = �, then s� = 0, whih is the ause of doubling, but k̂� = 2. Thus thewould-be doubler poles piks up an e�etive mass me� = m + 2rn, where n is thenumber of omponents of k� lose to �. If one keeps r �nite in the ontinuum limit,when m = mphysa ! 0, the e�etive lattie masses of the doublers stay �nite, andso the e�etive physial masses beome in�nite. Thus only the single Dira fermionorresponding to the pole near ~k = 0 survives in the ontinuum limit.Exerise: on�rm this disussion by looking at the propagator as a funtion ofEulidean time. Take r = 1, whih simpli�es the alulation, and is the value usedin most numerial simulations. One reason for this is that, for r = 1, one an derivea hermitean positive transfer matrix [27℄.The drawbak with Wilson fermions is that hiral symmetry is expliitly brokenby the Wilson term, even when m = 0. This symmetry plaes important onstraintson matrix elements involving pions, kaons and �'s, onstraints whih are thereforeabsent on the lattie. This makes it diÆult to alulate some of these matrixelements, and for these one an do better with staggered fermions. The symmetryis regained in the ontinuum limit, beause SW vanishes: SW � a R  2 .It is straightforward to make the ation gauge invariant by inserting appropriatelink matries in the derivatives n n+� �!  nUn;� n+� ;  n n�� �!  nU yn��;� n�� : (184)For r = 1, the total gauged fermion ation is thus (in d dimensions)SF = �Xn  n n(m+d) +Xn [ n(1� �2 )Un;� n+� +  n(1 + �2 )U yn��;� n��℄= �Xn  0n 0n + �Xn [ 0(1� �)Un;� 0n+� +  0n(1 + 0�)U yn��;� 0n��℄ (185)where I have introdued a resaled �eld and a hopping parameter � 0n = q(m + d) n ; � = 12(m+ d) : (186)47
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