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1 Introduction

These lectures are intended to provide a basic introduction to the lattice methods
used today. They assume a working knowledge of field theory, and in particular
of gauge theories and functional integrals, but no previous knowledge of the lattice
approach. My aim is to provide the background necessary for understanding the
applications of lattice methods, and in particular the subjects discussed in sub-
sequent lectures at this school: phenomenologically useful predictions from QCD
(Paul Mackenzie) and finite temperature physics (Akira Ukawa). I focus on the
theoretical formulation, and do not discuss numerical methods.

In five lectures one can only cover a limited number of topics. Fortunately,
there are now two excellent books available on Lattice Field Theory, by Rothe [1],
and by Montvay and Miinster [2]. These books take over where Creutz’s seminal
monograph left off a decade ago [3].

Homework problems were provided with each lecture, and these have either been
integrated into the text, or placed at the end of the corresponding section. Some
problems work out details not covered in the lectures, while others illustrate new
concepts.

2 Euclidean Field Theory

I will focus mostly on the functional integral definition of field theory, since this
is the method used in most numerical simulations. Let me begin by reviewing
some basic results. All correlation functions can be determined from the partition
function (with sources). In Minkowski space this is

Iy = /[dqﬁ] exp{iSy(¢) + source terms} , (1)

where ¢ denotes a generic field. The Minkowski action S, is real and thus the
integrand is complex. The integral is therefore extremely difficult to evaluate nu-
merically because of cancelations between different regions of configuration space.
The practical alternative is to work in Euclidean space where

Zp = /[dqﬁ] exp{—Sg(¢g) + source terms} . (2)

In most theories the Euclidean action is real, and also bounded from below, in which
case the exponential can be interpreted as a probability distribution on configuration
space. After we discretize the theory, we can compute the integral using Monte-
Carlo methods. QCD (without the CP-violating #—term) is an example of a theory
which can be simulated in this way. Examples of theories which cannot be so
simulated, because they have complex actions, are QCD at finite chemical potential



(i.e. finite baryon number density) and theories with a chiral representation of
fermions (e.g. the electroweak sector of the standard model).*
What we actually calculate in Euclidean space are correlation functions

O 28, .., 2P :Zgl/[d¢E]e*SE¢E(ﬁ,fl)qu(TQ,fg)...¢E(Tn,fn), (3)

where 7 denotes Euclidean “time”.To obtain physical quantities we have, in general,
to analytically continue the correlation functions back to Minkowski space, 7 — it.
It is worthwhile recalling how this is done. The functional integral is constructed
to give T-ordered expectation values

Cl 2l 2Py = (0|T[¢(r, 71) (1o, T2) . . . (T, T)]|0) (4)

where QZ;(T, ¥) is the Heisenberg operator corresponding to ¢. Assuming for simplicity
that 77 > 7 > ...7,, we can use Euclidean time translation (and H|0) = 0) to
rewrite this expression as

C(aP, 2P, . al) = (0|¢(&)e T ) (3y)e =) | e~ Hlm1=m) (7 )]|0). (5)

Now the factors of 7 are explicit, we can perform an inverse Wick-rotation, 7 — it.
After some rewriting, this results in the Minkowski time-ordered product

(OIT[(tr, 71)b(ta, o) . . . b(tn, 7)]]0) . (6)

These time-ordered products are sufficient, via LSZ reduction, to determine all
properties of the theory i.e. the spectrum and scattering amplitudes. If we insert
operators other than ¢ in the correlation functions we can also obtain their matrix
elements.

This is fine in principle, but in practice we have numerical results for correlation
functions on a discrete set of points (either in position space or momentum space),
and analytic continuation is, at best, highly problematic. Thus a crucial practical
issue is what can be learned directly from Euclidean correlation functions. As I
demonstrate shortly, no analytic continuation is needed to extract the low lying
spectrum of hadrons or the matrix elements of local operators involving single par-
ticles. Nearly all the phenomenologically useful results from lattice studies to date
involve such quantities.

First, though, I want to mention a more formal point (see Refs. [2, 4] for further
discussion). It is quite possible for a Euclidean-space functional integral to yield
well behaved correlation functions, and yet for these functions not to be the ana-
lytic continuation of those of a physical Minkowski theory. By a physical theory 1
mean one having a Hilbert space with positive norm, whose spectrum is bounded
from below, and on which Poincaré invariance is implemented by unitary operators.

*In fact, the “fermion doubling problem”, to be discussed below, makes it difficult to even for-
mulate chiral theories on the lattice.



In particular there is an hermitian Hamiltonian which generates time translations.
Since in the lattice enterprise we begin in Kuclidean space, it is important to know
under what conditions the corresponding Minkowski theory is physical. This ques-
tion was studied long ago by Osterwalder and Schrader, who found the following [5].
If the action Sg is Euclidean invariant, and expectation values such as C(z¥, ... z)
in Eq. 3 satisfy a property called “reflection positivity”, plus some more techni-
cal conditions, then there exists a physical Minkowski theory such that the steps
leading from Eq. 3 to Eq. 6 are valid. An important example of a theory which
does not satisfy these conditions is “quenched” QCD i.e. QCD without internal
fermion loops. This is an approximation used in many simulations at present.

I do not have time to discuss reflection positivity here see, for example, Ref. [2]
for a clear exposition. What I will describe (in Chapter 4) is a standard technique
for actually constructing the Hilbert space and Hamiltonian operator, using the
“transfer matrix”. In this way one can see explicitly the passage from Eq. 3 to Eq.
6, in the context of a discretized theory.

2.1 The spectrum

Let me now show how the spectrum can be obtained directly from two-point Eu-
clidean correlation functions, without the need for analytic continuation. Translat-
ing one of the points to the origin, we begin with

Clor) = 27" [ldsle (7, M)(0) (7)
= {0IT((xr)$(0)]]0) (8)

Assuming 7 > 0, and using the full Euclidean translation operator
o7, 7) = 7 TG 0)e 1T (9)

where ]A?is the momentum operator, plus the fact that the vacuum has neither energy
nor momentum, we find

Cag) = (0]d(0)e ™7 74(0)]0) . (10)
Inserting a complete set of states, we end up with the spectral decomposition
Clox) = Y 0/B(O0)m) PE,V) e et . (11)
Here I am assuming a finite volume V, and using relativistically normalized states
Voo 3¢3/ =
<]5‘|q_‘> = QEV(SPZQZ(Spry(SPZQZ B 2E(27r) 6 (p o CT) ) (]‘2)

where E? = |p]2 + m?2.



Exercise: Show, assuming parity conservation, that for any 7
Clox) = Y 10B(0)]n) (2B, V) e il (13)

From Eq. 13 we see that we can determine the spectrum directly from the
exponential fall-off of the Euclidean correlator. To make things clearer let us project
onto p'= 10

/ &1 C(ay) = C(r,f=0) = 2;,,;_0 (0[|n) 2 (2E,) e Pl (14)

If the lightest state produced from the vacuum by ¢ (call it |1)) is a single particle,
then, for large |7|

C(r,7=0) = [(0|¢[1)|*(2m) te ™=l 4+ exponentially suppressed terms.  (15)

Thus one can just read off the mass, along with the associated matrix element to
create the state from the vacuum.

Clearly by judiciously choosing the operators in the two point function we can
project onto states having different spin-parities and different momenta. In each
channel it is simple to extract the energy of the lightest state, but progressively
harder to pick out higher energy states, because their contributions are exponen-
tially suppressed. Much effort in lattice simulations goes into fiddling with the
operators so as to increase the overlap with the desired states.

Although one does not need to analytically continue, it is nevertheless true that
picking out the exponential is equivalent to finding the pole in the propagator. For
example, consider the Fourier transform of the contribution of the lightest state to
the = 0 propagator

o 1 1
C(E) = d /lETem‘T‘ _
() = Jdr e S = S =iB) " 2mm +iB)
1
- 1
m? + E? (16)

Analytically continuing to Minkowski energies, £ — —iFEj, we find the usual pole

in the propagator
1

m? — E§
One can also extract physical information directly from Euclidean three-point
functions. Consider the correlator

C(Ey) = (17)

03(7'1,7'2,7'3) = Zil /[dqﬁ]eiSEOl(71)02(72)03(73)
= (0|0 (n)e )0y (ry)e 127 Oy (1) |0) (18)



where O;(7;) is a function of the fields at time 7;, and OZ(TZ) is the corresponding
Heisenberg operator. I have assumed 71 > 79 > 73 in the second line. For 7 — 7y
and 7o — 73 large, the correlator behaves as

03 X <0‘Ol|1> eXp(—E1|7'1 — 7—2‘)<1‘OAQ|3> eXp(—E3|TQ — Tg‘)<3‘é‘;|0> s (19)

where |1) and |3) are, respectively, the lightest states created from the vacuum by
the operators O; and Oz. These operators might include a projection onto non-zero
spatial momenta, which is why I have written the coefficients in the exponents as
energies rather than masses. The creation and destruction matrix elements, together
with the energies, can be obtained from Euclidean two-point functions. Thus one
can extract (1/0,|3) from C; without analytic continuation.

Although it provides a way of thinking about four- and higher point functions,
Eq. 5 is not very useful in practice. For example, one cannot use it to extract
scattering amplitudes directly from four-point functions. Such amplitudes require
analytic continuation: they are real in Euclidean space, yet complex, in general,
in Minkowski space.! The result does, however, show the close relationship to a
Hamiltonian approach, in which one calculates matrix elements like (0|07 H"O3|0).

tThere is, however, an elegant indirect method due to Liischer which uses the volume dependence
of two particle energies[6].



3 Scalar Fields

Having understood what we can learn directly Euclidean field theories, I now turn
to business of carefully defining them. I begin with the simplest example, the real
scalar field. To define a field theory requires regularization. Replacing continuous
space-time with a discrete lattice is one option; it corresponds to a (complicated)
cut-off in momentum space. The messiness of the cut-off is compensated by the
fact that one can perform the Euclidean functional integral for any values of the
parameters in the action. In particular, none of the coupling constants need be
assumed small, so that we can do non-perturbative calculations.

Although it is not essential, most calculations use lattices with equal spacing (a)
in all four directions

time

Asymmetric lattices with different spacing in space and time can be useful in finite
temperature calculations, as discussed in Ukawa’s lectures.
The continuum Euclidean action for a real scalar field is

S = [ d'l50,0 0,0+ V (6)] (20)
where
V(g) = sm2,d° + A" + ... (21)

The subscript “ph” refers to the physical mass, to be distinguished from the lattice
mass which will be introduced shortly. This action may be discretized in many
possible ways. In the “continuum limit”, a — 0, the choice should be irrelevant,
and we pick the simplest method. Continuous fields are replaced by dimensionless
fields on the lattice sites labeled by a vector of integers n = (n, ny, n3, ny)

ad(x) = bn (22)

and integrals become sums
/d4:r —a'd> . (23)

For lattice derivatives there are several possibilities

a26u¢ — A:qﬁn - ¢TL+[L - ¢n , Or (24)
A;qﬁn = ¢n - qﬁnfﬂ , Or (25)
Au¢n - %¢n+ﬂ - ¢nfﬂ y et (26)



We require the lattice version of (9,¢)* to be positive. The most local choice is

[@u0)* > 3 (bnin— 00 = LA 6)* = (A 60)* (27)

n n

Sometimes it is useful to rewrite this term as follows

;(%ﬂ ~ )’ = Zu Sn(Pnri — 200 + bui) | (28)
which is the lattice analogue of [(9,4)* = — [ #0¢. Putting all this together
S— 8, = HZ;L 5 (P — 200 + Gn )0 + Zn: Vi(¢n) (29)
with
Vi(¢n) = 3(mpna)’dy, + Ay, + .. (30)

The product my,,a is the dimensionless lattice mass m. Finally, the lattice partition

function is
+oo
7= H[/ dgale 5t = /e*SL . (31)
n /- J¢

It is important to realize the meaning of the arrows in the above equations. The
lattice action has the correct continuum limit for “classical” fields, those varying
on scales much longer than the lattice spacing. The quantum theory, by contrast,
necessarily includes the contribution from “jagged” fields, those that fluctuate on
the scale of the lattice spacing. This is true even if one is calculating the response
to a smooth external fields, since interactions will couple them to quantum fields
of all wavelengths. Thus the continuum limit of the quantum theory need not be
described by the classical continuum action. In asymptotically free theories the
jagged modes can be studied using perturbation theory, and the continuum limit
can be understood, as described below. This is not possible for scalar theories.
Indeed, it is almost certain that, whatever the size of the ¢* coupling X in the
lattice Lagrangian, the particles do not interact in the continuum limit. This is
called “triviality”.

3.1 The propagator for free field theory

To study the properties of the lattice theory, I begin by setting A = 0, and calculating
the propagator from site n to site p

Clnp) =27 [ e 6.0,. (32)

For the free theory the action is bilinear in the fields

S = %Z@zan@p ) (33)
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with M real and symmetric

4
My = — Z(én,pﬂl + Onp—p) + Onp(8 + mQ) . (34)
p=1

Performing the Gaussian integrals we obtain

[detM]~'/2(M~1),,

Clnp) = e = M o (3)
As usual, it is easiest to Fourier transform
T d4k ikn _ ikn %
o= i "ok = [e"(k), o(—k) = 5" (k). (36)

where the second form of the integral is a useful abbreviation. Note that the lattice
cuts off the momentum integral. All lattice quantities are periodic in &, (separately
for each p) with period 27; I have chosen the range of integration to be symmetric
about the origin. Substituting Eq. 36 into the action we find

S = 4 [ AL, ek)6( (37)
_ %Z./k /q (M2 4 (2~ et e 1] b(k) b (g)
— %./k o(k)p(—k)[m* +_ 4sin’ (%)] . (38)

M is now diagonal, so the propagator is

eik(nfp)

C(n,p) =M = / : 39
(. ) " km2+2u4sin2%” (39)
Various features of this result are noteworthy.

e The lattice and continuum propagators differ only in that the momentum is
changed

L .
k, — QSin(?“) =k, . (40)

Although the lattice momentum IQ:M is anti-periodic when k, shifts by 27, what
appears in the propagator is its square, which is periodic.

e The lattice propagator is symmetric under discrete Euclidean rotations (e.g.
x — y, y — —x) but not under continuous rotations. One recovers the full
symmetry if the continuum limit is taken as follows:

m=mypa =0, k=kpa—0, (41)

9



with the physical mass and momentum, m,;, and &, held fixed. In this limit

1
(mpn)? + (kph)2,

ky — (kyn)aa , a’C(k) — (42)

which is the continuum free propagator. This continuum limit is rather trivial,
but does illustrate one general point: one must adjust the parameters in the
Lagrangian in a particular way to attain the continuum. Here, the lattice
mass m must vanish, otherwise one ends up with infinitely heavy continuum
scalars.

It is enlightening to calculate the propagator in position space for a given spatial
momentum. As shown in the sect. 2.1, this allows one to read off the spectrum.
Consider then

Clnq) =2 / [dgle 5+ 3 ¢ (i, n)p(0) (43)

ezk4n4 ezk-n
-2

:Zefiq‘-ﬁ/ :
ii T2k, +k

T dk /ik4n4
_ [ (44)

=2 ~
2T m2 4§+ k3

The integrand has poles on the imaginary axis. Defining k4 = iF, so that ky =
27 sinh %, the poles are determined by

E A
2sinh§:i m?+q . (45)

We can perform the integration by forming a closed contour in the complex k4 plane:

A
KoY

Since the integrand is periodic in k4, with period 27, the two vertical parts of the
contour cancel, and so can be added to the original integral. For n, > 0, one
must close the contour in the upper half plane, and one picks up the corresponding
residue, leading to

efEn4

10



We see that, even with discretized time, the correlator does fall off exponentially.
In fact, there is only one exponential, corresponding to the fact that the theory is
free, so there is only one state for each momentum. Note that the lattice energy
(Eq. 45) differs from the continuum result E? = m? 4 ¢°, although the two agree
in the continuum limit (m, ¢ — 0).

A very useful concept in lattice calculations is the “correlation length”, £. This
is defined by the rate of exponential fall-off of two point functions in position space:
G(n,p) ~ exp(—|n — p|/&), up to powers of the separation |n — p|. Two point
functions include all possible values of ¢; at large distances the smallest value of F
controls the rate of decay. This is F,;, = 2sinh '(m/2) ~ m, so that £ ~ 1/m.
One way of thinking about the continuum limit is that £ must diverge in lattice
units, so that the effects of discretization disappear. Sending m = m,,a — 0 indeed
makes & — oo.

In an interacting theory, the correlation length(s) are determined, in general,
non-perturbatively in terms of the parameters in the lattice action. To find a
continuum limit one must discover a place in the space of parameters for which the
correlation length diverges.

11



4 The Transfer Matrix

The nuts-and-bolts way in which one connects lattice Euclidean functional integrals
and the corresponding Minkowski theory relies on the transfer matrix, T. In other
words, using T allows one to see exactly what one is calculating when working at
finite lattice spacing. In particular, the symmetries of the spectrum are those of T
The transfer matrix is also widely used in statistical mechanics calculations. For
these reasons I have chosen to describe its construction, for the simplest case of
scalar fields. The generalizations to gauge theories and to theories with fermions
are more complicated to work out, but the essential idea is the same.

I begin with a homework problem which serves as a warm-up for the actual
analysis.

4.1 Problem 1—transfer matrix for one-dimensional field
theory

Consider a 1-dimensional lattice with scalar fields ¢,, n =1,2,... N and periodic
boundary conditions ¢n; = ¢;. Find an operator 7" such that

Z =Te(TV).

Here T is an operator acting on the Hilbert space of square integrable functions of
one variable, i.e. the usual space for quantum mechanics of a single variable.
A simple way to proceed is as follows.

Step 1: Write the action as

S = Sa(¢1) + Sp(¢r1. d2) + Sa(@2) + Sp(da, #3) + ... + Sa(én) + Sp(dn, ¢1)

Sp contains terms connecting adjacent ¢’s; it is advantageous to choose Sg to
be positive.

Step 2: It is simplest to use a non-normalizable basis |¢) for the Hilbert-space :

ooy =olo),  (¢10) =0(¢' — 9)
Introduce a conjugate momentum p with [p, ¢| = —i, and show that
e g) = ¢+ A),
With all this in hand, find an operator 7' which satisfies

(¢'|T]¢) = oSB(#9) o 354(8) o 354(8)

12



Step 3: Given this definition of T show that
Z=Te(T") = [ do(o/TV|6). (47)

Step 4: Since T is the operator which translates by one unit in Euclidean time, it is

reasonable to define 7' = e~ e (putting back in the lattice spacing). As a — 0,
H — H.y + 0(a). Find the form of H,.,, (it should be familiar).

4.2 Transfer matrix in four dimensions

Constructing the transfer matrix in d > 2 differs from the one dimensional case
mainly in the need for extra notation. I begin with the partition function

N Y 1
Z—/d)e ,S—;[Zm)w ¢n)+v<¢n>J. (48)

It is necessary to work with a lattice having a finite extent in time:

ﬁ% time y

I assume periodic boundary conditions, ¢z ny+1 = ¢5,1, where N is the number of
“timeslices”. This amounts to working at a finite temperature 1/Na, as discussed
below.

The idea is to break the integrand of the functional integral up into two parts:
those living on individual timeslices, and those connecting adjacent slices. Since
the action includes only nearest neighbor interactions, this is all one needs. Thus I
collect all the fields at time 7; (having all spatial positions) into a set denoted {¢,, }
and write the action as?

S = SA({¢TN}) + SB({¢TN}7 {¢TN71}) + SA({¢TN—1}) + SB({¢TN—1}7 {¢7N72})
co SA({¢7'1}) + SB({¢7'1}7 {¢TN}) (49)

INote that I am now using 7 instead of n4 to label dimensionless, discretized Euclidean time.
This saves on subscripts, and should lead to no confusion with my earlier use of 7 as dimensionful,
continuous Euclidean time.

b
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where

Sa{en}) = > {V(%,ﬁ) 5 > (D — ¢n—,ﬁ)2} (50)
i j=1,3
SB({¢71}7 {¢72}) = %Z(¢leﬁ - ¢72,ﬁ)2 (51)
Next define the transfer function
T2,1 - T({¢7‘2}7 {¢n}) - efésA({(bT?})e*SB({‘sz}7{¢T1})e*%SA({(bTI}), (52)

which allows one to express the partition function as
Z = / 675 = TI,NTN,Nfl . TQ,I (53)
¢ {¢ri }Adry}

We now introduce the Hilbert space of square integrable functions at each site 1 with
(non-normalizable) basis |¢;), and “position” and momentum operators satisfying

Galdn) = daldn), (Sldn) = 6(d5 — da) (54)
(b, b) =0, [Pa bar) = —i6am . e 7"%bz) = |6z + A) . (55)

The transfer matrix acts on the Hilbert space of direct product states
9 =TT @lon) . (56)

The idea is to find an operator T(éﬁ,ﬁﬁ) satisfying
(¢T16) = T({#'}. {6} (57)

for then we can write the partition function as

zZ = <¢TI|T‘¢TN><¢TN|T|¢TN71> SR <¢7'2|T‘¢TI>

/{%}...ww}
= T1 T T1

[, (6al7%16.)
= Tr(TV). (58)

Here the second line follows from completeness, and the last from the definition of
the trace.

The construction of T is similar to the one-dimensional case. The trick is to
note that

LR L /OO NG A L

= V(e " pa) (59)

14



so that the following does the job
T — e 35U b Lot 354D (2m) 5 (60)

What has been achieved here? We have rewritten the functional integral in
terms of an operator 7' which “transfers” information from one time slice to the
next. As we will see more clearly below, it corresponds to the Euclidean space time
translation operator for one lattice unit, which in the continuum is exp(—aH). T
is of the form A'A, and so is hermitean and positive. It thus has real, positive
eigenvalues: T|p) = A, |p), A, > 0. Labeling the eigenvalues in order of decreasing
size}

M>A>...>0

the partition function becomes

. o A
Z=Te TV =X +\V+... "2 ,\{)V(1+(A—1)N+...) (61)
0

The eigenstate with the largest eigenvalue is picked out for large N. This state
corresponds in the continuum limit to that having the smallest eigenvalue of H. It
is the lattice vacuum state, |0).

The significance of T can be seen more clearly by applying the above construction
to correlation functions. Consider the two-point function

Cy(ny,mo) = 27! /¢ e Sip b (> T) (62)

which can be rewritten in terms of the transfer matrix

Cy(n1,m2) = z! /(bfl,N a 'TT2+1,T2¢T2,T_1‘2TT2,T271 . -T7'1+1,71¢7'1,ﬁ1j—,7'1,7'171 . -TQ,l :
| (63)
Using o
(@|0aT¢) = 63T ({¢'} {}) (64)
we find

Co(ni,ms) = 2 /¢ (GriT1bn) - (b Dt Tl bry 1) - (b, . Tlbrs 1) - (6 T or,)
= Tr {77 "oy, TN Y Te {TN)
= Tr{¢a, T " s, T YT AT} (65)

In the last step I have rescaled the transfer matrix so that the eigenvalues lie between
0 and 1:

- A
has eigenvalues 1 > \; = )\—1 >...>0. (66)
0

For a finite system, with a potential V(¢) bounded from below, there is a finite maximum
eigenvalue.

15



Taking the limit N — oo, keeping 7, — 71 fixed, selects the “vacuum” in both
numerator and denominator since 7' [0) = 1 while 7" |1) = AV[1) *=5° 0. Thus

Cy(nrma) =5 (06, T " 63, [0) - (67)

Comparing to the continuum expression (Eq. 5)

02 = <0‘éﬁ2eiH(T27T1)aéﬁ1 ‘0>7 (68)

we see that the correspondence is T = e~ Clearly the same applies to multi-point
correlation functions. Thus it makes sense to define a lattice Hamiltonian by

ol = —InT . (69)

H has the properties that we want for a Hamiltonian: it is hermitean, and its
smallest eigenvalue is 0

H|0) = Fy|0) Ey=0, (70)
Hlp)=E,jp) E,=—1In(\,)>0. (71)

In addition, it acts on a Hilbert space with positive norm. Thus we have succeeded
in constructing the discretized version of the operator expression Eq. 5.

The actual form of H is horribly non-local, because the different exponents in
Eq. 60 do not commute, so that taking the logarithm is not simple. In the classical
continuum limit (i.e. when we assume that the operators are smoothly varying)
however, H indeed goes over into the continuum Hamiltonian

b

H — /df“x[%pgh + 3(Didpn)? + Im2, 0%, + Ah, + ... ] + constant (72)

where qg = aquh and p = a’p,n, and I have used the potential of Eq. 30.

An alternative continuum limit uses asymmetric lattices, in which we take the
spacing in the time direction to zero, while keeping the spatial lattice spacing fixed.
In this way one obtains a discretized Hamiltonian theory, which can be studied
using various approximation schemes. This is discussed in the texts.

4.3 Finite Temperature

We can now see the significance of working on a lattice of finite time extent. The
partition function is

Z=Tr TV o Tre Vol | (73)

But this is nothing other than the partition function describing the theory in equi-
librium at a finite temperature 5 = 1/kT = Na. The longer the lattice in physical
units, the smaller the temperature. Inevitably, numerical simulations correspond to
a non-zero temperature, although it can be made very small in practice. For further
discussion see the lectures by Ukawa.
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4.4 Symmetries of T and H

As with any quantum mechanical problem, it is useful to study the symmetries of
the Hamiltonian. On the lattice, it makes more sense to phrase the discussion in
terms of the symmetries of the transfer matrix (7" or 7', it makes no difference).

Given that «H = —In T, H and T have the same symmetries anyway.
Given the definition of 7' (Eqgs. 57 and 52). its symmetries are those of the
functions S, and Sg. These are

A: discrete translations,
B: 3-d rotations in the cubic group,
C: spatial inversions.

To each symmetry transformation g there is a corresponding unitary operator U(g)
which represents the transformation, and which commutes with T’

@) = la), =Ulg)ley, T —U(g)TU(g) "' =T. (74)

Thus if |p) is an eigenstate of T with eigenvalue \,, then so is U(g)|p). Eigenstates
can be labeled not only by their “energies” (here A,) but also by the representations
of the symmetry groups in which they lie. The labels corresponding to the above
symmetries are

A: momentum E, satisfying 7 < k; <,

B: representations of the cubic group—the discrete analog of angular momentum
(see problem 2 below),¥

C: parity, P = £1.

In a general theory there will also be internal symmetries, with corresponding rep-
resentations. For example, if the field is complex there is a U(1) symmetry, and
states are labeled by the corresponding charge.

What use is this classification of states? To see its utility, consider the expression
for the two-point function in the limit of infinite time extent (cf. Eq. 67)

Cu(m — 1) = (0|OTT™ ™ O)0) . (75)

Here I have considered a general operator, @, composed of the fields in the theory.
The point is that we can construct this operator so that it belongs in a definite

91 am being sloppy here. Rotations and translations do not commute. Only for k = 0 can one
label the states by representations of the full cubic group. For k # 0, one must wheel out the
technology for representing semi-direct products.
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irreducible representation of the symmetry group, e.g. having definite momentum
(e.g. O(P=0) = X5 ¢ii). Inserting a complete set of eigenstates of T', one finds

o

Colry —71) o 3 [(plOJ0) A (76)

p=0
Only states with the same symmetries as O contribute to this sum, since the vacuum
lies in the trivial representation of the symmetry group. For large 7 — 71 the
“lightest” such state (that with the largest ),) dominates the sum. Thus it is
straightforward, in principle, to calculate the energy of the lightest state in each
representation of the symmetry group. This allows one, for example, to study the
lattice dispersion relation by calculate energies, F/, at various momenta, k.

Thus a lattice practitioner must know something about discrete groups. The
most useful is the cubic group, the discretization of SO(3), whose representations
are the discrete version of angular momentum states. A nice discussion of this group,
its representations, and their relation to those of SO(3) is given by Mandula, Zweig
and Govaerts [7]. The following problem concerns this group.

4.5 Problem 2: the cubic (octahedral) group and its repre-
sentations

This is the group of 3-d rotations (not including reflections), which you can think
of as proper rotations of a cube. The problem is this: construct the character table
of this group, and display examples of representations.

Here are some useful facts about discrete groups:

e Elements fall into conjugacy classes. Given two elements of a conjugacy class,
a and b, one can always find a group element, ¢, such that gag ' = b.

e The number of irreducible representations (“irreps”) equals the number of
conjugacy classes.

e For each element of each irrep there is a “character”, x(g), given by the trace
of the matrix representing the element. Thus, for example, the character of
the identity element is always the dimension of the irrep. It follows from the
cyclicity of the trace that all elements in a conjugacy class have the same
character.

e Character orthonormality:
> mex" ()X (¢) = 6" N,

classes ¢

where
n. = number of elements in class
N = number of elements in group
X" (c) = character of elements of class ¢ in irrep r

18



Given a reducible representation with character x(c), the number of times an
irreducible representation appears is

¥ Xm0 (@

Another useful result is:

> X (X () = bea N

irreps r

for each pair of classes ¢ and ¢’. Picking ¢ = ¢ = I, this gives 3, d> = N,
where d, is the dimension of the representation r.

In the following I outline a possible approach to this problem.

Step 1:

Step 2:

Enumerate and classify elements of the group. Ref. [7] uses one method; here
is an alternative suggestion.

Elements of the group can be generated by one 90° rotation R, e.g.
Ra:y: [f‘_)gag_)if‘aé_)é]a

and S, a rotation of the cube about a body diagonal by 120 degrees (say
T — 9,0 — 22— 1 ). Clearly, R' = S® = I. Show also that RSRS = I.

These relations define the group all sequences of R and S can be simplified
into a finite number of elements using them, e.g., RSR = S?. To enumerate
the elements it is easier, rather than using brute force, to collect them in
conjugacy classes, since each element of a class carries out a similar type of
transformation. What are the different types of elements? How many of each
type are there 7

One way to construct the character table is to invent representations, convince
oneself that they are irreducible and calculate the characters. The character
formulae given above act as a check.

A good choice of starting reps are those of the proper 3-d rotation group
SO(3). These reps are labeled by J = 0,1,2,... and have dimension 2J + 1.
For example, the J = 0 rep is 1-dimensional and invariant under all transfor-
mations, so x(c¢) =1, Ve. This is an irrep of the cubic group too the identity
representation I (also called A;).

Good luck!
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5 (Gauge Theories on the Lattice

In this lecture I explain how to discretize gauge theories, and in particular QCD.
While there are interesting non-perturbative questions associated with the SU(2);, x
U(1) part of the standard model, e.g. the nature of its finite temperature phase
transition, the most important practical application of lattice methods is to QCD.
The low-energy phenomena of QCD, in particular confinement and chiral symmetry
breaking, are non-perturbative, and the lattice is the only method available for
studying them from first principles. A crucial aspect of lattice regularization is that
it maintains gauge invariance, for this guarantees that the theory is unitary.

5.1 Continuum QCD, a brief overview

The continuum action is given by

Sp = — Z /(j(ﬂ) +mg)g + % / Tr(Fuwku) (77)
q:u,d,s,c,b,... T e
where the integrals run over Euclidean space. The covariant derivative is

D, =0, 194, , (78)

in which the gauge fields are collected into a matrix A, = A{T" with T the
generators of the SU(3) Lie Algebra

[T, T% = dfeeTe, tr(T°T") = L6, . (79)

— 2
The quark fields are color triplets, with an implicit color index. Finally, the gauge
field strength is

P, =F,T°=-[D,, D, = 0,A, — 0,A, —ig[A,, A . (80)

i
g
A local SU(3) gauge transformations is described by a space-time dependent

element V(z) € SU(3) (V' = VT, det(V) = 1):

a(@) = V(@)al),  alx) = @)V (2),

i

Au(z) = V(@) Au(@)V(z) + EV(«/L")@#V’I(@") :

Fou (&) = V(@) Fua)V " (x).

[Dugl(z) = V(2)[Dygl(z) -

Given the last two lines, it is simple to see that Sg is invariant.
It is useful to introduce the path-ordered integrals

L(z,y) = Pexp{ig /yw dz,Au(2)}, (85)
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which are to be thought of as going from y to x. The ordering is such that, for
example, A,(z) is always to the left of A,(y). The reverse ordering is obtained
by hermitian conjugation, i.e. L(y,z) = L(z,y)". The L’s can be built from a
product of infinitessimal steps, (1 +igdz,A,(z")), along the path. Using the gauge
transformations listed above, it is easy to see that these quantities transform as

(1+igdz, Au(a')) = V(2" + dz,) (1 + igdz,Au(a")V (@) + O(dz) . (86)

It follows that the gauge transformation properties depend only on the end points
of L, and not on the path of integration

L(z,y)—V (2)L(z. y)V ' (y) - (87)

They thus transport the gauge rotation from one point to another, such that the
quantity g(z)L(z,y)q(y) is gauge invariant:

g(z)L(z,y)qly) —

() Lz, y)a(y) - (88)

Another gauge invariant quantity is the trace of the path-ordered integral around
any closed path

Tr(L(z,z)]—Tr[V(2)L(z,z)V *(z)] = Tr[L(z,z)] (89)

These objects are called Wilson loops.

5.2 Discretization

With these quantities in hand, we can now construct a gauge invariant lattice version
of QCD. Well, not quite. It turns out that discretizing fermions presents problems
unrelated to gauge invariance, problems which I discuss in the last lecture, In this
lecture I avoid these problems by replacing the quarks with scalar colour triplets,
¢. These are necessarily complex, and their continuum action is

Scont = / _¢TD/JD/J¢ + P(¢T¢) ) P(y) = m2y + )‘yQ T (90)

Under gauge transformations they behave like quarks

¢'(2) = 6" @)V (2).  ¢(x) = V(z)g(x). (91)

To construct a lattice theory, one cannot simply place quark and gauge fields
on the sites of the lattice and discretize the derivatives appearing in Sg. Instead,
the gauge fields, which transmit information about gauge transformations from one
position to another, live on the “links” or “bonds” connecting the sites. I will choose
the lattice to be hypercubical, since this is the form most easily studied numerically.
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n=(

) U n+

n .n
TRy n, 1

Figure 1: Notation for lattice quantities. n is a vector of integers.

The notation for the sites and links on the lattice is shown in Fig. 1. Note that I
am using n + p instead of n + i, to denote the point one lattice spacing forward
from n in the p-direction.

We begin with the free action for the scalars, which is discretized by a simple
generalization of the result for a real scalar field (Egs. 28 and 29)

Sty =S [dhiy — L) [dnin — bn) + D P 60) - (92)

Next we introduce the gauge fields. The discrete version of the gauge trans-
formation function V(z) is V,,, a site dependent SU(3) matrix. Under a gauge
transform

ol — IV by = Ve, Ol dn — bl b (93)

Thus the potential term in Eq. 92 is invariant, while the kinetic term is not.

To fix this up, we introduce elements of SU(3), U, ,, associated with the link
from site n to site n+ u, and corresponding to the continuum line integral backwards
along the link:

Up, ~ L(an,an + ajt)

= Pexp |ig /an dz,Au(2) (94)
an+afi
= 1—igad,(n+ip)+ O(a®) . (95)

Figure 1 shows examples of the diagrammatic representation of these link matrices
as arrows. We associate UTTW with the link from n 4+ u to n, in correspondence with
the continuum result L(z,y) = L(y,x)". The “~” in the first line of Eq. 94 means
“corresponds to”. The vagueness here is deliberate once we put the theory on the

lattice there are no gauge fields A,: they are replaced by the U’s. The expansion in
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the last line (which assumes the straight line path) is useful, however, for thinking
about what the U’s mean, and also for taking the classical continuum limit.

The gauge transformation properties of the U’s are taken to be the same as
those of the corresponding L’s

Uny = VaUn Vil UL = Vi UL VI (96)
Thus U, ¢4, transforms in the same way as ¢y,

Unu®nsn = VaUn Vil Vi n®nsn = VaUnuGrsps (97)

and ¢n+uUT transforms as does ¢!. With these relations we can construct a gauge
invariant lattice action

Slat - Z Z ¢n+u n,u (bT” ,u¢n+u ¢n] + Z P(¢L¢n) : (98)

It is instructive to check that the kinetic part of this action has the correct
continuum limit. Using the result of Eq. 95 we find

Uny@nsp — On ~ a? 10,0 (an + %au) — igaQA#(an + %au)qﬁ(an + ap)
= a’[D,¢)(an + sap) + 0(a’) (99)

Combining this with its hermitian conjugate, we regain the kinetic term in contin-
uum action, [ |D,¢|?.

5.3 Pure Gauge Action

We can construct a lattice version of the pure gauge action using the smallest Wilson
loop, that around an elementary square or “plaquette”

P;Iu = Un,uUn+u,I/Un—|—1/ uUT . (100)
The geometry is illustrated here.
UT];+1/,;L
UTTL,V Un+u,u
Un.u

It is reasonable that such a loop is related to F),,, because the field strength is the
curvature associated with the connection A,. In any case, using the correspon-
dence given above for the U’s, and after some algebra, one finds that the classical
continuum limit of the plaquette is

2
P =1 +iga’F,, — %af‘ij + i’ Gy + ia* H, + 0(a%), (101)
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where H,, and G,, and are hermitian (see Problem 3). Thus one can use the
pr plaquette as a discretized version of the corresponding component of the field
strength, F,,. If we take the trace, so as to get a gauge invariant quantity, we find

2
Re TrP,, = N, — %w‘ Tr(F2,) +0(a®), (102)

where N, = 3 is the number of colors. We then have

2
/d% ST F ~ 3 (N, ReTrr) (103)
uv O

The factor of 2 arises because of the mismatch between the number of plaquettes
per site, 6, and the number of terms in the sum -, 12.

Standard notation in the field is to replace the coupling constant with g = legc,
so that ReTrD
elr
Syg=-8> + irrelevant constant . (104)
[m} c

This is called the “Wilson (gauge) action”. Using the symbol  is unfortunate, as
it leads to possible confusion with 1/k7T, but it is a notation that is well and truely
entrenched.

It is important to realize that there is nothing special about using the smallest
loop to define the action. Any loop, e.g. a 1 x 2 rectangle, contains a term in its
expansion proportional to a linear combination of components of (F},,)?. By taking
an appropriate combination of loops we can obtain the continuum action as a — 0.
The advantage of a small loop is that corrections proportional to powers of the
lattice spacing are typically smaller than with a larger loop.

To complete the definition of the theory I need to specify the measure. Each
link variable is integrated with the Haar measure over the group manifold. This
measure satisfies (V' and W are arbitrary group elements)

/ dUF(U) = / dUF(UV) = / dUF(WU). (105)

Given this, it is simple to see that the functional integral

Zuwe = | T1 0, T a0ne}) exp (7 -Re 10— Su(ol..0))  (106)

“ links n

is gauge invariant. Note that the U matrices live on a group manifold with finite
volume, in contrast to the infinite range of A, in the continuum.

What has been accomplished here is a non-perturbative, gauge invariant regu-
larization of gauge theories coupled to scalars. What has been sacrificed is full Eu-
clidean invariance: rotations and translations. The hope is that, as one approaches
the continuum limit, these symmetries are restored.
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5.4 Problem 3: the expansion of the plaquette.

Calculate the expansion of the plaquette P,,, and its trace, in powers of a.

Step 1: The calculation is simplified if one defines the continuum field by
Upn,y = exp [—iagA,,(an + %au)] , ete,

and expands the continuum fields above the center of the plaquette. Writing
P,, = exp(X) calculate X explicitly through 0(a?). What are the properties

of the higher order terms?

Step 2: Consider Re Tr P,,. Expand up to quartic terms in a. Show that 0(a*, a*)
terms in X do not contribute at this order.

Step 3: Show that Tr(P,,) has an expansion in even powers of a, so that the corrections
to the a* terms from step 2 are of O(a®).

6 Applications of Lattice Gauge Theories

Before proceeding to study fermions, and thus to a lattice version of QCD including
quarks, I will discuss what one can learn from pure SU(3) gauge theory. This is a
non-trivial theory in its own right, sharing some properties in common with QCD.
In particular, its spectrum consists of massive glueballs, in which the gluons are
confined by their self-interactions. First, though, let me discuss one of the classic
results of lattice gauge theory ...

6.1 Confinement

Long ago, Wilson introduced a test for confinement in gauge theories. Imagine
that there is a very heavy quark, and a corresponding antiquark, separated by a
distance R. Calculate the energy V(R) of the pair as a function of R. If there is
confinement, then V(R) grows monotonically with R for large R. The picture is
that there is (color) electric flux between the quark and antiquark, which does not
spread out like in QED, but is forced into a “string”:

This picture implies linear growth V(R) o« oR for large R, where o is the “string
tension”.
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The heaviness of the quark plays three roles. First, it means that the quark does
not move it has infinite inertia so it makes sense to consider a static potential.
Second, gq pair creation is suppressed (by terms of O(1/m?)), so that one need not
consider loops of the heavy quark. Such quark loops would, in fact, cause the string
to break, and thus remove the possibility for a clean test of confinement. And,
third, at leading order in 1/m, the coupling of quark to gluons does not involve its
spin. The quark acts as a static scalar color source. This means that one can just
as well use scalar quarks to extract V(R).

To calculate the potential consider the correlator (written in continuum lan-
guage for the moment)

P (X+RY) R
wT(RO)
C(t) = E
X
cpT(f,t) !
¢ (0,0)

The expectation value indicates the functional integral over gauge and scalar fields,
and the thick lines with arrows represent the line integrals L. Thus this is a gauge
invariant correlator. I have introduced two heavy scalar fields ¢ and v, for reasons
which will be clear shortly. And, finally, I have used t instead of 7 to represent
Euclidean time as we will remain in Euclidean space henceforth, the distinction is
no longer necessary.

This correlator is just a more complicated version of the two-point function con-
sidered earlier, Eq. 8; instead of a scalar field there is a quark-antiquark operator,
joined by a line of gauge fields. The analysis of the two-point function remains the
same. For large ¢, it is dominated by the lightest state created from the vacuum by
the quark-antiquark operator. The sum over & projects onto states at rest, although
as we will see, this sum is unnecessary as the only ¥ = 0 contributes when m — oo.
If the lightest state has energy E, then C(t) o exp(—FEt). But E is nothing other
than V(R). Thus, for large enough R, we expect

C(t) 1255 ¢ VIR RS o othe | (area) xo] (107)

where the area is that of the rectangle formed by the fields when © = 0. This is
(almost) the famous area law criterion for confinement.
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The most straightforward way to proceed is to do the functional integral over
the scalar fields in the continuum and then discretize the result. Let me sketch the
argument. Imagine that the correlator is in Minkowski space. In the limit m — oo,
one can use the heavy quark effective theory discussed in the lectures of Isgur.
Quarks, whether scalars or fermions, just maintain their velocities. Now the field
¢! creates quarks with all velocities, but what we are interested in, to obtain V(R),
is those with ¥ = 0. So what we really mean by ¢ is ¢z—o9. Given that the quarks
are static, only_)the Z = 0 term in the sum contributes. The propagator for a gtatic
quark at site R in a background gauge field is exp(—imt)P explig [i dt' Ay(R, )],
i.e. the line integral L(Z,¢;Z,0) (along a straight path) up to a kinematical factor
which is independent of R and thus irrelevant to the determination of . The
antiquark propagator is proportional to the line integral in the opposite direction
L(G,O;ﬁ, t). Putting these together with the line integrals in the operators, one
obtains a rectangular Wilson loop. Wick rotation yields a Euclidean Wilson loop.
This is then simple to discretize in terms of the U matrices.

I have chosen to obtain this result by a more circuitous route, since doing so
allows me to introduces a useful technique, the hopping parameter expansion. We
discretize the correlator before integrating over the scalars. Assuming that R is a
lattice vector lying along the positive j-th direction, we have

O = X [lavle S |[ldglidgau][dule 5
X (O Utiayi - basiie) Why - Us00) (108)

It is useful to rescale the scalar fields

O —=>meo, P —mp. (109)
for then the scalar action becomes
S = Ly OuKnp®p + 77 (670)? (110)
where .
Koy = by + — g[zcsnp = UnuOntup — US uOnpeu] (111)

We see that the interaction term is suppressed by 1/m?; it can be ignored as m — oc.
It is useful to rewrite the kernel as

H
2 o 2 np
m* K, = dpp(m +8)(1—7m2+8), (112)

where H,, is called the “hopping matrix” as it hops fields from one site to another

Hy, = Z Un,uénﬂt,p + Ug,uén,pﬂt . (113)
u
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Now that the scalars are free, we can integrate them out using

[ 146" vl e 55 Ul G 8L, = G G, [1d6]d0 ][ e
(114)
where G denotes the propagator. The reason for having two fields ¢ and v is now
apparent: there is only one Wick contraction. The propagator can be obtained by
a “hopping expansion”
Kt 1 H H?

G = = 1 115
m?2 m2+8( +m2+8+(m2+8)2+ ) (115)

It turns out that similar expansions apply for quark propagators, as we will see be-
low. Each “hop” costs a factor of —5 L (the “8” is irrelevant when m — oc) and gives
a matrix U or U'. The minimum coqt is achieved by hopping along the shortest
path. This picks out 7 = 0 in the sum in Eq. 108, and gives rise to a discretized
Wilson loop

Ct)= (= R

up to corrections suppressed by powers of 1/m?. The subscript U indicates that
only the functional integral over gauge fields remains.

Recall that if there is confinement, we expect C(t) x exp(—Rto) for large t and
R. The only way this can happen is if the expectation value of the R x ¢t Wilson
loop falls off in this way. This is Wilson’s area law test for confinement.

In fact, one can show that lattice gauge theories do confine in the strong coupling
limit,  — 0 or equivalently g? — oo. One can calculate expectation values of
Wilson loops analytically, in an expansion in powers of 5. One finds (problem 4)

B

o= —In(2N2

) +0(8). (116)
This cannot be used as a direct indication of what happens to the continuum theory,
because, as I discuss below, the continuum limit occurs for weak coupling, ¢> —
0. The strong coupling expansion has a finite radius of convergence, and present
attempts to extrapolate using tricks such as Padé approximants break down at
couplings ¢g> < 1. Thus the only way to test for confinement near the continuum
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Figure 2: The heavy quark potential, in lattice units. The horizontal scale is in units
of lattice spacing, which is a =~ 0.06 fm. The short distance points have been corrected
for lattice artifacts using the lattice Coulomb propagator.

limit is to calculate the expectation value of Wilson loops numerically. I give an
example of the results for the potential, from Ref. [8], in Fig. 2. The linear rise in
V' is clear, starting at about 0.5 fm.

The behavior of non-abelian (and thus asymptotically free) gauge theories is
quite different from that of abelian theories, the simplest example of which has the
gauge group U(1). In strong coupling, the result of Eq. 116 applies also for U(1),
with N. = 1, Thus the theory confines. By contrast, the continuum U(1) theory
involves non-interacting photons, and does not confine. How are these two limits
reconciled? It turns out that, unlike for non-abelian theories, there is a (first order)
phase transition at finite ¢g. Indeed, for a certain choice of the action this can be
proved to exist. At the transition, one goes from a confining to a non-confining
phase. The issue with non-abelian groups is whether there is a similar transition,
and the evidence strongly suggests that there is not.

6.2 Problem 4—strong coupling expansion

Calculate the string tension o in pure gauge SU(3) theory in the strong coupling
limit (5 — 0), i.e., evaluate

J 1o, dUp pexp [% Sh ReTrD] W(R,T)
[ Hn,u dUn,u €xp I:NiC ZD RETFD]

(W(R,T)) = (117)
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where W (R, T) is an R x T" Wilson loop, and use

In(W(R,T)) "™ =° 6RT + R+ ;T + 5+ ... . (118)
To do this you will need the integrals (valid for SU(N, > 3))
o [dU(1) =1
o [dU(U;;) =0
o [AUU,U) = 0= [ dUULUL)
o [dU(UyUL) = §-0du
The lattice result is for the dimensionless string tension
0(9°) = a*Ophys -

This equation has corrections of higher order in a?, which come from discretization
errors, and which are not small at strong coupling. Nevertheless, for purposes of
illustration, we will ignore them. Then, as we vary ¢g°> we can adjust a such that

Ophys 18 constant, which is what we want in the continuum limit (see below). Using
dg*

this method, calculate the S-function, i.e. .
na

6.3 Glueball masses

The spectrum of pure gauge theory has been studied extensively, for gauge groups
SU(2) and SU(3), using numerical methods. The low lying spectrum close to the
continuum limit has been established with small errors, as shown in Fig. 3 (Ref.
[9]). Onme can only extract ratios of dimensionful quantities; here, the masses are
given (the left hand scale) in units of the square root of the string tension. The
JPC of the corresponding continuum states is noted on the plots.

The spectrum is obtained from two point functions such as

1 -
C(t) = 5 [ TLAU)e S 3 TePia(t, ) TePy (0), (119)
[ il

where P is a plaquette, and 1 <4, 5, k,1 < 3. Proceeding as above yields

1 “ o o “
C(t) = (0| Pylg, k = 0)(g, k = 0| P;;|0)e ™o (120)
Zg: 2mgV J

I do not have time to construct the transfer matrix for gauge theories. The method
is similar to that for scalars, yielding operators Um (and corresponding momenta)
which act on the Hilbert space of square integrable functions on the group. The
operators P;; are made up of operators U, ; just as in Eq. 100, All that matters here
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Figure 3: Spectrum of pure gauge SU(3) theory at 8 = 6.4. Open symbols represent
upper limits.

is that the symmetries of the P’s are the same as those of the P’s. By combining
plaquettes appropriately one can project onto different representations of the cubic
group. The simplest examples are

scalar glueball ~ P12 + P21 + P13 + R?l + P23 + R?Q s (121)
transforming in the identity, or A;, representation, and
tensor glueball ~ Re(Py — Py3), (122)

transforming as part of the two dimensional E irrep. For more examples see Ref.
[7].

Why have I called these “scalar” (i.e. J” = 0%) and “tensor” (27) glueball
operators? The cubic group is a subgroup of the continuum rotation group, SO(3).
The representations of SO(3) (J = 0,1,2,...) form, in general, reducible represen-
tations of its cubic subgroup. For example, the J = 2 representation breaks up into
E +T,, where T, is a three dimensional irrep of the cubic group.! Conversely, each

IThere is a parity symmetry on the lattice just as in the continuum, so all states come with an
additional parity label. The scalar and tensor glueball operators have positive lattice parity, and
thus must correspond to positive parity continuum glueballs.
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cubic group irrep receives contributions from an infinite tower of SO(3) irreps: e.g.
Ay~ J=0,4,6,..,. F~.J=2,456,..,and Ty, ~.J = 2,3,4,5,6,.... Thus, if
we measure a two point correlator of the “scalar” operator of Eq. 121, and extract
the mass of the lightest particle, we do not know a priori whether it corresponds in
the continuum to a particle with spin-0 or with spin-4, etc. We must assume that
the lightest particle has the lowest spin. We can test this assumption by comparing
the results in different channels. For example, if the lightest states in the £ and T,
irreps are different polarizations of the same tensor glueball in the continuum limit,
their masses must converge as a — 0. This indeed seems to happen.

Exercise: Show that in the strong coupling limit the scalar glueball mass is

s
m, = —4In(—=) . 123
J= () (123)
Use this to extract a S-function. How does this compare to that obtained from the
string tension?

6.4 Perturbation Theory and the Continuum Limit

It is important to understand the stucture of lattice perturbation theory (i.e. the
expansion about ¢g? = 0), for several reasons. First, it tells one how to take the
continuum limit. Second, it is a crucial part of some phenomenological applica-
tions of lattice QCD, those in which one calculates the matrix elements of external
operators (e.g. those of the electroweak effective Hamiltonian) between hadronic
states. Third, it allows one to relate lattice and continuum coupling constants, and
in this way use non-perturbative calculations of the spectrum to predict the value of
as(My) measured in high energy perturbative processes such as jet cross sections.
Recall the form of the pure gauge lattice action

ReTrP, 2
Sgauge = _B Z TD = Z ReTrP. (124)
O c 9 o

We will expand in powers of g2 = 0. In this limit the plaquettes all tend to the unit
matrix, P — I, so as to maximize the trace and thus minimize the action. This
is strictly true only in finite volume—a point I return to below. But P — I does
not imply that U, , = I, only that the U’s must be gauge equivalent to the identity
configuration. For example, if we start with U, , = I everywhere, and do a local
gauge transformation, we will find U, , = VnVn}}Jm, which can be as far as we want
from the identity. The plaquettes, which are gauge invariant, of course remain at
P = 1. We would like to expand the U’s about I, but to do this we must fix the
gauge, just as in the continuum. This is in contrast to numerical simulations (and
the strong coupling expansion) which do not require gauge-fixing.

One choice of gauge-fixing condition is to maximize

S ReTr(U,,.) . (125)

1
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This brings the U’s as close to the identity as possible on average. It is the lattice
Landau gauge. In an actual simulation at finite g2, there are many maxima of
this function which is nothing other than the Gribov ambiguity on the lattice.
This makes it problematic to use this condition in a non-perturbative simulation—
a subject receiving considerable attention at present [10]. As in the continuum,
however, there is no Gribov ambiguity in perturbation theory.
Assuming we have fixed the gauge appropriately, we can expand the links about
the identity
U,

g = €9 =1 g A, (n) — 1" A% (n) + ..., (126)
where the first equality defines A,. For notational simplicity, I have set a« = 1 and
put the field A, at the site n and not at n 4 4. Using this expansion, we find

(essentially a repeat of the derivation of the lattice action)

Sgauge = D5 TH(AFA(n) — AFAL(n)) (AL Ay (n) — AFA,(n))] +0(A%)
= Su +0(A%), (127)
where

Using “summation by parts”

Zg )AL h(n) = =3 (A, g(n)h(n), (129)

n

where
A gn)=g(n)—gn—p), AFA gn)=A Ag(n), (130)
we find
like a O
——
Sae =2 T (A A)AA)  —A, AAT A (131)

remove by gauge-fixing

To remove the unwanted term (which, as in the continuum, makes the quadratic
term in the action non-invertible), we follow the lattice version of the Fadeev-Popov
procedure. We assume a gauge condition of the form

fn(U) = ay, Vn, (132)

where f, is a function only of the link matrices adjacent to the site n, i.e. those U’s
which are rotated by the gauge transformation matrix V,,. A useful quantity is the
Jacobian

O fn
J,(U) = |det U)l. 133
(U) = |det Z2](0) (133)
We consider the functional
I(V,a) = /HdUWP Soess O T [5(fu(UY) — 00) Ju(UY)]],, (134)
T, n
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where UY means U after gauge rotation by V. Despite appearances, I(V, ) does
not depend upon V. This is because dU = dUY and Syauge(UY) = Sgauge(U), s0 we
can change variables to U’ = UY and remove all reference to V. Furthermore, the
functional is constructed to satisfy

/HDVnI(V, Q) = /HdUn,”e’Sf?“ge — 7. (135)
n n,u

Since we use a normalized group integration measure ([ dU = 1), it follows that
Z = IV,ay,) for any V,a,
x H/dane:ﬁ(“%)[(l,an)

ghost
———

- / [ dUp e S0 ¢ X WP ] g, (U) - (136)
s gauge-fixing "

The product of jacobians can be written in more familiar form as

1;[ Jo(U) = det l%l : (137)

Now we return to the choice of gauge condition. It is convenient to write it in
terms of A’s. The simplest and most commonly used choice is

fo=S A, Ay(n), (138)

the discrete version of 9,4,. As advertized above, this does involve only the links
emanating from the site n. The resulting gauge-fixing term cancels the unwanted
part of S 42
Saz+ Sy =— Z Tr[A,,A;A:AV] (139)
nuy

This is the lattice version of Feynman gauge.

Exercise: Show that the lattice gluon propagator in Feynman gauge is

—obe (140
4%, sin” (3°)
where a,b = 1,8 are color indices. The denominator is the lattice version of k2.

If instead we take f, = v>,A A,(n), and send v — oo, we obtain lattice
Landau gauge. If you think about the Fadeev-Popov procedure, you will see that
this limit amounts to setting >, A A,(n) = 0. This is nothing other than the
differential form of the condition Eq. 125, expressed in terms of A’s, where we keep
only the O(a) term.
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To complete the construction of lattice perturbation theory, we need the expan-
sion of the measure

AUy, o ] dAj x (1 + higher order terms, not needed here) . (141)

a=1,8

Thus calculations proceed just as in the continuum, except that (i) integrals are
automatically regularized in the ultraviolet because (reinserting the a)

o

and (ii) the form of the propagators and vertices are altered. In particular, there is
an infinite sequence of vertices coming from the expansion of Sy,,4. in powers of A

e S

and a similar infinite tower of vertices involving ghosts. We could do all the familiar
calculations of perturbative QCD using lattice regularized perturbation theory in-
stead of, say, dimensional regularization. Power counting for UV divergences works
as usual [11]. It would just be very messy.

Let me consider, schematically, the calculation of the [-function. To do this
we calculate gg(p), the renormalized three-point function with a definite choice of
external momenta having magnitude ~ p. At one-loop the graphs are

where the last diagram (the “tadpole diagram”) is specific to the lattice. The
diagrams are finite—ultra-violet divergences are cut-off by the lattice spacing, infra-
red divergences by the external momenta. The result has the form

gr(p) = g {1+ g°[=BoIn(ap) + C* + 0(a’p"In(ap))] + 0(¢")} - (143)

This should be reliable as long as 7/a > p > Aqcp. The upper limit must be
satisfied so that cut-off effects (such as that proportional to (ap)? in Eq. 143) are
small. The lower limit ensures that g(p) is small enough that perturbation theory
can be used.
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The form of Eq. 143 is the same for all regulators in particular, the constant
Bo is the universal first coefficient of the S-function

1
By = gag7—r55(11N612J\ff). (144)

It governs the way in which gg(p) decreases as p increases

ng(P)
dinp

= —Bog®[1 + 0(g?) + 0(a?)] . (145)

a7g

What differs between regulators is the value of the constant. In particular, the
tadpole diagram, which is specific to the lattice, contributes only to C; and not
to [p. This is because the tadpole loop is quadratically and not logarithmically

. 4
divergent: a? % x 72, where the factor of a? comes from the vertex.

6.5 Continuum Limit of Pure Gauge Theories

We can use the perturbative result Eq. 143 to understand the “quantum” continuum
limit. We want to take this limit in such a way that physical quantities, evaluated
at definite physical momenta, remain fixed. In perturbation theory, gg(p) is such a
“physical” quantity. To keep it fixed, we must vary the bare lattice coupling g with
lattice spacing:

d d
9D o o 9 gt 4 0(g?) + 0(a?)]
i(L
05 o o) + o)
= % = —2fgIn(ala)[1 + 0(g%) + 0(a)], (146)

where A, is the integration constant. If ¢ is small enough that we can trust this
calculation, it tells us how a must be varied with g%: al;,; = exp(—1/2559%).

Exercise: show that including the next order term in the g-function

dg 3 5 7
: : 14
Tina = Bog® + rg” + O(g") (147)

leads to

@A — exp [— ] (6280) PR [1 + 0(g2)]. (148)

25092

- 2
(The inclusion of f, 125 o0 the right hand side is a convention.) Here I am
assuming that O(a?) terms can be ignored.

There are a number of important features of this result.
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e The integration constant A, is not determined i.e. we do not know a priori
what value of @ is associated with, say, ¢° = 1. This must be determined by
comparison with experiment. It turns out that (in the quenched approxima-
tion discussed in Mackenzie’s lectures) a(g? = 1) ~ 0.1 fm.

e Identical equations define a A-parameter in any regularization scheme, e.g.
there is a Avowm, a Agg, ete. These all serve the same purpose, that of speci-
fying what the coupling constant is in the given scheme at a particular scale.
We can use perturbation theory to relate the A-parameters (i.e. the coupling
constants) in different schemes. See below.

e Numerical simulations are restricted to a range of lattice spacings which is
roughly 0.2 fm > a > 0.05fm at present: O(a?) errors become too large above
the upper limit, while the lattice volume (N,a, where N; is the number of
points across the lattice) becomes too small to contain hadrons below the
lower limit. The rapid decrease of a as ¢ — 0 means that this corresponds to
a very small range of g2. In the quenched approximation, it turns out to be
5.7< <65

We expect the pure gauge theory to have a spectrum of glueballs, with “physical”
masses my,. (Physical is in quotes as the real world is not a pure gauge theory,
though we can imagine that it might have been.) We calculate these masses in
lattice units (numerically, say), at a number of values of g?. To have a continuum
limit they should behave as

] (6 F1+0() + 0], (149)

_ _ Mgm
Miat,n = AMygp = exp | —

Ajar 2609?

where T have reinserted the expected O(a?) corrections. This equation is quite
remarkable. The masses my,;, are non-perturbative—the RHS of the equation has
an essential zero at ¢g> = (0 but, using perturbation theory, we can predict how the
masses decrease as g — 0. Strictly speaking, what we are assuming here is that
there is a continuum limit in which both perturbative quantities (such as gr(p)) and
non-perturbative quantities simultaneously have well defined limits. Another way
of saying this is that all dimensionful quantities must be proportional to Ay, as
there are no other scales in the theory. Aside from corrections which fall as O(a?),
the output from simulations is a set of pure numbers ¢,

=, . (150)

I should mention that there is a small segment of the lattice community which
does not accept the above[12]. It is logically possible that there is no confinement
and that ¢, = cgue = 0, etc. How would this happen? We know that there is
confinement for strong coupling, and numerical simulations extend this result up to
B ~ 6.5. Furthermore, in the region g ~ 6 — 6.5 the expected dependence of masses
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on ¢g* (Eq. 149) has been verified (as long as one implements perturbation theory
correctly[13]). Nevertheless, it remains possible that there is a phase transition at
weaker coupling, beyond which the ¢, = 0.

There is a potential confusion that I wish to dispel. If we calculate o and m, , in
perturbation theory, we find that they vanish, to all orders in ¢g?. This is consistent
with Eq. 149, as the result is non-perturbative. But how does perturbation theory
fail to get the correct result? The point is that perturbation theory assumes the link
matrices U, , can all be rotated to lie close to the identity. This is false on scales of
&= % o exp(1/28pg?) or greater. Once we get out to these length scales, important
non-perturbative fluctuations are occurring, those that build up the hadrons. This
is not important for g (p), however, as long as p > m, for then gz (p) is only sensitive
to distances much shorter than 1/m.

6.6 Comparison to critical phenomena

There is a large overlap between the analyses of critical phenomena and the con-
tinuum limit of lattice theories. As a critical temperature 7, is approached, the
correlation length, defined by the two point function of some operator,

(O(1)0(0) ~ e %, (151)

diverges as £ = |T'—T,|™". The correlation-length exponent v is one of a number of
critical exponents. If there are no other scales (“relevant parameters”) all correlation
lengths are proportional to £. The lattice granularity becomes irrelevant as & — oo,
corresponding to a continuum limit.

In this way of looking at the continuum limit, we hold the lattice spacing fixed,
and adjust the coupling T such that the length scale of physical quantities diverges.
This is not the way we are used to thinking about the continuum limit of lattice
theories. Instead we keep physical sizes fixed, and imagine reducing the lattice
spacing. The viewpoints are, however, entirely equivalent.

The detailed form of the critical behavior does differ for a gauge theory. First,
there is the trivial change of using replacing 7' with ¢?. Second, we know that
g. = 0. But most importantly, the power law divergence is replaced by

£ =1/m o< exp[1/2fug°], (152)

i.e. an essential singularity.

6.7 Relating lattice and continuum coupling constants

An important application of perturbation theory is to relate coupling constants in
different schemes. I will discuss how this works for an SU(3) pure gauge theory—
the generalization to QCD involves simply changing some numerical factors. I am
poaching somewhat on the subject matter of Paul Mackenzie’s lectures, but I can’t
resist as the result is one of the present triumphs of lattice QCD.
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Physical quantities must be independent of the regularization used to define the
theory. Thus, if we calculate the renormalized coupling gr(p) in the MS scheme,

gr(p) = gM—S{l i lBon() + O+ o<g4>} , (153)

and equate it with the lattice result, Eq. 143, we find the relation between the
couplings in the two schemes

9= gus() $ 1+ GL(CVS — CF) +ByIn(pa)] + 0(g*) + O(a?) 3 . (154)

At this order, one can use equally well use g* or g2 in the correction term.

This correction is quite large—if we take g = 1, a typical value in present sim-
ulations, corresponding to 1/a &~ 2 GeV, the lattice value of ¢? is 47% smaller than
gris(i = 1/a)?. The size of this correction is well understood [13]—it is mainly due
to the tadpole diagram. This large correction means that only one of the coupling
constants can be a good expansion parameter for quantities involving momentum
flows of p ~ 2GeV. Experience with perturbative QCD indicates that expansions
in ayg = 91%4_3/47r work well for jet cross sections and other such quantities. Thus
a(a = 1/p) = g*(a = 1/p) /47 will be a poor expansion parameter for such pro-
cesses, and is likely to be poor expansion parameter in general. This is true in
practice— 1- and 2-loop perturbative results for small Wilson loops, expressed in
terms of a4, disagree significantly with results obtained from numerical simula-
tions. Lepage and Mackenzie have shown, however, that the perturbative results
work well if reexpressed in terms of agg[13]. See Mackenzie’s lectures for more
details.

Using an improved form of Eq. 154 suggested by Ref. [13], one can convert
reliably from 4 to agg. If one has established the lattice spacing a by comparing
a physical quantity such as f; to its lattice value, a = f!at/fPh¥s then the outcome
is a prediction for agg at a known physical scale. This can then be run to any other
scale using the renormalization group. The latest result is [14]

o2 (my) = 0.115 4+ 0.002 155
MS

where the error is claimed to account for all systematic and statistical effects. This

is a very impressive result, and is consistent with the latest world average obtainde
from comparisons of high-energy experiments with perturbative expansions[15] a%(m 7) =
0.117 4 0.005. This is a nice demonstration that QCD works simultaneously in the

perturbative and non-perturbative regimes.

7 Fermions on the Lattice

Fermions are notoriously difficult to discretize in a satisfactory way, because of
the so-called “doubling” problem. I devote the last lecture to an explanation of
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this problem, and a brief discussion of possible resolutions. I mainly focus on
free fermions, because most aspects of the problem can be understood without
coupling them to gauge fields. I work entirely in Euclidean space it is worth noting,
however, that the problem cannot be overcome by working in the Hamiltonian
formulation where one discretizes space but not time.

Let me begin with a reminder of the Euclidean-space fermion action. In Minkowski-
space the action is

Sy = /IE(Z@ — mphys) Y, where 1= Wv?w, R P (156)

Sur is hermitian because the Dirac matrices satisfy 'yj\‘/'y?\f = 7. Now go to
FEuclidean space by the Wick rotation zy — —ix4, so that

— . 0 ;0
Su = /xd%Mlb(W?wM g Mphys ) —
— 0 , 0
Se = [ 't 5 + Vg + M)V (157)
where the Euclidean Dirac matrices are

Ve =V Ve ==, Ve n} =20 A= (Vi) (158)

Thus the Euclidean action is Sg = — [ (@ g + mynys)1b. From now on I will drop
the subscript E.

In the functional integral representation for the Euclidean partition function,
fermions are Grassman variables, and we must treat 1) and 1 as independent fields.
The rules of Grassman integration then yield

7 = [1aulld] expl [ DD + mpnys)v] = det(@ + mpnys) (159)

Gla,y) =27 [[A0)dG]expl [ D@ + myns)¥] (@) 0(y) = | lay - (160)

P + Mphys

The appearance of the determinant in the numerator, rather than the denominator
as for scalar fields, corresponds to the minus sign for fermion loops. For a gen-
eral Greens function the anticommuting nature of Grassman variables ensures the
correct relative sign between different Wick contractions.

Now to the issue of discretization. We place fermions and antifermions on sites

a*?(x) = pn, P P(x) =9, (161)
Possible options for the derivative are
A:wn = wn+u — Yn (A) ,
a*20,0(x) = { ALy =ty — Yy (B), (162)

B
A;ﬂ»bn = %(A+ + Ai)wn = %(wnﬂt - anfu) (C) ‘
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When discretizing the scalar kinetic term (|0,6/*), (A) and (B) are equivalent, and
preferable to (C), because they are more local. For fermions, note that the Euclidean
@ is anti-hermitean. This is a property we wish to preserve, as it traces back to
the Hermiticity of the Hamiltonian. This eliminates options (A) and (B), since**

(AN =—(A,). (163)

If we insist on nearest neighbors, we are forced to use (C), which leads to
[50 +mumst — 500 ss — ) + om0 = Sy, (164)
h n, U n

where the lattice mass is m = myyysa. This straightforward discretization gives rise
to what are called “naive” lattice fermions.

To study naive fermions we look at the two-point function, G = 1/(¢# +m). As
in the continuum, ¢ is diagonal in momentum space. Introducing

T Ak g — " Ak
dn= [ Gy ) and g, = [ e ) (165)
we find (f, = J%, d'k/(2r)")
Sy = [ BN s+ mi(). (166)

Note that the discrete form of k, is s, = sink,, rather than the 2sin %” we found
with scalars. Thus the propagator in momentum space is

1 —i5 +m

G(k) = = A . (167)

Cif+m s m?

If we take the continuum limit with fixed physical mass and momenta, then k£ =
kphysa — 0 and m = mypysa — 0. We can expand the sine, s, = aky, ynys(1 + O(a?)),
yielding

— YKy phys + Mphys

aG (k) = (168)
kzhys + mihys
This has a pole at k2, = = —m>, ., representing the fermion that we expected to

find.

Now we come to doubling. The lattice momentum function s, vanishes for
k, = m as well as k, = 0. In the neighborhood of the momentum (7,0, 0,0), if we
define new variables by k| = — ky, ki = k;, i = 2 — 4, then

=iy, ko, +m
k2 + m? '

G(K) ~ (169)

**One can see that (A) and (B) are unphysical by noting that they correspond to propagation
only forwards or backwards, respectively, but not in both directions. They cannot yield a Lorentz
invariant Minkowski theory.
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To bring the propagator into the standard continuum form, I have introduced new

gamma-matrices, 7] = —v1, 7, = 7, ¢ = 2 — 4, unitarily equivalent to the standard
set

Yo = ()7 (7u75)" (00 sum on pa). (170)
Equation 169 shows that there is a second pole, at k> = —m?, which also represents

a continuum fermion. This is our first “doubler”.ft
The saga continues in an obvious way: s vanishes if each of the four components
of k, equals 0 or w. There is a pole near each of these 16 possible positions. Our
single lattice fermion turns out to represent 16 degenerate states.
To further illuminate the doublers let us Fourier transform the propagator back
to Euclidean time \ 4
- 2 dky ;.. —if +m
G(k,ny) = / P T gikana P T 171
(k1) Joz 27 s2 + m? (171)
To evaluate the integral we first locate the poles. These occur when —s3 = §-5+m?.

Thus sin(k4) is pure imaginary, implying
ky=nm +iFE, n=integer, E = +sinh '[V§ 5+ m?]. (172)

The relevant poles are thus as shown here

QY

3
b ® I

]

We can close the contour as shown because of the periodicity of the integrand. If
ng > 0 we pick up the two upper poles, while if ny < 0 we pick up the lower poles.
A little work leads to the result

- m £ sinh [Eyy| —i7-§ 4
G(k = nal
(k1) sinh[2F] ‘
m sinh [E’Y[]] - 2’7 . g —E|n4]
e Plns 173
sinh[2E)| (Z1)e ’ (173)

where the + (—) sign corresponds to ny > 0 (< 0). To interpret this result, recall
the expression for the two point function in terms of the transfer matrix, Eq. 67.

T Note that due to the periodicity of the lattice one can shift integration in momentum space from

7 to ff:ﬁ, so there is no problem of k' lying near the boundary.
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One can derive an analogous result for fermions

-

G (R, ) = (0] (F)T™ 450 [0) o 37 (0] (F) p) [2Am (174)

p

where I have chosen 1y > 0, and A, are the eigenvalues of the transfer matrix. The
two terms in Eq. 173 thus correspond to two states. This is the doubling in the
time direction. Note, however, that A\, = £ exp(—FE), so the transfer matrix is not
positive, and we cannot define a Hamiltonian by Ha = —InT. We can overcome
this problem by noting that the transfer matrix for two steps in the time direction
is positive, so that a sensible definition of a hermitian Hamiltonian is

T = ¢ 2a, (175)

In this case our two states have the same energy F.

The remaining octupling in the space directions is hidden in the expression for
E. FE has a minimum (sinh(F),, = m), when § = 0, which occurs for eight values
of k in the integration range: k= (0,0,0), (m,0,0), etc. Each of these corresponds
to a fermion at rest, whose mass, in the continuum limit is m/a = mppys.

7.1 Generality of the doubling problem

It is not, in fact, the replication of fermions which is the hard part of the problem,
but rather the way in which the chiralities of the states work out. If m = 0, then
we can introduce a chiral projection into the action

Y= V= (4 75)/2, (176)

which in the continuum restricts one to left-handed (LH) fields. On the lattice, the
pole near k£ = 0 is then LH. The second pole I uncovered, however, represents a RH
field. This is plausible, because

Vs =NV9Vs Vs = —V1VeYsVa =~ = (14+79) = (1— ). (177)

To actually show this one must consider the coupling to external currents.

Extending this analysis, it is easy to see that the chirality flips sign for each of
the components of k that is near m. Thus one ends up with eight LH and eight
RH fermions. This means that, when one introduces gauge fields (to be discussed
below), one always obtains a “vector” representation of fermions, i.e. one in which
LH and RH fields lie in the same representation of the gauge group.

How general is this result? Karsten and Smit have shown that LH and RH
fermions always come in pairs[16], provided

e @ is discretized into an antihermitean operator, so that its eigenvalues are
imaginary;
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Figure 4: Possible forms of the function F(k).
e the interactions are local, which implies that the propagator is continuous in
momentum space;

e the space-time volume is infinite, which implies that momentum space is con-
tinuous;

e the action is translationally invariant, from which follows that momentum
space is periodic (a torus with period 27 in each direction).

This result is easy to understand in 1 dimension. The propagator is of the form
Gt =iy F(k) (178)

where k£ = k; is the single momentum variable, and F' is real, continuous function of
k with period 2w. We are interested in the poles of G, and thus the zeroes of F'(k).
Possible forms for F' are shown in Fig. 4. It is clear that, if there are only first order
zeroes, there must be an even number in the interval [—7/2,37/2]. Furthermore,
they come in pairs with opposite slopes. Following the above discussion, the slope
corresponds to the chirality, so one always has an equal number of LH and RH
fermions. The only alternative is to have a higher order zero, e.g. a zero with
%—IZ = (0. This, however, gives a double pole in G, which does not correspond to a
physical particle.

Returning to four dimensions, it is worth noting that one can truely reduce the
issue to a doubling problem. Wilczek has given an example with only two states,

at the price of using an action which breaks Euclidean rotation invariance [17].
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7.2 Consequences of the doubling problem

What are the consequences of Karsten and Smit’s result?

e Onme cannot discretize a chiral gauge theory, i.e. one in which the LH and RH
fermions lie in different representations of the gauge group. These theories
are well defined perturbatively, because one chooses the representations so
that triangle anomalies cancel. But no satisfactory non-perturbative regulator
exists, and the Karsten-Smit result rules out a simple lattice implementation.
This means that one cannot discretize the electroweak sector of the standard
model, which is chiral. If one tried, each (e, vy,) doublet, for example, would
come with an (eg, vg) partner, which is not part of the standard model.

e Lattice regularization automatically takes care of the fact that theories with
anomalous chiral representations of fermions (e.g. SU(N,) with a single left-
handed fermion) cannot be defined.

e One cannot discretize QCD with (n;) massless quarks, in the following sense.
Such a theory should have an SU(ny), x SU(ny)g chiral symmetry, under
which the LH and RH quarks rotate with independent phases. But the lattice
fermions are all begotten of the same lattice field, and so cannot be rotated
independently.

In summary, then, the lattice theory lacks chiral symmetries.

Can we evade the general result? Can we simulate chiral theories? Can we sim-
ulate QCD with massless quarks? Much effort has been devoted to these questions.
Notable among the attempts are:

e Avoid the Karsten-Smit result using a random lattice [18]. This breaks trans-
lation invariance, and thus the necessity of periodicity of the propagator. This
idea is very difficult to analyze; even free fermions must be studied numeri-
cally. Little progress has been made see Ref. [19] for a recent study.

e Use a non-local derivative, which allows the Fourier transform to be discon-
tinuous, so, for example, one need have only one zero in F(k). An example
is the “SLAC derivative” [20]. This fails when one introduces interactions
with gauge fields the doublers reappear because of the non-locality of the
interactions[21].

e One can explicitly break chiral symmetry right from the start, and aim to
recover it only in the continuum limit. This is, after all, what one does with
the rotations and translations. For fermions in vector representations, this
is the approach originally taken by Wilson, which I discuss in more detail
below. For chiral theories, this is the approach advocated by the Rome group,
and involves breaking the gauge symmetry at finite lattice spacing [22]. The
approach has been shown to work in low-order perturbation theory. What

45



one is really interested in, however, is a non-perturbative simulation, and the
theory is too complicated to simulate at present.

e The most exotic and interesting proposals are the descendants of Kaplan’s
“domain-wall fermions”[24], which all involve an infinite number of extra reg-
ulator fields. For a summary see Ref. [25]; the methods appear to work if
there truely is an infinite number of fields. As for practical methods (neces-
sarily restricted to finite numbers of fields), things are not yet clear. It does
appear that one can simulate QCD with massless quarks, maintaining a gen-
uine chiral symmetry. The question of whether the method is practical for
chiral theories is being hotly debated.

It is worth noting that, even if a viable method for discretizing chiral fermions on
finite lattices is developed, simulations will be hampered by the fact that the action
is complex for such theories. This means that the factor exp(—S) in the functional
intergral cannot be interpreted as a probability.

What does one do if one wants to simulate QCD? In practice, one either gives up
on chiral symmetry entirely, and uses Wilson fermions, which I discuss in the next
subsection, or one uses “staggered” fermions. Omne can show that naive fermions
brake up into four sets of four Dirac fermions, of which three can be ignored. The
result is staggered fermions, which correspond to four degenerate fermions in the
continuum limit. Such a theory, if m = 0, would have an SU(4), x SU(4)p chiral
symmetry. At finite lattice spacing, this is broken down to a flavor non-singlet
axial U(1) symmetry. This is not much, but it is enough to guarantee that m is
only multiplicatively, and not additively, renormalized. It is also important when
calculating matrix elements which are constrained by chiral symmetry, such as
K — nm amplitudes. Indeed, staggered fermions are the method of choice to study
such quantities. For futher details of staggered fermions, see Ukawa’s lectures, or
Ref. [26].

7.3 Wilson fermions

I end these lectures with a description of the fermions used in most present simula-
tions of QCD.

The simple way to understand why doublers occur is to note that the lattice
derivative A*), = 1n4, — ¥n—, is small both for functions that are smooth, and
for those that alternate in sign but are otherwise smooth. By contrast the bosonic
derivative

AZA;% = wn+u o 277/}n + wn,u (179)

is small only for smooth functions. Thus we try adding the “Wilson term”

r—
Sw =2 0uln At (180)
ny
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to the action, yielding
Sp=-> 1, m—i—Z% )tn + Sw . (181)

n

Exercise: show that the momentum space propagator is

1
B (152
_ —z,é-l—(m—%fc) (183)
52+ (m + Tk?)2

where s, = sin(k,), and k = 2sin(k,/2).

If k, = m, then s, = 0, which is the cause of doubling, but kAu = 2. Thus the
would-be doubler poles picks up an effective mass meg = m + 2rn, where n is the
number of components of k, close to 7. If one keeps r finite in the continuum limit,
when m = mpy,a — 0, the effective lattice masses of the doublers stay finite, and
so the effective physical masses become infinite. Thus only the single Dirac fermion
corresponding to the pole near k = 0 survives in the continuum limit.

Exercise: confirm this discussion by looking at the propagator as a function of
FEuclidean time. Take r = 1, which simplifies the calculation, and is the value used
in most numerical simulations. One reason for this is that, for » = 1, one can derive
a hermitean positive transfer matrix [27].

The drawback with Wilson fermions is that chiral symmetry is explicitly broken
by the Wilson term, even when m = 0. This symmetry places important constraints
on matrix elements involving pions, kaons and 7)’s, constraints which are therefore
absent on the lattice. This makes it difficult to calculate some of these matrix
elements, and for these one can do better with staggered fermions. The symmetry
is regained in the continuum limit, because Sy vanishes: Sy ~ a [ 0.

It is straightforward to make the action gauge invariant by inserting appropriate
link matrices in the derivatives

En'lv/}n+u — EnUn,uwnJru 3 En”v/}nfu — EHULN,N%W . (184)

For r = 1, the total gauged fermion action is thus (in d dimensions)

Sp = = X Tath(mtd) + S (b + Tt

= _ZQ/) Uy, +KZ 1_’)’# n,uw;+u+a;(1+’)’u)UT uud)n u] (185)

where I have introduced a rescaled field and a hopping parameter x

/7 1
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The last form of the action is that used in most simulations. The quark mass is
specified indirectly by m = 1/(2k) — d. Large mass corresponds to k — 0, and in
this limit one can calculate propagators using a hopping parameter expansion very
similar to that discussed above for scalars.

The quark mass m vanishes when k = k. = 1/2d, so this is the critical value
to which x should be tuned to take the continuum limit with free fermions. Gauge
interactions additively renormalize k.—for finite a one must determine x. from the
simulation itself. This is typically done by finding the value at which the pion mass
vanishes, since m2 o m,. This renormalization is an example of the Applequist-
Carrazone decoupling theorem. In the presence of interactions, one can decouple the
doublers, but they cause finite renormalizations in the parameters of the remaining
effective action. There is no reason why m (and thus ) should not be renormalized
additively, since there is no chiral symmetry when m — 0.
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