
Accepted for publication at CHASE 2015

The “Pair” as a Problematic Unit of Analysis for

Pair Programming

David Socha, Kevin Sutanto

Computing and Software Systems

University of Washington Bothell

Bothell, USA

socha@uw.edu, kevinsnr@uw.edu

Abstract—This paper explores the problematic nature of using

an isolated pair as the unit of analysis in studies and evaluations

of pair programming. Using empirical data from an

observational case study within a software development

organization, we show pairs spending 20% of their pairing time

interacting with people outside the pair. These interactions,

which are encouraged by this organization as part of its highly

collaborative system, represent important value exchanges with

people outside the pair. This suggests that research on pairs in

isolation may not be indicative of how pair programming works

in situ when enacted by teams accomplished in the practice, and

may misrepresent the net value proposition of pair programming.

Index Terms—Pair programming, software design, case study

I. INTRODUCTION

How do we represent the work of software development to

ourselves and others, and how might these representations

influence how we study and evaluate such work? For instance,

there is abundant research on pair programming, yet the

research is not conclusive on whether pair programming is an

effective practice. This paper suggests that one reason may be

that the representation of pair programming, the conception of

what is being studied, may itself be problematic, not in the

definition itself, but in what it makes visible and what it

glosses. In Making Work Visible [1], Suchman states that

people who do particular forms of work have a special

relationship not only to this work but to its representation, and

that such representations always have political and social

ramifications both inside and outside the settings in which the

work is undertaken. How do researchers and practitioners

represent pair programming, and how might those

representations influence how we investigate the nature of pair

programming and its value proposition? How does it influence

the scope of our inquiry, the definition of what is “in” the

scope of study, and what is “out”?

We explore these questions in the context of ethnographic

data from an empirical study of software development

practices that we have been investigating for the last two

years, using analyses of pair programmers to highlight the

mismatch between how work is sometimes practiced and how

it is idealized and normalized in the literature. We argue that

normalizing particular representations of practice may be

problematic for research, education, and practice.

These results have implications for the methods by which

we study pairing, for how we measure the value of pairing, for

how organizations configure their workspaces, and for how we

educate students about pairing.

In the next section, we summarize some of the literature on

pair programming, highlighting its normative character. We

then describe our data collection and analysis. We discuss

potential ramifications, and conclude by reiterating our

argument. In the balance of this paper we use the term

“developer” as a synonym for “software developer”.

II. BACKGROUND

Much of the interest in pair programming can be dated to

Kent Beck’s formulation as one of the practices in Extreme

Programming. Beck defines the key characteristic of pair

programming as “[a]ll production code is written with two

people looking at one machine, with one keyboard and one

mouse” [2]. In a single sentence, this both widens the unit of

production from a single programmer to a pair, and isolates

this pair from other members of a software development team

and the larger organization. Perhaps as a result, a considerable

amount (though not all) of practitioner and academic research

has studied pair programming solely in terms of inter-pair

interactions, asking such questions as what roles the members

take on in relation to one another [3], [4], what technological

tools can support distributed pair programmers [5]–[7], the

quality of code produced from pair programmers [8], and

similar. That is, the unit of analysis is taken as identical with

the unit of production: the pair itself. This is so taken for

granted that it is never remarked upon, let alone challenged.

For it might seem somewhat absurd to consider another unit of

analysis for investigating pair programming.

Furthermore, this same focus on the pair as an isolated

entity carries over to normative prescriptions about using pair

programming for educational and training purposes. For

example, Williams and Kesler begin their book Pair

Programming Illuminated [9] (“written … for software

development team members and their managers … [and] for

educators who would like to try pair programming with their

students”) with: “At face value, pair programming is a very

simple concept. Two programmers work together at one

computer on the same task. Done.” This is the alpha and the

omega of pair programming.

But is it? Is the pair the most important unit of analysis that

we can use, especially for pair programming in organizational

settings? In Kent Beck’s book on Extreme Programming, he

stresses the importance of the team, of what Teasley et al. term

“radical collocation” [10]: “team members need to be able to

see each other, to hear shouted one-off questions, to

‘accidentally’ hear conversations to which they have vital

contributions.” [2, p. 79]. Later in that book, Beck states that

“If you absolutely can’t move the desks, or the noise level

prevents conversation, or you can’t be close enough for

serendipitous communication, you won’t be able to execute XP

at anything like its full potential” [2, p. 158]. Beck conceived

of pair programming not as an isolated practice, but as one of

a set of practices (the XP practices) supported by

organizational structures such as radical collocation.

There is much less research on the interactions between

members of a pair and other people in the organization, what

we term as extra-pair interactions. Such research often uses

terms such as interruptions [11] or disengagement [12] to

frame such extra-pair interactions, representing these

interactions as disruptions to the normal course of events, e.g.,

noting that workers “must contend with all manner of

disruptions” [11, p. 29]. The implication is that such

interactions are likely to be problematic to the pair’s

effectiveness, though Plonka notes that disengagement is not

always an undesirable behavior [12].

In the next section, we undertake an analysis of pair

programming where we widen the field of vision to include

not only the pair, but other software developers within the

same organization, all of whom are working jointly to produce

the same software product. In doing so, we highlight the

importance of extra-pair interactions, and thus call into

question the normative representations of pair programming as

simply a matter of “two programmers [who] work together at

one computer.”

III. METHOD

1.1 Data collection

The data for this study come from a research project using

video ethnography to explore how professional software

developers collaborate on their actual work in their workplace

[13], [14]. We collect and analyze videos and related data of

software developers collaborating in their organization, such

as when they are pair programming.

The data for this paper was collected at a 9 year-old

software development company in the Seattle area of the

United States. The company has about 50 employees and is

owned by a non-US parent company. The organization’s

product is a software system that helps friends and family

share information. It has over 13 million users, includes a

significant backend Software-as-a-Service (SaaS) component,

and has both a web-based version and client versions for

Macintosh, Windows, iPhone, and iPad.

Fig. 1. Locations of four pairing stations (circles 1-4) located near the huddle
(standup meeting) area and whiteboard wall (red lines). This paper focuses on

pairing station 1 recorded by four video cameras (A-like shapes).

All employees work in a single large room with no

dividers. The software developers in the organization use a

mix of extreme programming [2] and Scrum [15], as well as

other practices they have evolved. Fig. 1 shows a portion of

the floor plan in the organization centered on the developer.

That developer area has four “pairing stations” (circles 1-4),

each with two keyboards and two mice controlling a single

cursor and keyboard input on a single computer. When

pairing, developers sit side-by-side. During our initial data

collection, we configured fixed cameras at four different

locations within the pairing stations, each configured to record

for an entire day.

In total, we have collected approximately 400 hours of

video data of software development work in this organization.

The data include 24 hours of ethnographic observations done

by the first author over the course of seven visits from October

2012 through January 2013, augmented by field notes and

photographs. It also includes interviews of the VP of

Engineering and one developer.

This paper focuses on the interactions at a single pair

programming station (circle 1 in Fig. 1) over a 6:43 hour

period on January 24, 2013. The activity at that station on that

day was characteristic of the pairing activity we observed in

this organization. The 6:43 hour period is long enough to show

the nature of the types and variety of interactions we observed

in this organization.

A. Data Analysis

This paper focuses on the extra-pair interactions between

either of the two developers assigned to station 1 (see Fig. 1)

and any of the other developers in the organization. We used

interaction analysis [16] to analyze the videos in order to

discover and quantify things like how artifacts, gestures, and

voice mediate the process of software developers forming

what Clark calls common ground, i.e. the mutual knowledge

that people have about the setting, the task, and one another’s

state of knowledge [17]. During our collaborative and

independent analyses, we dynamically adapted the level of

analysis based upon the particulars in the video in order to

focus on the most interesting interactions.

We considered four different units of analysis: the

individual developer, the pair, the station occupied by a pair

for a pairing session, and the task being worked on by the

people at the station. We chose the pairing station as our

primary unit of analysis because our initial analysis indicated

that this unit provides the clearest representation of the totality

of interactions by the software developers as a whole. That is,

focusing exclusively on the pair would miss a large number of

interactions between software developers, many of which were

essential to a pair in completing their work. In addition, this

unit of analysis (the pairing station) represents the location to

which a particular task or topic is assigned within this

organization, even as developer pairings change and move.

Using the station as the primary unit of analysis also did not

make any a priori assumptions about the number of people

working on a task, or whether a pair might swap individuals

partway through a pairing session as described for some

organizations [18].

We measured both the intra-pair interactions, where the

members of a pair interact only with one another, as well as

the extra-pair interactions. We take an extra-pair interaction

to be the period of time when one of the developers at a

pairing station is visibly or audibly communicating with, or

engaged in the actions of, a person other than their partner at

the pairing station. In almost every case, the audio and visual

clues clearly indicated when an interaction started and ended.

In this data, every interaction started with a verbal exchange

between a developer at station 1 and another person. The

people involved in an interaction almost always physically

changed their body orientation or position to clearly be

engaged in the joint conversation or activity. Simply looking

at another developer was not used to indicate the start of

interaction, though it might indicate a previously started

interaction was not yet complete. We did not try to reason

about the invisible activity happening inside the participants’

heads. Instead, we focused on the “actual observable conduct”

[19, p. 21] that participants make publicly available and use in

structuring their joint work. These judgments, and our

interpretation of actions and utterances, were informed by the

first author’s expertise in software development gained from

19 years as a full-time software developer, manager, and agile

coach.

Fig. 2. An interaction score showing timing and frequency of extra-pair

interactions involving pair assigned to station 1.

The 6:43 hours of video from this day captured 2.5 pairing

sessions. The first two pairing sessions lasted 1:48 hours and

1:59 hours. The cameras caught the first 51 minutes of the last

pairing session, before the cameras were turned off and

removed. Each pairing session was preceded by a huddle, a

standup meeting among all software developers. In total, the

developers assigned to station 1 were active in pair

programming sessions for 4:38 hours of this data.

IV. RESULTS

Our main result is that a full 20% of the time, a pair was

engaged in extra-pair interactions, with only 80% of the time

being solely intra-pair interactions. From 10:02 in the morning

to 16:43 in the afternoon (6:43 hours) there were 29

interactions between the people at station 1 and people outside

of that pair, taking 56:25 minutes (20%) of the time spent in

the pairing sessions.

The interaction score in Fig. 2 shows the distribution of

these interactions over time and space. The height of each

activity bar shows the duration of an interaction involving the

developer whose initial is above the bar. The gray section

labeled “station 1” contains two columns of bars, one for each

of the pair of developers assigned to station 1. In this section,

white bars show when the developer was away from the

developer stations, perhaps on a break. Red bars show “catch

up” periods when someone (pointed to by the red arrow) was

being brought up to speed on the state of station 1’s work.

Gray bars show when the developer was active on station 1’s

work. Yellow bars show when the developer was helping a

different station’s work.

Activity bars to the left and right of the Station 1 section

show other developers interacting with the developers at

station 1. These bar colors indicate the station (see Fig. 1) that

those developers had been working at, as noted in the legend.

Sets of activity bars enclosed in dotted rectangles indicate

multiple non-station-1 developers involved in the same

interaction, and sequences of interactions related to the same

topic. The score also shows when the three huddles occurred;

one before each pair programming session.

Arrows originate at the person who initiated the interaction

and reach out to those involved. For instance Q initiated the

interaction with D and H at 10:26, and at 11:42 both G and S

requested help from both D and H.

These interactions occurred on average once every 9:35

minutes, though Fig. 2 shows that they often were clumped

together. Most of these 29 extra-pair interactions were brief

(see Fig. 3), with an average length of 1:57 minutes. Of the

52% that lasted for less than one minute, some were quite

short (see Fig. 4).

The number of interactants varied across these extra-pair

interactions: 10 (34%) included only one person outside of the

pair; 16 (55%) included both members of another; 3 (10%)

included more than four people (see Fig. 5).

Fig. 3. Durations of extra-pair interactions. Bin labels show maximum

duration for that bin.

Fig. 4. Durations of sub-one-minute extra-pair interactions.

Fig. 5. Number of people involved in extra-pair interactions.

What are these interactions like? Here is a more detailed

analysis of the simple interaction with Q starting at 10:26. It

starts shortly after the first pairing session began:

D: I don’t know how to do it.

H: You don’t know how you are doing?

D: I know about what I am doing, I just don’t know how to

do it all.

[D sits down, clicks on his mouse, turning off the

screensaver]

H: So, is the code that’s [checked] out on this machine?

D: Ah.

H: Or with [something]? But there’s been some work done

on the story, right?

D is bringing H up to date with respect to the status of D’s

work on the task they will be working on, an activity we term

a “catch-up”. At this point, the QA engineer (Q) interrupts to

ask for help with an issue she is having with a profile she uses.

D and H turn their chairs around and move away from station

1 to talk with Q about her issue. H says he will provide her

with a new profile, and the conversation concludes with:

Q: Okay.

H: Brilliant!

Q: Thank you. [Laughs]

D and H roll their chairs back to station 1 and continue to

talk about Q’s issue for a moment before returning to the

catch-up:

D: [to H] That probably will work.

H: [laughs] [something…] test flight. You just sort of beat

on it. Eventually it does what you want. Um.

H: Okay. What have you done?

D: Ah. There is a safe creation controller…

H: Yeah! We started on that. Cool. Yeah. And then…

The conversation continues with D largely answering

questions from H about the work that D has done up to this

point. After 2:21 minutes of this the conversation shifts to H

answering questions from D about how the code works and

possible ways to proceed, which we take as the point at which

the collaboration shifts from catch-up into figuring out what

how to proceed with the task.

What is the nature of this interaction? The catch-up

portions can be considered part of the design activities

included in Laura Williams’s definition of pair programming

as “a style of programming in which two programmers work

side-by-side at one computer, continuously collaborating on

the same design, algorithm, code, or test” [20, p. 311]. This is

the definition used in virtually all of the literature on pair

programming. But what about the interaction with Q? The two

developers are no longer working on their task, nor at their

pairing station, nor just in a pair, so it does not fit the above

definition of pair programming. It could be viewed as an

interruption to the pairing, something that interrupts work and

perhaps should be minimized. But do the people in this

organization represent this interaction as an interruption to be

minimized? And, as a researcher, are these extra-pair

interactions part of the material to collect when studying pair

programming?

In an interview, the VP of Engineering in this organization

noted that “Pair programming is a technique that is part of an

approach. […] We tend to work in a highly collaborative

fashion. And, yeah, pair programming is one of the core

techniques that we do as part of it, but it is only a part of what

is going on.” Pair programming is a separate concept in their

vernacular, but it is not represented as a separable activity; it is

represented as highly intertwined with other organizational

structures and practices.

For instance, they cluster the developer workstations in the

center of their organization to “maximize easy information

sharing both within and between groups” [21, p. 121] and thus

enable the ad hoc push and pull of audio and visual signals

across the pair’s membrane to other pairs and the rest of the

organization. The VP stated that “As a team we actually made

that choice. We said maximize interactions, ask questions right

away. We didn’t say wait until the two hour pairing session is

over before you approach one of these pairs. […] we prefer to

have the tradeoff go the other way. Pay the cost of context

switch and interruption because we think that it makes us

faster and better in the long run. It’s better to not have the

person who is blocked stay blocked.”

The value they placed on these extra-pair interactions was

further illustrated by a story the VP told about when they

realized there were too few extra-pair interactions: “We were

trying to ramp up our availability, dev availability, to other

parts of the company for questions and interactions ‘cause

noticed that the fact that we’re pairing all the time actually

created impedance to non-developers coming in and asking

questions ‘cause they felt that they were interrupting. […] they

didn’t want to interrupt and they didn’t want to come in and

ask even though they had important questions. […] So we

made a sign called Ask a Dev. It was like a giant arrow. We

[…] put it on a giant clothespin and we would set it on the

table […] and if there was a person who wasn’t paired up who

was a solo they would always make sure to sit it right next to

themselves so that it was immediately visible to anybody

walking by. ‘Oh I can talk to that person.’ But if there was a

pair and we didn’t have a solo we would make sure one of the

pairs always had it set next to them too. […] And then we’d

broadcast around the company ‘Hey. Come and ask us stuff

any time you want. It’s no big deal.’ That’s part of the good

things of pairing is that actually one of the persons can just

split off and talk to you and answer your questions and the

other person gets to keep going. Right?"

The “Ask a Dev” sign represented their valuing of extra-

pair interactions, even when the sign was next to a pair.

Instead of representing Q’s interaction as an interruption of D

and H’s work, this organization recognized that for Q this

interaction is a continuation of her work; that for her to wait to

get assistance would be an interruption. And that pairing

helped enable these interactions.

Most of the interactions were more textured than the above

example, fulfilling multiple purposes per interaction (e.g.,

coordination, design, accounting, and humor), and aligning to

multiple of the organization’s core values of “Consumer

Centric”, “Creative and Technical Excellence”, “Family

Oriented”, “Accountable”, “Transparent”, “Collaborative” and

“Fun” [21] which, themselves, are prominently written along

the top of the whiteboard wall next to the huddle area [22] in a

very visual representation of their value to this organization.

V. DISCUSSION

At one level, our results demonstrate that in this

organization pairs do not work in isolation, and are not

intended to work in isolation. There are frequent and ad hoc

interactions between one or more of the people in a pair and

people outside of the pair. In our study, pairs spent 20% of

their time interacting with people outside of the pair. This

suggests that studies of pairs in isolation may not reveal

important aspects of how pairs function, and that

measurements of the effectiveness of pair programming

should take into account these extra-pair interactions.

While these extra-pair interactions not “part” of pair

programming, this organization considers them an integral part

of what it means to do pair programming in an ecosystem of

practices. The value exchanges embedded within these extra-

pair interactions represent significant enough value for this

organization that they build structures and practices to

encourage them. The developers do not follow normative

notions that pairs are isolates; rather, they take a pair as a

typical starting point and a common stable point for the

complex work that they do. They treat the conceptual

boundary around a pair as a permeable membrane readily

communicating across it, create practices to encourage such

interactions, and naturally adapt the “membership” of the

“pair” in response to emerging needs in order to enable

effective decisions in a timely manner. This allows the

developers to readily take advantage of the larger

organizational context that informs and enables their work.

Given this, how could the value proposition of pair

programming in this organization be fully measured and

understood without attending to these extra-pair value

exchanges?

Furthermore, for these developers, communicating with

another pair, far from being an interruption, as so often

characterized in the literature on pair programming (e.g., [11]),

is considered to be part of the collaborative joint work for

which the entire team is collectively responsible. This is in

stark contrast to claims from others, such as Steve

McConnell’s Construx, whose list of “The 10 most deadly

mistakes in software development” [23] includes “Noisy

Crowded Offices: Developers are most productive in quiet,

private workspaces. Help them stay in the Zone by minimizing

distractions, interruptions and multi-tasking.”

How might we resolve the contradiction between these two

different views of interruptions? Consider the way that both

groups represent work. Steve McConnell supports his

assertion (Steve McConnell, personal communication) by

citing evidence reported in Peopleware [24], including a

commonly cited statistic that it takes 15 minutes or more to be

able to reenter the psychological state of flow after an

interruption. This evidence comes from studies of individuals

doing individual work, which is a quite different

representation from what we see enacted in the organization

we studied. Different representations lead practitioners and

researchers to take different stances with respect to what

constitutes work, how to measure effectiveness, what and how

to study it, and what evidence to collect.

It may be that the research focus on individuals doing

individual work creates a blind spot around how flow and

interruptions function in highly collaborative situations like

pair programming. Chong and Siino [11], for instance, show

that when developers worked in a pair, instead of alone,

interruptions were shorter and the interrupted developer more

quickly returned to their task (instead of forgetting what they

had been working on).

Nor does the organization we studied represent pair

programming as an isolated practice; they represent it as part

of a complex interdependent system of structures and practices

designed to support highly collaborative work. As the VP of

Engineering stated, “pair programming is one of the core

techniques that we do as part of it, but it is only a part of what

is going on.” They configure their workspace to support the

permeable nature of the conceptual boundary between the pair

and the rest of the organization. Rolling chairs allow

individuals to easily connect with others and physically

“enlarge” a pair in an ad hoc manner. Thus, this organization

embodies a principle that the physical configuration of the

workspace symbolizes the space of interactional possibilities

within the software development team. This is in contrast to

workspace configurations that physically isolate developers;

while such isolation does not mandate that developers work

alone and in private, it nonetheless symbolizes the normative

form of desired interaction within the organization. Similarly

for isolated pairs.

We are not claiming that our statistical results generalize

outside of the organization that we studied. What we claim

instead is that these results show that treating pairs as

normative, prescriptive units of production (for practitioners)

and analysis (for researchers) may misrepresent the essential

character of human interaction within a setting. Consider, for

instance, the difference between four pairs working radically

collocated, and a single pair working in an individual office.

The nature of how they work and their value exchanges might

be substantially different, with substantial differences for the

net effectiveness of the practice.

In summary, our intent here is to challenge not the

definition of pair programming, but rather the nature of how

pair programming is studied. Focusing only on interactions

between the two members of a pair, and only on the types of

activities covered by the common definition of pair

programming, will miss many other value exchanges between

members of a pair and their enclosing organizational fabric.

These other value exchanges may be important to how pair

programming works, and whether pair programming can be

effective.

VI. CONCLUSION

This empirical study complements and resonates with

other empirical studies of professional software developers

that have used observation and videos to reveal nuanced and

fine-grained behavior of developers in pair programming

sessions [3], [11], [25], [26]. Such studies are starting to

unpack the nature of pair programming as it unfolds in situated

dynamics of industrial settings.

This study adds to the discourse clear evidence of the

frequency, duration, and nature of extra-pair interactions

between developers in a pair and other people in their

organization. Ad hoc meetings are frequent during the course

of pair programming sessions, and the sociality of the pair

programming practice extends outside of the pair. The

professional software developers in the organization we

studied do not create artificial boundaries around the pairs.

They intentionally configure their workspace and social

conventions to enable peripheral awareness of what is

happening nearby, and their pairs do not work in isolation.

This study highlights the need to consider pairs as part of a

larger organizational setting. To understand the total value

proposition of a practice like pair programming we may have

to expand our unit of analysis to attend to the value exchanges

between a pair and their containing contexts as they are

enacted in situ. Studying pairs in isolation misses important

aspect of how pairs function.

ACKNOWLEDGMENT

We thank our study participants who have been so

generous to extend to us the level of trust that is critical for

this type of research. We thank Elizabeth Davis, Josh

Tenenberg, and Skip Walter for their critical comments on this

paper. This work was partially funded by a 2012-2013

Worthington Distinguished Scholar award, and a UW Bothell

CSS Graduate Research award to the primary author from the

University of Washington, Bothell.

REFERENCES

[1] L. Suchman, “Making work visible,” Commun. ACM, vol. 38,

no. 9, pp. 56–64, Sep. 1995.

[2] K. Beck, Extreme Programming Explained: Embrace Change.

Reading, MA: Addison-Wesley Professional, 1999.

[3] S. Salinger, F. Zieris, and L. Prechelt, “Liberating pair

programming research from the oppressive driver/observer

regime,” in International Conference on Software Engineering

(ICSE ’13): New Ideas and Emerging Results, 2013, pp. 1201–

1204.

[4] S. Bryant, P. Romero, and B. Boulay, “The collaborative nature

of pair programming,” in 7th International Conference on Agile

Software Development, 2006, pp. 53–64.

[5] S. Salinger, C. Oezbek, K. Beecher, and J. Schenk, “Saros: an

eclipse plug-in for distributed pair programming,” in

Proceedings of the 2010 ICSE Workshop on Cooperative and

Human Aspects of Software Engineering, 2010, pp. 48–55.

[6] D. Stotts, J. M. Smith, and K. Gyllstrom, “Support for

distributed pair programming in the transparent video facetop,”

in Proceedings of the Fourth Conference on Extreme

Programming and Agile Methods— XP/Agile Universe, 2004,

pp. 92–104.

[7] B. Hanks, “Empirical evaluation of distributed pair

programming,” Int. J. Hum. Comput. Stud., vol. 66, pp. 530–

544, 2008.

[8] H. Hulkko and P. Abrahamsson, “A multiple case study on the

impact of pair programming on product quality,” in Proceedings

of the 27th international conference on Software engineering -

ICSE ’05, 2005, pp. 495–504.

[9] L. Willaims and R. Kesler, Pair Programming Illuminated.

Addison Wesley, 2002, p. 288.

[10] S. Teasley, L. Covi, M. S. Krishnan, and J. S. Olson, “How does

radical collocation help a team succeed?,” in CSCW’00, 2000,

pp. 339–346.

[11] J. Chong and R. Siino, “Interruptions on software teams,” in

Proceedings of the 2006 20th anniversary conference on

Computer supported cooperative work - CSCW ’06, 2006, pp.

29–38.

[12] L. Plonka, H. Sharp, and J. van der Linden, “Disengagement in

pair programming: does it matter?,” 2012 34th Int. Conf. Softw.

Eng., pp. 496–506, Jun. 2012.

[13] D. Socha and J. Tenenberg, “Navigating constraints: the design

work of professional software developers,” ACM SIGCHI Conf.

Hum. Factors Comput. Syst., 2013.

[14] D. Socha and J. Tenenberg, “Sketching software in the wild,” in

Proceedings of the 35th International Conference on Software

Engineering (ICSE 2013), 2013, pp. 1237–1240.

[15] K. Schwaber and M. Beedle, Agile software development with

Scrum. Upper Saddle River, NJ: Prentice Hall, 2002.

[16] B. B. Jordan and A. Henderson, “Interacton Analysis:

Foundations and Practice,” J. Learn. Sci., vol. 4, no. 1, pp. 39–

103, 1995.

[17] H. H. Clark and S. E. Brennan, “Grounding in communication,”

in Perspectives on socially shared cognition, vol. 13, no. 1991,

L. B. Resnick, J. M. Levine, and S. D. Teasley, Eds. American

Psychological Association, 1991, pp. 127–149.

[18] A. Belshee, “Promiscuous pairing and beginner’s mind: embrace

inexperience,” in Agile Conference, 2005, pp. 125–131.

[19] K. Schmidt, Cooperative Work and Coordinative Practices -

Contributions to the Conceptual Foundations of Computer-

Supported Cooperative Work (CSCW). Heidelberg, Germany:

Springer-Verlag, 2011.

[20] L. Williams, “Pair Programming,” in Making Software: What

Really Works, and Why We Leave It, A. Oram and G. Wilson,

Eds. O’Reilly Media, Inc., 2010.

[21] P. Ingalls and T. Frever, “Growing an agile culture from value

seeds,” in 2009 Agile Conference, 2009, pp. 119–124.

[22] D. Socha, T. Frever, and C. Zhang, “Using a large whiteboard

wall to support software development teams,” in Proceedings of

the 48th Hawaii International Conference on System Sciences

(HICSS’15), 2015, pp. 5065–5072.

[23] Construx, “The ten most deadly mistakes in software

development,” 2013. [Online]. Available:

http://info.construx.com/rs/construx/images/Construx-10-Most-

Deadly-Mistakes-in-Software-Development.jpg.

[24] T. DeMarco and T. R. Lister, Peopleware: Productive Projects

and Teams, First. Dorset House Publishing Co., Inc., 1987, p.

188.

[25] L. Plonka, “Unpacking collaboration in pair programming in

industrial settings,” The Open University, 2012.

[26] J. Chong and T. Hurlbutt, “The social dynamics of pair

programming,” in 29th International Conference on Software

Engineering (ICSE’07), 2007, pp. 354–363.

