
 

Accepted for publication at CHASE 2015 

Sketching and Conceptions of Software Design 
 

David Socha 

Computing and Software Systems 

University of Washington Bothell 

Bothell, USA 

socha@uw.edu 

Josh Tenenberg 

Institute of Technology 

University of Washington Tacoma 

Tacoma, USA 

jtenenbg@uw.edu

 

 
Abstract—In this paper, we describe a study of sketching and 

design within a software organization in which hundreds of hours 

of video of development activity in situ were captured and 

analyzed. We use the study as a basis from which to question how 

researcher conceptions of software design—what it is, when and 

where it occurs, and how it is accounted—affect the way in which 

design is empirically studied. When researcher conceptions of 

design substantially differ from the actual design practices of 

those who are studied, researchers are at risk of seeing only what 

they are looking for and in this way miss the very design 

practices carried out by software developers in their quotidian 

work that the researchers were hoping to characterize. 

Index Terms—Software design, sketching, UML, inscriptions 

I. INTRODUCTION 

When we research software design, what is the object of 

our study? We ask this question in the most literal sense: what 

is it that we actually examine? What artifacts and/or behavior, 

in what settings? For some, these questions seem self-

answering: if one wants to study software design, then of 

course, one studies software design.  

As obvious and tautalogous as this question might appear, 

we ask it in order to make visible the presuppositions that 

researchers have about design. The reason why it matters is that 

as researchers, these presuppositions that we have about what 

design is may prefigure the results that we obtain in our 

empirical investigations. In short, we may only find what we 

are looking for and in this way miss the very design practices 

carried out by software developers in their quotidian work that 

we were hoping to characterize. This is in fact, what we came 

to discover about our own preconceptions related to the 

empirical study of design that we undertook in a software 

development organization.  

We undertook this study with the purpose of understanding 

software design practice [1]. We were interested in 

characterizing software design in practice, particularly the ways 

in which software developers use sketches and diagrams that 

represent computational behavior and/or structure, a focus of 

considerable interest in the software community [2]–[5]. 

Imagine our surprise on entering the field and finding that 

there was little sketching activity occurring in the software 

development organization we were studying! If they weren’t 

sketching, what were they doing? And where and how did 

design happen if they were doing little sketching? We changed 

the focus of our data collection and analysis, turning from the 

sketchpad and whiteboard to the pairing stations—the 

computers where software developers did most of their work as 

pairs sitting side by side. Collecting hundreds of hours of video 

of these sessions over several months, along with videos of the 

standup meetings that preceded pairing sessions, videos of 

other meetings, hundreds of photographs, and dozens of hours 

of observation and ethnographic interviews, we set out to 

investigate how these software developers produced their work. 

Whereas we had originally wondered where all of the design 

activity was occurring if there was little sketching and 

diagramming, only after immersion in this data for many 

months did we begin to see what had been hiding in plain sight 

the entire time: design was happening everywhere, all the time. 

Our very conceptions of design had prevented us from seeing 

the design that was there. 

This paper, then, is a cautionary tale about how as 

researchers our conceptions of software development are 

embedded within every aspect of our empirical studies, and 

how we can begin to overcome these conceptions, not only to 

learn more about how software is actually constructed, but to 

challenge the very way in which we conceptualize the 

enterprise. 

II. OUR PRESUPPOSITIONS 

In a prior paper, we proposed a research study to investigate 

how groups of professional software developers create and use 

diagrams and diagramming in their authentic work, i.e. “in the 

wild”’ [1]. Drawing from theories of situated and distributed 

cognition, we conjectured that the design activities of 

professionals in situ would differ substantially from the work 

reported in studies based upon self-reports of students or of 

professionals working in laboratory settings. Our plan was to 

instrument a particular location in the organization under study 

at which we assumed sketching “normally” occurs with video 

cameras so as to capture not only the “what” of sketching but 

also the “how.” And immediately after these sketching sessions 

we would interview the participants, mediated by playback of 

the video recordings, to capture the “why” of these sketching 

sessions. We believed that fine-grained analysis of audio-visual 

recordings of in situ work would illuminate important aspects 

of software design not available in other studies such as the 

Studying Professional Software Design workshop [4], [6]. As 

this paper shows, our beliefs about analysing in situ work was 

correct in practice, but not for the reasons we hypothesized. 

This paper reports on the results of this study, and reflects on 



 

 

the relationship between conceptions of design and how design 

research is carried out. 

III. ORGANIZATIONAL CONTEXT 

Our data was collected at a 9 year-old software 

development company in the Seattle area that employs 

approximately 50 people. In 2011, the company was acquired 

by a non-US parent organization that has continued to let the 

company operate largely independently. The company’s 

product is a software system that helps friends and family share 

information. It has over 13 million users, includes a significant 

backend Software-as-a-Service (SaaS) component, and has 

both a web-based version and client versions for Macintosh, 

Windows, iPhone, and iPad. 

The founders of this company came from a technical 

background and designed the company’s processes and 

practices based upon a small set of values and principles 

intended to address the question of: “How to operate a small 

software team and make it its best?” Their goal was to optimize 

for a self-organizing team of 5-14 people, instead of trying to 

create practices that scale to larger groups. All 50 members of 

the organization work in a single office with an open floor plan 

(see Fig. 1). 

Since the founding of this organization, the software 

developers in it have used a mix of extreme programming [7] 

and Scrum [8] practices, which they continually experiment 

with and adapt. The developer stations (see Fig. 1), the physical 

locations at which the software developers work, each consist 

of a workstation configured to support pair programming. 

These are concentrated in a central part of the office, so that 

each developer is able to directly see, hear, and interact with 

the other developers nearby, thereby providing “radical 

collocation” [9]. 

While many agile teams do a daily standup, this 

organization does three standups (which they refer to as 

“huddles”) per day: one huddle before each of the three daily 2-

hour-long pair programming sessions. The intent is to provide 

shorter feedback cycles among the developers to help them 

better do their complex work. These huddles are done in the 

huddle area located between the whiteboard walls and the 

developer stations. This huddle space was intentionally located 

directly between the developer stations and a large whiteboard 

wall (labeled W and N in Fig. 1) in order to facilitate the 

interplay between the activity at the developer stations, the 

activity in the huddles, and the mediating artifacts on the 

whiteboard wall [10].  

Whiteboards have played a key role in these practices since 

the company’s founding. In their first location, they often used 

2-4 whiteboards to cover a wall. When they moved to their 

current location, over which they had more control, they 

painted seven entire walls with whiteboard paint and purchased 

a half dozen small (3’x4’) portable whiteboards. These floor-

to-ceiling whiteboard walls and the smaller portable 

whiteboards have become increasingly intertwined with the 

company’s development practices, and are used for a wide 

variety of purposes, including sketching and diagramming by 

the software developers. 

 
Fig. 1: Office floor plan 

IV. DATA COLLECTION 

Data collection began on October 17, 2012 as the 

organization’s VP of Engineering led the first author on an 

initial tour of the site to better understand the setting and 

organizational context in order to plan how to collect audio-

video recordings of sketching sessions. While the tour revealed 

many whiteboard surfaces in this organization, the VP 

indicated that developers only sketched on whiteboards a few 

times per week across the entire team. Furthermore, those 

sketching sessions were rarely planned in advance, and were 

usually in a conference room or on a portable whiteboard that 

they wheeled to a convenient location for a discussion, such as 

the couch area near the main entrance. And the sketching 

sessions often were brief, lasting anywhere from a few minutes 

to an hour or so. In other words, to record sketching sessions 

we would have to be on site continuously and would only get a 

few sessions per week. 

Momentarily destabilized by learning that sketching and 

diagramming were rare events, we sought instead the 

“interactional hot-spots,” following the advice of Jordan and 

Henderson [11]. We thus shifted our research gaze from 

studying “sketching in the wild” to “collaboration in the wild.” 

This collaboration was primarily located at the developer 

stations and at the huddle area, and so we focused the bulk of 

our data collection at these locations. 

Based upon this reframe of our research study, the first 

author iterated on the video collection, progressively improving 

the recording setup and increasing the amount of data collected. 

On November 19, 2012 he collected six short videos using a 

handheld digital SLR, for a total of 54 minutes of video. On 

November 27, 2012 he collected 6:18 hours of video using two 

cameras. On January 24, 2013 he used four video cameras to 

record 6.5 hours of activity at two developer stations.  

Then in February 2014, the first author returned with 9 

wide-angle GoPro cameras and six audio recorders to collect an 

extensive dataset over an 11 day period. This dataset includes 

380 hours of video from the developer stations, 17 huddles, and 

other meetings; time-lapse images of the entire room over the 

11 day period; screen recordings from some of the developer 

workstations; and additional photographs. Although most of 

these cameras and audio recorders were at fixed locations, two 

of the video cameras were hand-operated, one by the first 



 

 

author, and another by the software developers themselves, 

who would bring the camera with them as they changed 

location. 

V. DATA ANALYSIS 

Having abandoned sketching as a research focus, we carried 

out analyses of the multiple ways in which this organization 

uses the whiteboard to structure its work, as well as the ways in 

which developer pairs create and sustain awareness while 

working side by side, reported elsewhere [10], [12]. It was only 

in doing those analyses, however, that we began to notice small 

amounts of sketching activity at the whiteboard. We realized 

that, given our extensive data collection, we had the means 

available for gaining insight into how much sketching activity 

was occurring, where it was occurring, and how it was being 

used within this organization. 

In answering “how much,” we were immediately 

confronted with the issue of how to “count” in a way that is 

“accountable” to our research community. We defined 

sketching activity as any time a developer was making marks 

on a surface (whiteboard, paper, iPad), pointing to such 

surfaces, or orienting their body to these surfaces while in 

conversation. Although counting even such things as bullet lists 

written on the whiteboard (a frequent occurrence during 

huddles) risks overcounting the amount of sketching, we did 

not want to rule out this activity, since some researchers have 

considered it to be sketching (e.g. “to do lists” are taken as 

sketching in [13]). We did not, however, count any of the time 

that individuals or pairs worked on the computer with keyboard 

and mouse, since we were told that the developers never used 

sketching/diagramming software, nor did we ever observe such 

use. What this means is that there might have been instances in 

which we counted particular activity as sketching, such as 

writing a list on the whiteboard, when a similar list typed at the 

keyboard of the computer would not have been counted. 

To assess the amount of sketching activity done by this 

group of software developers, we focused on the video from 

two of the 11 days of data: February 19 and 21, 2014. These 

two days contained most of the observed sketching activity, 

including several sketching sessions at the huddle area, at the 

couches, and in a conference room. Thus, the results reported 

here may again overestimate the amount of sketching done in 

this organization. 

In order to more quickly browse the dozens of video files to 

identify sketching, we created “thumbnail” images composed 

of one frame from every 5 seconds of each video (see Fig. 2 for 

a fragment of one of our thumbnail files). In the example 

provided, one can see the point at which a green-shirted 

software developer sits at the developer station. We were able 

to quickly scroll through these files of thumbnails, exploiting 

our (human) visual processing to identify those points when 

sketching might be occurring. We could then examine these 

places more carefully (both in the thumbnail files and in the 

associated video files) to develop our counts. 

Sketching activity observed over a contiguous sequence of 

frames was accounted for as the duration between the first and 

last of those frames. Sketching activity observed in a single 

isolated frame was accounted for as 5 seconds of sketching 

activity. Using the thumbnails may miss some sketching 

activity, and in fact viewing one of the videos did reveal 

several momentary sketching events that were not observed in 

that video’s thumbnails.  

To determine the proportion of time spent in sketching 

activity, we similarly accounted for the amount of “active” 

video: video in which people were at the video’s location, e.g., 

at the pairing station shown in Fig. 2. Only about half of the 

video was “active”, since the developers were doing their work 

with no instructions from us about where to work and there 

were more developer workstations than pairs of developers.  

Table 1 shows the duration of “active” time and sketching 

activity for these two days, categorized by 5 loci of work: 

during huddles, during post-huddle discussions, at pairing 

stations, at couches, and in conference rooms.  

The “location %” column of sketching activity shows the 

percent of that location’s active time during which sketching 

was observed. The “total %” column shows this location’s 

sketching activity as percent of the total time across all 

locations. During the 39:45 “active” hours, we identified 6:02 

hours (15%) of sketching. 

Fifteen percent of the time may appear to be a considerable 

percentage devoted to sketching. But a finer-grained analysis 

reveals a different story. First, and importantly, the types of 

sketching differed by location. Huddles consisted of 5% of this 

video, and included sketching 24% of the time. This sketching 

activity consisted almost exclusively of a bookkeeping activity 

in which developers used the “parking lot” section of the 

whiteboard wall to inscribe brief notes of topics to discuss at 

the end of the huddle [10]. This is not the type of sketching 

activity commonly associated with “software design”.  

Post-huddle discussions comprise 7% of this video, and 6% 

of the total sketching time. Most of this time (82%) involved 

sketching on the whiteboard during design discussions.  

 
Fig. 2: Portion of thumbnail of video 

Table 1: Amount of "active" time and sketching activity on Feb 19 and 21 

 “Active” Sketching activity 

Location hh:mm % hh:mm location % total % 

Huddle 02:02  5 00:29  24  1 

Post huddle 02:58  7 02:26  82  6 

Pairing station 31:08  78 00:22  1  1 

Couches 00:39  2 00:39  100  2 

Conference room 02:59  8 02:05  70  5 

TOTAL 39:45  100 06:02  15  15 



 

 

Pairing stations consisted of 78% of the video time 

analyzed and 1% of the total sketching time. Most of this 

sketching, however, was a 19-minute session during which a 

solo developer worked on his own “Personal Shield”, part of a 

team building activity. The remainder of the sketching time 

was four sessions in which a developer briefly wrote on a 

sketchpad, for a total of 2:54 minutes. Thus, only 2:54 minutes 

(0.16%) of the 31:08 hours of pairing station video had 

sketching that might have been related to software design.  

The video from the couches consisted of 2% (39 minutes) 

of the video that was analyzed. It was from a single design 

discussion between two developers sitting in separate couches. 

During this time, one of the developers was continuously 

making inscriptions on his iPad, which was visible only to him. 

In addition to the sketching, both developers made extensive 

use of “air sketches” enacted via hand and arm gestures. Our 

definition of “sketching” is restricted to making or referring to 

inscriptions or marks on a physical surface, and thus did not 

include this “air sketching”.  

Conference rooms consisted of 8% (2:59 hours) of the 

video, 70% of which involved making inscriptions or referring 

to inscriptions. This was the continuation of the design 

discussion between the two developers that had begun at the 

couches. During this time, the two developers spent only a few 

minutes actually making marks on the whiteboard. The rest of 

the sketching time was referring to these inscriptions, or one of 

the developers making marks on his iPad, which, once again, 

were not visible to the other developer, except for one brief 

moment. The whiteboard sketch that was drawn, from the most 

extensive sketching session during the two days analysed, was 

also remarkably simple, shown in Fig. 3. 

At the same time, in analysing this conference room 

episode in more detail, we came to see that it complicates prior 

notions of sketching and accounting for the duration and uses 

of sketches. “Sketching” involves not only making marks on a 

surface, since this only accounted for a small percentage of the 

time taken during this session. The software developers also 

spent considerable time augmenting the sketch with words, 

gestures, and deictics. They also spent time during this session 

oriented to the sketch, but rather than augmenting what was 

drawn, they spoke about alternatives in relation to what they 

had sketched. And finally, there was a considerable part of this 

session, in which the developers sat nearby the sketch, but 

never oriented their bodies toward it nor made any verbal 

reference to it. Which of these activities, then, is sketching? In 

counting all of it, we drew an analytical boundary that is 

somewhat artificial, a point we return to in the Discussion. 

  

 
Fig. 3: Sketching from longest sketching session of Feb 19 and 21. The 

two ovals and lines in the top middle were there before this session began. 

VI. DISCUSSION 

What conceptions of design are made visible in the study 

reported above? When we speak of “conceptions,” we do not 

only mean those explicit ideas “in mind.” We mean as well the 

inchoate, enacted conceptions as embedded in the way in 

which we carried out the study and the participants carry out 

their everyday work. In the earliest published description of our 

research, we discuss not design, but “the situated use of 

sketches and diagrams by expert software practitioners in their 

everyday activities in the workplace” [1]. We presupposed that 

these sketches were created as part of a design process, and 

hence there was no need to explicitly link “sketch” to “design.” 

What we did not assume, and what was the very object of our 

research study, was the specific nature of the semiotic marks 

that software developers make on media such as whiteboards. 

Were they UML? Were they boxes and arrows? Were they 

bullet lists? Were they something else entirely? In addition, we 

did not assume that the meaning was “in” the sketches created, 

but rather, following Roth, that sketches “in everyday 

settings … become apparently fused to the things or contexts 

that they describe. … The graph is relevant together with the 

world [that the creator] inhabits together with other people and 

objects that surround them” [14]. Thus, in going to the 

workplace to observe and record software development “in the 

wild,” we hoped to overcome what we saw as limitations in the 

research on software design in which software designers were 

studied in contrived (laboratory) settings. 

In wanting to instrument a conference room or specific 

place within the organization that we studied, however, we 

presupposed that design qua sketching happened primarily 

(only?) in a special place at regular times. We assumed, as do 

Baltes and Diehl [13, p. 530], that “[s]ketches and diagrams 

play an important role in the daily work of software 

developers.” Thus, capturing this activity should be 

unproblematic: we simply go to the special place of daily 

sketching activity and turn on our video recorders; what could 

be simpler? As we recount above, however, our research 

participants quickly informed us that, though, yes, they 

occasionally do some sketching, that it was not where the 

action was. The interactional hot spots, “sites of activity for 

which videotaping promises to be productive” [11, p. 43], were 

at the pairing stations and huddle area, and so this is where we 

focused our attention. As a result, sketching dropped from our 

analytic gaze. 

Several months later, when given the opportunity to return 

for further data collection, we “over sampled,” by placing 

cameras and microphones in as many places as our participants 

would allow and for which we had resources. Our focus was 

again on the pairing stations, but we captured data in many 

other locations: the huddle area, conference rooms, the seating 

area. It was only on seeing the most fragmentary glimpses of 

sketching, bits of ephemera that disappeared almost as quickly 

as they erupted—a box hastily drawn on the whiteboard wall 

by a pair of software developers after a huddle, a list jotted on a 

notepad by a pair of developers at a pairing station—that 

sketching re-emerged for us as an object of study. For what 

these small glimpses made salient was the almost complete 



 

 

absence of sketching. Was this really the case? And if so, then 

what did it mean for how these software developers do design? 

As the above analysis indicates, all evidence suggests that 

sketching, of the sort that involves anything more elaborate 

than a bullet list or a couple of boxes and arrows, is a rare 

occurrence at this organization. But this does not mean that this 

organization does not do design as far as they conceive it. 

Design and sketching are not equivalent, nor does one imply 

the other. The developers at this organization deliberately 

structure their work process and division of labor so that all 

developers work at all levels of detail; there is no division of 

labor between “designers” and “coders,” each of whom 

specializes in a different level of detail. As one of the principals 

in the organization elaborates in response to a question about 

doing “design” in a traditional, UML-style fashion: “we were 

an agile shop. And we didn’t want to work that way because 

we didn’t think it was productive. And so yeah, that's a very 

sort of waterfall-style approach. The architect sits on high, 

figures everything out beforehand, maybe doing sketches or 

who knows what, and then passes the design off.  But we didn’t 

do that.” This organization did not do that because what this 

“waterfall-style” division of labor implies is that there are 

distinct “phases” of software development in which design 

happens at a particular time by particular people, resulting in an 

explicitly represented design artifact whose meaning is 

discernible to someone else charged with writing code 

consistent with it. 

Rather, the software developers whom we studied viewed 

design as distinctly and deliberately not limited to a particular 

phase or particular people, a bounded temporal event within a 

predefined software lifecycle. Rather, the developers saw 

themselves as doing design work continuously and everywhere. 

“So the thing is the way I do it – the only way I think that’s 

reasonable to do it is to go constantly back and forth, try not to 

figure out all of the design beforehand, but only try to figure 

out some of it, like maybe even just think of some of it in your 

head basically, and then go and start typing, right?  And then 

refine it and continue back and forth and back and forth and 

back and forth, so almost constantly.” 

One interpretation of our data, then, is that although there 

was little sketching of the kind described in most prior studies 

of software sketching and design, there was continuous 

designing. The hours and hours in which pairs sit together at 

the pairing stations looking at the code were never simply 

“implementation” as distinct from “design,” but were a 

constant back-and-forth between coding and designing. 

Designing was always there, a constant presence, and yet 

(until recently) invisible to us in its ubiquity. When the paucity 

of sketching became noticeable to us, we began to reconsider 

the conceptions of software design we had tacitly embedded 

within our research design, an assumption of a near-

equivalence between sketching and designing; designing 

happening in particular places at particular times by particular 

people. Only as a result of extensive video capture of the 

development activity and subsequent analysis did we begin to 

see how our initial research design embedded a tacit 

assumption of design that carried with it vestiges of a waterfall 

model that we ourselves had long ago abandoned. In looking at 

the pairing stations, the huddle areas, and the larger patterns of 

interaction within the developer space, this extensive video 

capture allowed us to trace the ways in which this organization 

structures its development activities. As a result, we were able 

to see the enactment of Agile practices of continuous and 

iterative design through the deliberate structuring of this 

organization’s software development labor and work processes. 

A. Researcher Conceptions Of Design 

What then, are the implications of this study on the current 

research discourse concerning software design and sketching? 

In particular, how do researcher conceptions of design figure 

into the ways in which empirical researchers structure their 

studies of design? 

The study of sketching and diagramming by software 

developers has received considerable interest by empirical 

researchers over the last decade. In some of this research, the 

connection between design and sketching is explicit, justified 

by software development being characterized as a design 

discipline, and as such it follows that sketches are important. 

For instance, Cherubini et al. begin their research report 

concerning how and why software developers use sketches 

with: “Diagrams are important tools in every design and 

engineering discipline” [5, p. 557]. Similarly, Walny et al begin 

a report of their study on sketching in software development 

with: “Visualization through sketching and diagramming plays 

an important role in the design process in various domains, 

including architecture, design, and engineering” [15, p. 1]. For 

others, sketches are necessarily used in software design 

because of the complexity of the relations between the 

computational units: “Software design is a highly visual 

activity, where diagrams are used for brainstorming, grounding, 

and communicating ideas and decisions [6]. This is particularly 

true for the object-oriented (OO) paradigm, which involves 

large numbers of entities and complex relations between them” 

[16, p. 261]. Others use the term “modeling” instead of design: 

“This empirical study complements and resonates with other 

studies of UML use in industry, finding (as others do) that 

practitioners take a broad view of what constitutes ‘modeling’” 

[2, p. 11]. And for some researchers, the connection between 

sketching and design is implied: “Over the past years, studies 

have shown the importance of sketches and diagrams in 

software development” [13, p. 530]. 

What all of these conceptions of the relationship between 

sketching and software development have in common is the 

relative equivalence of design activity and sketching, that one 

implies the other. The following syllogism thus captures the 

essential argument that these researchers make: 1) (all) design 

disciplines use sketches as essential representations for design, 

2) software development is a design discipline, therefore 3) 

software developers use sketches as essential representations 

for design. If we study sketching, then by virtue of its use in 

design disciplines in general, we will be studying design in 

software development. And if we are to study design, then by 

virtue of the importance of sketching for these disciplines, we 

will need to study sketching. Design qua sketching is distinctly 

not coding: these are distinct activities, using distinct notations. 



 

 

The problem with researchers presupposing that design is 

sketching is design, is that in those organizations who carry out 

an enactment of Agile design similar to the organization 

described above, the vast majority of design activity will be 

overlooked. It will simply not be accounted as design, but will 

instead be seen as “coding” or “implementation” or “pair 

programming” if it is considered at all. Take the survey by 

Baltes and Diehl [13, p. 533], for instance, that asks software 

developers “When did you create your last sketch or diagram,” 

“How many persons contributed to the sketch/diagram” and 

similar. If given to software developers from an organization 

like the one that we studied, such a survey, although perhaps 

characterizing the few designs that are created, will miss the 

lion’s share of the design activity, at least as far as how the 

participants themselves construe it. 

Design as sketching, as a phase of activity distinct from 

coding, is sometimes so embedded within a research design 

that it goes unremarked by researchers. Or, if it is discussed, it 

is simply to name the phase, for example as initial or early 

design activity [4], [6]. For instance, consider the empirical 

study protocol described by Petre et al. [4] that served as the 

basis for the NSF-sponsored workshop Studying Professional 

Software Design in 2010 attended by 54 design researchers and 

resulting in a special issue of Design Studies [4] and IEEE 

Software [6]. This protocol was developed to answer the 

research question: “What do software designers do when they 

design software” [4, p. 536]? Video recordings were analyzed 

of three pairs of software developers who were given a design 

prompt, and “each pair … worked together at a whiteboard for 

two hours” [6, p. 29]. “Furthermore, it asked that the designers 

consider how to model the software system, as well as how 

users would interact with the system” [4, p. 536]. The design 

prompt itself explicitly states that “[t]he result of this session 

should be: the ability to present your design to a team of 

software developers who will be tasked with actually 

implementing it [emphasis in original]” [4, p. 544].  

In placing the participants at the whiteboard, the research 

design naturalizes the whiteboard as a site of design activity, in 

contrast to, for instance, the pairing stations at which most of 

the design activity occurred at the organization that we studied. 

The research setting itself then, in the very way in which the 

researchers were physically arranged and given particular 

materials, presupposes design as a sketching activity, or at least 

an activity in which inscriptions are to be recorded on the 

whiteboard. Further, by explicitly telling the research 

participants to model a system that will be implemented by 

others, the researchers are presupposing a conception of design 

in which a “design” is a model that is handed off in toto, 

“thrown over the wall” from one group of software developers 

to another. Design is a distinct phase, with a clear beginning 

and end, which takes place at the whiteboard, and results in a 

design representation (a “model”) that is then used to guide the 

coding phase. In waterfall fashion, labor is divided by 

specialization and the software process is organized as a set of 

phases in an assembly-line fashion. This is not the conception 

of design that we observed. At the organization that we studied, 

the designers are the implementers; there is no distinction 

between designers and developers. One result is that the details 

brought into the design discussions span multiple levels of 

abstraction from objects in the existing codebase to possible 

alternative architectural designs to experiences from using 

competitors’ systems to ideas for creating strategic competitive 

business advantages. They range from existing implementation 

details to business design–all based upon years of shared 

history. And designs do not have to be externally represented 

for anyone but the software developers themselves to use; they 

are not handed off. 

The other complexity that lab-based and similar research 

protocols gloss concerns the boundary between design and 

non-design activity. For if design is a distinct phase, when does 

it begin and end? In the activity that we studied, there are no 

researchers external to the setting designating an arbitrary start 

and end time for the activities observed within the setting. 

Rather, the software developers simply go about their work. 

When they carry out their inscriptional activity, there is no one 

there to mark a boundary. Before they move to a whiteboard, 

they might be talking about a particular problem or concern, 

and at some point, the pair decides to move to the whiteboard. 

They make a few marks on the board, continue talking, make 

more marks, talk some more. Some of the marks look box-like, 

some are labels, some are lines and arcs. They move away from 

the board, continue talking about the inscriptions, making a 

hand-shape that gesturally mirrors an inscription on the board 

in order to index the discussion that occurred in and around 

when that inscription was written. If design is everywhere and 

all the time, then such activity is non-problematic, for 

boundaries do not need to be precisely determined in order to 

do such things as determine the ratio of time spent in one 

activity as compared to another. But if design is conceived as 

an activity distinct from coding, from planning, from 

determining requirements, then what are the boundaries 

between these activities? When does “sketching” or “design” 

activity begin and when does it end? Is it only at those 

moments when marks are made on the board? When a box or 

arrow or freehand drawing is made but not the labels? When 

the participants are at the location at which the sketch is made 

but not when they move away from it?  

These definitional questions are not simply academic, since 

for research designs involving surveys and interviews, the very 

interpretation of the questions asked are determined each time 

anew by the respondent. And unfortunately, such 

interpretations are invisible to the researcher. For instance, in a 

survey study by Baltes et al. [13, p. 533] the respondents were 

asked “When did you create your last sketch or diagram” and 

“How much effective work time went into the creation and 

revision of the sketch/diagram up to now?” Does a “to do” list 

count as a “sketch”? And if so, how much time is to be 

accounted as “work time” in its “creation” and “revision”? 

Such matters of interpretation are left to the respondents to 

construe in their own way, with responses aggregated together 

using standard statistical analysis methods. How then are we as 

researchers to construe these aggregated results? How then 

have the respondents made these distinctions? And to what 

range of settings do these results apply?  



 

 

These problems of interpretation and construal do not 

disappear, however, even if the researchers are the only ones 

making these determinations. In the study presented above, in 

order to make any claims about the amount of time in which 

design sketches and diagrams are used within the organization 

we studied, we had to make a number of choices for purposes 

of accounting. What inscriptions, in what media, do we count 

as a sketch or diagram? When does the sketching and 

diagramming activity begin and end? Although we document 

these choices above, providing our rationale for our accounting 

scheme, there are nonetheless several somewhat arbitrary 

choices that we have made purely for purposes of drawing 

sharp analytic boundaries. To some extent, we draw these 

boundaries, recognizing their artificiality, in service of an 

argument in which we abandon these very boundaries. 

VII. CONCLUSION 

There is no neutral way to study software design; empirical 

researchers always take a position. Not only are researchers 

“located” in a physical space with the individuals whom they 

study, they are similarly located within a conceptual space 

shared with a research community. How researchers 

conceptualize their objects of inquiry determine the questions 

they ask, the methods they use in answering them, and the 

interpretations that they give to the data they collect. It is into 

this conceptual space, the space in which our very notions of 

what software design is, that we have placed this paper. The 

story of the particular study of software design that we 

undertook within a software organization might be titled “Sin 

and Redemption.” Our sin, venial and perhaps unavoidable, 

was to have a particular conception of software design around 

which we planned our data collection, which turned out to be 

inconsistent with the design practices of the developers whom 

we were studying. One can hardly enter the field without any 

preconceptions about what one intends to study. Our 

redemption was first in going to the field at all (rather than 

working in the lab), in watching and listening to the software 

developers to find their “interactional hot-spots,” and “over 

sampling” so that we had extensive data across the organization 

over time and space. It was only in noticing the small amount 

of non-trivial sketching that we recognized how our original 

plan for data collection embedded a “waterfall-style” 

conception of design. In this conception, design is viewed as a 

particular phase, neatly delineated from other development 

activities such as coding, testing, and requirements gathering, a 

conception that conflicted with the enacted practices of the 

software developers under scrutiny. 

If research on software development is going to provide 

deeper insights into how software development is and could be 

practiced, then it is important that we not only seek what we 

hope to find. We must also look beyond the narrow compass of 

our own preconceptions to see the conceptions and practices of 

those whom we study.  

ACKNOWLEDGMENT 

We thank our study participants who have been so kind to 

extend to us the level of trust that is critical for this type of 

research. This work was partially funded by a 2012-2013 

Worthington Distinguished Scholar award, and a UW Bothell 

CSS Graduate Research award to the first author from the 

University of Washington, Bothell. Thanks to Natalie Jolly for 

critical reading and commentary of early drafts. 

REFERENCES 

[1] D. Socha and J. Tenenberg, “Sketching software in the wild,” in 

Proceedings of the 35th International Conference on Software 

Engineering (ICSE 2013), 2013, pp. 1237–1240. 

[2] M. Petre, “UML in practice,” in 35th International Conference 

on Software Engineering (ICSE 2013), 2013. 

[3] A. Baker and A. van der Hoek, “Ideas, subjects, and cycles as 

lenses for understanding the software design process,” Des. 

Stud., vol. 31, no. 6, pp. 590–613, Nov. 2010. 

[4] M. Petre, A. van der Hoek, and A. Baker, “Editorial,” Des. 

Stud., vol. 31, no. 6, pp. 533–544, Nov. 2010. 

[5] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to 

the whiteboard: how and why software developers use 

drawings,” in Proceedings of the SIGCHI conference on Human 

factors in computing systems - CHI ’07, 2007, vol. 1, pp. 557–

566. 

[6] A. Baker, A. van der Hoek, H. Ossher, and M. Petre, “Guest 

editors’ introduction: studying professional software design,” 

IEEE Softw., vol. 29, no. 1, pp. 28–33, Jan. 2012. 

[7] K. Beck, Extreme Programming Explained: Embrace Change. 

Reading, MA: Addison-Wesley Professional, 1999. 

[8] K. Schwaber and M. Beedle, Agile Software Development with 

Scrum. Upper Saddle River,  NJ: Prentice Hall, 2002. 

[9] S. Teasley, L. Covi, M. S. Krishnan, and J. S. Olson, “How does 

radical collocation help a team succeed?,” in CSCW’00, 2000, 

pp. 339–346. 

[10] D. Socha, T. Frever, and C. Zhang, “Using a large whiteboard 

wall to support software development teams,” in Proceedings of 

the 48th Hawaii International Conference on System Sciences 

(HICSS’15), 2015. 

[11] B. B. Jordan and A. Henderson, “Interaction analysis: 

foundations and practice,” J. Learn. Sci., vol. 4, no. 1, pp. 39–

103, 1995. 

[12] J. Tenenberg, W.-M. Roth, and D. Socha, “From I-awareness to 

we-awareness in CSCW,” Comput. Support. Coop. Work. (in 

press). 

[13] S. Baltes and S. Diehl, “Sketches and diagrams in practice,” in 

Proceedings of the 22nd ACM SIGSOFT International 

Symposium on Foundations of Software Engineering, 2014, pp. 

530–541. 

[14] W.-M. Roth, Toward an Anthropology of Graphing: Semiotic 

and Activity-Theoretic Perspectives. Kluwer Academic 

Publishers, 2003. 

[15] J. Walny, J. Haber, M. Dork, J. Sillito, and S. Carpendale, 

“Follow that sketch: lifecycles of diagrams and sketches in 

software development,” in 2011 6th International Workshop on 

Visualizing Software for Understanding and Analysis 

(VISSOFT), 2011, pp. 1–8. 

[16] U. Dekel and J. Herbsleb, “Notation and representation in 

collaborative object-oriented design: an observational study,” in 

OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN 

conference on Object-oriented programming systems and 
applications, 2007, pp. 261–280



 

 

 


