

Navigating Constraints: The Design
Work of Professional Software
Developers

 Abstract

This paper reports on initial results from a study of

software developers doing their authentic work in their

place of work. We apply the ethnographic and

interaction-analytic methods that the CHI community

has used to study people carrying out their work in

non-software domains. Our preliminary results show

professional software developers spending the majority

of their time navigating a myriad of largely invisible

constraints arising from multiple, concrete, real-world

sources. They use frequent hypothesis-probe-interpret

to cycles navigate the contextual, complex systems

that they inhabit and construct. These constraints are

qualitatively different from those reported in the

literature based on early conceptual design.

Author Keywords

distributed cognition; ethnography; interaction

analysis; navigating constraints; software design; video

analysis; workplace analysis

ACM Classification Keywords

H.1.2 User/Machine Systems: Human factors
Copyright is held by the author/owner(s).

CHI 2013 Extended Abstracts, April 27–May 2, 2013, Paris, France.

ACM 978-1-4503-1952-2/13/04.

David Socha

Computing & Software Systems

Univ. of Washington, Bothell

Bothell, WA, USA

dsocha@uwb.edu

Josh Tenenberg

Institute of Technology

Univ. of Washington, Tacoma

Tacoma, WA, USA

jtenenbg@uw.edu

Introduction

The CHI community has a history of studying people

carrying out their work in its natural context in order to

better design the tools and environments in which lived

social practice occurs [4,8,15]. Going to the site of

authentic work is critical to this endeavor because

“work activities in every case take place at particular

times, in particular places, and in relation to specific

social and technological circumstances” [14]. Yet this

analytic focus has rarely been turned inward, toward

the situated social practices of those who develop

computational systems, especially software developers.

In this paper, we describe the rationale, design, and

preliminary results of an empirical study to answer

questions about the processes, tools, representations,

and patterns of interactions that software developers

employ in carrying out their work. Our approach is to

borrow the theoretical and methodological grounding

that has been so successful in workplace studies in

non-software settings, particularly distributed cognition

[13] and interaction analysis [9]. We apply these to the

software development setting that has often been

studied from a cognitivist perspective [11] using

interview and survey methods [5].

Background

A series of recent studies have begun to probe some of

the complex work of software designers. In one study,

Cherubini et al. [5] report on their investigation of “how

and why developers draw their code,” using surveys

and interviews of Microsoft employees who reference

completed diagrams to which they have access. The

authors conclude that such diagrams are transient

documents that use ad-hoc representations.

In order to obtain data with higher ecological validity

and to look more directly at joint activity, two recent

studies used video recordings of sketching and

discursive activity during design sessions by software

developers. Petre et al [12] video recorded the initial

design activity of pairs of software developers who had

previously designed together from three different

commercial software companies. They then invited

design researchers to separately analyze these

recordings. The analyses give insight into such things

as the way software developers vary their solution

strategy at each point in time based on their “epistemic

uncertainty” [3], the incremental and cyclical nature of

solution development [2], and the positive effect of

design planning on minimizing context-switching [16].

In another study, Dekel and Herbsleb [6] took videos of

groups of software developers carrying out design

exercises while participating in the OOPSLA DesignFest.

Their results indicate that software designers use ad-

hoc design representations rather than standard ones

such as UML, and that these representations are

meaningful only by those who were involved in their

creation.

As important as this recent work is, the extent to which

these studies provide insight for the design of tools,

artifacts, spaces, and pedagogies for authentic joint

software development work is limited by the contrived

nature of the design problems, because the activity is

captured outside the setting in which everyday work is

undertaken, or the retrospective and linguistic nature of

their data. As Petre et al. comment “[t]he ideal case

involves studying real software designers, on a real

software project, through the entirety of the product’s

lifecycle, and possibly beyond.” [12:540].

We are in the midst of data analysis from a study of

software developers doing their authentic work in their

place of work. We describe the study and our

preliminary results below.

Method

The organization that we are studying is an 8 year-old

software development company in the Seattle area of

the United States. This organization is owned by a non-

US parent company, and employs about 50 people who

all work in a single large room with no dividers (see

Figure 1). The organization’s product is a software

system that helps friends and family share information.

It has a significant backend Software-as-a-Service

(SaaS) component, and includes client versions for

Macintosh, Windows, and iPhone.

Figure 1. The open floor plan in our study organization was

designed to promote pairing and assist collaboration.

So far, one of us (David) has visited the organization 5

times over a 6-week period. David spent 14 hours

observing the activities and interactions taking place

within the organization, taking notes and photographs,

videoing software developers working together (9 hours

in total to date), , and taking took over 300

photographs. Field notes are augmented and reflective

memos are written immediately following each visit. We

use interaction analysis [9] to do fine-grained analysis

of the speech, gestures, tools, and externalized

representations used by the software developers. We

use ELAN [10] to replay and annotate the videos, often

doing the analysis sitting side-by-side.

Results

The organization is very collaborative, with

development practices based upon Extreme

Programming and Scrum. Because their software

developers usually program in pairs, their speech and

gestures become public resources that enable joint

work. This has the advantage of allowing us as

researchers to obtain much of the information normally

exposed by “think aloud” protocols [7], without having

to impose the artificiality of such a protocol.

Our preliminary observations and analysis show the

software developers’ spending the majority of their

time navigating constraints. We take a constraint to be

when the digital, physical or social system in which

they are operating or are trying to manipulate hinders

their activity. These constraints are highly contextual,

and often involve lack of knowledge, ambiguity, or

misconceptions concerning such things as locations of

data files, who controls access to such files, meanings

of variables, and how large user-stored images can be

without exceeding the contractual limit for data

storage, to name just a few. Constraints are often

unknown in advance, and arise when the developers

and encounter them while carrying out their tasks.

Compared with early conceptual design sessions (Figure

2) based upon a 1-2 page design brief, such as used in

many prior studies (e.g. [12]), the software developers

we observed (Figures 1 and 3) are severely limited by

an enormous set of concrete and often invisible

constraints (see Table 1). Their constraints have

accumulated and evolved over 8 years, 750K lines of

 Early conceptual design
[1,12]

Daily work on successful product
[this paper]

Macro goals Inform tool design
Inform pedagogy
(Via workshop publications)

Increase Customer Lifetime Value (CLV)
Increase Recency, Frequency, Monetary Value (RFM)
(Via product changes)

Task derivation Researcher & Educator Business

Where design happens Research lab / workshop Business workplace

Focus / Final product Model possible system Deliver value to customers

Design team size 2 (in design session)
54 (in workshop)

2 (when pairing), 4 (when probing requirements),
50 (in organization), millions (customers)

Product domain history None Years

Team history None - Some Years

Commitment 2.5 hours (design session)
2.5+ days (workshop)

 Livelihood; years

Nature of constraints

Existing code

Existing data
Organizational

Contractual
Users

Highly visible (in prompt)
22 (in prompt)
Simplistic context
 None

 None
 None
 None
 None

About what COULD BE

Hidden / Bumped into
Uncountable
Highly multidimensional context
 750K LOC

 Lots
 8-year-old company with 50 employees
 10+
 13+ million

Mostly about what IS

Length of feedback cycle

(probing)

None (in design session) Seconds – minutes (when pair programming)

Minutes – hours (when probing requirements)
Days – months (in organization)
Minutes – months (for users)

Table 1. This table illustrates the dramatically different contexts between laboratory studies of early conceptual software design,

and in-the-wild studies of professionals doing their authentic work on a successful software product. This table also shows the

impact that these differences have on the nature of constraints that software developers deal with, and the length of the feedback

cycles between the software developers and the system in which they are working.

Figure 2. A pair of designers

engaged in the early conceptual

design task studied by Petre, et al

[9].

Figure 3. A pair of our subjects

engaged in their daily work on their

successful product. Note the third

employee also engaged in this

collaboration.

code, and millions of users. Instead of conversations

about general possibilities or abstract

conceptualizations of an imagined system (as we see in

studies of early conceptual design), we observed

conversations about a fine-grained concrete

understanding of what currently exists in their system

as they bumped into constraints while trying to

understand or change their system.

When an unanticipated constraint is encountered, a

great deal of their conversations and actions are about

running quick experiments to probe the system in order

to better understand what it currently is and the

resulting actions that it affords. The developers

continually interact with their partners and the

computer performing quick experiments of formulating

a hypothesis, probing the system, and interpreting the

results. These hypothesis-probe-interpret (HPI) cycles

are surprisingly rapid. For instance, in a sample 2-

minute portion of video, we identified 18 hypotheses, 6

probes, and 16 utterances that were associated with

interpreting data.

Conclusion

The preponderance of constraints that we observed the

software developers navigating is qualitatively different

from the relatively unconstrained initial conceptual

design sessions used in many prior studies (e.g. [12]).

While all organizations probably spend time doing both

types of design, it behooves us to further understand

what it means for software developers to have to

navigate such a huge set of concrete and often invisible

constraints. Situations with those magnitudes of

constraints are difficult to create outside of the

complexity of workplace products. And even if we could

create those in a non-workplace situation, there is

distinct value in better understanding how professional

software developers do their authentic work in their

situated place of work.

We expect that further analysis will lead to implications

for theory, tool development, practice, and pedagogy.

Acknowledgements

We thank the illuminating discussions with Kevin

Sutanto, Kyle Patterson, and Skip Walter. We

acknowledge the Helena Riaboff Whiteley Center at the

Friday Harbor Laboratories of the University of

Washington for providing a quiet and conducive space

in which some of this work was carried out. Finally, we

thank our study participants who have been so kind to

extend to us the level of trust that is critical for this

type of research.

References
1. Baker, A., Van der Hoek, A., Ossher, H., and Petre,

M. Guest Editors’ Introduction: Studying Professional
Software Design. IEEE Software 29, 1 (2012), 28–33.

2. Baker, A. and Van der Hoek, A. Ideas, subjects, and

cycles as lenses for understanding the software design
process. Design Studies 31, 6 (2010), 590–613.

3. Ball, L.J., Onarheim, B., and Christensen, B.T. Design

requirements, epistemic uncertainty and solution

development strategies in software design. Design Studies
31, 6 (2010), 567–589.

4. Bell, G., Blythe, M., and Sengers, P. Making by

making strange: Defamiliarization and the design of

domestic technologies. ACM Transactions on Computer-
Human Interaction 12, 2 (2005), 149–173.

5. Cherubini, M., Venolia, G., DeLine, R., and Ko, A.J.

Let’s Go to the Whiteboard: How and Why Software

Developers Use Drawings. Proceedings of the SIGCHI

conference on Human factors in computing systems -
CHI ’07, ACM Press (2007), 557–566.

6. Dekel, U. and Herbsleb, J. Notation and

Representation in Collaborative Object-Oriented Design: An

Observational Study. OOPSLA ’07: Proceedings of the

22nd annual ACM SIGPLAN conference on Object-oriented
programming systems and applications, (2007), 261–280.

7. Ericsson, K.A. and Simon, H.A. Protocol Analysis:
Verbal Reports as Data. MIT Press, 1993.

8. Jordan, B., ed. Advancing Ethnography in Corporate

Environments: Challenges and Emerging Opportunities.
2013.

9. Jordan, B.B. and Henderson, A. Interacton Analysis:

Foundations and Practice. The Journal of the Learning
Sciences 4, 1 (1995), 39–103.

10. Lausberg, H. Coding gestural behavior with the

NEUROGES-ELAN system. Behavior Research Methods 41,
3 (2009), 841 – 849.

11. Miller, G. The cognitive revolution: a historical

perspective. TRENDS in Cognitive Sciences 7, 3 (2003),
141–144.

12. Petre, M., Van der Hoek, A., and Baker, A. Editorial.

Design Studies 31, 6 (2010), 533–544.

13. Salomon, G., ed. Distributed Cognitions:

Psychological and Educational Considerations. Cambridge
University Press, 1993.

14. Suchman, L. and Trigg, R. Understanding practice:

video as a medium for reflection and design. In J.

Greenbaum and M. Kyng, eds., Design at Work:

Cooperative Design of Computer Systems. Lawrence
Erlbaum Associates, 1991, 65–89.

15. Szymanski, M. and Whalen, J., eds. Making Work

Visible: Ethnographically Grounded Case Studies of Work
Practice. Cambridge University Press, 2011.

16. Tang, A. What makes software design effective?
Design Studies 31, 6 (2010), 614 – 640.

