First-order predicate logic with identity: syntax and semantics

Syntax

Vocabulary

<table>
<thead>
<tr>
<th>Individual variables:</th>
<th>$u, v, w, x, y, z, u_1, ..., z_1, u_2, ...$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical constants:</td>
<td>$\neg \land \lor \to \leftrightarrow () \exists \forall =$</td>
</tr>
<tr>
<td>Variants:</td>
<td>$\sim & \supset \equiv =$</td>
</tr>
</tbody>
</table>

Non-logical constants:

<table>
<thead>
<tr>
<th>Individual constants:</th>
<th>$a, b, c, d, ..., t, a_1, b_1, ... t_1, a_2, ...$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicate letters:</td>
<td>Capital letters with numerical superscripts and with or without numerical subscripts. The superscript indicates the degree of the predicate; the subscripts guarantee an infinite supply of predicate letters.</td>
</tr>
</tbody>
</table>

$$A^0, B^0, ..., Z^0, A_1^0, B_1^0, ..., Z_1^0, A_2^0, B_2^0, ..., Z_2^0, ...,$$

$$A^1, B^1, ..., Z^1, A_1^1, B_1^1, ..., Z_1^1, A_2^1, B_2^1, ..., Z_2^1, ...,$$

$$A^2, B^2, ..., Z^2, A_1^2, B_1^2, ..., Z_1^2, A_2^2, B_2^2, ..., Z_2^2, ...,$$

....

A predicate of degree n is a predicate whose numerical superscript is n.

A sentential letter is a predicate of degree 0.

An individual symbol is either an individual variable or an individual constant.

Syntactic Rules

Atomic formulas: an atomic formula is either a sentential letter standing alone, or a predicate letter of degree n followed by a string of n individual symbols, or a string of the form $\alpha = \beta$, where α and β are both individual symbols.

Formulas: A formula is either an atomic formula or else is built up out of atomic formulas by one or more of the following rules:
1. **Molecular formulas**: If \(\varphi \) and \(\psi \) are formulas, then:

\[
\neg \varphi \quad (\varphi \land \psi) \quad (\varphi \lor \psi) \quad (\varphi \to \psi) \quad (\varphi \leftrightarrow \psi)
\]

are all formulas.

2. **General formulas**: If \(\varphi \) is a formula and \(\alpha \) is a variable, then \(\forall \alpha \varphi \) and \(\exists \alpha \varphi \) are both formulas.

Bound and free occurrences of variables: an occurrence of a variable \(\alpha \) in a formula \(\varphi \) is **bound** if it is within an occurrence in \(\varphi \) of a formula of the form \(\forall \alpha \psi \) or of the form \(\exists \alpha \psi \). An occurrence that is not bound is **free**.

Sentences: a sentence is a formula in which no variable occurs free.

Terminology. Where \(\varphi \) and \(\psi \) are formulas and \(\alpha \) is a variable:

- \(\neg \varphi \) is the **negation** of \(\varphi \).
- \((\varphi \land \psi) \) is a **conjunction**. \(\varphi \) and \(\psi \) are the **conjuncts**.
- \((\varphi \lor \psi) \) is a **disjunction**. \(\varphi \) and \(\psi \) are the **disjuncts**.
- \((\varphi \to \psi) \) is a **conditional**. \(\varphi \) is the **antecedent** and \(\psi \) is the **consequent**.
- \((\varphi \leftrightarrow \psi) \) is a **biconditional**. \(\varphi \) and \(\psi \) are its components.

Where \(\beta \) and \(\delta \) are individual symbols, \(\beta = \delta \) is an **identity formula**. Where \(\beta \) and \(\delta \) are individual constants, \(\beta = \delta \) is an **identity sentence**.

An expression of the form \(\forall \alpha \) is a **universal quantifier**. \(\forall \alpha \varphi \) is the **universal generalization** of \(\varphi \) with respect to \(\alpha \).

An expression of the form \(\exists \alpha \) is an **existential quantifier**. \(\exists \alpha \varphi \) is the **existential generalization** of \(\varphi \) with respect to \(\alpha \).

For any formula \(\varphi \), variable \(\alpha \), and individual symbol \(\beta \), \(\varphi \alpha/\beta \) is the result of replacing all free occurrences of \(\alpha \) in \(\varphi \) with occurrences of \(\beta \).

Variant terminology:

What we are calling a formula is sometimes called a **well-formed formula**, or **wff** (pronounced ‘woof’). Also:

<table>
<thead>
<tr>
<th>We say:</th>
<th>sentence</th>
<th>formula</th>
<th>formula that is not a sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variant label:</td>
<td>closed sentence</td>
<td>sentence</td>
<td>open sentence</td>
</tr>
</tbody>
</table>

Semantics

Interpretations

An interpretation, \mathcal{I}, of the formal language we have just described consists of:

1. A non-empty domain, \mathcal{D}.
2. A mapping from constants of the language to elements (or other set-theoretic constructs out of elements) of \mathcal{D}.

(Terminology: ‘Element’ means the same as ‘member’. The converse of ‘mapping’ is ‘assignment’: we map a constant of the language onto an object in the domain; we assign that object to the constant that is mapped onto it. A mapping is a function in the mathematical sense; that is, a mapping gives each constant a unique value.)

1. Each individual constant is mapped onto exactly one element of \mathcal{D}.
2. Each predicate of degree n is mapped onto exactly one set of ordered n-tuples of elements of \mathcal{D}.

Explanation: each predicate of degree 2 is mapped onto a set of ordered pairs of elements of \mathcal{D}; each predicate of degree 3 is mapped onto a set of ordered triples of elements of \mathcal{D}, etc. We consider an ordered 1-tuple of elements of \mathcal{D} to be simply an element of \mathcal{D}. Thus, each predicate of degree 1 is mapped onto a set of elements of \mathcal{D}. Finally, we arbitrarily define ‘set of ordered 0-tuples of elements of \mathcal{D}’ to be one or the other of the two truth-values, T or F. Thus, each sentential letter (predicate of degree 0) is mapped onto one of these two truth-values.

Truth under an interpretation

We will define ‘φ is true under \mathcal{I}’, where φ is a sentence and \mathcal{I} is an interpretation. To deal with general sentences, we will need one additional definition — of the notion of the “β–variant” of an interpretation:

Where \mathcal{I} and \mathcal{I}' are interpretations and β is an individual constant, \mathcal{I} is a β–variant of \mathcal{I}' iff \mathcal{I} and \mathcal{I}' differ at most in what they assign to β.

Our definition of truth is recursive: it will state the conditions under which the simplest sentences are true, and then state how the truth-values of more complex sentences depend upon those of simpler ones.

1. If φ is a sentential letter, then φ is true under \mathcal{I} iff \mathcal{I} assigns T to φ.
2. If φ is an identity sentence, $\beta = \delta$, then φ is true under \mathcal{I} iff \mathcal{I} assigns the same object to both β and δ.
3. If φ is atomic and not a sentential letter and not an identity sentence, then φ contains a predicate of degree n (for $n \geq 1$). Then φ is true under \mathcal{I} iff the ordered n-tuple of objects that \mathcal{I} assigns to the individual constants of φ (taken in the order in which their corresponding constants occur in φ) is an element of the set of ordered n-tuples that \mathcal{I} assigns to the predicate occurring in φ.

4. If $\varphi = \neg \psi$, then φ is true under \mathcal{I} iff ψ is not true under \mathcal{I}.

5. If $\varphi = (\psi \lor \chi)$, then φ is true under \mathcal{I} iff either ψ is true under \mathcal{I} or χ is true under \mathcal{I}, or both.

6. If $\varphi = (\psi \land \chi)$, then φ is true under \mathcal{I} iff both ψ is true under \mathcal{I} and χ is true under \mathcal{I}.

7. If $\varphi = (\psi \rightarrow \chi)$, then φ is true under \mathcal{I} iff either ψ is not true under \mathcal{I} or χ is true under \mathcal{I}, or both.

8. If $\varphi = (\psi \leftrightarrow \chi)$, then φ is true under \mathcal{I} iff either ψ and χ are both true under \mathcal{I} or ψ and χ are both not true under \mathcal{I}.

Let β be the (alphabetically) first individual constant not occurring in φ. Then:

9. If $\varphi = \forall \alpha \psi$, then φ is true under \mathcal{I} iff $\psi \alpha/\beta$ is true under every β–variant of \mathcal{I}.

10. If $\varphi = \exists \alpha \psi$, then φ is true under \mathcal{I} iff $\psi \alpha/\beta$ is true under at least one β–variant of \mathcal{I}.

φ is false under \mathcal{I} iff φ is not true under \mathcal{I}.

Logical Truth

A sentence φ is a **logical truth** iff φ is true under every interpretation.

A sentence φ is **logically false** iff φ is false under every interpretation.

A set of sentences Γ is **consistent** iff there is at least one interpretation under which every member of Γ is true.

A sentence φ is a **logical consequence** of a set of sentences Γ iff there is no interpretation under which all the members of Γ are true and φ is false.

A pair of sentences are **logically equivalent** iff there is no interpretation under which they differ in truth-value.