Fregean Semantics: Denotation (reference)

All linguistic expressions (proper names, predicates, sentences) denote objects.

- The denotation of a proper name is an **individual**.
- The denotation of a predicate is a **function** (which maps one object as *argument* to another object as *value*).
- The denotation of a sentence is a **truth-value**.
- A **concept** is a function whose values are truth-values.

Example: 'Bill is wealthy'

Again, the denotation of the entire sentence is a function of the denotations of its parts.

Fregean Semantics: Sense

All linguistic expressions (proper names, predicates, sentences) express senses.

- The sense of a predicate is a **function** from a sense to a sense.
- The sense of a sentence is a **thought** (i.e., a proposition).

Example: 'Bill is wealthy'

'Bill' expresses S('Bill'). 'is wealthy' expresses a function, f_4 . $f_4 = S($ 'is wealthy')

 f_4 maps senses onto thoughts: f_4 (S('Bill')) = S('Bill is wealthy') That is, f_4 maps S('Bill') onto the sense of 'Bill is wealthy'.

S('Bill is wealthy') is the *thought*, or proposition, that Bill is wealthy. **S**('Bill is wealthy') is a function of **S**('Bill') and **S**('is wealthy').

That is, the sense of the entire sentence is a function of the senses of its parts.

Example: 'Bill loves Melinda'

'Bill' expresses $\mathbf{S}('Bill')$. 'Melinda' expresses $\mathbf{S}('Melinda')$. 'loves' expresses a function, f_5 . 'loves Melinda' expresses a function, f_6 . **S**('Bill') **S**('Melinda') **S**('Melinda')

 f_5 maps senses onto functions: $f_5 (\mathbf{S}(\text{`Melinda'})) = f_6$. That is, f_5 maps $\mathbf{S}(\text{`Melinda'})$ onto f_6 , the function that is the sense of 'loves Melinda'. f_6 maps senses onto thoughts: $f_6 (\mathbf{S}(\text{`Bill'})) = \mathbf{S}(\text{`Bill loves Melinda'})$ That is, f_6 maps $\mathbf{S}(\text{`Bill'})$ onto the thought that Bill loves Melinda. $\mathbf{S}(\text{`Bill loves Melinda'})$ is a function of $\mathbf{S}(\text{`Bill'})$, $\mathbf{S}(\text{`Melinda'})$, and $\mathbf{S}(\text{`loves'})$.

That is, the sense of the entire sentence is a function of the senses of its parts.