Chapter 9: Introduction to Quantification

89.1 Variables and atomic wffs

Variables behavsyntactically like names—they appear in sentences in the saacepthat
names appear. So all of the following count asemratomic expressions pbL:

Cube(d) FrontOf(a, b) Adjoins(c, e)
Cube(x) FrontOf(x, y) Adjoins(c, x) Adjoins(y, e)

These are allvell formed formulas (wffs) of FOL. In fact, they are all atomic wifs. But the ones
with variables in them (in these examples, the améise second row, containixgandy) are
semantically different. For unlike the ones in the first rown@se individual symbols are
restricted to names), the ones with variables@mtldo not make determinate statements, and
hence do not have truth-values.

All of the expressions above aréfs, but only those in the top row asentences.

FOL contains an infinite supply of variabldsu, v, w, X, y, z, t3, u;, etc. Fitch understands all of
these, but Tarski's World is restricted to thesesjv, w, X, y, z.

§9.2 Thequantifier symbols: 00, O
The quantifier symbold,] and[] are used with variables and wifs to cremte sentences.
Universal quantifier (0O)

[x is read “for every object.” Thus, “Every object is a cube” would be expresseroL as
[x Cube(x). Some other obvious translations:

English FOL
Everything is either a cube or a tetrahedron. [x (Cube(x) Vv Tet(x))
Every tetrahedron is small. Ox (Tet(x) - Small(x))

Existential quantifier (O

[X is read “for at least one object Thus, “At least object is a tetrahedron” woule b
expressed irOL asl[ X Tet(x). Some other obvious translations:

English FOL
Some tetrahedron is small. X (Tet(x) A Small(x))
There is at least one cube in frontoof [X (Cube(x) A FrontOf(x, b))
Pay particular attention to the two “small tetratogd sentences:
Every tetrahedron is small. Ox (Tet(x) -» Small(x))
Some tetrahedron is small. X (Tet(x) A Small(x))

In English, the only difference between them id thee containgverywhere the other contains
some So one might suppose thatdoL, the only difference between them would be tha on
contains] where the other contaifs But this is not the case, as you can see. Thersally
quantified sentence contains-awhere the existentially quantified sentence corstain. We will
spend some time later getting clear exactly why ithiso.
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8 9.3 Wffsand sentences

In the portion ofFOL we have studied up until now (the logic of senemor “propositional

logic”), all sentences are built up out of atoméntences, truth-functional connectives, and
parentheses. In quantificational logic, we stidall of these sentences, but we have a lot more.
For we can now form sentences out of parts thaheitber sentences nor connectives, namely, out
of wffs that are not sentences. That is, the paittsnclude wffs that contain variables.

What we need to do is to give the rules ofgyr@ax of FoL. We will approach this in two stages.
First, we'll describe the rules for constructing thffs; then we will state the rules for determmin
which of the wffs are sentences.

Wffs

We begin with the notion of aatomic wff: anyn-ary predicate followed by individual
symbols. (An individual symbol is either an indival constant or a variable.) Atomic wffs
are the “building blocks” ofoL.

The examples we looked at earlier are all atomis:wf
Cube(d) FrontOf(a, b) Adjoins(c, e)
Cube(x) FrontOf(x, y) Adjoins(c, x) Adjoins(y, e)

Any variable occurring in an atomic wff ieee (unbound. Thus, there are free variables (
andy) in the atomic wffs in the second row, and noales in the atomic wffs in the first
row.

We can now give the rules for constructing more glemwffs out of atomic wffs,
connectives, parentheses, and quantifiers:

1. If Pis a wff, so is-P.

If Py,..., Pyare wifs, so igP1 A ... A Pp).
If Py,..., Pyare wifs, so igP1 Vv ...V Py).
If P andQ are wffs, so igP - Q).

If P andQ are wffs, so igP - Q).

If P is a wff andv is a variable, theflv P is a wiff, and any occurrencewfn (v P is
said to be bound.

R T

7. If P is a wff andv is a variable, thehv P is a wff, and any occurrencewfn [ P is
said to be bound.

Examples

Cube(x) andDodec(y) are both atomic wffs, s@Cube(x) ADodec(y)) is a wff (by
clause 2).

Since(Cube(x) ADodec(y)) is a wff, so is~(Cube(x) ADodec(y)) (by clause 1).
SinceAdjoins(x, y) is a wif, so isx Adjoins(x, y) (by clause 7).

Since- (Cube(x) ADodec(y)) andlx Adjoins(x, y) are both wifs, so is
(= (Cube(x) A Dodec(y)) - [x Adjoins(x, y)) (by clause 4).

And so on. Note that in our last wff above, theuwsoence of in the antecedent is free,
while both occurrences afin the consequent are bound. All occurrencegarte free.
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Sentences

A sentenceisawff in which no variable has a free occurrence. So, to convert our wif
above into a sentence, we will have to do somettants free variables.

Bind with a quantifier

One way to convert our wif to a sentence is tochtguantifiers to bind the variables.
We would do this in two stages:

Oy(-(Cube(x) A Dodec(y)) - [x Adjoins(x, y))

This takes care of, as all three of its occurrences are now bounditsuleftmost
occurrence oX is still free. So we can attach another quantifi#is one containing an
x. Note that it will bind only the leftmost the ones in the consequent are already
bound, and so are not bindable by the new quantifie

OxOy(= (Cube(x) ADodec(y)) - [X Adjoins(x, Y))

There are no free variables in this wff, and ge & sentence. (We are not worried right
now about what this sentengeans. We are only trying to see what makes it a
sentence.)

Substitution

Another way to convert a wff to a sentence is fgaee the free variables it contains
with constants. Starting with:

(= (Cube(x) A Dodec(y)) —» [x Adjoins(x, y))

we replacéoth occurrences of with the same constant (in this cage-replacement
must be uniform. As fox, we do not replace its occurrences in the consggbecause
they are not free; we replace only the occurrendbe antecedent. We can replace that
occurrence ok with any constant we like (includira). Or, we can use a different
constant:

(= (Cube(b) A Dodec(a)) - [k Adjoins(x, a))
There are no free variables in this wff, and de & sentence.

You can confirm that these are sentences in Tar§korld. Open the fil€h9Ex1.sen from
the Supplementary Exercises page of the coursesitesb

1. OxOy(~(Cube(x) ADodec(y)) —» [x Adjoins(x, y))
2. (- (Cube(b) ADodec(a)) - [x Adjoins(x, a))

Then try to verify the two sentences (above) thabntains. You will find that both are
sentences, but neither is evaluable. (1) is nduabte because the world is empty, and no
sentence is evaluable in an empty world. As sogoagut a block into the world, (1) will be
evaluable (it will come out false if all you dot@sput in one block. Even when you add a
second block, (1) will remain false unless your timcks adjoin one another).

Note that (2) remains unevaluable. It cannot béuewad until the names it contains are
assigned to objects in the world. (Note this digpan FOL between names and predicates:
the predicates can be “empty”, but the names cgnfistsoon as you assign the narmaesd
b to blocks, (2) will evaluate as true or false.
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Notice, also, that, for convenience, | have omittezloutermost pair of parentheses on (2). It
Is always permissible to omit the outermost pair of pareséise Just don’t forget to put them
back on if you are embedding the sentence in @famgntext (e.g., negating it, or making it a
component of a compound sentence, or attachingatidjer to it). We will turn next to an
example of what can happen if you are not cardfaliathis.

Scope of quantifier

Pay careful attention to the example discussed @3% Parentheses are important in
indicating thescope of a quantifier, that is, which part of the semgicontains occurrences of
variables bindable by that quantifier.

So we must distinguish between these two wffs:
[x (Doctor(x) A Smart(x))

and
[ Doctor(x) A Smart(x)

The first is a sentence (it says, roughly, “sometaiois smart”); the second is not a sentence,
since thex in Smart(x) is free. (This wff says, roughly, “There are dost@ndx is smart.”)

It's easy to make the mistake of writing the secafildwhen you intend the first sentence.
Here’s how it might happen:

You start with the atomic sentend@sctor(x) andSmart(x). You then conjoin them and
get(Doctor(x) A Smart(x)). You decide to drop the outer parentheses for @oience,
and get the perfectly acceptablector(x) A Smart(x). Then, when you attach the
quantifier, you forget to put the missing parenéselsack. So instead of the intended
sentenceéX (Doctor(x) A Smart(x)) you get the mistaken wff

[X Doctor(x) A Smart(x). Be careful!

§9.4 Semanticsfor the quantifiers
Satisfaction

Wffs containing free variables don’t have truthued—they are not true or false.
Consequently, a quantified sentence that is biguch wffs, such aSx Cube(x), cannot
have its truth-value defined in terms of the truétue of its component wfube(x), since
that atomic wff does not have a truth-value.

Wiffs containing free variables, although not trudatsesimpliciter, nevertheless can be said
to be true or falsef things. The wffCube(x) is true of each cube, and false of every other
thing. The wffTet(x) A Small(x) is true of each small tetrahedron, and false efyewather
thing. Another way to put this is to say that eachesatisfiesCube(x) and each small
tetrahedrorsatisfiesTet(x) A Small(x).

Satisfaction, then, is a relation between an olgadta wiff with a free variable.

Copyright © 2006, S. Marc Cohen 9-4 Revised 11/4/06



[We are simplifying for ease of comprehension.cHirispeaking, we should say that
satisfaction is a relation between an order¢dpleof objects and a wff with free
variables. For example, consider a wff with twcefrariables, such asarger(x, y).
Which objects stand in trsatisfaction-relation to this wff? No object taken by itself
does so; rather, it jgairs of objects that satisfy this wff. Thus,afis a small cube arla
is a large tetrahedron, then the pair of objbcada, taken in that order—b; a> is how
we write this—satisfies the wifarger(x, y). Note that &, b> does not satisfy this wff,
sincea is not larger thab.]

We can state what it is for an object to satisiyflain terms of the truth of a certain sentence.
For example, i5(x) is a wff containing one free variable, then a giebject satisfieS$(x) iff
we get a true sentence when we replace every mam@nce ok in S(x) with the name of
that object.

For example, an object nambdaatisfiesCube(x) A Adjoins(x, a) iff the sentence
Cube(b) A Adjoins(b, a) is true.

But not every object has a name. (In many of thddsdn Tarski’'s World, lots of objects are
nameless.) How do we explain what it is faraaneles®bject to satisfy a wff? We assign the
object atemporaryname and proceed as we did above for named objects

Tarski's World reserves a number of individual danss,ny, n,, ng, ...etc. , for just this
purpose. If we want to know whether a given nansetdgect satisfies a wff, we temporarily
give it a name, choosing as its name the firshe$é constants not already in use. Suppgse
is the first such constant. Then, usm@s a name for our nameless object, that object
satisfiesS(x) iff we get a true sentence when we replace eves/dccurrence of in S(x)

with n..

For example, a nameless object satisfiabe(x) A Adjoins(x, a) iff, treatingn, as the
name of that object, the following sentence is:t@gbe(n,) A Adjoins(n,, a)
Semantics of O
A sentence of the forix S(x) is true iff there is at least one object satisfyd{x).

Example:[x (Cube(x) A Small(x)) is true iff there is at least one object satigfyin
Cube(x) A Small(x), i.e., iff there is at least one small cube.

Semantics of O
A sentence of the formix S(x) is true iff every object satisfi€(x).

Example:lx (Cube(x) - Small(x)) is true iff every object satisfies
Cube(x) - Small(x), i.e., iff every object satisfyinGube(x) also satisfieSmall(x),
i.e., iff every cube is small.

Domain of discourse

The domain of discourse is the entire collectiothaigs that we take owoOL sentences to be
“about”’—the things we allow our quantifiers to “g@over” or pick out. Sometimes, the
domain is unrestricted, in which case we are tglldbout everything, and our quantifiers
range over all objects. More often, the domairesgricted in some way (restricted to a
smaller collection of objects—people, numbers,tmedins, elementary particles, etc.). The
choice of domains affects how we read the quansiBad quantified sentences. But in any
case, the domaimust be non-empty.
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Examples
In the domain opersonswe readIx as ‘for every persorx,...".
In the domain ohumberswe read X as ‘there is at least one numbBesuch that..’.
In the domain opoliticians, we readly as ‘for every politiciany ...".

In Tarski’'s World, the domain is restrictedidimcks Hence, in sentences about a Tarski
World, we readlx as ‘for every blockx ...” and[k as ‘for at least one block,...".

If the domain is unrestricted, théix is read as ‘for everything,...” and X is read as
‘there is at least one thingsuch that..”. When a domain has not been specified, it will
be assumed to be unrestricted.

A difference in domain is reflected in a differenodghe way we translate sentences from
English toFoL, and vice versa:

In the domain ohumberswe could translat8ome numbers are evasx Even(x).
But in an unrestricted domain, we’d have to wiike(Number(x) A Even(x)).

Similarly, in the domain opoliticians we could translatéll politicians are crookss
[Ix Crook(x). But in an unrestricted domain, we'd have to write
[x (Politician(x) - Crook(x)).

Obviously, the advantage of a restricted domathas it makes translation easier. The

drawback is that once the domain has been restrigteir sentences cannot talk about
anything outside of the restricted domain.

Hence, a sentence lil&very person owns a peannot be translated adequately intoran
whose domain has been restrictegpénsonssince this sentence requires us to quantify over
pets and pets are not persons (at least, many petoapersons!).

A notational convention

In stating the semantics of the quantifiers, anstating the game rules for Tarski’'s World,
we talk about “sentences of them [k S(x),” for example.S(x) here can be any wff that
contains at least one free occurrence.@o, for example, the followingpL sentence is of
the formx S(x):

[X (Cube(x) A Oy (Tet(y) — Larger(x, y)))

If we then want to talk about a given substitutiesiance of this existential generalization,
we would use the notatid®(b), for example. Here5(b) means “the result of replacing every
free occurrence of in S(x) with an occurrence df.” Hence, wheréXx S(x) is the sentence
above,S(b) is:

Cube(b) A Oy (Tet(y) — Larger(b, y))
Gamerulesfor the quantifiers

The game rules are summarized on p. 237. The atdg that are new are the ones for the
quantifiers, that is, for sentences of the faP(x) andUx P(x). Study these rules carefully.
Here’s a handy way of remembering how they work.
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Existential quantifier

[X P(x) is true iff at least one object satisfieé). Call any object that does this a
“withess.” Then the game rule farx P(x) can be stated as followshoever is
committed to TRUE must try to find a witness. If you are committed toRUE, Tarski's
World will ask you to choose a witness; if you acenmitted taFALSE, Tarski's World
will try to choose a witness.

Univer sal quantifier

[Ix P(x) is true iff every object satisfid¥(x). Call any object that doemt satisfyP(x)
a “counterexample.” Then the game rule fdix P(x) can be stated as follows:
whoever iscommitted to FALSE must try to find a counterexample. If you are
committed torRUE, Tarski's World will try to find a counterexampliéyou are
committed taFALSE, Tarski’s World will ask you to find a counterexgla.

In both cases, remember that if it is Tarski’'s Warimove (that is, you have committed to
TRUE for [x P(x) or toFALSE for [X P(x)), and your commitment iorrect, there will be no
counterexample tblx P(x) and no witness fdrk P(x). But Tarski’'s World will not give up—
it will choose an object anyway, and try to trickuyinto thinking that it is a witness (or a
counterexample). So don't be intimidated just bsealiarski’'s World has made a choice. It
may be bluffing!

8 9.5 Thefour Aristotelian forms

Aristotle (384-322 BCE) invented the first systefriaymal logic. He focused on four forms of
sentences—universal affirmative, universal negapeeticular affirmative, and particular
negative:

A All P’s are Q’s.

I Some P’s are Q’s.

E No P’s are Q’s.

@) Some P’s are not Q’s.

The labels A, 1, E, O) were not due to Aristotle. They were a medievaémonic device, from the
Latin wordsaffirmo (meaning “I affirm”) anchego(meaning “I deny”)A andl (from affirmo) are
the positive, or affirmative, oneg;andO (from nego) are the negative ones.

It is important to learn these forms well, as maeagy complicated sentences can be shown to be
based on these simple forms.

A vs. |

The most important point to be clear on at thet &ahe difference betweek andl
sentences when they are translated fatio

English FOL
All P's are Q’s Ox (P(X) - Q(x))
Some P's are Q's [ (P(x) A Q(X))
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Why do these&oL sentences have different connectives, as welifeseht quantifiers? It's
pretty easy to see thai (P(x) A Q(x)) could not be right foAll P’s are Q’s For thisFoL
sentence sayaverything is both P and,@nd this is obviously too strongll humans are
mortal is true, but it is not true that everything istbbuman and mortal.

Seeing why X (P(x) - Q(x)) is wrong forSome P’s are Q'ss harder. Th& ou try it on p.
240 will help you see this.

An easy way to see what's wrong with this transkaintoroL is to remember th& - Q is
equivalent too P vQ. This means thaix (P(x) —» Q(X)) is equivalent tax (- P(x) VvV Q(X)).
Now compare these two sentences:

1. Some cubes are large.
2. Something is either not a cube or large.

Clearly, these are not equivalent. (1) cannot be tmless there is a large cube; but (2) does
not require this—it comes out true if there is a{tobe. It also comes out true if there is a
large thing—whether or not it's a cube!

In fact, the only way (2) comes out false isvérything is a cube andothing is large.

Here’s a world in whiclik (Cube(x) - Large(x)) is false. Open the filesSh9Ex2.wld and
Ch9EXx2.sen. Notice that in this world of small and medium eabour sentence comes out
false. But almost any change we make to the wodke® our sentence true. Change any of
the cubes into a non-cube, and the sentence bed¢omeesr, add any large object (of any
shape) to the world, and the sentence becomedNatiee that the correct translationsaime
cubes are large x (Cube(x) A Large(x)), remains false when these changes are made.

Now let’s take what we've learned from this examghel apply it to angoL sentence of the
form [k (P(x) -» Q(X)). It almost always comes out true. The only wayoihes out false is if
everything satisfiesP(x) andnothing satisfiesQ(x). Hence, it makes a statement so weak (it
almost always comes out true) that it is seldonthvasserting.

Two ways of writing E

There are two ways of thinking abdub P’s are Q’s You might think of it as (a) a universal
generalization or (b) a negative sentence.

(a) Universal generalization
(a) encourages this reading: for any object, & &P, then it's not &. That is, inFOL:
Ox (P(x) - =~ Q(x)).

(b) Negation

(b) encourages this reading: it is false that exsaP is aQ.
That is, inFoOL: = [k (P(X) A Q(X)).

These are both correct and perfectly acceptable whiranslatinde sentences inteoL.
All vs. Only

Notice that just aall can be a quantifier in English (as in the phi@s&eshmel), so tooonly
can be used as a quantifier (a®inty freshmejy Compare the following two sentences:

1. All freshmen are eligible for the Kershner prize

2. Only freshmen are eligible for the Kershner @riz
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Clearly, (1) and (2) are not equivalent. What is difference between them? (1) tells us that
being a freshman issufficientcondition for eligibility—if you're a freshman, ¢ém you're
eligible. But (2) tells us that being a freshmaa isecessarygondition for eligibility—you're
eligibleonly if you're a freshman (but perhaps there are otherssecy conditions as well).
Hence, our two sentences go irtaL as follows:

1. Ox (Freshman(x) - Eligible(x))
2. UOx (Eligible(x) - Freshman(x))

Notice that just as, in propositional logamly if indicates that the sentence that follows is the
consequent of a conditional, so too in quantificational logioly indicates that the noun
phrase that follows should be translated by a kdt ts theconsequent of a conditional
embedded in the scope of a universal quantifier.

For practice, open Tarski's World and constructaslevin which there is a small tetrahedron,
a medium dodecahedron, a small cube, and a lalge dlotice that although not all the cubes
are large, the only large block is a cube. NowewvitoFoL sentences that correspond to the
English sentences (Bl cubes are largeand (2)Only cubes are largerhen clickVerify All.

(1) should come out false and (2) should comeroet Now make the small cube large and
click Verify All again. This time they should both be true. Now enide tetrahedron or the
dodecahedron large (but leave the cubes both largkje-verify. This time (1) should come
out true and (2) should come out false.

For a handy chart gfoL translations of some common English quantificagl@entences,
downloadCommon Quantificational Fornm the Supplementary Exercises page for this
chapter.

§9.6 Trandating complex noun phrases

It is now time to investigate sentences that areersomplex than the ones we’ve seen so far, but
that still have the basic structure of one of ter fAristotelian forms. Our first look will be at
sentences that invohamplex noun phrases, such as the following:

small happy dog

large cube in front of b

an apple or an orange

freshman or sophomore who has studied logic

In all of these cases, we could treat the compteinrphrase as a single predicate, and then use
these predicates to construct atomic sentencels,asuc

SmallHappyDog(pris)

But such translations are undesirable, in that thalge some important logical relationships less
perspicuous than they should be. We'd like to teta®ris is a small happy dogto FOL in a way
that makes clear that this sentencePrds is a dogas a consequence. And our proposed “atomic”
translation above does not do this.

A better way is to use truth-functional connectig@sl more familiar (and less complicated)
predicates. Se€ris is a small happy dogill become:

Small(pris) A Happy(pris) A Dog(pris)
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Translating the complex noun phrase, then, meadify an appropriate truth-functional
compound of wffs that are not sentences (i.e., edfstaining a free variable). Our remaining
examples look like this:

Large(x) A Cube(x) A FrontOf(x, b)

Apple(y) v Orange(y)
(Frosh(x) v Soph(x)) A StudiedLogic(x)

We can then embed these wifs in sentences, eiyhepiacing the free variables with a name, or
prefixing the appropriate quantifier. We’ll do thaith these sentences:

There is no large cube in front of b.
= [X (Large(x) A Cube(x) A FrontOf(x, b))

If Bob eats anything, it will be an apple or an nge.
Oy (Eats(bob, y) —» (Apple(y) v Orange(y))

Any freshman or sophomore who has studied logicswilceed.
Ox ((Frosh(x) v Soph(x)) A StudiedLogic(x)) —» Succeed(x))

[There is a possible ambiguity in this last sengeft which of these two ways
do we read the noun phrase?

(freshman or sophomaoyevho has studied logic
freshman o(sophomore who has studied logic

The first is more natural (it's the one we usedvaf)pbut the second is still
possible.]

Sometimes, the correct rendition of a complex ngluase irFoL is surprising. Take, for example,
the phrasepples and orange®Ve might expect this to go inkoL asApple(x) A Orange(X).

But study this wff carefully. Which objects satisty It takes only a little thought to realize that
nothing satisfies it, for in order to satisfy this wff, abject would have to satisboth of the wffs
Apple(x) andOrange(x). But no object does this, since no object is lasttapple and an orange.

The correct rendition adpples and oranges more likely to béApple(x) v Orange(x). For when
you consider such sentences as:

Apples and oranges are fruits.
Bob eats only apples and oranges.
it is clear that theoL sentences that capture their meanings are:
Ox ((Apple(x) v Orange(x)) — Fruit(x))
Ox (Eats(bob, x) —» (Apple(x) v Orange(x))
Conversational implicature and quantification

When we use such English quantificational phrasevery applicantall my grandchildren
etc., there is an apparent implication that tleeesome applicants, thahbve some
grandchildren, etc.

But in FOL, such sentences as:
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[x (Applicant(x) — Hired(bill, x))
Oy (Grandchild(y, marc) - Brilliant(y))

come out true when nothing satisfies the wff inahéecedent. So if there were no applicants,
theFoL translation oBill hired every applicantomes out true; and if | have no
grandchildren, theoL translation ofAll my grandchildren are brilliantomes out true.

What are we to say of thegacuougyeneralizations? They come out truea, but when we
assert their English translations, something seerasg with them. But what is wrong with
them? Is it that they arfelse?

The most widely accepted answer to this questiokesiase of Grice’s notion of
conversational implicature. Grice’s answer is hatt vacuous generalizations are false, but
that they arenisleading.

What is misleading about them is that the spea&kemiot been fully forthcoming with all the
information at his or her disposal. If the spedk®yws that there are no applicants, or that
Marc has no grandchildren, the most fully informatstatements he or she could make about
the applicants, or about Marc’s grandchildrare:

There were no applicants
Marc has no grandchildren
The statements we are considering:
Bill hired every applicant
All of Marc’s grandchildren are brilliant

make weaker claims—each is a logical consequenite cbunterpart “negative existential,”
but does not logically imply it. So the vacuous @@tization makes a weaker claim.

The relation is just the same as that betweenjandison and one of its disjuncts—the
disjunction makes a weaker claim than the disjstentding alone. But clearly the weaker
claim is not false—it is just a weaker versionlué truth. For example, if | tell my wife “Your
keys are either in the kitchen or by the front ¢fband | know that they are in the kitchen, |
have not lied—I have not said something false vehaisled her, of course, by withholding
relevant information that | possessed, namely,ttiey are not by the front door. | should
have said simply “They are in the kitchen.” But mistake was not in saying something
false; rather, it was in not telling all of the ttnd was in possession of. | may have
conversationally implicated that I did not know #aeact location of her keys, but I did not
assert that.

That this is exactly what is going on in the casesare considering becomes apparent when
we consider an equivaleRoL sentence:

Oy (= Grandchild(y, marc) Vv Brilliant(y))

This is equivalent to the standardL version ofAll of Marc’s grandchildren are brillianand
it stands in just the same relation to its courgdrpegative existential:

[y =~ Grandchild(y, marc)

Here, too, the weaker statement is a disjuncti@hthe stronger statement is one of its
disjuncts.
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So when |, who have no grandchildren, say thatfalhy grandchildren are brilliant, | say
something that is misleading, but not false. Hoate not asserted, falsely, that | have
grandchildren, although | haveplicated this. The implicature can be cancelled, for | can
say, without contradicting myself (barely@)l of my grandchildren are brilliant—
unfortunately, | don’t have any grandchildren
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