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Chapter 8: The Logic of Conditionals 

§ 8.1  Informal methods of proof 

Conditional elimination 

This method of proof is also known by its Latin name, modus ponens (literally, “method of 
affirming”—roughly, having affirmed the antecedent of a conditional, you may affirm the 
consequent). 

From P and P → Q , you may infer Q. 

Biconditional elimination 

This is sometimes called “modus ponens for the biconditional.” 

From P and P ↔ Q , you may infer Q. 

From P and Q ↔ P , you may infer Q. 

Some handy equivalences 

Contraposition 

P → Q ⇔ ¬Q → ¬P 

The “conditional – disjunction” equivalence 

P → Q ⇔ ¬P ∨ Q 

The “negated conditional” equivalence 

¬ (P → Q) ⇔ P ∧ ¬Q 

The “biconditional – conjunction” equivalence 

P ↔ Q ⇔ (P → Q) ∧ (Q → P) 

The “biconditional – disjunction” equivalence 

P ↔ Q ⇔ (P ∧ Q) ∨ (¬P ∧ ¬Q) 

In some systems of deduction for the propositional portion of FOL, these equivalences are used 
as rules. In the system F, and in Fitch, these are not going to be rules. In fact, we will be 
using Fitch to prove these equivalences. Still, it is useful to be aware of them. 

Note that the equivalence symbol ⇔ is not a connective of FOL, but a symbol we use in the 
“metalanguage” (in this case, English, the language in which we talk about FOL), and the 
statements of equivalence are not FOL sentences. 

For a useful chart of tautological equivalences, see the Supplementary Exercises page on the 
course web site. Look under the listings for Chapter 7. 

The method of conditional proof 

This very important method of proof is a way of establishing conditional sentences. In using 
this method, we make a provisional assumption, P, and deduce some consequences of it. 
When we arrive at some appropriate sentence, Q, we have shown that the assumption of P 
has led to the conclusion Q. We may then discharge the assumption of P and conclude that if 
P, then Q. 
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How do we know when we have reached an “appropriate sentence, Q”? We should know in 
advance which sentence we are looking for. Since we are trying to establish a conditional 
sentence, we assume its antecedent and attempt to deduce its consequent. 

Note that the method of conditional proof can be used for biconditionals, too. To prove 
P ↔ Q, construct separate conditional proofs for each of the conditionals P → Q and 
Q → P. The conjunction of these two conditionals is equivalent to the biconditional P ↔ Q. 
(See the “biconditional – conjunction” equivalence above.) 

§ 8.2  Formal rules of proof for →→→→ and ↔↔↔↔ 

Conditional elimination (→→→→ Elim) 

     P → Q  

     P 

❺   Q 

That is, if you have a conditional on one line in a proof, and its antecedent (alone) on another 
line, you may infer the consequent. As justification, you cite the two earlier lines. 

Conditional introduction (→→→→ Intro) 

       P 

       Q 

❺  P → Q 

This is the formal counterpart of the method of conditional proof. Begin a subproof with P, 
the antecedent of your desired conditional. When your desired consequent, Q, occurs on a 
later line in the subproof, end the subproof and enter the conditional P → Q. As justification 
for the conditional, you cite the entire subproof. 

Some tricks using →→→→ Intro 

Here are a couple of “tricks” involving conditionals, one involving an “irrelevant” 
antecedent and one an “irrelevant” consequent. Open the files Irrelevant Antecedent 
and Irrelevant Consequent on the Supplementary Exercises page. In each case you 
should be able to use a simple conditional proof strategy (with a little trick thrown in) to 
deduce the conclusion. (You probably used one of these strategies on Exercise 8.26.) 

In these cases, what we have shown is that we can have any sentence we like as the 
antecedent of a conditional whose consequent we have already proved, and we can have 
any sentence we like as the consequent of a conditional if we’ve already proved the 
negation of its antecedent. 

Here’s a good problem on which to use the tricks you’ve just learned. Open 
Conditional Tricks on the Supplementary Exercises page. Then try to use these tricks 
in constructing a proof. (This is one half of the “negated conditional” equivalence we 
studied above; the proof you just constructed will make up half of the proof of that 
equivalence in Exercise 8.30.) 

When you’ve finished the proof, leave Fitch running with your proof file still open. 
We’ll be using it again in a moment. 
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Proofs without premises 

It’s easy to use →→→→ Intro to convert a proof with a premise into a proof (without premises) of 
the corresponding conditional sentence. The trick is just to embed the old proof as a 
subproof into the new proof. 

Here’s an easy way to embed on old proof into a new one. (This procedure is described in 
§4.4.3 of the software manual.) Open a new Fitch file, and start a new subproof (Ctrl-P). 
Now go back to the proof you’ve just finished, and click on the rectangle at the upper left of 
the window, to the left of the symbol selector—this converts the cursor into a selector than 
can copy many lines in a proof simultaneously. 

Point the cursor at the upper left corner of the proof and click on the left mouse button. You 
will notice that the cursor has changed shape. Now, hold the button down while dragging 
toward the lower right corner. You will see a box appear, surrounding the text you’ve 
selected. When it encloses your entire proof, release the mouse button. You have just selected 
your entire proof. 

Now click on Edit Copy (or type Ctrl-C) to copy the proof you’ve selected. Go back to 
your new proof; the focus slider should still be pointed at the assumption line of your new 
subproof. (If it’s not, change the focus so that it is.) Then click on Edit Paste (or type 
Ctrl-V). This will insert your entire old proof into the new one, but one level of subproof 
deeper. Your old premise has become the first subproof assumption, and your old conclusion 
is the last line of that subproof. Don’t forget to switch back to pointer tool (click on arrow at 
upper left). 

Change the focus to the last line, and end the subproof. You are now prompted for a rule, so 
choose →→→→ Intro and cite the entire subproof. Then click on Check Step. Congratulations! 
You have just constructed a proof without premises. The old premise has become the first 
subproof assumption, and the old conclusion is the last line of that subproof. The last line 
(which has no premises) is the original argument’s corresponding conditional sentence. 

We will be looking at other (more complex) proofs without premises later. 

Default and generous uses of the →→→→rules 

Default 

If you are on a new line in a proof, and you choose rule →→→→ Elim and cite, as two 
separate lines, a conditional and its antecedent, Fitch will take the consequent and enter 
it by itself on the new line. 

If you end a subproof, Fitch will create a new line after the subproof and ask you to 
choose a rule to justify the line. And as we saw (in our example of embedding a proof 
as a new subproof) when we chose →→→→ Intro and cited the entire subproof, Fitch entered, 
on the new line, the conditional sentence whose antecedent was the assumption of the 
subproof and whose consequent was the last line of the subproof. 

Generous 

In using →→→→ Elim, you can cite the support sentences in any order. In using →→→→ Intro, the 
consequent of the new conditional does not have to be the last line of the subproof—it 
can be any line of the subproof, even the assumption line itself. 
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Short cut hint—try this: start a new Fitch proof with no premises. Assume A. Then 
choose End Subproof (Ctrl-E), choose rule →→→→ Intro, and cite the “entire” one-line 

subproof. Ask Fitch to check the line, and watch what Fitch does! 

Biconditional elimination (↔↔↔↔ Elim) 

     P ↔ Q   (or Q ↔ P) 

     P 

❺   Q 

This rule is, effectively, modus ponens in either direction—given a biconditional on one line, 
and either of its components on another line, you may infer the other component on a new 
line. 

Biconditional introduction (↔↔↔↔ Intro) 

       P 

       Q 

       Q 

       P 

❺  P ↔ Q 

This rule is, effectively, a double use of →→→→ Intro. If you have the two subproofs which would 
entitle you to infer, by →→→→ Intro, a pair of conditionals that are converses of one another (they 
have antecedent and consequent exchanged), you may infer the biconditional of the two 
component sentences. 

§ 8.3  Soundness and completeness 

In this course, we are mainly interested in developing a system of logic that we can use to prove the 
validity of valid arguments, and demonstrate the invalidity of invalid arguments. In more advanced 
logic courses, the attention turns to proving things about the system of logic itself—this is 
metatheory, the study of the properties of a logical system. 

Two of the most important properties of such a system are soundness and completeness. We will 
not attempt to prove that our system (even the part of it we’ve developed so far) has these 
properties. Rather, we’re just interested in understanding what these properties are, and with 
getting a rough idea of what would be involved in proving that our system has them. To study more 
metatheory, you’ll have to go on to take PHIL 470. 

Soundness and completeness are properties of the system F—the set of deductive rules we’ve 
been developing. Actually, what we’ve studied so far is only a part of the system F—the part that 
concerns the sentence connectives. That is, the system we’ve studied is just the collection of Intro 
and Elim rules for ¬ , ∧, ∨, →, ↔, and ⊥ . We’ll call this smaller system FT. And we’ll write: 

P1,…, Pn �T S 

to mean that there is a proof in FT of S from premises P1,…, Pn. 
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Soundness 

Basically, a sound system is one in which all the inferences that you are entitled to make by 
the rules of the system are valid inferences. 

The Soundness Theorem for FT: If P1,…, Pn �T S,  
then S is a tautological consequence of P1,…, Pn. 

That is, the rules of FT are sound if they satisfy this condition: any conclusion we can deduce 
from a set of premises by means of the rules of FT is in fact a tautological consequence of 
those premises. 

To put it another way, the soundness of FT comes to this: if you can prove a conclusion using 
Fitch, it will also turn out to be a tautological consequence of its premises according to Boole. 

A Corollary 

Given the soundness of FT, we know that any conclusion we prove using its rules is 
indeed a tautological consequence of the premises we use to prove it. This also applies 
when there are no premises. That is, if there is a proof of S in FT with no premises, 
then S is a tautology. 

 Soundness Corollary: If �T S, then S is a tautology. 

Completeness 

Completeness is just the converse of soundness. That is, a complete system is one in which 
any valid inference can be proved by means of the rules of the system. 

The Completeness Theorem for FT: If a sentence S is a 
tautological consequence of P1,…, Pn, then P1,…, Pn �T S. 

That is, the rules of FT are complete if they satisfy this condition: any conclusion that is in 
fact a tautological consequence of a set of premises can be deduced from those premises by 
means of the rules of FT. 

To put it another way, the completeness of FT comes to this: if a conclusion is a tautological 
consequence of its premises according to Boole, then you can also prove it from those 
premises using Fitch. 

A Corollary 

Given the completeness of FT, we know that any tautological consequence of a given 
set of premises can be proved from those premises using the rules of FT. This also 
applies when there are no premises. That is, if S is a tautology, then there is a proof of 
S in FT with no premises. 

    Completeness Corollary: If S is a tautology, then �T S. 
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Why we need both soundness and completeness 

It is not enough for a system to be sound, for a system can be sound without being complete. 
For example, a system whose only rules were ∧∧∧∧ Intro and ∧∧∧∧ Elim would be sound (it would 
never permit any invalid inferences), but woefully incomplete (it could not prove even the 
simplest inferences using connectives other than ∧.) So a system that is sound but not 
complete would never produce any incorrect inferences, but there would be some correct 
inferences it would be unable to prove. 

Similarly, it is not enough for a system to be complete, for a system can be complete without 
being sound. For example, consider a “system” whose only rule is this: from P, infer Q. In 
this system, every inference would be simple: you could deduce any conclusion you want in 
just one step. Such a system would be too powerful; although it would include all the correct 
inferences, it would let in all the incorrect ones, too. 

Proving soundness and completeness 

Soundness is much easier to prove than completeness. To prove the soundness of the rules of 
FT, we only have to prove that none of the rules is capable of deducing a sentence that does 
not follow from (i.e., is not a TT-consequence of) its premises. 

The method of proof is illustrated on pp. 215-216. It combines a proof by cases with a proof 
by contradiction. Assume that FT is unsound. That means that there is a proof with an invalid 
step—a line in a proof that is licensed by the rules of FT but that is not a tautological 
consequence of its premises. Pick any such proof, and consider the first invalid step in the 
proof. That step had to be licensed by one of the rules of FT. Then show that, no matter which 
rule we consider, the assumption that this rule has yielded an invalid step leads to a 
contradiction. 

For example, here’s how we show that →→→→ Elim could not have produced the first invalid step. 
Suppose that it did. Then we would have a pair of sentences Q and Q → R that are both 
tautological consequences of some set of premises A1 … Ak, but the sentence R obtained by 
→→→→ Elim is not a consequence of A1,…, Ak. But that means that a truth table for these 
sentences would contain a row in which A1,…, Ak, Q, and Q → R are all true, but R is false. 
But this is impossible—there can be no such row. 

The full proof would go on to show that a similar impossibility results no matter which rule 
we suppose was the culprit that introduced the first invalid step. 

The proof of completeness of FT is more complicated, and will not be covered in this course. 
The proof can be found in §17.2, and by the time you have finished this course, you will be in 
a position to follow it. 

§ 8.4  Valid arguments: some review exercises 

We will work on Exercise 8.48.prf and Exercise 8.52.prf. for practice. 

8.48 

Since the conclusion is a conditional, we will want to use conditional proof strategy 
(→→→→ Intro). So we will start a subproof with ¬Tet(c) as the assumption. But notice that the 
first premise is a conjunction, and we may need one of its conjuncts separately. (It’s always a 
good idea to use ∧∧∧∧ Elim first, when possible, before setting up any subproofs. That way 
individual conjuncts will be available in all subsequent subroofs.) The second conjunct is a 
disjunction whose disjuncts occur in the other premises, so first we’ll enter it on the next line 
(∧∧∧∧ Elim) and then set up our conditional proof. Open Proof 8.48a.prf. 
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The goal of our subproof is FrontOf(a, b), the consequent of the main goal. We can use proof 
by cases to get it. Open Proof 8.48b.prf. The first case is easy: Medium(b) gets us our 
conclusion by →→→→ Elim. The second case leads to a contradiction, since we can get both Tet(c) 
and ¬Tet(c). 

That allows us to use ∨∨∨∨ Elim to complete the proof by cases of FrontOf(a, b). Then we use 
→→→→ Intro to complete our conditional proof of ¬Tet(c) → FrontOf(a, b). See Proof 
8.48c.prf for the complete proof. 

8.52 

Open Exercise 8.52.prf. Again, the conclusion is a conditional, so we will set the proof up as 
a conditional proof (→→→→ Intro). And we will use proof by contradiction (¬¬¬¬  Intro) in the 
embedded subproof to obtain a ≠ c, the consequent of the main conditional. Open Proof 
8.52a.prf. 

Dodec(b) is clearly inconsistent with Cube(b), so if we assume Cube(b) we can use Ana 
Con to derive ⊥  from that assumption. That lets us prove ¬Cube(b). Open Proof 8.52b.prf. 
Our task is now to get from ¬Cube(b) to a contradiction. But our premise is a biconditional, 
with Cube(b) as its left-hand component. Using Taut Con (remember, after p. 222 we’re 
allowed to use Taut Con for “simple steps”) we can infer the negation of the right-hand 
component. Then, substituting c for a (as licensed by a = c), we obtain a contradiction (the 
negation of a biconditional of the form P ↔ P) from which we can infer ⊥  by Taut Con. See 
the complete Proof 8.52c.prf. 

Another example: a complicated tautology 

We can use system FT (and hence Fitch) to prove (without premises) any tautology. Here’s an 
interesting example that looks as if it should be difficult to prove, but turns out to be very 
easy: 

(A → (B → C)) → ((A → B) → (A → C)) 

The challenge is to prove this sentence from the empty set of premises. And the apparent 
difficulty is that the conclusion is long and complex, and there are no premises to work with. 

The solution is to allow the logical structure of the conclusion to dictate the proof strategy. 
Since the conclusion is a conditional, we will plan to get it by using →→→→ Intro, assuming 
(A → (B → C)) and deriving (A → B) → (A → C). Here’s what the opening strategy looks 
like. Open Ch8Ex1a.prf. 

Now our task is to derive the intermediate conclusion (A → B) → (A → C). Since this is also 
a conditional, we can use the same →→→→ Intro strategy. We’ll assume A → B and derive 
A → C. Open Ch8Ex1b.prf. 

Our final intermediate conclusion is A → C, and we simply repeat the same strategy: assume 
the antecedent A and derive the consequent C. Open Ch8Ex1c.prf. 

Now that the entire strategy has been laid out, we have several nested subproofs. Working 
inside the innermost subproof, our task is to derive C from all of the assumptions under which 
it falls. Since those assumptions are: 

A → (B → C) 
A → B 
A 
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the deduction is easy (three applications of →→→→ Elim). For the complete proof, see 
Ch8Ex1d.prf. 

Another example: a logical truth requiring Ana Con 

In this example, we prove a logical truth that is neither a tautology nor a first-order logical 
truth—so we’ll have to use Ana Con: 

Cube(a) → ¬ (Tet(a) ∨ Dodec(a)) 

Open the file Ch8Ex2.prf from the Supplementary Exercises page on the course web site. 
Notice that the Goal Constraints permit the use of Ana Con, but only with literals. Note 
carefully what this means. First, and most obviously, it means you can’t apply Ana Con 
directly to the conclusion itself, justifying it in a single step. (Without this goal constraint, you 
could do this!). Second, and less obviously, you can’t use Ana Con to justify 
¬ (Tet(a) ∨ Dodec(a)), citing the previous step Cube(a). For even though you would be 
applying Ana Con to a literal, the sentence you are deriving is not a literal. This constraint 
requires that both the cited sentence and the derived sentence must be literals. 

Try to develop an approach that works within this constraint: my version uses conditional 
proof strategy, with an embedded indirect proof; the contradiction in the indirect proof is 
obtained by using proof by cases. Your version might well be different. For my version, see 
Proof Ch8Ex2.prf. 

 


	§ 8.1  Informal methods of proof
	Conditional elimination
	Biconditional elimination
	Some handy equivalences
	Contraposition
	The “conditional – disjunction” equivalence
	The “negated conditional” equivalence
	The “biconditional – conjunction” equivalence
	The “biconditional – disjunction” equivalence

	The method of conditional proof

	§ 8.2  Formal rules of proof for ( and (
	Conditional elimination (( Elim)
	Conditional introduction (( Intro)
	Some tricks using ( Intro

	Proofs without premises
	Default and generous uses of the (rules
	Default
	Generous

	Biconditional elimination (( Elim)
	Biconditional introduction (( Intro)

	§ 8.3  Soundness and completeness
	Soundness
	A Corollary

	Completeness
	A Corollary

	Why we need both soundness and completeness
	Proving soundness and completeness

	§ 8.4  Valid arguments: some review exercises
	8.48
	8.52
	Another example: a complicated tautology
	Another example: a logical truth requiring Ana Con


