
Copyright © 2004, S. Marc Cohen Revised 6/1/04 6-1

Chapter 6: Formal Proofs and Boolean Logic

The Fitch program, like the system F, uses “introduction” and “elimination” rules. The ones we’ve
seen so far deal with the logical symbol =. The next group of rules deals with the Boolean connectives
∧, ∨, and ¬ .

§ 6.1 Conjunction rules

Conjunction Elimination (∧∧∧∧ Elim)

 P1 ∧…∧ Pi ∧ …∧ Pn

❺ Pi

This rule tells you that if you have a conjunction in a proof, you may enter, on a new line, any
of its conjuncts. (Pi here represents any of the conjuncts, including the first or the last.)

Notice this important point: the conjunction to which you apply ∧∧∧∧ Elim must appear by itself
on a line in the proof. You cannot apply this rule to a conjunction that is embedded as part of
a larger sentence. For example, this is not a valid use of ∧∧∧∧ Elim:

 1. ¬ (Cube(a) ∧ Large(a))

❺ 2. ¬Cube(a) x ∧∧∧∧ Elim: 1

The reason this is not valid use of the rule is that ∧∧∧∧ Elim can only be applied to conjunctions,
and the line that this “proof” purports to apply it to is a negation. And it’s a good thing that
this move is not allowed, for the inference above is not valid—from the premise that a is not a
large cube it does not follow that a is not a cube. a might well be a small cube (and hence not
a large cube, but still a cube).

This same restriction—the rule applies to the sentence on the entire line, and not to an
embedded sentence—holds for all of the rules of F, by the way. And so Fitch will not let you
apply ∧∧∧∧ Elim or any of the rules of inference to sentences that are embedded within larger
sentences.

Conjunction Introduction (∧∧∧∧ Intro)

 P1

 ⇓

 Pn

❺ P1 ∧…∧ Pn

This rule tells you that if you have a number of sentences in a proof, you may enter, on a new
line, their conjunction. Each conjunct must appear individually on its own line, although they
may occur in any order. Thus, if you have A on line 1 and B on line 3, you may enter B ∧ A
on a subsequent line. (Note that the lines need not be consecutive.) You may, of course, also
enter A ∧ B.

Copyright © 2004, S. Marc Cohen Revised 6/1/04 6-2

Default and generous uses of rules

Unlike system F, Fitch has both default and generous uses of its rules. A default use of a rule
is what will happen if you cite a rule and a previous line (or lines) as justification, but do not
enter any new sentence. If you ask Fitch to check out the step, it will enter a sentence for you.
A generous use of a rule is one that is not is not strictly in accordance with the rule as stated
in F (i.e., F would not allow you to derive it in a single step), but is still a valid inference.
Fitch will often let you do this in one step.

Default and generous uses of the ∧∧∧∧ rules

• Default use: if you cite a conjunction and the rule ∧∧∧∧ Elim, and ask Fitch to check out
the step, Fitch will enter the leftmost conjunct on the new line.

• Generous use: if you cite a conjunction and the rule ∧∧∧∧ Elim, you may manually enter
any of its conjuncts, or you may enter any conjunction whose conjuncts are among
those in the cited line. Fitch will check out the step as a valid use of the rule.

Note just how generous Fitch is about ∧∧∧∧ Elim—from the premise

A ∧ B ∧ C ∧ D

Fitch will allow you to obtain any of the following (among others!) by a “generous” use of the
rule:

A
B
C
D
A ∧ B
A ∧ C
A ∧ D
B ∧ C
B ∧ D
C ∧ D
A ∧ B ∧ C
B ∧ A ∧ D
D ∧ A ∧ C
B ∧ A ∧ C ∧ D

§ 6.2 Disjunction rules

Disjunction Introduction (∨∨∨∨ Intro)

 Pi

❺ P1 ∨…∨ Pi ∨ …∨ Pn

This rule tells you that if you have a sentence on a line in a proof, you may enter, on a new
line, any disjunction of which it is a disjunct. (Pi here represents any of the disjuncts,
including the first or the last.)

Copyright © 2004, S. Marc Cohen Revised 6/1/04 6-3

Disjunction Elimination (∨∨∨∨ Elim)

This is the formal rule that corresponds to the method of proof by cases. It incorporates the
formal device of a subproof.

A subproof involves the temporary use of an additional assumption, which functions in a
subproof the way the premises do in the main proof under which it is subsumed.

We place a subproof within a main proof by introducing a new vertical line, inside the vertical
line for the main proof. We begin the subproof with an assumption (any sentence of our
choice), and place a new Fitch bar under the assumption:

 Premise

 Assumption for subproof

The subproof may be ended at any time. When the subproof ends, the vertical line stops, and
the next line either “jumps out” to the original vertical proof line, or a new subproof may be
begun. As we’ll see, ∨∨∨∨ Elim involves the use of two (or more) subproofs, typically (although
not necessarily) entered one immediately after the other.

The rule:

 P1 ∨…∨ Pn

 P1

 S

 ⇓

 Pn

 S

❺ S

What the rule says is this: if have a disjunction in a proof, and you have shown, through
a sequence of subproofs, that each of the disjuncts (together with any other premises in
the main proof) leads to the same conclusion, then you may derive that conclusion from
the disjunction (together with any main premises cited within the subproofs).

This is clearly a formal version of the method of proof by cases. Each of the Pi
represents one of the cases. Each subproof represents a demonstration that, in each case,
we may conclude S. Our conclusion is that S is a consequence of the disjunction
together with any of the main premises cited within the subproofs.

When you do the You try it on p. 151, notice, as you proceed through the proof, that after
step 4 you must end the subproof first, before you begin the next subproof.

To do these things, you can click on the options in the Proof menu. But it is easier and quicker
to use the keyboard shortcuts: to end a subproof, press Control-E; to begin a new
subproof, press Control-P. Another handy shortcut is Control-A for adding a new line
after the current line, as part of the same proof or subproof. (Any time you add a new line,
Fitch will wait for you to write in a sentence and cite a justification for it.)

Copyright © 2004, S. Marc Cohen Revised 6/1/04 6-4

Note also that the use of Reit is strictly optional. For example, in the proof on p. 151, step 5 is
not required. The proof might look like the one in Page 151.prf (on Supplementary Exercises
page) and it will check out.

Default and generous uses of the ∨∨∨∨rules

• Default uses

o ∨∨∨∨ Elim: if you cite a disjunction and some subproofs, with each subproof
beginning with a different disjunct of the disjunction, and all subproofs
ending in the same sentence, S, cite the rule ∨∨∨∨ Elim, and ask Fitch to check it
out, Fitch will enter S.

o ∨∨∨∨ Intro: if you cite a sentence and the rule ∨∨∨∨ Intro, and ask Fitch to check it
out, Fitch will enter the cited sentence followed by a ∨, and wait for you to
enter whatever disjunct you wish.

• Generous use: if your cited disjunction contains more than two disjuncts, you don’t
need a separate subproof for each disjunct. A subproof may begin with a disjunction
of just some of the disjuncts of the cited disjunction. When you ask Fitch to check the
step, Fitch will check it out as a valid use of the rule, so long as every disjunct of the
cited disjunction is either a subproof assumption or a disjunct of such an assumption.

§ 6.3 Negation rules

Negation Elimination (¬¬¬¬ Elim)

This simple rule allows us to eliminate “double negations.”

 ¬¬ P

 ❺ P

Negation Introduction (¬¬¬¬ Intro)

This is our formal version of the method of indirect proof, or proof by contradiction. It
requires the use of a subproof. The idea is this: if an assumption made in a subproof leads to
⊥ , you may close the subproof and derive as a conclusion the negation of the sentence that
was the assumption.

 P

 ⊥

❺ ¬P

To use this rule, we will need a way of getting the contradiction symbol, ⊥ , into a proof. We
will have a special rule for that, one which allows us to enter a ⊥ if we have, on separate lines
in our proof (or subproof) both a sentence and its negation.

⊥⊥⊥⊥ Introduction (⊥⊥⊥⊥ Intro)

 P

 ¬P

❺ ⊥

Copyright © 2004, S. Marc Cohen Revised 6/1/04 6-5

Note that the cited lines must be explicit contradictories, i.e., sentences of the form P and ¬P.
This means that the two sentences must be symbol-for-symbol identical, except for the
negation sign at the beginning of one of them. It is not enough that the two sentences be TT-
inconsistent with one another, such as A ∨ B and ¬A ∧ ¬B. Although these two are
contradictories (semantically speaking) since they must always have opposite truth-values,
they are not explicit contradictories (syntactically speaking) since they are not written in the
form P and ¬P.

To try out these two rules, do the You try it on p. 156.

Other kinds of contradictions

The rule of ⊥⊥⊥⊥ Intro lets us derive ⊥ whenever we have a pair of sentences that are explicit
contradictories. But there are other kinds of contradictory pairs: non-explicit TT-
contradictories, FO-contradictories that are TT-consistent, logical contradictories that are FO-
consistent, and TW-contradictories that are logically consistent. Here are some examples of
these other types of contradictory pairs:

1. Tet(a) ∨Tet(b) and ¬Tet(a) ∧ ¬Tet(b)

2. Cube(b) ∧ a = b and ¬Cube(a)

3. Cube(b) and Tet(b)

4. ¬Tet(a) ∧ ¬Cube(a) and ¬Dodec(a)

In example (1) we have TT-contradictory sentences but not an explicit contradiction, as
defined above. In (2) we have a pair of sentences that are FO-inconsistent (they cannot both be
true in any possible circumstance), but not TT-inconsistent (a truth-table would not detect their
inconsistency). In (3) we have a pair that are logically inconsistent but not FO-inconsistent (or
TT-inconsistent). Finally, in (4) we have a pair that are TW-contradictories (there is no Tarski
world in which both of these sentences are simultaneously true), although they are logically
consistent—it is possible for an object to be neither a tetrahedron nor a cube nor a
dodecahedron (it may be a sphere).

The rule of ⊥⊥⊥⊥ Intro does not apply directly in any of these examples. In each case it takes a
bit of maneuvering first before we come up with an explicitly contradictory pair of sentences,
as required by the rule.

Example 1

1. Tet(a) ∨ Tet(b)
2. ¬Tet(a) ∧ ¬Tet(b)

3. ¬Tet(a) ∧∧∧∧ Elim: 2
4. ¬Tet(b) ∧∧∧∧ Elim: 2

 5. Tet(a)
 6. ⊥ ⊥⊥⊥⊥ Intro: 3, 5

 7. Tet(b)
 8. ⊥ ⊥⊥⊥⊥ Intro: 4, 7
9. ⊥ ∨∨∨∨ Elim: 1, 5-6, 7-8

Copyright © 2004, S. Marc Cohen Revised 6/1/04 6-6

Here we used ∧∧∧∧ Elim twice, to get the two conjuncts of (2) separately, and then constructed a
proof by cases to show that whichever disjunct of line (1) we choose, we get to an explicit
contradiction.

Example 2

1. Cube(b) ∧ a = b
2. ¬Cube(a)

3. Cube(b) ∧∧∧∧ Elim: 1
4. a = b ∧∧∧∧ Elim: 1
5. ¬Cube(b) = Elim: 2, 4
6. ⊥ ⊥⊥⊥⊥ Intro: 3, 5

Here we used ∧∧∧∧ Elim to get Cube(b) and a = b to stand alone, and then = Elim (substituting
b for a in line 2) to get the explicit contradictory of Cube(b).

Example 3

1. Cube(b)
2. Tet(b)

3. ¬Tet(b) Ana Con: 1
4. ⊥ ⊥⊥⊥⊥ Intro: 2, 3

Here we had to use Ana Con. Of course, as long as we were going to use Ana Con at all, we
could have used it instead of ⊥⊥⊥⊥ Intro to get our contradiction, as follows:

1. Cube(b)
2. Tet(b)

3. ⊥ Ana Con: 1, 2

Example 4

1. ¬Tet(a) ∧ ¬Cube(a)
2. ¬Dodec(a)

3. ⊥ Ana Con: 1, 2

To see these different forms of contradictions in action, do the You try it on p. 159. It’s an
excellent illustration of these differences. You’ll find that you often need to use the Con
mechanisms to introduce a ⊥ into a proof, since ⊥⊥⊥⊥ Intro requires that there be an explicit
contradiction in the form of a pair of sentences P and ¬P.

Copyright © 2004, S. Marc Cohen Revised 6/1/04 6-7

⊥⊥⊥⊥ Elimination (⊥⊥⊥⊥ Elim)

 ⊥

 ❺ P

The rule of ⊥ elimination is added to our system strictly as a convenience—we do not really
need it. It allows us, once we have a ⊥ in a proof, to enter any sentence we like. (We’ve
already seen that every sentence follows from a contradiction.) As p. 161 shows, we can
easily do without this rule with a four step “workaround.”

Default and generous uses of the ¬¬¬¬ rules

Note the default and generous uses of these rules in Fitch (p. 161). With ¬¬¬¬ Elim, you don’t
need two steps to get from ¬¬¬¬ P to P (passing through the intermediate step ¬¬ P). You
can do it in one step. In fact, this is also the default use of the rule (if you cite the rule and ask
Fitch to fill in the derived line).

In the case of ¬¬¬¬ Intro, where the subproof assumption is a negation, ¬P, and the subproof
ends with a ⊥ :

• Default use: if you end the subproof, cite the subproof and rule ¬¬¬¬ Intro, and ask
Fitch to check the step, Fitch will enter the line ¬¬ P.

• Generous use: if you end the subproof, enter the line P manually, cite the subproof
and rule ¬¬¬¬ Intro, and ask Fitch to check the step, Fitch will check it out as a valid use
of the rule.

§ 6.4 The proper use of subproofs

Once a subproof has ended, none of the lines in that subproof may be cited in any subsequent part
of the proof. Look at the “proof” on p. 163 to see what can happen if this restriction is violated.

How Fitch keeps you out of trouble

When you are working in system F, you can enter erroneous lines like line 8 on p. 163 and
never be aware of it. But Fitch won’t let you do this! To see what happens, look at
Page163.prf.

Notice that when we try to justify line 8 by means of ∧∧∧∧ Intro, Fitch will not let us cite the line
that occurs inside the subproof that has already been closed.

When a subproof ends, we say that its assumption has been discharged. After an assumption is
discharged, one may not cite any line that depended on that assumption.

Note that it is permissible, while within a subproof, to cite lines that occur outside that subproof.
So, for example, one may, while within a subproof, refer back to the original premises, or
conclusions derived from them. One must just take care not to cite lines that occur in subproofs
whose assumptions have been discharged.

Subproofs may be nested—one subproof may begin before another is ended. In such cases, the last
subproof begun must be ended first. The example on p. 165 illustrates such a nested subproof.

§ 6.5 Strategy and tactics

Keep in mind what the sentences in your proof mean

Don’t just look at the sentences in your proof as meaningless collections of symbols.
Remember what the sentences mean as you try to discover whether the argument is valid.

Copyright © 2004, S. Marc Cohen Revised 6/1/04 6-8

If you’re not told whether the argument is valid, you can use Fitch’s Taut Con mechanism to
check it out. If you discover that the argument is not valid, you should not waste time trying to
find a proof.

Try to sketch out an informal proof

This will often give you a good formal proof strategy. An informal indirect proof can be
turned into a use of ¬¬¬¬ Intro in F. An informal proof by cases can be turned into a use of ∨∨∨∨
Elim in F.

Try “working backwards”

This is a very basic strategy. It involves figuring out what intermediate conclusion you might
reach that would enable you to obtain your ultimate conclusion, and then taking that
intermediate conclusion as your new goal. You can then work backwards to achieve this new
goal: figure out what other intermediate conclusion you might reach that would enable you to
obtain your first intermediate conclusion, and so on. Working backward in this way, you may
discover that it is obvious to you how to obtain one of those intermediate conclusions. You
then have all the pieces you need to assemble the proof.

Fitch is very helpful to you in using this strategy, for you can work from the “bottom up” as
well as from the “top down.” To see this, do the You try it on p. 168 (open the file Strategy
1). You will note that you can cite a line, or a subproof, as part of a justification even before
you have justified the line itself. This shows up with the two innermost subproofs (3-5 and 6-
8) which can be used in the justification of line 9 even before lines 5 and 8 themselves have
been justified.

This gives you a good method for checking out your strategy.

An example

(A ∧ ¬B) ∨ (C ∨ D)
¬C ∧ B

¬¬ D

Open Ch6Ex2a – you’ll find this problem on the Supplementary Exercises page of the web
site. We can start by working backwards. We can get ¬¬ D from D by assuming ¬D and using
¬¬¬¬ Intro. So our goal will be to get D.

Our first premise is a disjunction, so that suggests a proof by cases. We will have a separate
subproof for each case, deriving D at the end of each subproof. Open Ch6Ex2b Notice that
our strategy checks out when we apply ∨∨∨∨ Elim, and that our strategy for obtaining ¬¬ D also
checks out.

Case 1: A ∧∧∧∧ ¬¬¬¬ B

The second conjunct, ¬B, contradicts the second conjunct of premise 2. So we can
derive ⊥ by ⊥⊥⊥⊥ Intro and then derive D by ⊥⊥⊥⊥ Elim.

Case 2: C

The first conjunct, C, contradicts the first conjunct of premise 2. So we can derive ⊥ by
⊥⊥⊥⊥ Intro and then derive D by ⊥⊥⊥⊥ Elim.

Copyright © 2004, S. Marc Cohen Revised 6/1/04 6-9

Case 3: D

We already have D, so we can use Reit to enter it as a conclusion in the subproof. In
fact, we can even skip the Reit step, as we’ll see.

We’ll now go after case 1. Open Ch6Ex2c, and follow the strategy above. Notice that the
steps check out. Finally, we’ll complete cases 2 and 3. Open Ch6Ex2d, and follow the
strategy for cases 2 and 3.

Notice that in case 3, we did not need to use Reit. In this case, our subproof contains only the
assumption line. In such a case, we count the assumption line itself as the last line in the
subproof, and hence we take that line to have been established, given the assumption. This is
obviously acceptable, since every sentence is a consequence of itself.

§ 6.6 Proofs without premises

Both system F and the program Fitch are set up so that a proof may begin with some line other
than a premise. For example, it might begin with a use of = Intro. Or, it may begin with a subproof
assumption.

This means that we may have a proof that has no premises at all! What does such a proof establish?
Since a proof establishes that a conclusion is a logical consequence of its premises (i.e., that it must
be true if they are), a proof without premises establishes that its conclusion is a logical
consequence of the empty set of premises. That is, it establishes that its conclusion must be true,
period.

In other words, such a proof establishes that its conclusion is a logical truth. See pages 173-4 for
examples of such proofs. (The conclusion of a proof without premises is often called a theorem,
although Barwise and Etchemendy do not use that terminology.)

For a try at proving a logical truth in Fitch, try exercise 6.33. Can you think of a simpler proof of
the same logical truth? You can find one at Proof 6.33 simpler.

A Difficult example: 6.41

We’ll try to prove this “starred” tautology: (A ∧ B) ∨¬A ∨ ¬B (And we will do so the hard
way, without using Taut Con to justify an instance of Excluded Middle.)

Our tautology says that either A and B are both true, or at least one of them is false. To prove
a tautology, it is often easiest to use indirect proof: assume the negation of what we’re trying
to prove, and show that it leads to a contradiction. That is the method we will use.

To see the general strategy for our proof, open Proof 6.41a. We assume the negation of our
desired conclusion, and aim to derive ⊥ . We can then apply rule ¬¬¬¬ Intro (generous version) to
get our theorem. Note that this last step checks out.

Now what we have assumed is the negation of a disjunction. So if what we’ve assumed is
true, each of the disjuncts is false. In particular, both ¬A and ¬B are false. So, given our
assumption, we should be able to prove both A and B. That is what we will do next. We will
do so by indirect proof: open Proof 6.41b. Note that our indirect method for proving both A
and B checks out.

Copyright © 2004, S. Marc Cohen Revised 6/1/04 6-10

Our strategy is to assume ¬A, reach a ⊥ , and deduce A. Then we do the same for B. So we
have three questions to answer. (1) How do we show that ¬A leads to a contradiction? (2)
How do we show that ¬B leads to a contradiction? (3) Having established both A and B, how
do we show that that in turn leads to a contradiction? The answer is the same in every case: by
using judiciously chosen applications of ∨∨∨∨ Intro.

Our two (inner) assumptions (¬A and ¬B) are, in fact, disjuncts of the theorem we’re trying
to prove. Hence, we can get from each of those assumptions to the theorem in one application
of ∨∨∨∨ Intro. That won’t prove the theorem (we still have an open assumption), but it will give
us a sentence that contradicts our assumption, which is exactly what we want.

To see the complete proof, open Proof 6.41c.

An alternative strategy for 6.41: proof by cases

Notice that a different strategy might yield an equally correct, but much more complicated
proof. To see the alternative strategy, open Proof 6.41d.

The idea here is to do a proof by cases:

Case 1

Assume (A ∧ B) and derive the theorem.

Case 2

Assume ¬ (A ∧ B) and derive the theorem.

We can use Taut Con to obtain the disjunction (A ∧ B) ∨ ¬ (A ∧ B) that we need. Then we
can apply rule ∨∨∨∨ Elim and complete the proof by cases. Note that both of these rule
applications check out in Fitch.

Case 1 is easy: it takes only one step of ∨∨∨∨ Intro. But case 2 is complicated. To develop the
alternative strategy further, open Proof 6.41e. The idea is to try to obtain the right-most
disjunction, ¬A ∨ ¬B, by indirect proof. So we assume its negation, viz., ¬ (¬A ∨ ¬B).

Note what this sentence says: neither not A nor not B, which is equivalent to A and B. But
(A ∧ B) contradicts our assumption line, so once we have it in our proof, we can obtain ⊥ .
(Note that our use of ⊥⊥⊥⊥ Intro will check out in Fitch.) Our next task will be to obtain the
conjunction (A ∧ B) from our indirect proof assumption. We know that it follows, because
it’s an instance of one of DeMorgan’s laws. But those laws are not part of system F, so we
will need a different strategy. We will obtain each of A and B separately, and then use ∧∧∧∧Intro
to get A ∧ B.

To obtain A we use an indirect proof; then we do the same for B. To see how the strategy now
looks, open Proof 6.41f. The remaining steps are simple. We assume ¬A for indirect proof.
The line we need to contradict is ¬ (¬A ∨ ¬B). But ¬A is one of the disjuncts of our negated
disjunction. So we use ∨∨∨∨ Intro to get the disjunction ¬A ∨ ¬B, and we have our contra-
diction. This lets us obtain A by means of a generous use of ¬¬¬¬ Intro. We repeat this for B.

To see the complete proof, open Proof 6.41g.

	§ 6.1 Conjunction rules
	Conjunction Elimination ((Elim)
	Conjunction Introduction ((Intro)
	Default and generous uses of rules
	Default and generous uses of the (rules

	§ 6.2 Disjunction rules
	Disjunction Introduction ((Intro)
	Disjunction Elimination ((Elim)
	The rule:

	Default and generous uses of the (rules

	§ 6.3 Negation rules
	Negation Elimination ((Elim)
	Negation Introduction ((Intro)
	(Introduction ((Intro)
	Other kinds of contradictions
	Example 1
	Example 2
	Example 3
	Example 4

	(Elimination ((Elim)
	Default and generous uses of the (rules

	§ 6.4 The proper use of subproofs
	How Fitch keeps you out of trouble

	§ 6.5 Strategy and tactics
	Keep in mind what the sentences in your proof mean
	Try to sketch out an informal proof
	Try “working backwards”
	An example
	Case 1: A ((B
	Case 2: C
	Case 3: D

	§ 6.6 Proofs without premises
	A Difficult example: 6.41
	An alternative strategy for 6.41: proof by cases
	Case 1
	Case 2

