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Chapter 14: More on Quantification 

§ 14.1  Numerical quantification 

In what we’ve seen so far of FOL, our quantifiers are limited to the universal and the existential. 
This means that we can deal with English quantifiers like everything and something. We quickly 
discovered that with a judicious use of truth-functional connectives, we could also express such 
English quantifiers as nothing, every cube, some tetrahedron, all large cubes, etc. The FOL 
representations of these quantifier phrases in English make use of the quantifiers plus some truth-
functional machinery: 

Nothing ∀ x ¬    … 

Every cube ∀ x (Cube(x) →   … 

Some tetrahedron ∃ x (Tet(x) ∧   … 

All large cubes ∀ x ((Cube(x) ∧ Large(x)) →   … 

We will now see how to use our existing FOL machinery to represent numerical quantifiers. At this 
point, there is one numerical quantifier we know how to express—at least one. That is because the 
sentence At least one cube is large goes easily into FOL as ∃ x (Cube(x) ∧ Large(x)). 

Now we will learn how to use FOL to express such numerical quantifiers as the following: at least 
two, at most one, exactly one, at least three, at most two, exactly two, etc. The interesting aspect of 
this is that we do not need to enrich FOL in any way in order to accomplish this. We will not have 
special “numerical” quantifiers. Rather, we will use our regular universal and existential 
quantifiers, together with truth-functional connectives and (most importantly) the identity sign. 

In the following examples, we will be using FOL to say something about the number of cubes there 
are. 

At least two 

Suppose we want to say that there are at least two cubes. A first effort might be 
∃ x∃ y (Cube(x) ∧ Cube(y)). But we quickly realize that this cannot be correct. For nothing in 
this FOL sentence tells us that x and y have to be different cubes. (If this is not clear, put this 
sentence into a new Tarski’s World sentence file and evaluate it in a world with a single cube. 
You will see that it comes out true. If you don’t see why, try playing the game against Tarski, 
committing to the falsity of this sentence. Notice why Tarski will always win.) 

Obviously, what is needed is a clause guaranteeing that x and y are distinct objects. And such 
a clause is easy to come by: x ≠ y. So, our final version of there are at least two cubes is: 

∃ x∃ y (Cube(x) ∧ Cube(y) ∧ x ≠ y) 

Notice that we can have an at least two quantification that is not restricted to cubes. If we 
want to say simply that there are at least two things (without being specific about any other 
properties these things might have) we can write: 

∃ x∃ y x ≠ y 
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At most one 

Representing There is at most one cube in FOL is a bit more complicated. Here is the general 
idea. Suppose that your domain of discourse is a barrel that contains cubes, tetrahedra, and 
dodecahedra (a kind of three-dimensional Tarski’s World!) and suppose that there is at most 
one cube in the barrel. 

Now suppose that you reach into the barrel and pull out a cube, and then throw the cube back 
in. Then you reach in again and pull out a cube. (Pretty amazing, considering that there is at 
most one cube in the barrel.) In fact, we know for certain that you pulled out the same cube 
twice! 

This is how we will put the claim when we couch it in FOL: if you reach in the barrel and pull 
out a cube, x, and (after returning the cube to the barrel) reach in again and pull out a cube, y, 
then x = y. 

∀ x∀ y ((Cube(x) ∧ Cube(y)) → x = y) 

Similarly, we can have an at most one quantification that is not restricted to cubes. If we want 
to say simply that there is at most one thing (without being specific about any other properties 
it might have) we can write: 

∀ x∀ y x = y 

Exactly one 

Having dealt with at least one and at most one, we already have everything we need to handle 
exactly one. For it is nothing more than the conjunction of the other two. That is, for it to be 
true that there to be exactly one cube is just for it to be true both that there is at least one cube 
and that there is at most one cube. 

So a simple way to arrive at an FOL translation of There is exactly one cube is just to conjoin 
our FOL versions of at least one and at most one: 

∃ x Cube(x) ∧ ∀ x∀ y ((Cube(x) ∧ Cube(y)) → x = y) 

However, there are equivalent, but more compact, ways of expressing this. We will be led to 
one such formulation by the following line of thought. For there to be exactly one cube is for 
there to be something, x, such that x is a cube, and nothing but x is a cube. That is, there is an 
x such that x is a cube, and no matter which y you pick, if y is a cube, then y and x are one and 
the same object. In FOL symbols: 

∃ x (Cube(x) ∧ ∀ y (Cube(y) → y = x)) 

This is the version presented in LPL on p. 370. An even more compact version can be 
produced, however. We can delete the clause Cube(x), but get the effect of including it by 
changing the → to a ↔. That gives us: 

∃ x∀ y (Cube(y) ↔ y = x) 

In other words, to say that there is exactly one cube is to say that there is an x such that no 
matter which y you pick, y is a cube iff y and x are one and the same object. This is the most 
compact version of exactly one. 

As before, we can have an exactly one quantification that is not restricted to cubes. If we want 
to say simply that there is exactly one thing (many philosophers have actually believed this!) 
we can write: 
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∃ x∀ y y = x 

In fact, we met this sentence earlier, when we first studied multiple quantification with 
“mixed” quantifiers. You might wish to test this sentence out in Tarski’s World. You will 
quickly discover that it is true in any world containing exactly one block. As soon as you add 
a second block, the sentence becomes false. 

At least three 

At least two required two quantifiers and a non-identity clause. So it is easy to see that at least 
three will require three quantifiers and three non-identity clauses. That is, in FOL we express 
there are at least three cubes as: 

∃ x∃ y∃ z (Cube(x) ∧ Cube(y) ∧ Cube(z) ∧ x ≠ y ∧ y ≠ z ∧ x ≠ z). 

Three non-identity clauses are required because we need to state that we can select cubes in 
such a way that after three selections, we never selected the same cube twice. And we can say 
simply that there are at least three things—just drop the Cube wffs from the sentence above: 

∃ x∃ y∃ z (x ≠ y ∧ y ≠ z ∧ x ≠ z). 

At most two 

To understand our treatment of there are at most two cubes, put yourself back in the position 
of someone pulling blocks out of a barrel. If there are at most two cubes in the barrel, that 
means that if you make three draws from the barrel (under the conditions described earlier) 
and get a cube every time, then you must have drawn the same cube more than once. That is, 
in FOL we express there are at most two cubes as: 

∀ x∀ y∀ z ((Cube(x) ∧ Cube(y) ∧ Cube(z)) → (x = y ∨ y = z ∨ x = z)). 

As before, we can say simply that there are at most two things by dropping the Cube wffs and 
the → from the sentence above and keeping just the quantifiers and the disjunction of identity 
clauses: 

∀ x∀ y∀ z (x = y ∨ y = z ∨ x = z). 

Exactly two 

To handle exactly two, we can build on our treatment of exactly one. Conceptually, the 
simplest treatment is just to conjoin our two FOL sentences that translate at least two and at 
most two. But the resulting FOL sentence is not very compact. To get a more compact version, 
we can build on the compact version of exactly one. That is, instead of saying there is 
something such that it and it alone is a cube, we would say there are two distinct things such 
that they and they alone are cubes. In FOL: 

∃ x ∃ y (x ≠ y ∧ ∀ z (Cube(z) ↔ (z = x ∨ z = y))). 

If you are a dualist, and wish to say that there are exactly two things, you’d put it this way in 
FOL: 

∃ x ∃ y (x ≠ y ∧ ∀ z (z = x ∨ z = y)). 

Examples 

Let’s test our understanding of some numerical sentences. Open the file Ch14Ex1.sen (on 
the Supplementary Exercises web page). Notice that the English sentences all make numerical 
claims, and that they all appear with their FOL translations. Can you see why the FOL 
sentences say what their English translations do? 
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Try constructing a world in which all of the sentences are true. Now try making changes to the 
world, falsifying some of the sentences. Now make more changes, so that all the sentences are 
false. 

Next, destroy all the blocks in the world in which you are evaluating the sentences, and open 
the file Ch14Ex1a.sen. You will find the same FOL sentences as in the previous sentence 
file, but all the English translations have been deleted. Do you still know what the FOL 
sentences mean? Try to rebuild your world so that all the sentences come out true. 

As a final test of your understanding of numerical quantification in FOL, open the file 
Ch14Ex2.sen. There are eight numerical claims here, but no accompanying English 
translations. These sentences are more complicated than the ones in the previous file, so read 
them carefully. Then create a world making as many of the sentences true as you can. (You 
should be able to create a world in which they are all true.) 

You may have trouble understanding some of these sentences. Try putting any that you are in 
doubt about into English. To assist you with the translation, make changes to your world and 
observe what happens to the truth value of the sentence in question. That should help you 
figure out what the sentence means. Save your world as World Ch14Ex2.wld. Save the 
sentence file (with your English annotations) as Sentences Ch14Ex2.sen. 

Generalizing 

Obviously, what we have done for the numbers 1, 2, and 3, we can do for any integer n. That 
is, for any n, we can produce FOL sentences that translate: 

There are at least n F’s 
There are at most n F’s 
There are exactly n F’s. 

Needless to say, as n gets larger, the FOL sentences become longer and more complex—this is 
hardly an ideal language in which to do arithmetic! But the point is that the expressive power 
of FOL is considerable. For any condition expressible in FOL and for any finite number, n, one 
can, in principle, construct an FOL sentence saying that n things satisfy that condition. 

Abbreviations for numerical claims 

Rather than write out the (sometimes very long) FOL sentences that express numerical claims, 
we can use the following abbreviation scheme. 

•  ∃ ≥nx P(x) abbreviates the FOL sentence asserting “There are at least n objects 
satisfying P(x).” 

•  ∃ ≤nx P(x) abbreviates the FOL sentence asserting “There are at most n objects 
satisfying P(x).” 

•  ∃ !nx P(x) abbreviates the FOL sentence asserting “There are exactly n objects 
satisfying P(x).” 

For the special case where n = 1, it is customary to write ∃ !x P(x) as a shorthand for ∃ !1x 
P(x). This can be read as “there is a unique x such that P(x).” 

More translations 

In translating numerical claims, we made heavy use of =, the identity predicate. There are 
other common claims, not explicitly numerical, that also require the use of identity. We will 
look at a couple of them here. 
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Superlatives 

A superlative is an adjective ending in –est, such as largest, oldest, strongest, etc. 
Suppose we want to write an FOL sentence corresponding to b is the largest cube. We 
might try one of the following: 

1. LargestCube(b) 
2. Cube(b) ∧ Largest(b) 

But both of these seem problematic. (1) conceals too much information, for it does not 
have Cube(b) as a FO consequence, whereas b is a cube certainly seems like a FO 
consequence of b is the largest cube. (2) avoids this problem, but introduces another. 
For (2) says that b is the largest thing, whereas our original sentence only says that b is 
the largest cube. 

And b might be the largest cube without being the largest thing. (Imagine a world in 
which b is a medium cube, all the other cubes are small, and c is a large tetrahedron.) 

The trick is to translate this sentence into FOL using only the comparative predicate 
larger. To say that b is the largest cube is to say that b is larger than all the other cubes. 
That is, b is a cube, and every cube that is not b is smaller than b. In FOL: 

Cube(b) ∧ ∀ x ((Cube(x) ∧ x ≠ b) → Larger(b, x)) 

In general, to be the F-est thing is to be F-er than everything else; to be the F-est G is to 
be a G that is F-er than every other G. In colloquial speech, people tend to be careless 
and leave out the other. Meaning to assert that Clark Kent is the strongest man, they 
may say Clark Kent is stronger than any man. Strictly speaking, of course, this is not 
true: Clark Kent may be stronger than all the other men, but he is not stronger than 
himself! 

Exceptives 

An exceptive is a claim that makes a universal generalization with an exception, such as 
everything is a cube except c. We can translate everything is a cube into FOL as ∀ x 
Cube(x), and c is not a cube as ¬Cube(c). But if we simply conjoin these: 

∀ x Cube(x) ∧ ¬Cube(c) 

we get a contradiction, which our original sentence certainly is not. What we want to 
say, roughly, is c is not a cube, but everything else is a cube: 

¬Cube(c) ∧ ∀ x (x ≠ c → Cube(x)). 

This translation is correct, but we can produce a more compact version. Think of the 
sentence c is not a cube as a universal generalization: c is no cube, or (equivalently) no 
cube is c. So instead of ¬Cube(c) we can write: 

∀ x (Cube(x) → x ≠ c). 

Using this in place of the equivalent ¬Cube(c), we get: 

∀ x (Cube(x) → x ≠ c) ∧ ∀ x (x ≠ c → Cube(x)) 

which, by moving the quantifier to the outside (see §10.4), is equivalent to: 

∀ x [(Cube(x) → x ≠ c) ∧ (x ≠ c → Cube(x))]. 
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Finally, we replace the embedded conjunction of conditional wffs with the 
corresponding biconditional, and obtain: 

∀ x (Cube(x) ↔ x ≠ c)). 

This is the simplest way to express the exceptive sentence everything is a cube except c 
in FOL. Now read this FOL sentence from left to right, and compare it with the English 
sentence. Did you notice that the phrase except c is rendered in FOL by ↔ x ≠ c? 
Exceptive sentences go into FOL as negative biconditionals. 

§ 14.2  Proving numerical claims 

Since we can translate numerical claims into FOL, we can evaluate the validity, in FOL, of 
arguments containing such claims. Consider, for example, the following argument  

There are exactly two cubes. 
There are exactly three non-cubes. 

There are exactly five objects. 

The conclusion is clearly a logical consequence of the premises—there is no possible circumstance 
in which there are two cubes, three non-cubes, but not a total of five objects, cubes and non-cubes, 
altogether. But is the conclusion a FO consequence of the premises? 

Using our abbreviations for FOL numerical quantifications, the FOL version of the argument looks 
like this: 

∃ !2x Cube(x) 
∃ !3x ¬Cube(x) 

∃ !5x (x = x) 

Can we prove this conclusion in F? Before we can do so, of course, we would have to write out 
the “real” FOL sentences, instead of the abbreviations we used above. And when we do this, we 
will see that the argument contains no predicates that affect its validity—Cube could just as easily 
be replaced by Tove or any other predicate. So the conclusion is, indeed, a FO consequence of the 
premises. And since F is complete, it follows that it is possible, at least in principle, to prove this 
conclusion in F. 

What this means 

Such a proof would seem to come very close to being a proof, purely within formal logic, 
that 2+3=5. Of course, we are not really proving things about numbers, but about cubes and 
non-cubes, and about relations among various conditions of their identity and distinctness. But 
we are certainly capturing some basic arithmetical ideas within a system of pure logic. 

What this does not mean 

Although we can express (and prove) many arithmetical claims in FOL, there are still many 
kinds of arithmetical claims that we can neither express nor prove. For example, consider the 
following claim: 

There are more cubes than tetrahedra. 

This claim does not tell us how many cubes there are—only that the number of cubes is larger 
than the number of tetrahedra. In other words, there are numbers n and m such that there are n 
cubes and there are m tetrahedra, and n > m. One might try to state this in FOL as follows: 



Copyright © 2004, S. Marc Cohen  Revised 6/1/04 14-7

∃ n∃ m (∃ !nx Cube(x) ∧ ∃ !mx Tet(x) ∧ n > m) 

But there are two problems here. First, our sentence contains the predicate >, which is not one 
of the logical symbols of FOL. Second (and more importantly), what we have written is not the 
abbreviation of any FOL sentence. A numerical subscript of the form !n tells us how to write 
the FOL sentence we are abbreviating, but only when n is some positive integer. We have no 
way of dealing with a variable in a numerical quantifier. 

In short, our numerical quantifiers do not quantify over numbers; they are simply 
abbreviations of more complex looking FOL sentences that quantify over whatever objects 
(cubes, etc.) are in their domain of discourse. We can axiomatize arithmetic in FOL (see. 
§16.4), but we cannot express all arithmetic claims in “pure” FOL. 

In practice, of course, proofs of arithmetical claims in FOL are messy and difficult to come by—FOL 
is not a very good language in which to do arithmetic. Still, we can easily handle cases where n is 
very small, and use Fitch to construct proofs of at least some numerical claims. Here’s an easy 
example to start with: 

There is at least one cube. 
There is at least one tetrahedron. 

There are at least two things. 

You’ll find the problem on the Supplementary Exercises page as Ch14Ex3.prf. In this problem, 
you’ll need to use Ana Con. You should use it only to obtain ⊥  from atomic sentences. 

§ 14.3  The, both, and neither 

When the word the combines with a noun phrase to form an expression that purports to refer to 
exactly one object, the entire phrase (of the form the so-and-so) is called a definite description. 
Here are some examples of definite descriptions: 

The tallest player on the team 
The king of Norway 
The sum of 3 and 5 [more usually written ‘3 + 5’] 
The 40th president of the U.S.A. 
Whistler’s mother [note the absence of the in this case] 

Notice that definite descriptions function syntactically like names, as illustrated by the following 
pairs of sentences: 

John has red hair. 
The tallest player on the team has red hair. 

Reagan was a Republican. 
The 40th president of the U.S.A. was a Republican. 

But there is good reason to think that definite descriptions do not function semantically like 
names. In fact, FOL would be inadequate if it treated descriptions in the same way it treats proper 
names, namely, as logical constants. For then the FOL versions of both of these arguments would 
be, effectively, the same: 

John has red hair. 

Some player on the team has red hair. 
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The tallest player on the team has red hair. 

Some player on the team has red hair. 

Clearly, the second argument is valid, but the first is not (for nothing in the first argument tells us 
that John is a player on the team). The premise of the second argument contains information that 
the premise of the first argument lacks. So we should not treat definite descriptions in FOL as if 
they were names. 

But now a problem arises. For logic cannot guarantee that a definite description actually succeeds 
in picking out a unique object. Consider a sentence like The cube is small, and imagine that you are 
evaluating it in various Tarski Worlds. How would you assess its truth value in a given world? You 
would expect to find exactly one cube in the world, and then you would check its size—if it’s 
small, the sentence is true; otherwise, the sentence is false. 

But suppose there are no cubes in the world? What is the truth value of the sentence in that case? 
Or suppose there are two cubes, one of which is small and one of which is not? What is the truth 
value of the sentence in that case? 

In both of these cases, something has gone wrong with the description. For convenience, let’s say 
that a description, the F, is a good description when there is exactly one F, and a bad description 
otherwise. Thus, there are two ways in which a description can go bad. The senator from 
Washington is a bad description in one way, since there is more than one senator from Washington, 
and the present king of France is a bad description in another way, since there is no king of France 
at present. 

How are we to evaluate sentences that contain bad descriptions? This was the problem that 
motivated Bertrand Russell’s famous Theory of Descriptions (1905). 

Russell’s Theory of Descriptions 

According to Russell, a sentence containing a definite description can be thought of as a 
conjunction with three conjuncts. Consider such a sentence: 

The cube is small. 

On Russell’s theory, this amounts to the following conjunction: 

There is at least one cube, and there is at most one cube, and every 
cube is small. 

This easily goes into FOL as: 

∃ x Cube(x) ∧ 
∀ x∀ y ((Cube(x) ∧ Cube(y)) → y = x) ∧ 
∀ x (Cube(x) → Small(x)) 

It’s easy to see that this sentence can be false in three different ways, depending on which 
conjunct is false: there may be no cubes (first conjunct false), or more than one cube (second 
conjunct false), or some cube that is not small (third conjunct false). 

Equivalent formulations of Russell’s analysis 

Equivalently, but more compactly, Russell’s analysis can put as follows: 

∃ x (Cube(x) ∧ ∀ y (Cube(y) → y = x) ∧ Small(x)) 
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This is the “standard” FOL sentence that LPL presents as Russell’s analysis of the cube 
is small. 

An even more compact version looks like this: 

∃ x ∀ y ((Cube(y) ↔ y = x) ∧ Small(x)) 

That is, there is exactly one cube, and it’s small. All three versions are, of course, 
equivalent. 

Both and neither 

We may note in passing that Russell’s analysis can be extended to cover the determiners 
both and neither. That is, we can treat phrases like both cubes and neither tetrahedron 
along the same lines as the cube. This can be seen easily from the following examples. 

Both cubes are small. 

On Russell’s analysis, this says that there are exactly two cubes, and each cube is small. 
That is: 

∃ !2x Cube(x) ∧ ∀ x (Cube(x) → Small(x)) 

Similarly, neither tetrahedron is large, on Russell’s analysis, says that there are exactly 
two tetrahedra, and no tetrahedron is large. That is: 

∃ !2x Tet(x) ∧ ∀ x (Tet(x) → ¬Large(x)) 

Remember that what we have produced above are really just abbreviations of the real 
FOL sentences that would count as the Russellian analyses of both and neither. (Real 
FOL sentences don’t contain numerical quantifiers, like ∃ !2x.) 

Two key features of Russell’s theory 

The beauty of Russell’s analysis is that it provides a truth value for every sentence 
containing a definite description, even if it’s a bad description. If someone says the cube 
is small when there is no cube, he or she has simply said something false. 

Russell’s analysis also provides this interesting feature: although a sentence containing 
a description may be perfectly unambiguous, the introduction of a logical operation 
such as negation may introduce an ambiguity. Thus, consider the sentence the cube is 
small, whose Russellian analysis looks like this: 

1. ∃ x (Cube(x) ∧ ∀ y (Cube(y) → y = x) ∧ Small(x)). 

Now consider what happens when a negation is introduced: 

The cube is not small. 

On Russell’s theory, this sentence is ambiguous. On one reading, it asserts that there is 
exactly one cube, and says, further, that it is not small. In FOL: 

2. ∃ x (Cube(x) ∧ ∀ y (Cube(y) → y = x) ∧ ¬Small(x)) 

But on another reading, the English sentence says something different, namely, that it is 
not the case both that there is exactly one cube and that it is small. In FOL: 

3. ¬∃ x (Cube(x) ∧ ∀ y (Cube(y) → y = x) ∧ Small(x)) 
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You can see the difference between these sentences by comparing their evaluations in 
various worlds. Open the file Russell.sen, where you will find these three sentences. 
Now create a world with a single cube in it (it may contain non-cubes, too, but they are 
irrelevant to these sentences) and evaluate all three sentences. 

You will notice that (2) and (3) will always agree with one another, and disagree with 
(1), so long as the description is “good”—i.e., as long as there is exactly one cube in the 
world. But notice what happens when you add a cube, or remove all the cubes. In 
worlds like this, the description the cube is “bad,” and sentences (2) and (3) will diverge 
in truth value. Sentence (1) will be false; but (2) will also be false. (After all, (2) is not 
the negation of (1), since (2) has its ¬  embedded in the last conjunct.) The negation of 
(1) is (3), and (3) will be true. On Russell’s theory, then, there are situations in which 
both the cube is small and the cube is not small are false. 

Strawson’s analysis 

Russell’s theory has not convinced everyone. One celebrated critique is that of philosopher P. 
F. Strawson. According to Strawson, Russell is mistaken in supposing that one who utters the 
sentence the cube is small makes three claims—that there is at least one cube, and at most one 
cube, and that every cube is small. Rather, such a person does not even succeed in making a 
claim unless there is exactly one cube. That there is exactly one cube is not part of what the 
speaker claims, but is a presupposition of his making a claim at all. 

If the presupposition is fulfilled (that is, if there is exactly one cube), then the utterer of the 
sentence the cube is small claims, about that cube, that it is small. If the presupposition is not 
fulfilled (that is, if there is more than one cube, or if there are no cubes), then the speaker has 
failed to make any claim. 

So one who utters a sentence containing a bad description has not succeeded in making a 
claim. And on Strawson’s account, truth values attach not to the sentences we utter, but to the 
claims we make with them. Hence, according to Strawson, nothing true or false gets expressed 
by a sentence containing a bad description. Strawson’s analysis thus introduces what have 
been called truth value gaps. 

Consequences of Strawson’s analysis 

An obvious consequence of Strawson’s analysis is that sentences like the cube is small cannot 
be translated into FOL. For all FOL sentences have truth values, at least if they do not contain 
any names. Strawson’s proposal is, in effect, to treat definite descriptions (semantically as 
well as syntactically) in the way that FOL treats names: the sentences in which they occur 
cannot be evaluated for truth value unless they succeed in uniquely referring. 

Strawson’s analysis of definite descriptions seriously weakens FOL. For FOL would be unable, 
on Strawson’s account, to explain the validity of certain obviously valid arguments. Consider 
this example: 

The large cube is in front of b. 

Something large is in front of b. 

Although Strawson would agree that this is a valid argument (there is no possible 
circumstance in which the premise is true and the conclusion false), the conclusion would not 
be a FO consequence of the premise in a Strawsonian FOL. For it would look like this: 
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FrontOf(the large cube, b) 

∃ x (Large(x) ∧ FrontOf(x, b)) 

And the conclusion of this argument is not a FO consequence of the premise. Russell’s theory, 
of course, proposes a different translation into FOL: 

∃ x∀ y(((Large(y) ∧ Cube(y)) ↔ y = x) ∧ FrontOf(x, b)) 

∃ x (Large(x) ∧ FrontOf(x, b)) 

And the conclusion here is obviously a FO consequence of the premise. Can Russell’s 
theory—which does not allow Strawson’s “truth value gaps”—be defended? 

Response to Strawson 

It is Strawson’s notion of presupposition that introduces truth value gaps. So to do away with 
them, we need an alternative account of what he calls presuppositions. The best alternative is 
to say that these are really implicatures. 

According to Strawson, the sentence the large cube is not in front of b carries with it the 
presupposition that there is exactly one large cube. When that presupposition is not fulfilled, 
one who utters the sentence fails to make any claim, true or false. But if it is only an 
implicature that there is exactly one large cube, the sentence may still have a truth value even 
when the implicature is false. 

So let us apply the cancellability test. Can one conjoin there is not exactly one large cube to 
the large cube is not in front of b without contradiction? Opinions are mixed. My view is that 
there is no contradiction here. It is not self-contradictory to say “The large cube is not in front 
of b—in fact, there is no large cube at all!” 

It is rather like saying to the child who thinks that the tooth fairy put a dollar under her pillow: 
“No, the tooth fairy did not put a dollar under your pillow—in fact, there is no tooth fairy.” It 
may be unkind to say this, but it is not untrue. Obviously, then, it is not self-contradictory, 
either. 

In fact, a Strawsonian analysis of this case seems particularly wrong-headed. Consider his 
account of the sentence uttered by the child: 

The tooth fairy put a dollar under my pillow. 

According to Strawson’s account, this sentence cannot be used to make a claim unless its 
presuppositions are fulfilled. And one of its presuppositions is that there is exactly one tooth 
fairy. So, since there are no tooth fairies, the child has not made a claim at all. 

But surely this is wrong. The child has made a claim, and a false one. And we can correct the 
child (if we’re mean enough, or the child is old enough) by uttering the proper negation of 
what the child said: 

No, the tooth fairy did not put a dollar under your pillow. 

This is the harsh truth, and the Russellian analysis gives just the right result. 
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