
Copyright © 2004, S. Marc Cohen Revised 11/26/04 13-1

Chapter 13: Formal Proofs and Quantifiers

§ 13.1 Universal quantifier rules

Universal Elimination (∀∀∀∀ Elim)

 ∀ x S(x)

❺ S(c)

Here x stands for any variable, c stands for any individual constant, and S(c) stands for the
result of replacing all free occurrences of x in S(x) with c.

Example

1. ∀ x ∃ y (Adjoins(x, y) ∧ SameSize(y, x))

2. ∃ y (Adjoins(b, y) ∧ SameSize(y, b)) ∀∀∀∀ Elim: 1

General Conditional Proof (∀∀∀∀ Intro)

 c✾ P(c)

 Q(c)

❺ ∀ x (P(x) → Q(x))

There is an important bit of new notation here— c✾, the “boxed constant” at the beginning of
the assumption line. This says, in effect, “let’s call it c.” To enter the boxed constant in Fitch,
start a new subproof and click on the downward pointing triangle ❼. This will open a menu
that lets you choose the constant you wish to use as a name for an arbitrary object. Your
subproof will typically end with some sentence containing this constant.

In giving the justification for the universal generalization, we cite the entire subproof (as we
do in the case of →→→→ Intro).

Notice that although c may not occur outside the subproof where it is introduced, it may occur
again inside a subproof within the original subproof.

Universal Introduction (∀∀∀∀ Intro)

 c✾

 P(c)

❺ ∀ x P(x)

Remember, any time you set up a subproof for ∀∀∀∀ Intro, you must choose a “boxed constant”
on the assumption line of the subproof, even if there is no sentence on the assumption line.

For practice, do the You try it on p. 344.

Where c does not occur outside
the subproof where it is
introduced.

Where c does not occur outside
the subproof where it is
introduced.

Copyright © 2004, S. Marc Cohen Revised 11/26/04 13-2

Default and generous uses of the ∀∀∀∀ rules

Default

∀∀∀∀ Elim: If you cite a universal generalization and apply the rule ∀∀∀∀ Elim, Fitch will
enter an instance of the generalization containing its best guess of the constant you want
to replace the variable. If you are within a subproof containing a boxed constant, Fitch
will use that constant. Otherwise, Fitch will use the alphabetically first constant not
already in use in the sentence.

If you want to use a different constant, there are three ways to do it.

(1) The slow way: type the entire sentence in manually.

(2) A faster way: let Fitch guess, and then correct the sentence manually.

(3) The fastest way: suppose the quantifier is ∀ x and you want to replace x with
c. Cite the universal generalization, apply ∀∀∀∀ Elim, and type in :x > c. What
this says to Fitch is “replace x with c.” Fitch will then enter an instance of the
universal generalization with c plugged in for x.

∀∀∀∀ Intro: If you apply ∀∀∀∀ Intro to a subproof containing a boxed constant (but no
sentence) on the assumption line, Fitch will enter the universal generalization of the last
line in the subproof. If there is a sentence on the assumption line, Fitch will enter the
universal generalization of the conditional whose antecedent is the assumption sentence
and whose consequent is the last line of the subproof.

Do the You try it on p. 345.

Generous

Fitch lets you remove (or introduce) more than one quantifier at a time.

∀∀∀∀ Elim: You can remove several quantifiers simultaneously. To go from ∀ x ∀ y
SameCol(x, y) to SameCol(b, c), you may type in the new sentence manually, cite the
universal generalization, and apply the rule. Or, cite the supporting sentence, apply the
rule, and tell Fitch:

:x > b :y > c

This tells Fitch to replace x with b and y with c.

∀∀∀∀ Intro: You may also introduce more than one quantifier at a time. The trick here is to
box more than one constant at the start of the subproof. Then, at the end of the
subproof, Fitch will enter the appropriate universal generalization (of a conditional, if
there is a sentence in the assumption line, otherwise of the last line in the subproof).
You can use the “colon” notation as above to tell Fitch which variables to use. For
example, if your boxed constants are b and c, then you tell Fitch to replace b with x and
c with y by writing:

:b > x :c > y

The order in which you write these replacement instructions makes a difference.
The instruction we wrote above tells Fitch not only to replace b with x and c with y, it
also tells Fitch to put the quantifiers in the order ∀ x∀ y. If we wanted to make the same
replacements (x for b and y for c), but have the quantifiers in the opposite order, ∀ y∀ x,
we’d give the instruction this way:

Copyright © 2004, S. Marc Cohen Revised 11/26/04 13-3

:c > y :b > x

To see how this works, go to the Supplementary Exercises page and open the file
Ch13Ex1. Open a new subproof with boxed constants b and c. (Choose them in this
order.) Then add a new step after the assumption, cite the premise, and choose rule ∀∀∀∀
Elim. If you click Check Step at this point, Fitch will enter an instance of the premise,
but with only the outer quantifier removed—it will replace x with b. (If you had chosen
the boxed constants in the other order, c b , Fitch would have replaced x with c.)

If you want to use ∀∀∀∀ Elim to get SameCol(b, c) from the premise
∀ x∀ y SameCol(x, y) in just one step, you must specify the replacements using the
colon notation, :x > b :y > c. Then cite the premise and apply ∀∀∀∀ Elim; Fitch will
enter SameCol(b, c).

Next, end the subproof, cite it, and choose rule ∀∀∀∀ Intro. This time, be sure you specify
not only the replacements but also the order in which the quantifiers are to appear.
Since the conclusion is ∀ y∀ x SameCol(x, y), the instruction is

:c > y :b > x

Fitch will enter the desired conclusion, ∀ y∀ x SameCol(x, y). (Notice what happens to
the conclusion if you write :b > x :c > y.) What we proved here, by the way, is
that in a string of universal quantifiers, the order of the quantifiers is semantically
irrelevant.

§ 13.2 Existential quantifier rules

Existential Introduction (∃∃∃∃ Intro)

 S(c)

❺ ∃ x S(x)

Here x stands for any variable, c stands for any individual constant, and S(c) stands for the
result of replacing all free occurrences of x in S(x) with c. Note that there may be other
occurrences of c in S(x).

Example 1

1. ∀ y (Adjoins(b, y) → SameSize(y, b))

2. ∃ x∀ y (Adjoins(x, y) → SameSize(y, x)) ∃∃∃∃ Intro: 1

In example 1, there are no occurrences of b in the existential generalization we derived
by using ∃∃∃∃ Intro. But now look at the next example:

Example 2

1. ∀ y (Adjoins(b, y) → SameSize(y, b))

2. ∃ x∀ y (Adjoins(b, y) → SameSize(y, x)) ∃∃∃∃ Intro: 1

In example 2, there is an occurrence of b in the existential generalization we derived by
using ∃∃∃∃ Intro. But that is perfectly all right. We require that the instance (line 1, in this
case) have b wherever the generalization (line 2) has x, but not conversely.

Note carefully the wording of the rule. It talks about S(c) being the result of replacing
free occurrences of x in S(x) with c, even though when we apply the rule, we tend to
think of it differently—we start out with S(c) and then replace c with x, and attach ∃ x.

Copyright © 2004, S. Marc Cohen Revised 11/26/04 13-4

So a good way to think about ∃∃∃∃ Intro is as follows: you start out with an instance of a
general sentence, containing (perhaps) one or more occurrences of the constant, c. You
then get to replace one or more of the occurrences of c (you don’t have to replace all of
the occurrences of c, although you may if you wish) with a variable x, and then attach
the quantifier ∃ x.

The reason for the “perhaps” above is because of the possibility of null
quantification (recall §10.4, pp. 280-82)—that is, a sentence in which an x
quantifier contains no other occurrence of x within its scope. Strictly speaking,
this peculiar inference, whose conclusion is a null quantification, is valid:

Cube(b)

∃ x Cube(b)

Therefore, the ∃∃∃∃ Intro rule had better allow us to draw it. And notice that its
careful wording insures that it does just this. In this case, S(x) is Cube(b),
which contains no occurrences of x at all. So S(c), which is “the result of
replacing all free occurrences of x in S(x) with c,” is also just our original
sentence Cube(b). Then when we attach the quantifier ∃ x, it becomes null, since
there is no free occurrence of x in Cube(b) for the quantifier to bind. So the
∃∃∃∃ Intro rule permits this inference. If you’re in doubt, try out this use of ∃∃∃∃ Intro
in Fitch!

For a good illustration of the versatility of ∃∃∃∃ Intro, look at the file EI Varieties (on the
Supplementary Exercises page). You’ll see that there are four different conclusions that can
be obtained by ∃∃∃∃ Intro from Likes(max, max), including the null quantification case
described above.

Existential Elimination (∃∃∃∃ Elim)

 ∃ x S(x)

 c✾ S(c)

 Q

❺ Q

Here, again, the “boxed constant” indicates that we are choosing c as a name for some
arbitrary object satisfying S(x). Note that the restriction that c may not occur outside the
subproof means, in effect, that c cannot occur in the last line of the subproof, either. (∃∃∃∃ Elim
instructs us to end the subproof and enter its last line, Q, as a new line, outside the subproof).

It is this restriction on ∃∃∃∃ Elim that blocks the fallacious inference we discussed in Chapter 12
[the pseudo-“proof” deducing ∃ y ∀ x Admires(x, y) from ∀ x ∃ y Admires(x, y)]. To see how
this works, look at Exercise 13.17 on page 351 (which is a homework problem). There you
will see that the mistake in this pseudo “proof” is an incorrect application of ∃∃∃∃ Elim.

Where c does not occur outside
the subproof where it is
introduced.

Copyright © 2004, S. Marc Cohen Revised 11/26/04 13-5

Default and generous uses of the ∃∃∃∃ rules

Default

∃∃∃∃ Intro: If you cite a sentence and apply ∃∃∃∃ Intro, Fitch will replace the alphabetically
first name in the sentence with the first variable in the list (x, y, z, u, v, w) not already
in the sentence.

∃∃∃∃ Elim: If you end a subproof, cite it, and apply ∃∃∃∃ Elim, Fitch will enter the last line of
the subproof on a new line (provided it does not contain any occurrences of the boxed
constant).

Generous

∃∃∃∃ Intro: You can attach several existential quantifiers simultaneously. (Of course, they
will have to be attached to the front of the sentence.) To go from SameCol(b, c) to ∃ x
∃ y SameCol(x, y), you may cite the supporting sentence, apply the rule, and tell Fitch:

:b > x :c > y

This tells Fitch to replace b with x and c with y. The instruction
:b > y :c > x

will produce the sentence ∃ y ∃ x SameCol(y, x). On the other hand, the instruction
:c > x :b > y

will produce the sentence ∃ x ∃ y SameCol(y, x).

∃∃∃∃ Elim: The trick here is to start a subproof with more than one boxed constant. If your
subproof ends with a sentence, Q, that does not contain either of these constants, you
may use ∃∃∃∃ Elim to enter Q on the next line. (Q is typically, although not always, an
existential generalization, i.e., an ∃ -sentence.)

§ 13.3 Strategy and tactics

Working out strategy and tactics for a given proof is best accomplished in the following way:

1. Try to understand what the FOL sentences mean.

2. Try to come up with an informal proof.

3. Convert your informal proof into a Fitch proof.

The example on p. 352 gives you a good idea of how this works. For some hands-on experience, do
the You try it on p. 356.

Now let’s try working through one of the exercises. Open Exercise 13.23. First, figure out what the
sentences mean. You’ll come up with something like this:

Everything is either a cube or a dodecahedron.
Every cube is large.
Something is not large.
Therefore, there is a dodecahedron.

Next, try to develop an informal proof. It might run as follows:

Copyright © 2004, S. Marc Cohen Revised 11/26/04 13-6

We know that at least one thing is not large. Let’s pick a thing that isn’t large and call it
b. Now since every cube is large and b isn’t large, we know that b is not a cube. But
everything is either a cube or a dodecahedron, and b is not a cube. Therefore, b is a
dodecahedron. So we have proved that there is a dodecahedron.

Now convert this into a Fitch proof. We have obviously used existential instantiation strategy,
based on premise 3. So our proof will begin with a subproof containing the assumption ¬Large(b),
with b as a boxed constant (see the file Proof 13.23a.prf). We will aim for Dodec(b), from which
we can obtain ∃ x Dodec(x) by ∃∃∃∃ Intro. Then we can use ∃∃∃∃ Elim to end the subproof and infer our
conclusion ∃ x Dodec(x).

Premise 2 tells us that all the cubes are large, so we need to infer the relevant instance concerning
b. This means using ∀∀∀∀ Elim, replacing x with b. We now have Cube(b) → Large(b) on one line
and ¬Large(b) on another. Since we are allowed to use Taut Con with this problem, we may
immediately infer ¬Cube(b). This leaves us in the position shown in Proof 13.23b.prf.

We now go back to premise 1 and apply ∀∀∀∀ Elim again, with b replacing y, obtaining
Cube(b) ∨ Dodec(b). And this, together with ¬Cube(b), gives us Dodec(b)—once again we use
Taut Con. And that gives us our completed proof (see the file Proof 13.23.prf).

In Chapter 11 we translated some arguments into FOL and promised to return to them later. The one
about Doris Day provides good practice in proof strategy.

The Doris Day principle (again)

Everybody loves a lover.

Doris is a lover.

Everybody loves Doris.
Doris loves everybody.

In FOL:

∀ x ∀ y (∃ z Loves(y, z) → Loves(x, y))

∃ z Loves(doris, z)

∀ x Loves(x, doris)
∀ x Loves(doris, x)

Informal proof

The first premise tells us that everybody loves a lover, so it follows that everybody
loves Doris if she’s a lover. But the second premise tells us that Doris is a lover—so it
follows that everybody loves her. That is our first conclusion. But if everybody loves
Doris, then any randomly chosen person, a, loves Doris. Since a loves Doris, it follows
that a loves someone (i.e., a is a lover). But it follows from the first premise that if a is
a lover, everybody loves a. Now we have proved that a is a lover, so it follows that
everybody loves a. From this it follows that Doris loves a. Since a was chosen at
random, it follows that Doris loves everyone.

Copyright © 2004, S. Marc Cohen Revised 11/26/04 13-7

Formal proof

Now convert this into a Fitch proof (see Ch13Ex3.prf). Start a new subproof with
boxed constant a. We will prove, first, that a loves Doris, and, second, that Doris loves
a. We apply ∀∀∀∀ Elim to the first premise twice, replacing x with a and y with Doris. The
resulting sentence says that if Doris is a lover, then a loves Doris. We then use →→→→ Elim
on that sentence together with the second premise to obtain Loves(a, doris). We then
reapply ∀∀∀∀ Elim to the first premise, this time replacing x with Doris and y with a. The
resulting sentence says that if a is a lover, then Doris loves a. We then end the subproof
and apply ∀∀∀∀ Intro twice, once to get ∀ x Loves(x, doris) and a second time to get ∀ x
Loves(doris, x). Notice that the sentence (containing the boxed constant a) on which
we are generalizing does not have to occur in the last line of the subproof. For the
complete proof, see ProofCh13Ex3.prf.

§ 13.4 Soundness and completeness

We saw earlier (Chapter 8) that the restricted system FT for propositional logic is both sound and
complete. We now note that the full system F for FOL is also both sound and complete. Let us
briefly review what soundness and completeness amount to.

Soundness

To say that a deductive system is sound is to say that all of the inferences it permits are
(semantically) correct. That is, it never permits you to infer a falsehood from a truth. In the
case of system FT, this meant that every conclusion that can be proved by the rules of FT is a
tautological consequence of its premises.

Completeness

To say that a deductive system is complete is to say that there is no (semantically) correct
inference that it cannot prove. In the case of system FT, this meant that any tautological
consequence of any set of premises can be proved (i.e., derived from those premises) by the
rules of FT.

Obviously, the notions of soundness and completeness of the full system F are exactly analogous
to those for the restricted system FT. There are only two differences:

1. In place of tautological consequence (for system FT) we now have first-order
consequence (for system F). If you are unclear on the notion of first-order consequence,
review §10.2.

2. In place of the notion of provability in system FT, we now have provability in system F.
Just as we used the “turnstile” notation, �T, to express the former notion, we now write

simply � to express the latter. Here is what the difference amounts to:

P1,…, Pn �T S means that S can be proved, from premises P1,…, Pn, using only the
truth-functional rules (i.e., the rules of FT).

P1,…, Pn � S means that S can be proved, from premises P1,…, Pn, using any of the
rules of F.

We can now state the soundness and completeness theorems for F:

Copyright © 2004, S. Marc Cohen Revised 11/26/04 13-8

The Soundness Theorem for F: If P1,…, Pn � S, then S is a first-order
consequence of P1,…, Pn.

The Completeness Theorem for F: If a sentence S is a first-order
consequence of P1,…, Pn, then P1,…, Pn � S.

Recall that in propositional logic, there are soundness and completeness corollaries that relate the
notions of tautology and provability in FT. There are analogous corollaries for the full system F.
These concern the relation between proofs without premises, on the one hand, and first-order
validities, on the other. (Remember that � S means that there is a proof without premises of S in
system F.)

Soundness Corollary: If � S, then S is a first-order validity.

The soundness corollary tells us that every sentence of FOL that can be proved without premises in
system F is a first-order validity, that is, a logical truth of FOL.

Completeness Corollary: If S is a first-order validity, then � S.

The completeness corollary tells us that every sentence of FOL that is a first-order validity, that is, a
logical truth of FOL, can be proved without premises in system F.

§ 13.5 Some review exercises

This section contains 19 problems (of which 8 are assigned on problem set H19). One of these is to
prove the famous “Drinking Theorem” (13.51��). The theorem is: ∃ x(P(x) → ∀ y P(y)). If you
read P(x) as ‘x drinks’, you get the theorem:

There are some people such that, if they drink, everyone drinks.

There are two separate issues here: (1) to see that this is a logical truth (indeed, a first-order
validity), and (2) to figure out how to prove it. Doing (1) first is extremely helpful before tackling
(2).

Since this is a hard problem, here are some hints:

1. Who are these people who are such that, if they drink, everyone drinks?

2. Remember that conditionals are treated by Tarski’s World as just abbreviations of
disjunctions. That is:

Drinks(x) → ∀ y Drinks(y)

 is just an abbreviation of:

¬Drinks(x) ∨ ∀ y Drinks(y)

3. So our question (1) is really: who are these people who are such that, either they don’t
drink, or everyone drinks? And the answer to this is easy: they are the non-drinkers.

4. But, what if there are no such people, i.e., no non-drinkers? In that case, everyone drinks.
But that makes the right disjunct true.

Copyright © 2004, S. Marc Cohen Revised 11/26/04 13-9

5. So if there are non-drinkers, they falsify the antecedent, making the conditional true of
them; and if there are no non-drinkers, that means that everyone’s a drinker, making the
consequent true, and thereby the whole conditional true of every x, and hence true of at
least one thing. So the existential generalization is true in any case. So it’s a first-order
validity.

[You can check this out by writing the sentence ∃ x (Cube(x) → ∀ y Cube(y)) in Tarski’s
World and then trying to construct a world it which it is false. You’ll see that it’s impossible
to do so. Try playing the game, committed to false. If your world contains all cubes, Tarski
will ask you to find something that falsifies Cube(y), and you will fail. If your world contains
at least one non-cube, Tarski will pick a non-cube, call it n1, and show that you are committed
to the truth of Cube(n1).]

This suggests a proof strategy: proof by cases. Case (1): there are non-drinkers; case (2) there are
no non-drinkers. You may use Taut Con in your proof to enter the disjunction of (1) and (2),
which is an instance of excluded middle.

More exercises

The Doris Day principle (one last time)

We’ve already deduced some of the logical consequences of the principle everybody loves a
lover. We’ll now try to prove that the principle is false, using a couple of empirical premises
that are, I think, uncontroversial:

Madonna loves herself.

Rush Limbaugh does not love Hillary Clinton.

It is not true that everybody loves a lover.

Here’s the argument in FOL:

Loves(madonna, madonna)

¬Loves(rush, hillary)

¬∀ x ∀ y (∃ z Loves(y, z) → Loves(x, y))

Informal Proof:

We’ll do this by indirect proof. Suppose that everybody loves a lover. Now, Madonna
loves herself, and so she loves someone (by ∃∃∃∃ Intro). That means that she’s a lover. So
everybody loves her (from our indirect proof assumption, by ∀∀∀∀ Elim). In particular,
Hillary loves her (another application of ∀∀∀∀ Elim). So Hillary loves someone (by
∃∃∃∃ Intro), and that makes her a lover. So everybody loves her (yet another application of
∀∀∀∀ Elim). Therefore (by ∀∀∀∀ Elim!), Rush loves her, and that contradicts the second
premise. So, by ¬¬¬¬ Intro, it follows that the Doris Day principle is false.

We will now implement this strategy in a Fitch proof. You can find it in Doris Day’s
Argument on the Supplementary Exercises page.

Copyright © 2004, S. Marc Cohen Revised 11/26/04 13-10

Stage 1

Start a new subproof and assume ∀ x ∀ y (∃ z Loves(y, z) → Loves(x, y)), for proof by
contradiction. We intend to obtain our contradiction by proving Loves(rush, hillary),
which contradicts premise (2), so we will enter that step (without justification at this
point), use it to obtain ⊥ , and end the subproof. To see where the proof stands at this
stage, open Proof Doris Day Stage 1.

Stage 2

We need to prove that Madonna is a lover, so we apply ∃∃∃∃ Intro to the first premise,
being careful to substitute the variable z for the second occurrence of ‘Madonna’ only.
(We want to prove that Madonna loves someone, not that someone loves herself!) We
then apply ∀∀∀∀ Elim to our assumption, replacing x with hillary and y with madonna.
That enables us to use → Elim to infer Loves(hillary, madonna). To see where the
proof stands now, look at Proof Doris Day Stage 2.

Stage 3

Next we apply ∃∃∃∃ Intro to Loves(hillary, madonna) to prove that Hillary is a lover
(typing :madonna > z). Then we go back to the Doris Day principle (our subproof
assumption) and obtain another instance by ∀∀∀∀ Elim. This time we want to substitute
rush for x and hillary for y. The resulting sentence tells us that Rush loves Hillary if
Hillary is a lover. So by → Elim we can obtain Loves(rush, hillary), which contradicts
the second premise. This completes the proof — see Proof Doris Day's Argument.

This proof may not have convinced you that the Doris Day principle is false, since you may
object that the argument is unsound. That is, you may think that one of the “empirical”
premises we used is false. So let’s look at an alternative version in which there are no names.

Everybody loves a lover.

If there is even one lover, then everyone loves everyone.

The conclusion here seems clearly false: the antecedent is true (there exists at least one lover)
and the consequent is false (there is at least one pair of people, x and y, such that x doesn’t
love y). So the Doris Day principle must be false if it has this blatantly false consequence.

Exercise: show that the Doris Day principle does have this consequence by proving the
following in Fitch:

∀ x ∀ y (∃ z Loves(y, z) → Loves(x, y))

∃ x ∃ y Loves(x, y) → ∀ x ∀ y Loves(x, y)

You can find this exercise as Doris Day 2.prf on the Supplementary Exercises page.

Dangerfield’s argument

You’ll remember this one from the notes to Chapter 11, where we used it as a translation
problem. You can find Dangerfield’s Argument on the Supplementary Exercises page. Here
it is:

∀ x (¬Respects(x, x) → ∀ y ¬Respects(y, x))

∀ x ∀ y (¬Respects(x, y) → ¬Hires(x, y))

∀ x (∀ y¬Respects(x, y) → ∀ y ¬Hires(y, x))

Copyright © 2004, S. Marc Cohen Revised 11/26/04 13-11

Informal Proof:

We’ll use the method of general conditional proof. Our conclusion is that anyone who
respects no one will not be hired by anyone. So, let d be a person who respects no one;
we will prove that no one will hire d.

To do this, we will let c be any arbitrary person; we will prove that c will not hire d.
Note that it follows from the first premise (by ∀∀∀∀ Elim) that (1) if d doesn’t respect
himself, then no one respects d. But we have assumed that d respects no one, and this
logically implies that (2) d does not respect himself. And (1) and (2) imply (by →→→→ Elim)
that no one respects d. Hence (by ∀∀∀∀ Elim), c does not respect d. But we may infer from
the second premise that if c doesn’t respect d, c will not hire d. Hence, c will not hire d.
But c was arbitrary, so no one will hire d. Our conclusion then follows by general
conditional proof.

We will now implement this strategy in a Fitch proof.

Stage 1

We begin by starting a subproof assuming ∀ y¬Respects(d, y), with boxed constant d.
The last line of the subproof will be ∀ y ¬Hires(y, d). We then apply ∀∀∀∀ Intro to obtain
the conclusion. To see where the proof stands at this stage, open Proof Dangerfield
Stage 1.

Stage 2

The next step is to start a new subproof, within the first, with c as a boxed constant, but
no sentence in the assumption line. Our goal for this subproof is ¬Hires(c, d). First we
apply ∀∀∀∀ Elim twice, to the first premise and to line 3, with d replacing x. That sets up
an application of →→→→ Elim to obtain ∀ y¬Respects(y, d). We can then apply ∀∀∀∀ Elim to
this sentence, with c replacing y. To see where the proof stands now, look at Proof
Dangerfield Stage 2.

Stage 3

We now turn our attention to the second premise. We apply ∀∀∀∀ Elim again, with c
replacing x and d replacing y. (You can do this in one step by specifying the
replacements this way: :x > c :y > d. But the fastest way is in two steps, with
Fitch supplying the right substitution at each step by default.) One more application of
→→→→ Elim gives us ¬Hires(c, d), which was the goal sentence for this subproof. This
completes the proof — see Proof Dangerfield's Argument.

Leibniz’s argument

The philosopher Leibniz (1646-1716) wrote, “I define a good man as one who loves all men.”
He also proposed to “deduce all the theorems of equity and justice” from this and a few other
basic definitions. One such theorem might be that there is a man who loves all good men. We
will construct a proof in Fitch to show that this theorem is, indeed, a FO-consequence of
Leibniz’s definition of a good man.

[By ‘man’ here Leibniz clearly meant ‘person’; so we’ll treat the domain of discourse as
persons, which will simplify the translation process.]

We’ll treat the definition as a universally quantified biconditional:

∀ x (Good(x) ↔ ∀ y Loves(x, y))

Copyright © 2004, S. Marc Cohen Revised 11/26/04 13-12

The translation into FOL of the theorem to be proved is straightforward:

∃ y ∀ x (Good(x) → Loves(y, x))

Open the file Leibniz’s Argument (on the Supplementary Exercises page) and try to
construct the proof. For a hint on how to start, open Proof Leibniz Start. As you can see, the
strategy is proof by cases, with the two cases being (1) there are some good persons, and (2)
there are not any good persons. Since the disjunction of (1) and (2) is an instance of excluded
middle, we can obtain it by Taut Con.

The problem now is to show that in either case, we can deduce the conclusion. The best way
to do this is to sketch an informal proof. Then you should be able to model your Fitch proof
on this.

Informal Proof:

Case (1): Suppose there is at least one good person, b, for example. Then, according to
the definition, b loves all persons. Since b loves all persons, b clearly loves all the good
ones, too. So someone loves all good persons.

Case (2): Suppose, on the other hand, that there are no good persons. That means that
any universal generalization you make about all good persons will be vacuously true.
For example, all good persons are loved by d. (Here, d can be anyone you like, and
need not be an arbitrarily chosen person.) That is, d loves all good persons. Hence,
someone loves all good persons.

Now the problem is to come up with a Fitch implementation of this strategy. We will do this
in stages.

Stage 1

Case (1) has an ∃ sentence as its assumption line, so we use existential instantiation
strategy: assume Good(b), which is an instance of ∃ x Good(x), deduce the desired
conclusion, and apply ∃∃∃∃ Elim.

Case (2) is more complicated. Since we are attempting to prove an ∃∀ sentence, the
strategy is to come up with an instance of the ∃ sentence, and then use ∃∃∃∃ Intro. But the
instance in question will be a general conditional sentence, namely,
∀ x (Good(x) → Loves(d, x)). So the strategy here is to use general conditional proof:
start a new subproof assuming Good(c), deduce Loves(d, c), and apply ∀∀∀∀ Intro. Note
that to employ this strategy, one must introduce c as a boxed constant on the assumption
line. But d does not have to be a boxed constant—it can be any name you like.

To see where the proof stands at this stage, open Proof Leibniz Stage 1.

Stage 2

Case (1): We have assumed Good(b), and wish to prove that b loves all good persons.
So, we use ∀∀∀∀ Intro strategy: assume that arbitrary person a is good, and prove that b
loves a.

Case (2) has ¬∃ x Good(x) as its assumption line, and our subproof within that assumes
Good(c). From these we should be able to get a contradiction. Then we can use ⊥⊥⊥⊥ Elim
to get Loves(d, c).

To see the proof at this stage, look at Proof Leibniz Stage 2.

Copyright © 2004, S. Marc Cohen Revised 11/26/04 13-13

Stage 3

Case (1): We apply ∀∀∀∀ Elim, obtaining Good(b) ↔ ∀ y Loves(b, y). We can then
detach the right side of this biconditional and apply ∀∀∀∀ Elim again, obtaining
Loves(b, a). We then end the subproof and apply ∀∀∀∀ Intro.

Case (2): From our assumption Good(c) we can obtain ∃ x Good(x) by ∃∃∃∃ Intro. This
gives us the contradiction we were looking for.

Putting all the pieces together, we get the completed proof, which you can see by opening
Proof Leibniz's Argument.

	§ 13.1 Universal quantifier rules
	Universal Elimination ((Elim)
	Example

	General Conditional Proof ((Intro)
	Universal Introduction ((Intro)
	Default and generous uses of the (rules
	Default
	Generous

	§ 13.2 Existential quantifier rules
	Existential Introduction ((Intro)
	Example 1
	Example 2

	Existential Elimination ((Elim)
	Default and generous uses of the (rules
	Default
	Generous

	§ 13.3 Strategy and tactics
	The Doris Day principle (again)
	Informal proof
	Formal proof

	§ 13.4 Soundness and completeness
	Soundness
	Completeness

	§ 13.5 Some review exercises
	More exercises
	The Doris Day principle (one last time)
	Informal Proof:
	Stage 1
	Stage 2
	Stage 3

	Dangerfield’s argument
	Informal Proof:
	Stage 1
	Stage 2
	Stage 3

	Leibniz’s argument
	Informal Proof:
	Stage 1
	Stage 2
	Stage 3

