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Abstract. Ecologists are increasingly applying model selection to their data analyses,
primarily to compare regression models. Model selection can also be used to compare
mechanistic models derived from ecological theory, thereby providing a formal framework
for testing the theory. The Akaike Information Criterion (AIC) is the most commonly
adopted criterion used to compare models; however, its performance in general is not very
well known. The best model according to AIC has the smallest expected Kullback-Leibler
(K-L) distance, which is an information-theoretic measure of the difference between a model
and the truth. I review the theory behind AIC and demonstrate how it can be used to test
ecological theory by considering two example studies of foraging, motivated by simple
foraging theory. I present plausible truths for the two studies, and models that can be fit
to the foraging data. K-L distances are calculated for simulated studies, which provide an
appropriate test of AIC. Results support the use of a commonly adopted rule of thumb for
selecting models based on AIC differences. However, AICc, a corrected version of AIC
commonly used to reduce model selection bias, showed no clear improvement, and model
averaging, a technique to reduce model prediction bias, gave mixed results.

Key words: Akaike Information Criterion (AIC); foraging; model averaging; model selection;
theoretical ecology.

INTRODUCTION

A key problem when analyzing ecological data is
identifying which model, or models, best describe the
data from a set of models proposed a priori, and is
referred to as model selection. Often, the objective of
an ecological analysis is to identify factors that most
affect some response variable of interest. For example,
the objective may be to identify habitat variables that
influence species presence (e.g., Fernández et al. 2003,
Godı́nez-Domı́nguez and Freire 2003, Westphal et al.
2003). In these types of problems, model selection gen-
erally involves the comparison of regression models.

Another common objective of a data analysis is to
infer key ecological processes that generated the data.
Regression models may describe patterns in the data,
but often do not provide much insight about processes.
However, models that explicitly incorporate ecological
processes and dynamics can be developed from eco-
logical theory (Gurney and Nisbet 1998). Model se-
lection is increasingly being applied to mechanistic
models to infer processes affecting population dynam-
ics (Hilborn and Mangel 1997, Leirs et al. 1997, Fu-
jiwara and Caswell 2001) and evolutionary dynamics
(Posada and Buckley 2004), to interpret results from
capture–recapture studies (Anderson et al. 1998), and
to address problems involving fisheries management
(Hilborn and Walters 1992, Helu et al. 2000). The abil-
ity to quantify and compare mechanistic models means
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that ecological theory can be rigorously tested. Model
selection is useful in this case because it can help iden-
tify systems that are difficult to predict, thereby sug-
gesting important directions for research. For example,
if no single model is found to be clearly best, then new
ecological hypotheses may need to be developed, or
more data collected.

Model selection involves quantifying model perfor-
mance based on some criterion. Information theory (IT)
can be used to derive such a criterion and its application
is becoming increasingly common in ecology (Burn-
ham and Anderson 2002). The Akaike Information Cri-
terion (AIC) is the most commonly adopted measure
used to quantify and compare models under the IT ap-
proach. This measure combines the goodness of fit of
a model to data and the number of estimated model
parameters. AIC reflects model parsimony, which is a
trade-off between prediction bias and parameter un-
certainty. AIC is simple to implement and many sta-
tistical packages report the AIC value of a model. Burn-
ham and Anderson (2002) present the theory behind
the IT approach and AIC, and is primarily aimed at an
ecological audience. A concise summary of the ap-
proach is presented in Burnham and Anderson (2001).

A key assumption of AIC is that model performance
is measured by its expected Kullback-Leibler (K-L)
distance (Kullback and Leibler 1951). The K-L dis-
tance quantifies the discrepancy between the distribu-
tion describing the true probability of observing out-
comes from a study and the distribution predicted by
the model. Despite an increase in the use of AIC, its
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performance in general is not very well known (Burn-
ham and Anderson 2002). Two reasons for this uncer-
tainty are that K-L distances can only be evaluated if
the true probability distribution of study outcomes is
known, which is not possible for real studies, and the
expected K-L distance is often numerically expensive
to calculate. In this paper, I briefly review the theory
behind AIC, and then demonstrate how it can be used
to test simple foraging theory. I present a critical as-
sessment of AIC performance by performing compu-
tationally intensive calculations of K-L distances based
on plausible truths for two simple foraging studies.

By explicitly calculating K-L distances, I am able to
clarify through examples many non-trivial concepts
relevant to an AIC analysis. For example, I illustrate
the definition of best model according to AIC, and dem-
onstrate how the best model may change depending on
the amount of data collected. I also demonstrate why
the fact that AIC is only an estimate of the relative,
expected K-L distance is important for model selection.
Two example studies are presented because they help
illustrate the generality of the results. I found that a
commonly adopted rule of thumb for selecting models
based on differences in their AIC values (Burnham and
Anderson 2002) was supported by both studies. The
addition of a correction factor to AIC that is commonly
adopted and referred to as corrected AIC (AICc; Burn-
ham and Anderson 2002), was not found to improve
the likelihood of selecting the best model for both stud-
ies. On the other hand, the technique of model aver-
aging, whereby a new unconditional model is derived
using model weights, was only found to reduce model
prediction bias in one of the two studies.

THE INFORMATION-THEORETIC APPROACH

If an ecological study were repeated, it is unlikely
that the data collected would be the same. Variation in
study outcomes might be partly due to differences in
study subjects if they are chosen at random, but mostly
due to the difficulty in controlling the enormous num-
ber of processes and factors affecting the outcome. In
this paper, the term ‘‘truth’’ is defined as the probability
distribution of outcomes that would be observed if a
study were repeated an infinite number of times and
the processes generating the outcome did not change.
For example, suppose the outcomes from a study only
comprise discrete variables (e.g., when study subjects
are counted) and the probability of observing outcome
indexed by i is pi. Truth is the set (or vector) of these
probabilities, denoted p, and it clearly depends on the
design of the study (e.g., number of study subjects).
When outcomes are continuous variables (e.g., when
study subjects are measured) truth is defined by a prob-
ability density function f(x) where x is an outcome of
the study. In this paper, I focus on the discrete case.

Suppose a stochastic mathematical model, based on
some ecological theory, predicts that the study should
produce outcome i with probability pi. Let p denote

the set of predicted probabilities associated with all
possible study outcomes. Kullback and Leibler (1951)
used IT to derive a metric describing the information
lost when distribution p is used to approximate the true
distribution p; namely,

piI(p, p) 5 p ln . (1)O i 1 2pi i

I is referred to as the Kullback-Leibler distance. When
outcomes are continuous the K-L distance is calculated
in the same manner except that p and p are replaced
by f(x) and p(x), respectively, and the summation is
replaced by integration with respect to x.

For models to make quantitative predictions, their
parameters, denoted u, need to be assigned values. The
best parameter values for a model, according to the IT
approach, are those that generate predictions p(u) that
minimize the K-L distance. The K-L distance cannot
be used directly to determine the best parameters for
a model because it requires knowledge of the truth p,
which in practice is unknowable. However, parameters
of a model can be estimated readily by fitting the model
to data using maximum likelihood. Akaike (1973) sug-
gested that the expected K-L distance of a model when
fit to data using maximum likelihood could provide a
basis for comparing models. The model with the lowest
expectation might be considered the best because it
most consistently has a low K-L distance when fit to
data.

If the study were repeated many times and model
parameters re-estimated each time, then the expected
K-L distance for a model would be

E [I(p, p)] 5 p I [p, p (û )], (2)Op j j
j

where j denotes the maximum-likelihood estimates forû
the parameters of a model when fit to outcome j. The
model having the lowest expected K-L distance is re-
ferred to as the best K-L model, and is the model we
wish to identify.

Substituting Eq. 1 into Eq. 2 gives

E [I(p, p)] 5 p ln p 2 E p ln p (û ) . (3)O Op i i p i i j[ ]i i

The first term on the right side of Eq. 3, S pi ln pi,
depends only on the fixed truth p, and hence, is included
in the calculation of Ep{I} for all models considered.
Let this constant term be denoted c. Akaike (1973)
showed that the last term could be estimated by

E p ln p (û ) ø ln L(û ) 2 K (4)Op i i j j[ ]i

where ln L( j) is the maximum log-likelihood of theû
model, given outcome j, and K is the number of esti-
mated model parameters. Note that L( j) 5 pj( j). Giv-û û
en Eq. 4, Akaike (1973) proposed the Akaike Infor-
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mation Criterion (AIC) for model M when outcome j
is observed:

AIC(M ) 5 22 ln L(û ) 1 2K. (5)j

Substituting Eqs. 3 and 4 into Eq. 5, AIC can be shown
to estimate

AIC(M ) ø 2{E [I(p, p)] 2 c}. (6)p

Hence, the lower the AIC value associated with a mod-
el, the more likely it has the lowest expected K-L dis-
tance (i.e., is the best K-L model).

The simplest model selection approach is to calculate
the AIC value for each competing model and then
choose the model with the lowest value as being the
best K-L model. However, this approach ignores the
fact that AIC is an estimate; because of sampling error,
a model not having the lowest AIC value could be the
model that has the lowest expected K-L distance. The
problem now is to identify which models are likely to
have the lowest expected K-L distance, and thus,
should be kept and used for inference.

AIC values by themselves are relatively uninfor-
mative, what is important is the differences in AIC
values among competing models. It is convenient to
calculate a D value for each model, which indicates the
difference in the AIC value of the model from the min-
imum AIC value of all models considered, i.e.,

D(M) 5 AIC(M) 2 AIC .min (7)

Burnham and Anderson (2002) suggested the following
rule of thumb for selecting among models. Models with
a D value ,2 are all likely to be the best K-L model,
and hence, they should all be used when making further
inferences about a system. Models with a D value in
the range 4–7 are less likely to be best, but probably
should not be discounted. Models with a D value .10
are extremely unlikely to be the best K-L model and
can be ignored.

Akaike (1983) proposed that the likelihood of model
M being the best K-L model, given the data, is pro-
portional to the quantity exp(2D(M)/2), which leads to
the notion of model weights. The Akaike weight of
model Mm is

exp[2D(M )/2]mw 5 . (8)m
exp[2D(M )/2]O i

i

These weights sum to 1 across models and have been
interpreted as an estimate of the proportion of times
that model Mm will be chosen as having the lowest AIC
value if the study were repeated (Burnham and An-
derson 2002). These weights are also often interpreted
as the probability that model Mm is the best K-L model.

In some cases, quantitative predictions are of inter-
est. Predictions could be made from the fitted model
having the lowest AIC value; however, as AIC is an
estimate, it seems reasonable to make predictions that
take into account model uncertainty. Burnham and An-

derson (2002) suggested that model bias could be re-
duced by model averaging, whereby predictions from
each model are weighted by their Akaike weight. This
new prediction is often termed unconditional because
it is not conditional on a single model. Akaike weights
are often used to calculate unconditional estimates of
regression coefficients (Buckland et al. 1997).

The AIC estimate given by Eq. (5) assumes asymp-
totic properties that are well approximated when there
are a large number of independent observations. Burn-
ham and Anderson (2002) suggested that, when the
ratio of observations to model parameters is low (e.g.,
N/K , 40), then a corrected version of AIC should be
used:

2K(K 1 1)
AIC (M ) 5 AIC(M ) 1 . (9)c N 2 K 2 1

AICc assumes that the data were generated by a fixed-
effect linear model with homogeneous, normally dis-
tributed errors, and the models analyzed also have this
form (Hurvich and Tsai 1989). Despite these assump-
tions, the above correction factor is suggested as being
useful in other contexts. Corrected D values and Akaike
weights can also be calculated with AIC replaced by
AICc.

FORAGING EXAMPLES

Consider a study of pollen dispersal among flowers
of the perennial plant, Aquilegia brevistyla. Bumble
bees are a major pollinator of this species and their
foraging behavior, in general, has been well studied
(e.g., Pyke 1982, Cresswell 1990). If bumble bees max-
imize their long-term net rate of energy intake from
collecting nectar (Pyke 1982), they should forage
among plants so that the expected nectar reward re-
ceived from each plant visited is equal. If flowers on
A. brevistyla all produce nectar at a similar rate, then
the expected reward when visiting an A. brevistyla plant
will be equalized among plants if bumblebees visit
plants at a rate proportional to the number of open
flowers on the plant (Possingham 1992). This simple
theory also suggests that if microhabitat affects nectar
production, then it may influence plant visitation rates
(Dreisig 1995). Two examples of microhabitat vari-
ables that affect nectar production are soil moisture and
sunlight (Zimmerman 1983). Numerous observational
studies and experiments have tested these ideas (e.g.,
Klinkhamer and de Jong 1990, Kadmon 1992, Mitchell
et al. 2004).

To illustrate how the above foraging theory could be
tested, I now consider two simple hypothetical obser-
vational studies, and models motivated by the theory
that could be fit to the resulting data. For each study
I present a plausible truth, p. The IT approach was
tested by comparing the theory presented in the pre-
vious section with results from simulated study trials.
Expectations with respect to p were accurately esti-
mated by averaging over 2000 trials. These simulations
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FIG. 1. Study 1, level of plant replication, r 5 1. Circles
represent the probabilities that a plant will be visited by at
least one bumble bee during a 30-min observation period, q,
depending on whether the plant is shaded and the number of
open flowers it has. Lines represent predictions from model
M4 when its parameter values minimize the Kullback-Leibler
distance.

were used to assess (1) AIC and AICc estimates of
relative, expected K-L distance, (2) the rule of thumb
for selecting models and retaining the best K-L model,
(3) Akaike weight as the probability of being the best
K-L model, and (4) reduction of model bias by model
averaging.

Study 1: methods

The following study could be conducted to test
whether flower number and microhabitat affect plant
visitation rates by bumble bees. Suppose the study was
performed in an open forest containing numerous A.
brevistyla plants, and plant microhabitat was defined
by the level of shade, with the expectation that shaded
plants produce nectar at a lower rate. Plants were placed
into one of eight categories according to the number
of open flowers (one to four) and whether or not they
were shaded. For each category, r plants were chosen
randomly, giving 8r plants in total. During a 30-min
period when bumble bees were active the randomly
chosen plants were observed and noted whether they
received at least one bumble bee visit.

Study 1: truth and approximating models

First, I present a possible truth for this study. Let s
denote a plant’s shading status, where s 5 0 for un-
shaded plants, and s 5 1 for shaded plants. Suppose
bumble bee arrivals to a plant is a constant Poisson
process. Let a(s, f ) be the true long-term rate that A.
brevistyla plants received bumble bee visits if they had
f open flowers and shading status s. The true probability
that a plant received one or more bumble bee visits
during a time period of duration Dt is

q(s, f ) 5 1 2 exp[2Dt a(s, f )]. (10)

Fig. 1 shows a possible example of the true probabil-
ities that a plant received at least one visit. In this case,
the truth was generated by a model with eight param-
eters (i.e., an a for each of the eight plant categories)
and describes the case where arrivals are near linearly
related to flower number and negatively related to shad-
ing. In reality, the truth could be thought of as being
generated by a model with an infinite number of pa-
rameters (Burnham and Anderson 2002).

Outcomes from this study can be summarized by
eight integers, n(s, f ), denoting the number of plants
with f flowers and shading status s that received at least
one bumble bee visit (0 # n(s, f ) # r). The number of
outcomes that could be observed with this study, de-
noted Z, rises very quickly as plant replication r is
increased, Z 5 (r 1 1)8. Even with just one plant per
category (r 5 1, eight plants in total), there are 256
possible outcomes. For r 5 5 (40 plants) there are
1 679 616 possible outcomes. The pi (i 5 1, . . . Z) can
be calculated using the following:

1 4

p 5 B[n (s, f ); r, q(s, f )] (11)P Pi i
s50 f 51

where ni(s, f ) is the number of plants with trait (s, f )
visited according to outcome i, and B[n; r, q] is the
binomial function describing the probability of ob-
serving n successes from r trials, given that successes
occur with probability q and trials are independent. Fig.
2 shows the true distribution p when r 5 1 and truth
is parameterized by the probabilities in Fig. 1. For sim-
plicity, I assumed that the truth did not describe a dis-
tribution of outcomes where the data were overdis-
persed. Examining the effect of overdispersed data on
AIC estimates will be the focus of future work.

To test the foraging theory presented, I compared
four models, denoted Mm (m 5 1, . . . 4), which differed
in whether or not shading status or flower number af-
fected bumble bee arrival rate a. The models can be
summarized as follows.

M1: a(s, f ) 5 a (arrival rate is constant across plants,
regardless of shading status and flower number, u 5
{a}).

M2: a(s, f ) 5 as (arrival rate differs among shade
environments, but not with flower number, u 5 {a0,
a1}).

M3: a(s, f ) 5 fb (arrival rate varies linearly with
flower number, but not among shade environments, u
5 {b}).

M4: a(s, f ) 5 fbs (arrival rate differs among shade
environments and varies linearly with flower number,
u 5 {b0, b1}).

Models M3 and M4 assume the rate of arrival is lin-
early related to flower number, in accordance with the-
ory. If model M1 fits the data well, then it might be
that bumble bees forage randomly among plants, or
some other unmeasured factors are important, in which
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FIG. 2. Study 1, level of plant replication, r 5 1. (a) True probabilities (black circles) and the best-fitting model M4

probabilities (open circles), of observing all 256 possible outcomes. (b) The Kullback-Leibler distance associated with each
of the four models for all outcomes, when their parameters are estimated using maximum likelihood. Model parameters were
constrained so that they bounded the probability of visitation per plant to be between 0.01 and 0.99. Outcomes of the study
are described by an eight-digit binary number. For example, the observation {00110001} describes the case when only the
three- and four-flowered unshaded plant and the four-flowered shaded plant were visited during the study. Study outcomes
on the x-axis represent the binary equivalent of the data collected 1 1 (e.g., the data {00110001} is binary for 49, and
corresponds to outcome 50).

case alternative hypotheses should be considered. An
unconditional model can be derived by considering the
following weighted arrival rate:

¯̂a 5 w â (12)O m m
m

where m is the maximum-likelihood arrival rate esti-â
mated by model Mm.

Study 1: results

The p(u) and K-L distance for each model can be
calculated by substituting the model’s estimate of a
into Eqs. 10 and 11. In this example, none of the four
models describe the truth presented in Fig. 2 exactly.
Model M4 best approximates the truth, and this occurs
when its two parameters are set to b0 5 0.81 and b1 5
0.31 visits per flower per hour (Figs. 1 and 2). Model
M4 can approximate the truth well because it incor-
porates two aspects of the truth; namely, variation
among microhabitats and the positive effect of flowers.
For most ecological examples, no model should be ex-
pected to be able to exactly describe the truth (i.e., I(p,
p(u)) . 0 for all u).

To illustrate the AIC definition of best model, I fit
the four models to all 256 possible outcomes when r

5 1 using maximum likelihood. The model having the
lowest K-L distance depended on the outcome observed
(Fig. 2). Even though model M4 had the smallest K-L
distance for a number of outcomes it also often per-
formed poorly. Model M4 is not a good general model
in this example because it overfits the data; that is, it
reproduces the data well when fit to some outcomes
but performs poorly when fit to others (Draper 1995).
At the same time, models M1 and M2 underfit the data
because they simplify the system too much, which re-
sults in biased predictions. Models M1 and M2 typically
underestimate visits to many-flowered plants and over-
estimate visits to few-flowered plants. In this example,
Model M3 is the most parsimonious model as it often
describes the system relatively well with only one pa-
rameter.

Even though model M3 was the best K-L model when
r 5 1, for larger r the best model was the more complex
model M4 (Table 1). M3 and M4 both included the effect
of flower number, indicating that flower number af-
fected arrival rates more than microhabitat (Fig. 1). For
all three cases of r considered, the model most likely
to be chosen by AIC had the lowest expected K-L dis-
tance. This result was also true for AICc, except when
r 5 3 (Table 1). For r 5 5, both AIC and AICc provided
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TABLE 1. Statistics from 2000 trials illustrating the performance of the models for both
foraging studies.

r Model Ep{I}
Lowest I

(%)
Lowest

AIC (%)
Lowest

AICc (%) AIC SD

Ep{w}
(%) w SD (%)

Study 1
1 M1 1.35 1.9 14.5 21.7 1.3 19.7 12.6

M2 2.34 3.0 13.2 6.2 2.6 18.2 13.9
M3 0.95 50.7 45.7 66.0 2.0 33.5 17.4
M4 1.40 44.4 26.7 6.2 2.6 28.6 14.0

3 M1 2.99 0.0 7.6 7.6 3.0 10.6 12.6
M2 2.71 0.2 7.2 7.2 3.3 14.0 15.3
M3 1.69 19.2 37.6 43.1 3.1 31.1 21.6
M4 1.27 80.7 47.8 42.2 2.9 44.3 23.2

5 M1 4.61 0.0 2.9 2.9 4.5 5.9 10.2
M2 3.56 0.0 6.0 5.7 4.0 10.2 14.7
M3 2.40 7.5 26.1 29.5 4.0 26.6 22.2
M4 1.15 92.5 65.0 61.8 2.9 57.3 26.0

Study 2
5 M5 1.04 0.2 33.2 33.8 2.9 30.7 18.2

M6 0.57 78.6 60.3 63.4 2.9 43.0 16.4
M7 1.23 21.3 6.6 2.8 2.5 26.3 12.6

10 M5 1.55 0.0 26.4 26.5 3.6 24.8 20.8
M6 0.58 71.7 69.1 69.9 3.2 48.1 18.8
M7 1.04 28.4 4.6 3.7 2.8 27.1 9.8

Notes: Measures include level of plant replication (r), expected Kullback-Leibler (K-L)
distance (Ep{I}), percentage of times that the model had the lowest K-L distance (lowest I),
percentage of times that the model had the lowest AIC and AICc value, the standard deviation
(SD) of AIC values, expected Akaike weights (Ep{w}), and the standard deviation of the Akaike
weights (w). Bold values of Ep{I} indicate the best K-L model.

relatively unbiased estimates of expected, relative K-
L distances (Fig. 3). Variation in AIC and AICc values
among trials increased slowly with replication (Table
1). The rule of thumb for retaining the best K-L model
performed well in all cases (Table 2). D values cal-
culated from AICc values performed slightly better than
AIC values when r 5 1; however, AIC was better for
r 5 3 and 5. In all cases, the best K-L model was
retained for at least 77% of the trials when the threshold
was 2, and for at least 97% of the trials when the
threshold was 7.

Expected Akaike weights and the probability a model
would be chosen by AIC were positively correlated;
however, there was large variation in the weights across
the 2000 trials (Table 1). Expected Akaike weights and
the expected K-L distance were also positively corre-
lated. On average, predictions from the unconditional
model had a lower K-L distance than the lowest AIC
model; however, contrary to expectation, model aver-
aging was less effective at reducing model bias (i.e.,
reducing Ep{I}) as r was increased (Table 2).

Study 2: methods

This study focused on the effect of flower number
on bumble bee arrival rates. During this study r one-
flowered and r two-flowered plants were chosen ran-
domly from an area within the forest where microhab-
itat was consistent (e.g., all plants were unshaded, plant
density was similar, and soil moisture varied little).
Plants were again monitored for 30 min but this time

the number of pollinator visits to each plant was re-
corded.

Study 2: truth and approximating models

To keep the number of outcomes for this study trac-
table, the number of visits to a plant was recorded as
either y 5 0, 1, 2, 3, or 41, the latter indicating that
four or more visits were observed. Data for this study
are a set of 10 integers, denoted n(y, f ), which indicate
the number of f-flowered plants receiving y visits.
These data satisfy Syn(y, f ) 5 r for f 5 1, 2. The number
of possible outcomes given r replicates is Z 5 [(r 1
1)(r 1 2)(r 1 3)(r 1 4)/24]2. For this study, I examined
two levels of plant replication: r 5 5 (Z 5 15 876),
and r 5 10 (Z 5 1 002 001).

Bumble bee arrivals to plants was modeled as a con-
stant Poisson process. Plant visits were independent
and bees visited one-and two-flowered plants at rate
a(1) 5 2.2 and a(2) 5 3.8 visits/h, respectively. Thus,
two-flowered plants received visits at a higher rate,
which was less than twice the rate for one-flowered
plants. The true probability distribution of outcomes p
was calculated in a similar manner to study 1, except
that the binomial distribution was replaced by a mul-
tinomial distribution because there were five possible
observations for each plant.

I compared three models for this study, all of which
assumed that bumble bee arrivals were a constant Pois-
son process. The models can be summarized as follows.
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FIG. 3. AIC and AICc estimates of the relative, expected
Kullback-Leibler distance for (a) study 1 and (b) study 2.
The solid line indicates a 1:1 relationship. Circles indicate
means, and vertical bars indicate the variation observed (SD)
among AIC calculations across 2000 trials. Standard devia-
tions for AICc values are the same as those for AIC and have
been omitted for clarity.

M5: a(f ) 5 a (arrival rate is constant across plants,
regardless of flower number, u 5 {a}).

M6: a(f ) 5 fb (arrival rate varies linearly with flower
number, u 5 {b}).

M7: a(1) 5 a1, a(2) 5 a2 (arrival rate varies with
flower number, u 5 {a1, a2}).

Models M5 and M6 make the same assumptions as
M1 and M3 of the previous study, respectively. Models
M6 and M7 both assume that flower number affects vis-
itation rate; however, M7 has no restriction on the form
of the relationship. Model M7 is so flexible it can match
the truth exactly; however, it may not be particularly
informative because it does not suggest any mecha-
nism. If M7 fits the data well it would suggest the need
for alternative hypotheses.

Study 2: results

Analyses for this study are presented for two levels
of plant replication (r 5 5 and 10). In both cases, model
M6 was the best K-L model, indicating that the data

include too little information (r was too low) to esti-
mate accurately model parameters for M7, even though
it was used to generate the data. AIC and AICc were
both most likely to choose the best K-L model in all
cases (Table 1). As in the previous study, AIC and AICc

values both provided a relatively unbiased estimate of
the relative, expected K-L distance (Fig. 3). Variation
in AIC and AICc values was comparable to that of the
previous study (Table 1). Again, the rule of thumb for
retaining the best K-L model was supported; however,
D values calculated from AIC values were more likely
to lead to correct retention than AICc (Table 2).

In contrast to the previous study, Akaike weights
provided relatively poor estimates of the probability of
a model being selected by AIC, and of a model’s prob-
ability of being the best K-L model (Table 1). Variation
in Akaike weights among trials was again very high
(Table 1). For this study, the unconditional model had
on average a higher K-L distance than the best AIC
model, indicating that model averaging did not reduce
model bias. As with the previous study, the uncondi-
tional model performed worse as r was increased (Table
2).

DISCUSSION

AIC allows models to be compared, thereby provid-
ing a formal way to compare theories. AIC estimates
the expected, relative K-L distance, and the model hav-
ing the lowest value for this metric is termed the best
K-L model. AIC attempts to reward models that are
robust to parameterization. For example, M7 was not
the best K-L model for study 2, even though it gen-
erated the data for the simulations (Table 1). In this
case, model M7 suffers from overfitting because, when
it is fit to common outcomes of the study, its parameter
estimates are often so poor that it then predicts other
outcomes that do not reflect outcomes that are truly
likely. The results presented here illustrate how AIC
reflects model parsimony (i.e., a trade-off between
model prediction bias and parameter uncertainty).

AIC can be applied to data combined from multiple
studies that do not necessarily have the same design.
For example, suppose study 1 and study 2 were per-
formed with different plant or pollinator species, or in
different locations. By combining data from both stud-
ies and carefully constructing appropriate probabilistic
models, AIC could be used to compare competing the-
ories regarding how flower number affects arrivals in
a more general context. Hence, AIC can provide a for-
mal framework for constructing an ecological synthe-
sis.

How AIC ranks models depends on the amount and
type of data. Simpler models often rank highly when
data are scarce; however, more complex models typi-
cally improve their ranking as more data is collected,
provided they incorporate important processes (Table
1, study 1). This data dependence is important when
analyzing results from an AIC analysis. For example,
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TABLE 2. Statistics from 2000 trials that assess the simple rule of thumb for selecting models,
and the ability for model averaging to reduce model bias.

r
Best K-L

model

Threshold for D

2 4 7 10

Ep{I}

AIC
best UM

Study 1
1 M3 82.3 (85.4) 88.3 (97.0) 97.8 (98.1) 100.0 (100.0) 1.73 0.94
3 M4 92.3 (77.2) 97.9 (97.6) 99.7 (99.6) 100.0 (100.0) 1.78 1.41
5 M4 95.9 (90.3) 98.3 (98.0) 99.6 (99.6) 100.0 (100.0) 1.71 1.52

Study 2
5 M6 86.3 (77.4) 95.6 (86.9) 99.3 (95.8) 99.8 (99.6) 1.02 1.36

10 M6 87.5 (79.5) 96.0 (96.0) 99.1 (96.0) 100.0 (99.2) 0.98 2.14

Notes: Values are the percentage of times that the best K-L model is retained if models were
selected based on their D value being less than a threshold (values not in parentheses were
calculated using AIC values and those in parentheses used AICc values). Also presented are
the expected K-L distance (Ep{I}) when the AIC best model and the unconditional model (UM)
are used for prediction.

if plant replication were increased for study 2, then
eventually model M7 would be judged a better K-L
model than M6. This result would suggest that flower
number affects bumble bee arrival rates, but this effect
is not simply proportional to flower number. This result
would not be unexpected as it is likely that the com-
bination of many factors will make the relationship
nonlinear. However, the fact that much data were re-
quired to recognize M7 as a better K-L model reflects
the effectiveness of the simpler model, M6, at capturing
much of the truth. Results from study 2 demonstrate
the need for care when interpreting results from an AIC
analysis; simply ignoring models with a D value greater
than some predetermined threshold (e.g., 2) may not
reflect the value of the associated hypothesis. The more
data collected, the less likely a useful simple model
will be judged best according to AIC.

Unavoidable sampling error means the model with
the lowest AIC value is not necessarily the best K-L
model. In order to incorporate this uncertainty a model
selection criterion needs to be adopted. Burnham and
Anderson (2002) suggest a very simple selection cri-
terion based on model D values, which is supported by
the results presented here. It is common for AIC anal-
yses to retain models only if their D value is , 2 (e.g.,
Westphal et al. 2003); however, the results presented
here suggest that a larger threshold may be appropriate
if a probability of 0.95 or more of retaining the best
model is desired. Fig. 3 and Table 1 suggest that this
rule of thumb works well because the variation in AIC
values among trials (not models) is relatively invariant
among models and the amount of data collected. I found
the standard deviation for AIC (and AICc) values for
the best K-L model to be approximately 3 in all cases
(Table 1). A very crude estimate of the probability of
not correctly retaining the best K-L model can be made
if we assume that AIC values among trials are normally
distributed, and AIC values for each model are inde-
pendent. In fact, simulations show that neither of these
assumptions are quite true, as the AIC values among

trials tend to have fatter upper tails and AIC values
among models are slightly positively correlated. How-
ever, if the best- and second-best K-L models both have
independent, normally distributed AIC values with
standard deviation s, then the D value of the best K-
L model should also be normally distributed with a
standard deviation of s. If s 5 3 and the mean AICÏ2
of the second-best model is two units greater than that
of the best K-L model, then there is a 31.9% chance
that the D value for the best model is greater than 0.
For mean AIC differences of 4, 7, and 10, the per-
centages of incorrectly choosing the best K-L model
are 17.3, 4.9, and 0.9%, respectively. Simulations in-
dicate that the probability the best K-L model is not
retained, is about a third as often than suggested by
this approximation (Table 2), mostly because the AIC
values are positively correlated among models. Con-
sistency in the variation in AIC values for the better
models across all cases investigated, provides a poten-
tial clue to why the rule of thumb might work well in
general. The robustness of this result needs to be in-
vestigated further.

Results from both studies showed no appreciable ad-
vantage to using the corrected version of AIC, despite
the ratio of independent data to estimated parameters
being low. A reason for this lack of improvement may
be due to the correction factor being based on as-
sumptions that do not match well with the foraging
studies (e.g., homogeneous, normally distributed re-
siduals). When AICc values are used to calculate D
values, the rule of thumb generally performed worse
than AIC (Table 2). These results suggest that data
characteristics should be taken into account when con-
sidering the use of correction factors. It has been sug-
gested that AIC might suffer from overfitting and AICc

may alleviate this because it is more conservative
(Burnham and Anderson 2002); however, overfitting
was not a problem here (Table 1).

Due to computational constraints, analyses were re-
stricted to studies involving relatively small samples.
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However, the sample sizes considered here might be
representative of many ecological systems where ob-
taining data is difficult or expensive. Relatively few
data resulted in high variation among Akaike weights
among trials, which limited their utility. Expected
Akaike weights provided reasonable estimates of
choosing the best AIC model among trials for study 1,
but were poor for study 2 (Table 1). When Akaike
weights were used for model averaging their ability to
reduce model bias (i.e., Ep{I}) was mixed. Model av-
eraging produced slightly better model predictions for
study 1, but always resulted in worse predictions for
study 2 (Table 2). In all cases, model averaging per-
formed worse as plant replication r was increased.
Bootstrapping could be used to estimate the variation
in Akaike weights among repeated trials (Buckland et
al. 1997), which would indicate when caution needs to
be employed when using Akaike weights. These results
support calls for continued research on the effective-
ness of model averaging (Burnham and Anderson
2004).

Typically, attempts to evaluate the AIC approach
have involved generating data from a known model
and then determining the probability that the generating
model is selected when it is included in a set of com-
peting models (Anderson et al. 1998, Burnham and
Anderson 2002). The advantage of this approach is that
K-L distances do not need to be estimated; however,
this is strictly not a true test of AIC because the best
K-L model, which is what AIC seeks, may not be the
model that generated the data (e.g., Table 1, study 2).
It is unclear how general results regarding AIC per-
formance are that come from studies where AIC is
assessed according to criterion other than selecting the
best K-L model.

The results presented here are representative of many
other variations of the truth that I investigated. It is
difficult to generalize too much from only two simple
studies; however, results from both studies support a
commonly adopted rule of thumb for retaining models
based on AIC differences. On the other hand, the results
suggest caution when applying correction factors, and
model averaging with Akaike weights. These results
highlight the need for further research on identifying
conditions where AIC analyses are likely to be reliable
(e.g., study design and characteristics of the data) and
how analyses involving AIC should be interpreted.
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