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1 Conducting wall boundary conditions

The question often comes up of what exactly the perfectly conducting ideal wall boundary conditions
are and what their rationale is. Therefore we begin with a brief review of these conditions. Now,
it can be found online in many places that, following from Maxwell’s equations, one can show the
following results regarding the normal and tangential components of the electric and magnetic fields
( ~E, ~B) across any interface Σ from state 1 to state 2. Let n̂ be the wall normal vector. Then,

• the normal component of ~B and tangential component of ~E are continuous:

n̂ · ( ~B1 − ~B2) = 0, (1)

n̂× ( ~E1 − ~E2) = 0, (2)

• the tangential component of ~B and the normal component of ~E each jump by an amount
equal to interfacial current and charge densities ~Σ and ρΣ respectively,

n̂× ( ~B1 − ~B2) = µ0~Σ, (3)

n̂ · ( ~E1 − ~E2) = ε−1
0 ρΣ. (4)

We now consider a computational domain bounded by a perfectly conducting material, which is
known to satisfy the following conditions:

• The magnetic flux ~B maintains a constant value (flux pinning),

• The electric field vanishes in the material (ignoring such things as Josephson effect).

Provided that: i) the simulation time is much less than the resistive diffusion time of the material,
and ii) the walls were not previously subject to sustained magnetic flux on resistive timescales prior
to simulation initialization, then we can ~B = 0 inside the material. From these conditions, we
conclude the following boundary conditions from Eqs. 1 and 2, namely

n̂ · ~B = 0, (5)

~n× ~E = 0. (6)

Also, typically we take n̂·~v = 0 with ~v the fluid velocity for the zero-average flux of particles to/from
a surface. As is widely well-known but not widely well-understood (particularly in current-carrying
magnetoplasmas), the particle flux of ions to conducting electrodes can break this condition.
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2 Conducting Wall for Resisistive MHD

For a conducting wall, the “tangential electric field and normal magnetic field must vanish”,

n̂×E =0 (7a)

n̂ ·B =0 (7b)

For resistive MHD, the, the electric field is given by the Generalized Ohm’s Law with terms

E =− u×B + ηj (8)

So Eq. (7a) becomes

n̂×E =− n̂× u×B + n̂× ηj
=− [����(n̂ ·B)u−����(n̂ · u)B] + n̂× ηj
=0 (9)

where the canceled terms come from Eq. (7b) and the stipulation that there can be no velocity
through the wall. Note that n̂·u is permits freeslip (flow-tangency) and noslip conditions. Equation
(9) leads to the condition on j:

n̂× j =0 (10)

Notice that for MHD, j is given by

j =
∇×B
(ωcτ)

(11)

Assuming Cartesian coordinates, Eq. (10) becomes

n̂× j = (nyjz − nzjy) x̂+ (nzjx − nxjz) ŷ + (nxjy − nyjx) ẑ = 0 (12)

Equation (11) in Cartesian becomes

j =
1

(ωcτ)
[(∂yBz − ∂zBy) x̂+ (∂zBx − ∂xBz) ŷ + (∂xBy − ∂yBx) ẑ] (13)

So in terms of B gradients, Eq. (12) becomes

n̂× j = [ny (∂xBy − ∂yBx)− nz (∂zBx − ∂xBz)] x̂+ [nz (∂yBz − ∂zBy) x̂− nx (∂xBy − ∂yBx)] ŷ

+ [nx (∂zBx − ∂xBz)− ny (∂yBz − ∂zBy) x̂] ẑ = 0 (14)

If the geometry is axisymmetric cylindrical (z-r-θ), then Eq. (10) becomes

n̂× j = (nrjθ − nθjr) ẑ + (nθjz − nzjθ) r̂ + (nzjr − nrjz) θ̂ = 0 (15)
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Equation (11) in axisymmetric Cylindrical ( ∂∂θ = 0) becomes

j =
1

(ωcτ)

[(
∂rBθ +

Bθ
r

)
ẑ + (−∂zBθ) r̂ + (∂zBr − ∂rBz) θ̂

]
(16)

So in terms of B gradients, Eq. (15) becomes

n̂× j = [nr (∂zBr − ∂rBz)− nθ (−∂zBθ)] ẑ +

[
nθ

(
∂rBθ +

Bθ
r

)
− nz (∂zBr − ∂rBz)

]
r̂

+

[
nz (−∂zBθ)− nr

(
∂rBθ +

Bθ
r

)]
θ̂ = 0 (17)

If in particular n̂ = nrr̂, we need jθ = jz = 0, or ∂zBr = ∂rBz and ∂rBθ = −Bθ
r .

3 Cartesian Procedure for Gradients

We want to define the ∇B such that Eq. (14), or equivalently Eq. (12), is satisfied. To do so, it
is simplest to rotate into the frame of the boundary such that the local x̂ direction after rotation,

denoted x̂′ is the normal to the boundary. In WARPXM this can be achieved using the R matrix.
The local normal is then

n̂′ =Rn̂ =

nx ny nz
tx ty tz
bx by bz

nxny
nz

 =

 n2
z + n2

r + n2
z

txnx + tyny + tznz
bxnx + byny + bznz

 =

n̂ · n̂t̂ · n̂
b̂ · n̂

 =

1
0
0

 . (18)

We can rotate j|in into this reference frame

j′
∣∣
in

=R j|in =

nx ny nz
tx ty tz
bx by bz

 jxjy
jz

∣∣∣∣∣∣
in

=

nxjx + nyjy + nzjz
txjx + tyjy + tzjz
bxjx + byjy + bzjz

∣∣∣∣∣∣
in

=

n̂ · jt̂ · j
b̂ · j

∣∣∣∣∣∣
in

≡

X ′Y ′
Z ′

 . (19)

Now notice

n̂′ × j′
∣∣
in

=

 0
−Z ′
Y ′

 . (20)

Note that the boundary condition in Eq. (10) is imposing

n̂′ × j′
∣∣
wall

=

0
0
0

 . (21)

Note that this is achieved if

j′
∣∣
wall

=

Anything
0
0

 (22)
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Here I’m choosing to copy the normal component such that

j′
∣∣
wall

=

X ′0
0

 (23)

To achieve this we set j′
∣∣
out

as

j′
∣∣
out

=

 X ′−Y ′
−Z ′

 . (24)

What remains is to antirotate j′
∣∣
out

and set ∇B accordingly. First, the antirotation is given by

j|out =R
−1
j′
∣∣
out

=

nx tx bx
ny ty by
nz tz bz

 X ′−Y ′
−Z ′

 =

nxX ′ − txY ′ − bxZ ′nyX
′ − tyY ′ − byZ ′

nzX
′ − tzY ′ − bzZ ′

 ≡
Xout

Yout

Zout

 (25)

Then using Eq. (13)

∂Bz
∂y

∣∣∣
out
− ∂By

∂z

∣∣∣
out

ωcτ
=Xout

∂Bz
∂y

∣∣∣∣
out

= (ωcτ)Xout +
∂By
∂z

∣∣∣∣
out

(26a)

∂Bx
∂z

∣∣
out
− ∂Bz

∂x

∣∣
out

ωcτ
=Yout

∂Bx
∂z

∣∣∣∣
out

= (ωcτ)Yout +
∂Bz
∂x

∣∣∣∣
out

(26b)

∂By
∂x

∣∣∣
out
− ∂Bx

∂y

∣∣∣
out

ωcτ
=Zout

∂By
∂x

∣∣∣∣
out

= (ωcτ)Zout +
∂Bx
∂y

∣∣∣∣
out

(26c)

To apply Eq. (25), we set arbitrarily set reverse copy to the derivatives

∂By
∂z

∣∣∣∣
out

=− ∂By
∂z

∣∣∣∣
in

(27a)

∂Bz
∂x

∣∣∣∣
out

=− ∂Bz
∂x

∣∣∣∣
in

(27b)
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∂Bx
∂y

∣∣∣∣
out

=− ∂Bx
∂y

∣∣∣∣
in

(27c)

This should be ok because it is only the difference in the gradients that matter. The other B
derivatives do not figure into the resistive mhd equations since it is only the j term that has an
effect. Therefore it doesn’t matter what I do. I just copy out ∂Bx

∂x ,
∂By
∂y , and ∂Bz

∂z .

4 Axisymmetric Cylindrical Geometry General Case

Equation (17) dictates some of the magnetic field gradients in cylindrical geometry. The axisym-
metric formulation simulations, in addition to having ∂

∂θ = 0, are also in the r− z plane, meaning,
nθ = 0, reducing Eq. (17) to

n̂× j = [nr (∂zBr − ∂rBz)] ẑ + [−nz (∂zBr − ∂rBz)] r̂ +

[
nz (−∂zBθ)− nr

(
∂rBθ +

Bθ
r

)]
θ̂ = 0

(28)

Now we rotate j in Eq. (16) and then apply Eq. (17), which allows us to determine some of the
gradients. Note that

n̂′ =Rn̂ =

nz nr 0
tz tr 0
0 0 bθ

nznr
0

 =

 n2
z + n2

r

tznz + trnr
0

 =

1
0
0

 (29)

j′
∣∣
in

=R j|in =

nz nr 0
tz tr 0
0 0 bθ

 jzjr
jθ

∣∣∣∣∣∣
in

=

nzjz + nrjr
tzjz + trjr

bθjθ

∣∣∣∣∣∣
in

≡

X ′Y ′
Z ′

 (30)

So we have

n̂′ × j′
∣∣
in

=

 0
−bθjθ

tzjz + trjr

 =

 0
−Z ′
Y ′

 (31)

Basicaly in the rotated frame, we set Y ′ = Z ′ = 0, which corresponds to setting a reverse copy

j′
∣∣
out

=

 X ′−Y ′
−Z ′

 (32)

so that

j′
∣∣
wall

=

X ′0
0

 (33)
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Again we antirotate j|out

j|out =R
−1
j′
∣∣
out

=

nz tz 0
nr tr 0
0 0 bθ

 X ′−Y ′
−Z ′

 =

nzX ′ − tzY ′nrX
′ − trY ′
−bθZ ′

 ≡
Xout

Yout

Zout

 (34)

Then we use Eq. (16),

∂Bθ
∂r

∣∣∣
out

+
Bθ|out
r|wall

ωcτ
=Xout

∂Bθ
∂r

∣∣∣∣
out

= (ωcτ)Xout −
Bθ|out

r|wall

(35a)

− ∂Bθ
∂z

∣∣∣
out

ωcτ
=Yout

∂Bθ
∂z

∣∣∣∣
out

=− (ωcτ)Yout (35b)

∂Br
∂z

∣∣
out
− ∂Bz

∂r

∣∣
out

ωcτ
=Zout

∂Br
∂z

∣∣∣∣
out

= (ωcτ)Zout +
∂Bz
∂r

∣∣∣∣
out

(35c)

Since in Eq. (35c), only the difference the gradients matter, I arbitrarily set a reverse copy

∂Bz
∂r

∣∣∣∣
out

=− ∂Bz
∂r

∣∣∣∣
in

(36)

The other B derivatives do not figure into the resistive mhd equations since it is only the j term
that has an effect. Therefore it doesn’t matter what I do. By the axisymmetric assumption I just
reverse copy ∂Bz

∂θ , ∂Br
∂θ , and ∂Bθ

∂θ . I also just copy out ∂Bz
∂z and ∂Br

∂r . Note that Eq. (35a) becomes
problematic at r|wall = 0. For that we can use L’Hospital’s rule

∂Bθ
∂r

∣∣∣∣(r=0)

out

= (ωcτ)Xout − lim
r→0

Bθ|out

r|wall

= (ωcτ)Xout −
(
∂
∂r Bθ|out

)r=0(
∂
∂r r|wall

)r=0

= (ωcτ)Xout −
∂Bθ
∂r

∣∣∣∣(r=0)

out

∂Bθ
∂r

∣∣∣∣(r=0)

out

=
(ωcτ)Xout

2
(37)
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5 Conducting wall for dissipative Hall MHD

In this section we apply the perfectly conducting wall boundary conditions n̂× ~E = 0 and n̂ · b̂ = 0
(with b̂ ≡ ~B/B) to the generalized Ohm’s law for the Hall MHD system,

~E + ~v × ~B =
1

ne
(~× ~B −∇pe) + η~. (38)

From before we have n̂ × ( ~E + ~v × ~B) = 0 at the perfectly conducting fluxless (n̂ · b̂ = 0) surface.
We define the Hall coefficient as χH ≡ B/neη which for the Spitzer model reduces to χH = ωce/νe.
Multiplying by ne/B we obtain the nonlinear boundary condition as the system of equations

n̂ · b̂ = 0, (39)

n̂× (~× b̂−∇pe/B + χ−1
H ~) = 0. (40)

We note the limit χH →∞ (either collisionless or strongly magnetized) and pe = 0 as reducing to
the force-free condition n̂×(~× b̂) = 0 indicating either the two-dimensional n̂ ·~ = n̂ · b̂ = 0 solution
or the three-dimensional Beltrami/Taylor states ~ = α~B as the boundary condition. Regardless,
for general values of χH we can apply Eq. 39 to the triple cross product in Eq. 40 to find

n̂× (~× b̂) = ~(n̂ · b̂)− b̂(n̂ · ~) = −b̂(n̂ · ~). (41)

Therefore we write Eq. 40 in the form

χ−1
H (n̂× ~) = b̂(n̂ · ~) + n̂×∇pe/B. (42)

We will both “dot” and “cross” this equation by b̂. First “crossing”, and applying Eq. 39, we find

χ−1
H b̂× (n̂× ~) = b̂× (n̂×∇pe/B) (43)

=⇒ b̂ · (χ−1
H ~−∇pe/B) = 0. (44)

Equation 44 indicates a potential for sophisticated three-dimensional solutions depending on the
distribution of pressure isosurfaces. However, for two-dimensional dynamics with an out-of-plane
magnetic field, it is consistent to apply the two-dimensional solution b̂ · ~ = b̂ · ∇pe = 0, the two of
which add to the constraint n̂ · b̂ = 0. Now “dotting” Eq. (42) by b̂, we obtain the equation

χ−1
H ~ · (b̂× n̂) = n̂ · (~− ~de) (45)

where the electron diamagnetic current is defined as ~de ≡ −∇pe × b̂/B. We now make a closure
assumption for the electron pressure pe’s relation to the total plasma pressure p, namely that
electron and ion pressures pe and pi are in a constant ratio

pe
pi
≡ θ =⇒ pe

p
=

θ

1 + θ
. (46)

Since the net diamagnetic current is ~d ≡ −∇p× b̂/B, we modify Eq. 45 to read

χ−1
H ~ · (b̂× n̂) = n̂ ·

(
~− θ

1 + θ
~d

)
. (47)
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The left-hand side of Eq. 47 is the signed-magnitude of the wall-tangential current ~⊥ ≡ j⊥b̂ × n̂.
For example, in Cartesian coordinates (x, y, z) with n̂ = x̂ and b̂ = ẑ, the wall-tangential current
flows in the ŷ direction provided the right-hand side of Eq. 47 is positive. We let σ ≡ sin−1(b̂× n̂)
be the sign of the direction of n̂× b̂, and conclude that

j⊥ = σχH n̂ ·
(
~− θ

1 + θ
~d

)
(48)

is our desired boundary condition.

5.1 Boundary condition with WARPXM normalization

The relevant normalized equations of the Hall-MHD system are the following:

∇× ~B = (ωcτ)~ (49)

~E + ~v × ~B =
1

ne
(~× ~B − 1

ωcτ
∇pe) +

νpτ

ωcτ
η~ (50)

As before, apply the boundary condition Eq. (6) to Eq. (50) and multiply through by (ne/B).
Defining the normalized Hall parameter

χH =
B

neη
, (51)

while ωcτ/νpτ represents the reference Hall parameter, we can obtain

n̂× (~× b̂− (ωcτ)−1∇pe/B +
νpτ

ωcτ
χ−1
H ~) = 0 (52)

Equation (52) is the normalized analog of Eq. (40). From this, we conclude that the physical Hall
parameter from the normalized B, ne, and η is

χH,phys =
B

neη

(ωcτ)

(νpτ)
. (53)

Now, we can conclude from this result that everything of the boundary condition is unchanged
aside from rescaling the pressure gradient and the Hall parameter as so. Equation (42) becomes

(νpτ)

(ωcτ)
χ−1
H (n̂× ~) = b̂(n̂ · ~) +

1

(ωcτ)
n̂×∇pe/B. (54)

Equation (44) becomes

b̂ ·
[

(νpτ)

(ωcτ)
χ−1
H ~− 1

(ωcτ)

∇pe
B

]
= 0. (55)

Equation (45) becomes
(νpτ)

(ωcτ)
χ−1
H ~ · (b̂× n̂) = n̂ · (~− ~de) (56)
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for ~de ≡ − 1
(ωcτ)∇pe × b̂/B. Assuming ~d ≡ − 1

ωcτ
∇p× b̂/B, Eq. (47) becomes

(νpτ)

(ωcτ)
χ−1
H ~ · (b̂× n̂) = n̂ · (~− θ

1 + θ
~d). (57)

Equation (48) becomes

j⊥ =
(ωcτ)

(νpτ)
σχH n̂ ·

(
~− θ

1 + θ
~d

)
. (58)

5.2 Changes to the pressure gradient boundary condition

In hydrodynamic modeling, it’s often the case that a wall is subject to both pressure gradient and
body forces from an equation of motion such as

ρ
d~v

dt
= −∇p+ ~f. (59)

Given that n̂ · ~v = 0 on an ideal surface, Eq. 59 leads to the boundary condition on ∇p as

n̂ · ∇p = n̂ · ~f. (60)

For example, in the subject of flows in gravity the pressure gradient is balanced by ρn̂ ·~g. Similarly,
in the MHD problem we balance the pressure gradient by the Laplace body force (ωcτ)~× ~B as

n̂ · ∇p = (ωcτ) n̂ · (~× ~B) (61)

Using vector identities, Eq. (61) can also be written

n̂ · ∇p = (ωcτ) ~B · (n̂× ~) (62)

In the RMHD model we take n̂ · ∇p = 0 (i.e. reverse-copy pressure gradient) because n̂× ~ = 0.

5.3 Implementation Details

We wish to spell out the wall boundary condition for ∇p = (∇p)x x̂ + (∇p)y ŷ + (∇p)z ẑ, and
j = jxx̂+ jyŷ+ jzẑ on a conducting wall boundary. We assume we are in the rotated frame where
the normal is in the “x” direction, n̂ = nxx̂ = x̂. Note that due to Eq. (5), B = Byŷ + Bzẑ (and
consequently b = byŷ + bzẑ) in this frame. We’ll follow a procedure for j in this wall frame as in
Eq. (23) (dropping the ′ for convenience). Looking at Eq. (6) for the Hall MHD case, we find this
equation becomes Eq. (54). Substitution of Eq. (46) yields

(νpτ)

(ωcτ)
χ−1
H (n̂× ~) = b̂(n̂ · ~) +

1

(ωcτ)B

θ

1 + θ
n̂×∇p. (63)
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Writing this out, one gets

(νpτ)

(ωcτ)
χ−1
H [x̂× (jxx̂+ jyŷ + jzẑ)] = (byŷ + bzẑ) jx +

1

(ωcτ)B

θ

1 + θ
x̂×

(
(∇p)x x̂+ (∇p)y ŷ + (∇p)z ẑ

)
(νpτ)

(ωcτ)
χ−1
H [jyẑ − jzŷ] = (byŷ + bzẑ) jx +

1

(ωcτ)B

θ

1 + θ

(
(∇p)y ẑ − (∇p)z ŷ

)
jyẑ − jzŷ =

(ωcτ)

(νpτ)
χH (byŷ + bzẑ) jx +

χH
(νpτ)B

θ

1 + θ

(
(∇p)y ẑ − (∇p)z ŷ

)
(64)

Componentwise, this is

jz =− (ωcτ)

(νpτ)
χHbyjx +

χH
(νpτ)B

θ

1 + θ
(∇p)z (65a)

jy =
(ωcτ)

(νpτ)
χHbzjx +

χH
(νpτ)B

θ

1 + θ
(∇p)y (65b)

Note, as before, there is no condition on jx so that is copied out just like in the resistive MHD
case. We continue to reverse copy (∇p)y and (∇p)z, allowing for the prescription of jz and jy in
Eq. (65).

For now, we still apply (∇p)x = 0 (set wall value to 0, or equivalently, reverse copying the
inside value to the outside value). We are currently not applying Eq. (62), which would lead to
(∇p)x = (ωcτ) (Bzjy −Byjz), as this is causing numerical instability and may not apply to our
conservative scheme.

It might also be simpler substitute Eq. (51) to Eq. (65) to obtain

jz =− (ωcτ)

(νpτ)

By
neη

jx +
1

neη (νpτ)

θ

(θ + 1)
(∇p)z (66a)

jy =
(ωcτ)

(νpτ)

Bz
neη

jx +
1

neη (νpτ)

θ

(θ + 1)
(∇p)y (66b)

5.4 Limits of the boundary condition with varying Hall parameter

In this section we recover the boundary condition for resistive MHD and note the limiting behavior
in the Hall-dominated regime. Letting χH → 0 and χH → ∞ we discover the following limits of
the MHD boundary conditions at a perfectly conducting surface,

χH →∞, jn = jde,n, j⊥ is unconstrained, (67)

χH → 0, j⊥ = 0, jn is unconstrained. (68)
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The latter condition is our resistive MHD boundary condition where the normal component of
current is unconstrained, and there is no wall-tangential current. On the other hand, in the Hall-
dominated regime the wall-normal current is constrained and limits to the wall-normal electron
diamagnetic current. In other words, a tangential electron pressure gradient remains as the only
physics capable of allowing current to be drawn from the wall due to the electrical “demand” of
inductive flows within the domain. In fact, in the cold electron limit θ = 0 the condition remaining
is that jn = 0 and currents are prevented from leaving the wall entirely, leading to electron vortex
build-up near the boundary or lines of current “grazing” the boundary.

5.5 Prediction of wall-tangential flow from large Hall parameters

In the typical situation of non-zero electron pressure (in our closure model, θ 6= 0), normal currents
may be supplied by the electron diamagnetic current in the limit χH → ∞. However, if pi 6= 0
then this cannot be maintained in static equilibrium, as the net force ~ × ~B − ∇p is unbalanced.
Equilibrium can only be maintained by a flow force,

n̂×
(

(~v ×∇)~v +
∇pi
ρ

)
= 0. (69)

In two-dimensional flow there will be no vortex force due to swirling flow tangential to the boundary,

n̂× (~v × ~ω) = ~v(n̂ · ~ω)− ~ω(n̂ · ~v) = 0 (70)

and thus the condition would simplify to a potential flow on the boundary,

n̂×
(
∇(v2/2) +

∇pi
ρ

)
= 0. (71)

In any of the three typical flow cases: i) incompressible, ii) isothermal, iii) isentropic, along the
boundary, Eq. 71 reduces to a wall-normal ion isoenergetic condition of the form n̂ × ∇pti = 0
where pti is the relevant ion Bernoulli quantity (e.g. the ion total pressure or specific enthalpy).
Thus we can expect a wall-tangential flow to develop on the free-slip surface where the tangential
flow velocity varies along with the ion pressure gradient, meaning that plasma streamlines are quite
likely to either peel-away from or be directed towards the wall in regions with wall-normal current.
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