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The model used in WARPXM for collisional effects is documented herein.
Sections 2 and 3 : Calculation of collision frequency is discussed. The frequencies given by

Hinton and Braginskii versions for charged particles are shown. Collision frequency for neutral
molecules is also addressed.

Section 4.1 : Interspecies collisional effects are presented, including interspecies thermal ex-
change and friction.

Section 5 : An implementation of unmagnetized intraspecies collisional effects is discussed. The
implementation includes thermal conduction and viscosity effects.

Section 6 : A Braginskii-based implementation of intraspecies collisional effects is discussed.
Diamagnetic fluxes in momentum and heat are included. In momentum, such fluxes are known as
gyroviscous stress.

1 Collision frequency (neutral)

The collision frequency for a neutral gas is

ν = c̄πd2n, (1)

where d is the molecule (or atom) diameter, and n is the number density. The RMS speed is

c̄ ≡
(

8kT

πm

)1/2

. (2)

In WARPXM, a normalized form is used.

ν =

(
8kT0

πm

)1/2

πd2n0T̃
1/2ñ (3)

ν̃ = ντ = τ

(
8kT0

πm

)1/2

πd2n0T̃
1/2ñ (4)

→ ν̃ = (ν0τ)T̃ 1/2ñ, (5)

The normalized characterstic collision frequency is

ν0τ = τ

(
8kT0

πm

)1/2

πd2n0. (6)

For hydrogenic neutral atoms, we can use dH ≈ dD ≈ dT ≈ 0.24 nm. For hydrogenic neutral
atoms, we can use dH2 ≈ dD2 ≈ dT2 ≈ 0.27 nm.
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2 Collision frequency (Hinton)

In WARPXM, the following general collision frequency per Hinton [1] is used in calculations of
transport coefficients.

νab (cgs) =
4

3π1/2

nbZ
2
b 4πZ2

ae
4lnΛ

(
1 + ma

mb

)
m2
a

(
2kTama

+ 2kTbmb

)3/2
(7)

This expression assumes mass, density, charge, and energy in cgs units. To convert to SI units, a
factor of ≈ 8.1× 1019 is required such that

νab (SI) = 6.09× 1019
nbZ

2
b 4πZ2

ae
4lnΛ

(
1 + ma

mb

)
m2
a

(
2kTama

+ 2kTbmb

)3/2
(8)

Now, following an earlier derivation of a normalized form by I. Datta,

νab =
4π

23/2
× 6.09× 1019 n0e

4

m2
pA

2
av

3
0

ñbZ
2
bZ

2
a lnΛ

(
1 + Aa

Ab

)
(
T̃a
Aa

+ T̃b
Ab

)3/2
(9)

Introducing ωp = (e2n0/ε0mp)
1/2,

νab =
4π

23/2
× 6.09× 1019 (ωpτ)4ε20

A2
aτ

4v3
0n0

ñbZ
2
bZ

2
a lnΛ

(
1 + Aa

Ab

)
(
T̃a
Aa

+ T̃b
Ab

)3/2
. (10)

Substituting v0 = L/τ , and condensing the leading constants,

νab = 2.71× 1020 (ωpτ)4ε20
n0L3τ

ñbZ
2
bZ

2
a lnΛ

(
1 + Aa

Ab

)
A2
a

(
T̃a
Aa

+ T̃b
Ab

)3/2
. (11)

Defining

νpτ ≡ 2.71× 1020 (ωpτ)4ε20
n0L3

(12)

we can now write an expression for ν̃ab, where ν̃ab/τ = νab:

ν̃ab = νpτ
ñbZ

2
bZ

2
a lnΛ

(
1 + Aa

Ab

)
A2
a

(
T̃a
Aa

+ T̃b
Ab

)3/2
. (13)

This expression is equivalent to the one derived by Miller and Datta, but it may be important to
keep the ε0 dependence in the definition of νpτ , which was absent in the Miller-Datta result (though
Sean does show νp with the ε0 dependence in his dissertation). If the speed of light is artificially
reduced by enhancing ε0, the change will be properly handled.
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If we would like to keep a factor of 21/2 in the quantity that νpτ multiplies (as done by Miller
et al. in the WARPXM code), this can be rewritten as

ν̃ab = (νpτ)∗
21/2ñbZ

2
bZ

2
a lnΛ

(
1 + Aa

Ab

)
A2
a

(
T̃a
Aa

+ T̃b
Ab

)3/2
, (14)

where

(νpτ)∗ ≡ 1.92× 1020 (ωpτ)4ε20
n0L3

. (15)

3 Collision frequency (Braginskii)

An alternative formulation of collision frequency for WARPXM follows Braginskii [3]. Braginskii
gives formulas for τe and τi. Inverting those, and adjusting such that density is in SI units (m−3),
we have

νe = 2.857× 10−12lnΛ
Z2ni

T
3/2
e

(16)

and

νi = 3.333× 10−14lnΛ

(
2mp

mi

)1/2 Z4ni

T
3/2
i

. (17)

Note that twice the square root of the electron-proton mass ratio has been absorbed into the
constant in front of νe. Restoring this constant gives

νe = 3.333× 10−14lnΛ

(
2mp

me

)1/2 21/2Z2ni

T
3/2
e

. (18)

Also notice that we have chosen to use ion density (ni) to represent the plasma density —
Braginskii assumes n = ne = Zni. Normalizing the electron collision frequency gives

νe = 4.714× 10−14 n0

T
3/2
0

lnΛ
21/2Z2ñi

A
1/2
e T̃

3/2
e

(19)

→ ν̃e = νeτ = (νpτ)
lnΛ

10

21/2Z2ñi

A
1/2
e T̃

3/2
e

(20)

where (νpτ) ≡ 4.714 × 10−13n0τ/T
3/2
0 has been used. Note that a factor of 10 has been absorbed

into νpτ such that the factor lnΛ/10 (approximately 1) remains in the final expression, and the νpτ
approximately equals the normalized proton collision frequency.

Likewise, normalizing the ion collision frequency gives

νi = 4.714× 10−14lnΛ
n0

T
3/2
0

Z4ñi

A
1/2
i T̃

3/2
i

. (21)

→ ν̃i = νiτ = 4.714× 10−14lnΛ
n0τ

T
3/2
0

Z4ñi

A
1/2
i T̃

3/2
i

. (22)

→ ν̃i = (νpτ)
lnΛ

10

Z4ñi

A
1/2
i T̃

3/2
i

. (23)
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4 Interspecies collisions

4.1 Interspecies collisions (Hinton / Miller)

To include interspecies collisional effects, Rie
i,e and Qiei,e (following the nomenclature of [2]) must be

computed. In WARPXM, a simple form for Rie
i,e is used,

Rie
e = −Rie

i = −meneνei(ve − vi). (24)

See also the discussion in work by Miller [4, 5] (Sect. 2.5.3). Normalized, this is (with tildes dropped)

Rie
e = −Rie

i = −Aeneνei(ve − vi). (25)

The collisional exchange between two species that is coded in WARPXM, which follows Miller
[4, 5], is

Qα = −ναβnα
Aα

Aα +Aβ
(3Tαβ −Aβv2

αβ), (26)

where vαβ = vα − vβ, and Tαβ = Tα − Tβ. This is essentially equation (81) of [5]. The first term
is thermal exchange, and the second is frictional heating (leading to Ohmic heating). The second
term is important if the relative speed is on the order of the thermal speed of species β. For Qe, this
corresponds to relative speed of order the ion thermal speed. For Qi, this corresponds to relative
speed of order the electron thermal speed. Note that in a total energy evolution, the source term
associated with the 2nd moment is Qα + vα ·Rα. In the small-electron-mass limit, this agrees with
Braginskii’s result. Note also that the factor of 2/3 in equation (81) of [5] is not included above; in
Miller’s isotropic energy equation (24), there is a factor of 3/2 that cancels the 2/3.

4.2 Interspecies collisions (Braginskii)

Interspecies collisional effects include friction and thermal exchange (Rie
i,e and Qiei,e, following the

nomenclature of [2]).

4.2.1 Braginskii friction

Here, describe a version of Braginskii’s frictional force that includes the “correction” part that
Braginskii labels “R1”. We will allow for arbitrary magnetization.

Per Braginskii [3], the friction term is

Rie
e = −Rie

i = Ru + RT . (27)

Defining u = ve − vi, Braginskii defines the two parts as

Ru = −α||u|| − α⊥u⊥ + α∧b× u, (28)

and
RT = −βuT|| ∇||Te − β

uT
⊥ ∇⊥Te − βuT∧ b×∇Te, (29)

where b is defined as B/|B|, and the various coefficients are defined by Braginskii in terms of
tabulated constants and the variable x = ωceτe, where τe = 1/νe as discussed in Section 3.
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In axisymmetric Z-pinch modeling in the r − z plane, B = Bθθ̂, and u|| = 0. Also, parallel
(azimuthal) gradients are zero by construction. The above expressions then reduce to

Ru = −α⊥u⊥ + α∧b× u, (30)

and
RT = −βuT⊥ ∇⊥Te − βuT∧ b×∇Te, (31)

As discussed by Ji and Held [?], the α∧ and βuT⊥ coefficients have significant errors. Examining
the values of the coefficients in our Z-pinch plasma, it seems that their counterparts α⊥ and βuT∧
are actually more significant. In our implementation, we keep α⊥, but neglect all the other terms.
The neglected terms (especially βuT∧ , an accurate version of which could be included easily per
Braginskii) could possibly have some impact on instability growth rates, though we expect it to be
minor.

To evaluate the effect of enhanced electron mass on ion-electron friction, let’s consider the
α⊥u⊥ term. In the strong magentization (large x) limit, α⊥ = meneνe, and so α⊥u⊥ = meneνeu⊥.
Obviously, this has units of momentum per unit time. In a scenario with enhanced electron mass,
if we would like the momentum exchange time to remain the same, we would like to use a physical
νe (i.e., based on real electron mass). Thus, we would like to compute νe as

→ ν̃e = (νpτ)lnΛ
21/2Z2ñi

A
1/2
e,phys.T̃

3/2
e

, (32)

where the physical electron mass, Ae,phys., is used.

4.2.2 Braginskii thermal exchange

Per Braginskii [3], the ion electron thermal exchange terms are

Qi = Q∆ =
3me

mi
neνe(Te − Ti), (33)

and
Qe = −Rie

e · u−Q∆, (34)

To evaluate the effect of enhanced electron mass on thermal exchange, let’s consider first the
Q∆ term. The exchange of thermal energy occurs on a time scale set by me

mi
νe. Thus, we might like

to keep this time scale fixed regardless of electron mass choice. That would require

me

mi
νe →

Ae,phys.
Ai

ν̃e, (35)

where the arrow indicates conversion to normalized WARPXM notation. Note, however, that in
the other term, −Rie

e · u, the friction force, Rie
e , should be computed as discussed above.

One should be careful when trying to get “physical” effects by using physical electron mass
instead of the enhanced mass. In the specific cases discussed above, the approach described above
should work fine. But, for example, RT may require additional consideration.

Side note: we will not worry about accounting for physical vs. enhanced electron mass in
viscosity and heat flux calculations (below). Electron perpendicular thermal conductivity is small
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compared to the ion counterpart. Diamagnetic heat flux terms are independent of particle mass in
the limit of strong magnetization.

In general, if one of these Braginskii transport terms is thought to be dominant, e.g., electron
thermal conduction in the tokamak SOL, it may be particularly important to adjust the transport
such that it is at a physical level, despite enhanced electron mass.

5 Intraspecies collisions (unmagnetized)

The full species pressure tensor, P, is decomposed as P = pI + Π, where p is the isotropic scalar
pressure, and Π is the stress tensor. The stress tensor is

Π = −µ
(
∇v +∇vᵀ − I

2

3
∇ · v

)
(36)

The heat flux vector is h = −κ∇T .
In cylindrical coordinates, when taking the divergence of these quantities, special modifications

must be made. For the heat flux vector, the changes are relatively simple. In cylindrical coordinates
(r, θ, z), letting ∂/∂θ → 0,

∇ · h =
1

r

∂

∂r
(rhr) +

∂hz
∂z

. (37)

To take advantage of the existing machinery in WARPXM for computing the divergence of fluxes in
cartesian coordinates, we can rework the first term to yield a cartesian gradient plus an additional
term,

∇ · h =
∂hr
∂r

+
∂hz
∂z

+
hr
r
. (38)

By including the final term as a source term in WARPXM, the divergence in cylindrical coordinates

is properly represented. Turning to the divergence of the stress tensor, there are coordinate-system-

specific modifications associated with the gradient of vectors (e.g., ∇v) and with the divergence of

a tensor. The gradient of a vector is

∇v =


∂vr
∂r

∂vr
r∂θ −

vθ
r

∂vr
∂z

∂vθ
∂r

∂vθ
r∂θ + vr

r
∂vθ
∂z

∂vz
∂r

∂vz
r∂θ

∂vz
∂z

 . (39)

Letting ∂/∂θ → 0 and adding ∇vᵀ,

∇v +∇vᵀ =


2∂vr∂r

∂vθ
∂r −

vθ
r

∂vz
∂r + ∂vr

∂z

· 2vrr
∂vθ
∂z

· · 2∂vz∂z

 . (40)
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Thus, the full stress tensor is

Π = −µ


2∂vr∂r −

2
3

(
∂vr
∂r + ∂vz

∂z + vr
r

)
∂vθ
∂r −

vθ
r

∂vz
∂r + ∂vr

∂z

· 2vrr −
2
3

(
∂vr
∂r + ∂vz

∂z + vr
r

)
∂vθ
∂z

· · 2∂vz∂z −
2
3

(
∂vr
∂r + ∂vz

∂z + vr
r

)
 .

(41)

The divergence of this tensor is

∇ ·Π =

∂Πrr
∂r + ∂Πzr

∂z −
Πθθ
r + Πrr

r
∂Πrθ
∂r + ∂Πzθ

∂z + 2Πrθ
r

∂Πrz
∂r + ∂Πzz

∂z + Πrz
r

ᵀ

. (42)

Written out, the components of ∇ ·Π are

(∇ ·Π)r =
∂

∂r

{
−µ
[
2
∂vr
∂r
− 2

3

(
∂vr
∂r

+
∂vz
∂z

+
vr
r

)]}
+

∂

∂z

{
−µ
[
∂vz
∂r

+
∂vr
∂z

]}

+2µ

(
vr
r2
− 1

r

∂vr
∂r

)
(43)

(∇ ·Π)θ =
∂

∂r

{
−µ
[
∂vθ
∂r
−vθ
r

]}
+

∂

∂z

{
−µ
[
∂vθ
∂z

]}
+2µ

(
vθ
r2
− 1

r

∂vθ
∂r

)
(44)

(∇ ·Π)z =
∂

∂r

{
−µ
[
∂vz
∂r

+
∂vr
∂z

]}
+

∂

∂z

{
−µ
[
2
∂vz
∂z
− 2

3

(
∂vr
∂r

+
∂vz
∂z

+
vr
r

)]}
−µ1

r

(
∂vz
∂r

+
∂vr
∂z

)
(45)

The red terms in the radial fluxes of (∇ ·Π)r,θ and in the axial flux of (∇ ·Π)z may be included in
those fluxes; including them there is probably easier than handling the derivatives of µ required to
move the terms into the sources. The remaining red terms are source terms.

Notes:

• From wiki page

https://en.wikipedia.org/wiki/Strain-rate_tensor#In_continuum_mechanics

“For a two-dimensional flow, the divergence of v has only two terms and quantifies the change
in area rather than volume. The factor 1/3 in the expansion rate term should be replaced by
1/2 in that case.”

• See online course notes by Pedlosky

https://www.whoi.edu/profile/jpedlosky

http://www.whoi.edu/sites/12800-2014
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These notes provide an excellent discussion of the stress tensor. The “Course Material” link
provides all notes in “.doc” format. See especially

Chapter 3: The Stress Tensor for a Fluid and the Navier Stokes Equations

• See also another wiki page

https://en.wikipedia.org/wiki/Volume_viscosity

which clearly presents the full-fledged incompressible Navier-Stokes equation.

6 Intraspecies collisions (Braginskii magnetized)

6.1 Viscosity

Braginskii [3] defines a rate-of-strain tensor,

W = ∇v +∇vᵀ − 2

3
I∇ · v. (46)

Following the discussion in Braginskii’s Sect. 4, the stress tensor is then expressed in terms of W
as

Π = −η0W0 − η1W1 − η2W2 + η3W3 + η4W4. (47)

The sum of the three tensors W0, W1, W2, gives W. The W3 and W4 tensors are constructed
from components of W. Here, we map Braginskii’s coordinate system with z-aligned magnetic field
(x, y, z) to a coordinate system with θ-aligned magnetic field (r, θ, z). Then the tensors are

W0 =

1
2 (Wzz + Wrr) 0 0

0 Wθθ 0
0 0 1

2 (Wzz + Wrr)

 , (48)

W1 =

1
2 (Wrr −Wzz) 0 Wrz

0 0 0
Wzr 0 1

2 (Wzz −Wrr)

 , (49)

W2 =

 0 Wrθ 0
Wθr 0 Wθz

0 Wzθ 0

 , (50)

W3 =

 Wzr 0 1
2 (Wzz −Wrr)

0 0 0
1
2 (Wzz −Wrr) 0 −Wzr

 , (51)

W4 =

 0 Wzθ 0
Wθz 0 −Wθr

0 −Wrθ 0

 . (52)

Note that, as discussed by Haines [6], a straight magnetic field is assumed. Implicit in this as-
sumption is that the gyroradius is smaller than the radius of curvature of the field (and because
ion stress usually dominates over electrons stress, usually it is the ion gyroradius that is relevant).
This is, of course, not the case near r = 0 in the Z pinch.
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From these pieces, the entire Π tensor may be constructed. The components correspond to
those shown by Braginskii in his Eq. (2.21).

Πθθ = −η0Wθθ (53)

Πzz = −η0
1

2
(Wzz + Wrr)− η1

1

2
(Wzz −Wrr)− η3Wzr (54)

Πrr = −η0
1

2
(Wzz + Wrr)− η1

1

2
(Wrr −Wzz) + η3Wzr (55)

Πzr = Πrz = −η1Wzr + η3
1

2
(Wzz −Wrr) (56)

Πzθ = Πθz = −η2Wzθ − η4Wrθ (57)

Πrθ = Πθr = −η2Wrθ + η4Wzθ (58)

As discussed by Braginskii, the coefficient η0 is associated with unmagnetized viscosity, η1 and

η2 with perpendicular viscosity, and η3 and η4 with gyroviscosity. Modifications to the Braginskii

formulation of these coefficients to make them more numerically tractable is discussed in Section 1.

The W tensor is represented using ∇v and ∇·v as outlined in Sect. 5, accounting for the cylindrical

coordinate system. Explicitly, we have

W =


2∂vr∂r −

2
3

(
∂vr
∂r + ∂vz

∂z + vr
r

)
∂vθ
∂r −

vθ
r

∂vz
∂r + ∂vr

∂z

· 2vrr −
2
3

(
∂vr
∂r + ∂vz

∂z + vr
r

)
∂vθ
∂z

· · 2∂vz∂z −
2
3

(
∂vr
∂r + ∂vz

∂z + vr
r

)
 . (59)

where we have assumed ∂/∂θ → 0.
Examining the components of Π closely, we can recognize some terms that may be ignored

in our axisymmetric simulations. Again, derivatives with respect to θ may be dropped. Also,
vθ is zero in our simulations, so derivatives of vθ will be zero. Applying these assumptions, we
can see that the terms involving η2 and η4 (i.e., Πzθ, Πθz, Πrθ, and Πθr) vanish. Here we have
used Wθr = Wrθ = ∂vθ

∂r −
vθ
r = 0 and Wθz = Wzθ = ∂vθ

∂z = 0. Now substituting the appropriate
components of W,

Πθθ = −η0

(
2
vr
r
− 2

3

(
∂vr
∂r

+
∂vz
∂z

+
vr
r

))
(60)

Πzz = −η0

(
1

3

∂vr
∂r

+
1

3

∂vz
∂z
− 2

3

vr
r

)
− η1

(
∂vz
∂z
− ∂vr

∂r

)
− η3

(
∂vz
∂r

+
∂vr
∂z

)
(61)

Πrr = −η0

(
1

3

∂vr
∂r

+
1

3

∂vz
∂z
− 2

3

vr
r

)
+ η1

(
∂vz
∂z
− ∂vr

∂r

)
+ η3

(
∂vz
∂r

+
∂vr
∂z

)
(62)
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Πzr = Πrz = −η1

(
∂vz
∂r

+
∂vr
∂z

)
+ η3

(
∂vz
∂z
− ∂vr

∂r

)
(63)

Πzθ = Πθz = 0 (64)

Πrθ = Πθr = 0 (65)

Here, it is worth noting that the unmagnetized viscosity coefficient, η0, appears despite an absence
of derivatives in the direction of the magnetic field (∂/∂θ → 0). The related stress components are,
as discussed by Braginskii, due to an increase in pressure when the plasma is compressed rather
than a transport of momentum per se.

The divergence of Π, in cylindrical coordinates, is

∇ ·Π =

∂Πrr
∂r + ∂Πzr

∂z −
Πθθ
r + Πrr

r
0

∂Πrz
∂r + ∂Πzz

∂z + Πrz
r

ᵀ

. (66)

This is implemented in WARPXM in a straightforward way by using Gaussian quadrature to avoid
division by r at r = 0, and the associated multiple applications of L’Hopital’s rule that would be
required, which in turn would require second derivatives of our primary variables.

The magnetized viscosity coefficients, η1 and η3 are accurate to within 7% for all x [?], and are
implemented according to the prescription of Braginskii.

6.1.1 Another look at the components of Π

Above, components of Π have been written out. Let’s write it again, but leave the ∇·v term intact.

Πθθ = −η0

(
2
vr
r
− 2

3
∇ · v

)
(67)

Πzz = −η0

(
∂vr
∂r

+
∂vz
∂z
− 2

3
∇ · v

)
− η1

(
∂vz
∂z
− ∂vr

∂r

)
− η3

(
∂vz
∂r

+
∂vr
∂z

)
(68)

Πrr = −η0

(
∂vr
∂r

+
∂vz
∂z
− 2

3
∇ · v

)
+ η1

(
∂vz
∂z
− ∂vr

∂r

)
+ η3

(
∂vz
∂r

+
∂vr
∂z

)
(69)

Πzr = Πrz = −η1

(
∂vz
∂r

+
∂vr
∂z

)
+ η3

(
∂vz
∂z
− ∂vr

∂r

)
(70)

Πzθ = Πθz = 0 (71)

Πrθ = Πθr = 0 (72)

Written this way, it is more obvious that if η1 = η0 = µ, the tensor is identical to the Π used
for intraspecies collisions, except for the presence of the η3 contributions.

6.1.2 Modifications to viscosity coefficients (take 1)

Formulae for the relevant Braginskii’s dimensionless viscosity coefficients are as follows.

η̂0 = g0
i
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η̂1 = (g1′
i xi2 + g0′

i )/∆2

η̂3 = xi2(g1′′
i xi2 + g0′′

i )/∆2, (73)

where the “g” coefficients are given by Braginskii, the magnetization is xi2 ≡ 2ωci/νi, and ∆2 is

∆2 = x4
i2 + 13.8x2

i2 + 11.6. (74)

Momentum diffusivities (i.e., kinetmatic viscosities) are found as ηdn = η̂nT/(νimi).
The Braginskii coefficients are modified such that their rapid r-dependent variation may be

more easily resolved numerically. Specifically, three changes are made: 1) the magnetization, xi2
used to determine the viscosities is modified and 2) the viscosities resulting from (1) are multiplied
by an additional factor and 3) η0 and η1 are multplied by a uniform reducing factor f01 and 4) all
viscosities are limited to a maximum diffusivity Dlim.

A smooth transition function is used to restrict modifications to the region 0 < r < fLrLi. We
use the function

S =
1

2

[
1− cos

(
πr

fLrLi

)]
; r < fLrLi,

S = 1; r ≥ fLrLi.

For η1 and η3, a modified xi2 is used,

xi2,η1 = fx,η1xi2,

xi2,η3 = fx,η3xi2,

with
fx,η1 = f0

x,η1 + (1− f0
x,η1)S

fx,η3 = f0
x,η3 + (1− f0

x,η3)S.

Notice that the expressions vary sinsoidally from some constant at r = 0 to 1 at r = fLrLi. With
the constants (f0

x,η1 and f0
x,η3) between 0 and 1, the resulting modified magnetization xi2,η1 has the

effect of generating viscosity that is less well magnetized than it normally would be.
An additional multiplier, fη1, is applied to η1,

fη1 = 1 + (1/f01 − 1)S

Because η1 is also multiplied by the factor f01, the effect of the fη1 multiplier is that for r ≥ fLrLi,
η1 is the unchanged.

An additional multiplier, fη3, is applied to η3,

fη3 = f0
η3 + (1− f0

η3)S

This multiplier is small (≈ 0.1) at r = 0 and is 1 for r ≥ fLrLi.
With these modifications, η1,3 change more gradually as r → 0, as shown in Fig. 1. The free

parameters in these modifications — f01, fL, f
0
x,η1, f

0
x,η3, f0

η3, and Dlim — are shown in order in the
figure as “tuning params”.
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Figure 1: Modified Braginskii viscous diffusivities.

6.1.3 Modifications to viscosity coefficients (take 2)

The parallel (unmagnetized) diffusion of momentum and heat captured by the Braginskii model
can give unphysically high fluxes that can significantly exceed the thermal fluxes. Using full kinetic
modeling for guidance, kinetic corrections to fluid closures have been developed [?]. Although the
corrections are by nature ad hoc, and will not allow fluid models to reproduce true kinetic transport
effects, they offer a clear improvement in certain situations. For unmagnetized transport, we adopt
a common form for the correction factor,

f ||corr = [1 + c||λ/`]
−1, (75)

where λ is the mean free path, ` is the gradient scale length, and c|| is a tunable constant that is
of order unity. For λ � `, fcorr → 0. Larger c|| would give a stronger correction, i.e., reduction
of the transport coefficient. In this work, we exclusively use c|| = 1. The corrected unmagnetized

viscosity would then be η∗0 = f
||
corrη0. The value of ` is a characteristic length scale of features of

interest for a particular problem.
Where the Larmor orbit size exceeds the length scale of interest, and near r = 0, the Braginskii

cross-field transport model is not valid. In such regions, the η0 effect in the perpendicular plane is
also inapplicable. To correct the model in regions of large Larmor radius, we use a smooth function,

S =
1

2

[
1− cos

(
πs

2c×rL

)]
where rL >

s

2c×
, and (76)

S = 1 elsewhere, (77)

where s is a controlling length scale. For rL = c×s, S = 1/2, while for rL = c×s/2, S = 1. Using
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a larger tunable constant, c×, makes the kinetic correction more aggressive. Except for electron
transport, as noted below, we use c× = 1.

For the purpose of correcting the gyroviscosity and diamagnetic heat flux terms, we use s = `.
The correction simply f∧corr = S|s=`, such that η∗3 = f∧corrη3 and κα∗∧ = f∧corrκ

α
∧. One might

imagine using a correction approach similar to the one described above for unmangetized transport,
f∧corr = [1 + c×corrrL/`]

−1, where rL is the relevant Larmor radius. We find that having linear
dependence on rL allows significant transport even where the Larmor radius is larger than the
feature size. We find that the form of Eq. (77) provides a stronger reduction for large Larmor
radius, and seems more physically plausible.

Without any kinetic correction, perpendicular transport of momentum and heat rises to the
unmagnetized level at r = 0 where Larmor radii become infinite. Physically, particles near r = 0
that move perpendicular to the z axis encounter significant magnetic field not far from r = 0.
Such particles will be contained by the magnetic field after traveling a distance characterized by
a critical radius, rcrit, corresponding to the radius at which rL coincides with r. In the FuZE-like
Bennett equilibrium, rcrit ≈ 0.3 for ions. We employ a scheme in which perpendicular viscosity
and heat flux coefficients transition, over a region determined by rcrit, from their uncorrected
values to a corrected on-axis value. The on-axis value can be chosen using the usual notion of
diffusive transport. Looking at η1, for example, in regions that are well magnetized, Braginskii
finds η1 = 0.3τipi/x

2
i , where xi = ωciτi. Using standard definitions of ωci and rL, it is easily shown

that Braginskii’s expression corresponds to a diffusivity η1/(mini) = 0.15r2
L/τi. Using this same

expression, but substituting rcritLi , we have ηr=0
1 = 0.15mini(r

crit
L )2/τi. To correct perpendicular

transport coefficients, the function of Eq. (77) with s = rcrit is employed, i.e., f⊥corr = S|s=rcrit . So,
η∗1 = S|s=rcritη1, and κα∗⊥ = S|s=rcritκα⊥.

- for eta0, do we then use a double-corrected value, eta0 ∗ ∗ = S|s=rcriteta0∗?
- NB this means that we eschew the Braginskii general magnetization scheme in favor of this

transition in terms of S and rLcrit. The Braginskii scheme is really not meant for situations in
which the magnetization x varies enormously over distances comparable to the Larmor radius.
Braginskii’s approach is more aimed at situations with small x due to large collisionality such that
particles do not complete a Larmor orbit before colliding.

The value of rcritL is based on the following logic.
Continue... address * eta0 reducing to eta1 value * enhancement of correction for electrons.
- Determining a meaningful value of ` ahead of time is not possible, in general. A typical

approach for determining length scales is to compare variable magnitude to its gradient; for tem-
perature gradient, for example, `T = T/∇T . For nonlinear simulations, this approach could be
useful. For linear modeling, gradients are presumably tiny, giving large `T despite small feature
sizes. ...

- Note that the approach above may be considered a starting point for exploration of modeling
Braginskii transport in the Z pinch. Improvements and further exploration are certainly possible
in future work.

6.2 Heat flux

Braginskii gives results for electron and ion heat fluxes (qe and qi). Electron heat flux is composed
of two parts,

qe = qeu + qeT , (78)

13



where
qTe = βTu|| u|| + βTu⊥ u⊥ + βTu∧ b× u. (79)

The β coefficients in this expression are related to those in the RT (see above) by

βTu|| = βuT|| Te βTu⊥ = βuT⊥ Te βTu∧ = βuT∧ Te. (80)

By the same reasoning as used for RT , the term reltaed to βTu|| is dropped. As discussed in

connection with RT , the βTu⊥ coefficient is inaccurate, and probably has minimal impact on plasma
behavior, and the βTu∧ term could be included, but probably has minor effects and is neglected
here.

The qTu term is represented as

qTu = −κe||∇||Te − κ⊥∇⊥Te − κ∧b×∇∧Te. (81)

The κ⊥ and κ∧ coefficients are accurate, for Z = 1, to within 29% for all x [?], and both are
implemented in WARPXM following the prescription of Braginskii.
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