
Development of nodal basis sets on simplex

elements

Jack Coughlin

July 28, 2023

Contents

1 Notation and dimension-independent formulation 2
1.1 Exact quadrature . 3
1.2 Basis matrices . 3

2 Line element 6

3 Triangle 6
3.1 Face quadrature . 6
3.2 Exact volume quadrature rule . 6
3.3 Orthonormal basis . 7
3.4 Extra positivity-preserving quadrature nodes 7

4 Tetrahedra 8

Introduction

This writeup describes the notation and exact definitions of the basis element
matrices used in WARPXM. Readers should be familiar with the nodal DG
formulation, in particular the formulation given in Hesthaven and Warburton’s
Nodal Discontinuous Galerkin Methods (Springer 2008). We make several de-
partures from their derivation. Chiefly among them, we assume the existence
of exact quadrature rules for the triangle (and tetrahedron, TODO). This lets
us express basis element matrices such as the mass matrix in terms of inte-
gration, rather than identities based on the Vandermonde matrix. It is hoped
that this first-principles approach is more flexible than the Vandermonde matrix
approach.

1

1 Notation and dimension-independent formu-
lation

Despite attempting to depart from the dependency on the Vandermonde matrix
and work out the basis matrices from first principles, we will find ourselves using
more Vandermonde matrices than ever before. It’s worth recollecting what a
Vandermonde matrix is and how it may be used. We’ll denote all Vandermonde
matrices by

Vψ,y, (1)

where y is a collection of points and ψ is a family of polynomials. Then,

Vψ,yij = ψj(yi).

That is, the columns are different polynomials, and the rows are different points.
Let’s denote the element we want to discretize by Ω, and let N be the

maximum (total) polynomial degree.
The first step is to define an orthogonal polynomial basis, which we denote

ϕj(x). The polynomials have the defining relation∫
Ω

ϕi(x)ϕj(x) dx = δijαi, (2)

where δij is the Kronecker delta and αi is a normalization constant.
Now introduce a vector of collocation nodes, xi. These should be chosen

so that the condition number of the generalized Vandermonde matrix (defined
below) is minimized. In one dimension, the Legendre-Gauss-Lobatto points are
a good choice. In higher dimensions, more complex procedures are required.

The generalized Vandermonde matrix for the family ϕ is

Vϕ,xij = ϕj(xi). (3)

Now, there is also a Lagrange interpolating basis ℓi, which satisfies

Vℓ,xij = ℓj(xi) = δij . (4)

In one dimension these have an explicit formula, but in higher dimensions they
do not. To evaluate them, then, we observe that the interpolating basis has a
modal expansion,

ℓj(y) =
∑
k

ϕk(y)ℓ̂kj , (5)

for all y ∈ Ω. But this is true for the generalized Vandermonde matrix as well:

δij = ℓj(xi) =
∑
k

ϕk(xi) ˆℓkj =
∑
k

Vϕ,xik
ˆℓkj =

[
Vϕ,xℓ̂

]
ij
= δij . (6)

2

So we can invert the Vandermonde matrix to find the ϕ expansion of the La-
grange interpolating polynomials:

ℓ̂kj = [(Vϕ,x)−1]kj . (7)

To reiterate, to evaluate the Lagrange interpolating polynomial ℓj at an arbi-
trary point yi, we use the formula

Vℓ,yij = ℓj(yi) =
∑
k

ϕk(yi)[(Vϕ,x)−1]kj =
[
Vϕ,y(Vϕ,x)−1

]
ij
. (8)

We will also need to be able to evaluate derivatives of the Lagrange in-
terpolating polynomials. This can be done via Vandermonde matrices for the
derivatives of the orthogonal basis, as follows:

V∂rℓ,yij =
∂ℓj
∂r

(yi) =
∑
k

∂ϕk
∂r

(yi)
[
(Vϕ,x)−1

]
kj

=
[
V∂rϕ,y(Vϕ,x)−1

]
ij
. (9)

1.1 Exact quadrature

For each element type, we can construct quadrature rules which integrate mul-
tivariate polynomials of up to total degree 2N exactly. This can be done by
projecting tensor-product quadrature rules onto the simplex domain, in cases
where an optimal Gaussian quadrature rule is not available.

A quadrature rule is defined by a vector of abscissas (nodes) qi and a vector
of weights, wi. For an arbitrary polynomial h of degree up to 2N ,

1

|Ω|

∫
Ω

h(x) dx ≈
∑
i

wih(qi),
∑
i

wi = 1, (10)

where |Ω| is the multidimensional volume of the element Ω. For a typical basis
matrix, whose elements are the L2 inner product of a family of functions, we
can write it in terms of a matrix product involving Vandermonde matrices and
a diagonal matrix of the quadrature weights. For example, letting f and g be
arbitrary polynomials of degree at most N ,∫

Ω

fi(x)gj(x) dx =
∑
k

wkfi(qk)gj(qk) =
∑
k

Vf,qki wkV
g,q
kj = (Vf,q)TD(w)Vg,q,

(11)

where D(w) is the diagonal matrix with entries Dii = wi.

1.2 Basis matrices

We are now in a position to evaluate the basis matrices, whose entries are
integrals over the element Ω. In this section, assume that the nodes q and
weights w correspond to an exact quadrature rule.

3

Remark: serialization of basis matrices

The matrices described below are flattened and written into .txt files in the
WARPXM source tree. They are written out in a row-major order.

Mass matrix

Mℓ
ij =

∫
Ω

ℓi(x)ℓj(x) dx = (Vℓ,q)TD(w)Vℓ,q. (12)

This matrix and its inverse are serialized (flattened) and used in WARPXM:

MASS = M, INV MASS = M−1. (13)

It is computed by the lagrange mass matrix function in the Python scripts.

Advection matrix

Ar,ℓ
ij =

∫
Ω

ℓi(x)
∂ℓj
∂r

(x) dx = (Vℓ,q)TD(w)V∂rℓ,q. (14)

There is one advection matrix per dimension. The matrix that gets serialized
and used in WARPXM is

UPSILON 2 = M−1AT . (15)

In the code this is referred to as the internalFluxArray or internal flux array.
Another matrix that gets serialized and used inWARPXM is called the derivativeBasisArray:

Dr Basis Array = M−1A. (16)

These are calculated by the python function derivative arrays.

Lift matrices

For a given face F , we need to be able to compute face integrals of the numerical
flux. This is done via a face quadrature rule, whose nodes and weights we denote
by qf , wf .

Eij =
∫
F

ℓi(x)ℓ(x) dx = (Vℓ,qf)TD(wf)VℓF ,qf . (17)

Here, the Vandermonde matrix VℓF ,qf indicates the evaluation of those Lagrange
polynomials whose collocation nodes lie on the face F , at the quadrature points
qf on that face. There is one lift matrix per face, and the matrix that gets
serialized and used in WARPXM is actually

UPSILON 1 = M−1E . (18)

This family of matrices is computed by the lift matrices Python function.

4

Gaussian Quadrature source term mass matrix

When evaluating a source term via Gaussian quadrature, one uses an integral
of the form ∫

Ω

ℓi(x)S(x) dx ≈
∑
k

ℓi(qk)wkS(qk). (19)

Then, when forming the right hand side, this sum will be multiplied by the
inverse mass matrix, in a term of the form[

(Mℓ)−1
] [
D(w)Vℓ,q

]T
S, (20)

where [S]k = S(qk). This matrix is serialized and passed to WARPXM as

UPSILON 3 = M−1D(w)Vℓ,q. (21)

This is used in tandem with the Vandermonde matrix for the Lagrange polyno-
mials evaluated at the quadrature nodes:

LQUAD = Vℓ,q. (22)

Element averages

Taking the average of a nodal function over the element may be accomplished
via the dot product with the vector

bℓj = D(w)Vℓ,qij (23)

Conversion to monomials

To convert from a monomial representation to a nodal expansion at the colloca-
tion points, we should use the Vandermonde matrix of monomials M evaluated
at the collocation points. To see this, consider the monomial expansion of u
with coefficients ak. By definition we should have

u(xi) =
∑
k

akx
k
i , (24)

or in matrix notation,

u(xi) = (VM,x
ik)ak. (25)

Thus, converting from the nodal values u(xi) to the monomial coefficients is
just an inversion of VM,x. This matrix is serialized and used in WARPXM as

CONVERT TO MONOMIAL =
(
VM,x

)−1
. (26)

5

Evaluation at positivity-preserving quadrature nodes

The positivity preserving dg.pdf writeup, which can be found in this same
directory, describes the use of quadrature rules with all positive weights to
preserve positivity of a high-order DG solution. The upshot of that positivity-
preserving scheme is that for a given reference element, there are some number
of “extra” nodes, at which we must be able to evaluate the solution value. These
are nodes in excess of the element’s face nodes and its interior LGL nodes.

The number of such extra nodes is given in the NUM INTERIOR POSITIVITY PRESERVING QUAD NODES

property of the basis array file. If this is nonzero, there is another line in the
file, EVALUATE AT INTERIOR POSITIVITY PRESERVING QUAD NODES, which is the
matrix mapping LGL nodal values to values at the extra positivity nodes p:

EVALUATE AT INTERIOR POSITIVITY PRESERVING QUAD NODES = Vℓ,p, (27)

2 Line element

For a reference line element, we use the interval [0, 1] for consistency with the
triangle and tetrahedral reference elements. Exact quadratures are achieved
with the Gauss-Legendre quadrature rule of a given order, which is also optimal.
For collocation nodes we use the Legendre-Gauss-Lobatto points. Finally, all
weights of the LGL quadrature are positive, so there is no need for extra interior
positivity nodes.

3 Triangle

3.1 Face quadrature

For exact quadrature over the faces, we use the Legendre-Gauss-Lobatto quadra-
ture rule with number of nodes equal to the number of face nodes.

3.2 Exact volume quadrature rule

This subsection describes the construction of an exact quadrature rule on the
triangle. This rule is not used in WARPXM at runtime. It is only used
to compute the basis arrays from their definitions in terms of inner products
of polynomials. For this purpose, in a simulation whose unknowns may be
polynomials of up to total degree k, we require a quadrature rule which is exact
for polynomials of total degree 2k.

To construct an exact quadrature rule for polynomials of arbitrary degree
on the unit ([0, 1]) triangle, we follow a similar procedure to the one outlined in
[1]. We begin with a tensor-product quadrature rule on the unit square. Our
aim is not to obtain an optimal or even particularly efficient quadrature rule on
the triangle, just to get a rule that will be exact.

6

We begin by defining a mapping from the square with coordinates (u, v) ∈
[−1, 1]2,

g(u, v) =
1 + v

2
V1 +

1 + u

2

1− v

2
V2 +

1− u

2

1− v

2
V3, (28)

where

V1 = (0, 1), V2 = (1, 0), V3 = (0, 0). (29)

The determinant of the Jacobian of g is

|J | = |∂g(u, v)
∂(u, v)

| = 1− v

2
. (30)

Now, an integral over the [0, 1] simplex Ω is given by∫
Ω

p(x, y) dxdy =

∫ 1

0

∫ 1

0

p(g(u, v))|J | dudv. (31)

Suppose that p(x, y) is a polynomial of total degree 2k; then the integrand
p̂(u, v) = p(g(u, v))|J | is a polynomial of up to degree 2k in u, and degree 2k+1
in v. The integral over the (u, v) square may therefore be computed exactly
via a tensor product quadrature rule, which must be exact for polynomials of
degree up to 2k in u, and degree up to 2k + 1 in v. One choice is the tensor
product of LGL quadrature rules in u and v. The N point LGL quadrature
rule is exact for polynomials of degree up to 2N − 3, so we need N such that
2N − 3 ≥ 2k + 1, or N ≥ k + 2 = Np + 1.

This choice of quadrature rule is computed by the Python function triangle exact quadrature rule.

3.3 Orthonormal basis

Hesthaven and Warburton suggest the following basis, which we modify slightly
for the [0, 1] triangle:

ϕi,j =
√
2P

(0,0)
i (a)P

(2i+1,0)
j (b)(1− b)i, (32)

where

a = 2
r

1− s
− 1, b = 2s− 1, (33)

with (r, s) ∈ Ω.

3.4 Extra positivity-preserving quadrature nodes

For details on how the extra positivity-preserving quadrature nodes (positiv-
ity nodes) are used, see the positivity preserving dg.pdf writeup. This section
describes how the nodes are chosen, following a modification of the procedure
suggested by Zhang et al. (section 3.2 of [1]).

7

Np k NLGL in u NLGL in v
2 1 2 3
3 2 3 3
4 3 4 4

Table 1: Required numbers of quadrature nodes for the exact integration of
p̂(u, v) = p(g(u, v))|J |, assuming p(x, y) has total degree k.

We first note that the procedure described above in Section 3.2 results in
a quadrature rule whose weights are all positive (since it is based on a tensor
product of quadrature rules with positive weights). Where possible, we use the
same quadrature rule in u and v as we use for the face integrals, namely the
rule with NLGL = Np. Only when Np = 2 does this not suffice; in that case, the
degree of p̂ in v may be as high as 3, requiring a 3-point LGL quadrature rule.
To obtain the desired quadrature rule with all positive weights, we average the
three rules resulting from each of the three projections of the square onto the
triangle, described above. This results in a rule which shares some nodes with
the element’s face nodes, as well as some extra nodes. The process is illustrated
in Figure 1

4 Tetrahedra

TODO

References

[1] Xiangxiong Zhang, Yinhua Xia, Chi-Wang Shu. “Maximum-Principle-
Satisfying and Positivity-Preserving High Order Discontinuous Galerkin
Schemes for Conservation Laws on Triangular Meshes”. Journal of Scien-
tific Computation, (2012).

[2] Jan Hesthaven and Tim Warburton. “Nodal Discontinuous Galerkin Meth-
ods”. Springer, 2008.

8

Figure 1: Construction of the extra positivity-preserving quadrature nodes for
the third-order triangular basis.

9

