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Abstract included extensive numerical study of the perturbed

The truncated and forced non-linear Sadinger PDE's which was presented in various forms. Since
(NLS) model is analyzed using a novel framework in the phase space is infinite dimensional - it is indeed
which a hierarchy of bifurcations is constructed. Con- unclear which form supplies the best understanding of
sequently, a classification of the types of instabilities the solutions structure. It was then suggested that a
which are expected to appear due to the forcing is pro- finite dimensional model - a two mode Galerkin trun-
vided; It is shown that by introducing the forcing fre- cation of the perturbed NLS - faithfully describes the
guency as a free parameter (it was set to one in mostPDE dynamics when even and periodic boundary con-
of the previous studies), the behavior near the planeditions are imposed and thg, norm of the initial data
wave solution for any periodic box length, in the rele- is not too large [Bishopt al, 199; Bishop and Clif-
vant amplitude regime for the truncated system, may beford, 1996; Bishoet al, 1988; Caiet al, 2002]. The
set to one of six different types. Furthermore, three of study of the perturbed two-mode model and character-
the six types are associated with chaotic behavior andization of chaotic orbits in it is the main subject of this
instabilities (homoclinic chaos, hyperbolic resonance paper.
and parabolic resonance). Finally, a simple statistical
measure which distinguishes between the fundamen-

tally different types of instabilities is proposed. Previous investigation of the truncated system lead

to the discovery of a new mechanism of instability -
the hyperbolic resonance - by which homoclinic solu-
tions to a lower dimensional resonance zone are created
[Kovacic and Wiggins, 1992; G.Kovacic, 1993; Haller
and Wiggins, 1995; Haller and Wiggins, 1994. New
methodologies and tools introduced to this PDE-ODE
study have finally lead to a proof that the homoclinic
resonance dynamics, and in particular the birth of new
types of multi-pulse homoclinic orbits which is associ-
ated with it, has analogous behavior in the PDE setting
(see [Haller, 1999; Cagt al, 2002; McLaughlin and
Shatah, 1998] and references therein).
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nance, forcing frequency.

1 Introduction

The one dimensional non-linear Sédinger equation
emerges as a first order model in a variety of fields
in Physics - from high intensity laser beam propaga-
tion to Bose-Einstein condensation to water waves the-
ory; since it is the lowest order normal form for the
propagation of strongly nonlinear dispersive waves its
appearance in such a wide range of applications is
mathematically obvious (see [Haller, 1999] and ref- The paper is ordered as follows: In Sec. 2 we describe
erences therein). The NLS is completely integrable the NLS equation and the truncated two-mode model.
in one dimension on the infinite line (or with peri- In Sec. 3 we discuss the integrable structure and con-
odic boundary conditions) and hence completely solv- struct the hierarchy of bifurcation for our model. In
able. The realization that the integrable structure might Sec. 4, we utilize the integrable structure analysis to
not persist under small perturbations, lead, almost two define the six fundamentally different types of motion
decades ago [Bishopt al, 1986][Bishop and Lom-  near the plane wave solution, and present various char-
dahl, 1986], to the development of a program in which acteristics of the three types of chaotic solutions. We
the influence of forcing and damping that break the conclude in Sec. 5 by providing a statistical tool for
integrability of the PDE is considered. This program classification of the neighboring chaotic orbits directly.



2 The NLS Equation
Consider the following forced and damped NLS equa-
tion:

—ipr+x x +Y|*Y = ie(ap—Apx x +T exp(—iQ*T)),

1)
with periodic boundary conditions and with even solu-
tions in X:

Let

B = 1 exp(iQ*T). (2)

Then B satisfies the same boundary conditionsyas
and the autonomous (time independent) equation:

—iBT+Bxx+(|B‘2—Q2)B = i€(OzB—ABxx+F).

3)
This equation was extensively studied in the last two
decades [Bishopt al., 199, Bishop et al, 199(;
Bishop and Clifford, 1996; Bishoet al., 1988; Bishop
et al,, 1986], and in this section we will mention only
the relevant results. In this context, the perturbed NLS

was first derived as a small amplitude envelope approx-

imation of the damped driven Sine-Gordon Equation
(SGE) when the driving force is in the near resonance
frequency. Then{) = 1 and the only parameter ap-
pearing in the unperturbed system is the box dize

The space of spatially uniform solutionB(X,T') =
%c(T)) is invariant under the perturbed flow (1) and
the unperturbed solutions are of the fow(il’) =
|c(0)| expli(©2? — 1]c(0)|?)T + iv(0)]. Linear stability
analysis of such solutions at= 0 shows that there is
exactly one unstable modeys %"X, when

“4)

whereas for lower values d¢¢(0)| the plane wave so-
lution is linearly stable (neutral). We see that for large
box size the plane wave solution is unstable even for
small amplitude, as expected.

Consider a two mode complex Fourier truncation for
equation (3):

By(X,T) (T) + b(T)cosk X, (5)

1
= —c
V2
where the periodic boundary conditions imply that

2
kzij! j€Z+,

- ®)

and since we are interested in the first unstable mode
we takej = 1. Substituting this solution to the
NLS equation (3), settingg = A = 0 andI’ = 1,

and neglecting (see [Bishogt al., 199G; Bishop et

al., 199; Bishop and Clifford, 1996; Bishopt al.,
1988; Bishopet al,, 1986; Bishopet al., 1983; Bishop
and Lomdahl, 1986; Cadt al., 2002] for discussion of
this step) higher Fourier modes, we obtain the follow-
ing equations of motion:

1 1 1
(7)

. /1 3 1
—ib+ <2|c|2 + Z|b\2 — (% + k2)> b+ 5(bc* +cb*)e = 0.

Here|b| is the amplitude of the first symmetric mode

and %\d is the amplitude of the plane wave. These
equations are of the form of a two degrees of freedom
near integrable Hamiltonian system with the Hamilto-
nian:

H(e,c*,b,b";¢) = Ho(c,c*,b,b%) + eHy(c, ¢, b,b"),

8)
and the Poisson brackets {f, g} =
=20 (5% 5=) + (35 77 )) where

1 4 1 20,12 3 4 1 2 2 2
== = e —(Y;
glelt + SIBPIel 4+ TG bl = S(92 + K)o
02 1
_ 7|C|2+§(b26*2+b*202) (9)
—1 N
1= E(C— C )

Furthermore, at = 0, these equations possess an ad-
ditional integral of motion:

1= S (1 + bP) 10)

and thus are integrable, see [Bisheigl,, 1988; Bishop
et al, 1986; Caiet al., 2002].

Remark 1. We expect the two-mode model to apply for
regions in which the plane wave solution has at most
one unstable mode. Using 4 and 10 it follows that near
the circleb = 0 we should expect the analysis to be

valid for I < 2k2. Interestingly enough, we see that

exactly at thisI value the symmetric mode solutions

lose their stability.

To understand the perturbed motion of the truncated
model we study the integrable structure by the gen-
eral framework of "hierarchy of bifurcations”. See
[Shlizerman and Rom-Kedar, 2005; Shlizerman and
Rom-Kedar, 2004; Litvak-Hinenzon and Rom-Kedar,
2004] for the description of this general framework.



3 Integrable Structure of the Truncated System It follows that forz? + y? < 21 we have:
For the truncated system we consider the following
transformation to generalized action angle co-ordinates dy s o OHy(z,y,I)
for ¢ # 0 [Kovacic and Wiggins, 1992]; taking a w(a,y, [) = 1= +a” = ol (15)

c=|clexp (iv), b= (z+iy)exp (iv) (11) and foru? + v? < 21 we have:

sothat! = 3(|¢|* + 2 +y?), one obtains the general- a9 _ wluyv,T) = 3 i3zt g 0Ho(wv D)
ized action angle canonical coordinates for the Hamil- dt 2 4" g (163)1

tonian: Consider the truncated model in appropriate gener-
alized action angle co-ordinates, i.€ly(q,p, I; k, Q)
H(z,y,1,7) = Ho(z,y,I) + eHi(z,y,1,7), where (¢, p) stands for eithefz, ) or (u,v) in rep-
resentation 11 and 14 respectively. Each energy sur-
where face is foliated by the level sets which are composed of
either two dimensional tori, circles and possible their
+ separatrices or isolated fixed points. In our system
(I,7) € (BT xT), there is only one isolated fixed point(@t p, I; k, Q) =
(z,y) € By = {(z,y)|0 < 2* +y* < 2I} (0,0,0; k,9). A circle in the full phase space corre-
sponds to an isolated fixed point in the normal plane
and (g,p), namely to a poinp; = (¢r,ps,Ir) at which
L 351"’ = 0. For our model, there are six
7 q P

1 pf P
= 512 —PI+(I- gkz)xz — —a! families of such circles as listed in Table 1.

16 . . .
3,5 1 4 1.5, Following [Lerman and Umanskiy, 1998] terminol-
TV Y~ §k v, (12) ogy, the circles are called here singular circles and the
i curves of energy and action valué&ly(ps), I(ps))
— 2 2 .
Hy(z,y,1,7) = V221 — 2> = y?siny. (13)  corresponding to these circles are called singularity
surfaces. The structure of these singularity surfaces,
The transformation to these variables is singular at plotted in the energy-momentum space, serves as an
¢ = 0, namely on the circlel = z? + 3, where  organizing skeleton of the energy surfaces.
the phasey is ill defined and the perturbation term has  Locally, in the (¢, p, I; k,Q) coordinate system, the

a singular derivative. In Kovacic and Haller [Kovacic normal stability of an invariant circle is determined by
and Wiggins, 1992; G.Kovacic, 1993; Haller and Wig- det [ 2°Ha
(§]

gins, 199%; Haller and Wiggins, 199%] the analy- 2(ap) |,
sis was performed for phase space regions which areand non-vanishing the corresponding circle is said to
bounded away from this circle. Here, to better under- be normally hyperbolic, when it vanishes it is called
stand the dynamics near this circle, we introduce a sim- normally parabolic and when it is pure imaginary it is
ilar transformation which is valid as long &s£ 0: normally elliptic, see the detailed references in [Litvak-
Hinenzon and Rom-Kedar, 2004] and the discussion of
the Hamiltonian case in [Bolotin and Treschev, 2000].
For our example such calculation shows that the first

(14)  and third families of invariant circles become parabolic
We thus obtain the equation of motion in the canonical gt 1 = %kﬁ whereas the second and fourth families are

HO(xayaI)

= —);,. Indeed, when\, is real

, , 1
b=1ble? | c=(utiv)e? , I = §(UQ + 02 + b

coordinategu, v, I, #) from the Hamiltonian: parabolic atl = 2k2.
Ho(u, v, ) = §IQ + <Qz + 3,2 L2 k2> I 3.1 Hierarchy of Bifurcations _
4 4 We use two essential tools to describe the energy sur-
7 4 3 k2 9 k2 5, 1 , faces and the the singularity surfaces of the truncated
16" T g o+ us vt 16° model: the Energy Momentum Bifurcation Diagram

Hi(u,v,I) = V2(vcosf + usin 9)_ (EMBD) and the Fomenko graphs (see section 3.2). We
delineate the energy and parameter space of the inte-
grable family of Hamiltonian systenis, (¢, p, I; k, Q2)

by using these tools to construct the following hierar-
chy of bifurcations:

When bothy andé are well defined, namely fab # 0,
the two sets of coordinates are simply related:

1. Single energy surface. The first level consists of

the values of the constants of motion across which

u = |C‘ v = _Hy. the topology of the level sets on a given energy sur-
o] " 10| face Hy(q,p, I; k,Q) = h is changed. These are

z = [b] cos(f — ) y = [b]sin(0 — )



Invariant circle: 0,ve Tt Exists For

Elliptic For | Hyperbolic For| Description

1. ppw = (x =0,y =0,1,7) I1>0 I < 1k? I>1k? Plane wave
2. psm = (u=0,v=0,1,0) I>0 I < 2k? 1> 2k? Symmetric mode|
+ —
3'ppwm -
(x==%\/2(-k2+2),y=0,1,7) | I >3k* | 1> 3k - PW mixed mode
(u=+,/ST+ 2k, v=0,1,0) I>Lk2 | I>3K* |- "
4'p§‘t7nm =
(x =0,y = £2k, I,7), I>2k? I>2k? - SM mixed mode
(u=0,v =22 — 4k2,1,0) I>2K2 | I>2k2 - ”

Table 1. Singular circles and their normal stability.

the values at which the level sets include isolated
circles, namely the values at which the singularity
surfaces cross the vertical surfalg = h on the
EMBD, and thus these correspond to the vertices
in the Fomenko graphs.

. Energy bifurcation values. The second level con-
sists of the energy bifurcation valug4 at which

the form of the Fomenko graph changes, namely
across which the energy surfaces are no longer
equivalent. Thus, it describes how the energy sur-
face differential topology is changed with

. Parameter dependence of the energy bifurcation
values. The third level consists of the bifurcating
parameter values®, Q2 at which the bifurcation
sequence of the second level changes (by either
changing the order of the energy bifurcating values
or by adding/substracting one of the energy bifur-
cation values).

Ho(x¢,yys,I) Evaluation

1' H(‘pr7ypw7[) = H(0707I) = (g - 92‘[)
2. H(Usm, Vsm, 1) = H(0,0,1) = 31 — (k> + Q)]

3. H(&Em, Yitwm, 1) = 217 — (O + 317)1 + 1k

+ + 2
4. H(usmmuvsmm71) = 17 - Q2I — ]{34

Table 2. Singular surfaces. Hamiltonian at the singular
circles.

Next we will describe how we construct each level of
the hierarchy for our model, and then we demonstrate
numerically that typically each of these bifurcations is
associated with a different type of perturbed motion in

its vicinity.

3.2 Level 1: Single Energy Surfaces

Figure 1. EMBD fork = 1.025, = 1.

In figure 1 we plot these curves for the non-
dimensional wave number = 1.025 andQ? = 1,

Calculation of the singular surfaces and the normal the parameter values used in previous works [Bisétop

stability of the lower dimensional tori are the first

al., 199(; Bishopet al, 199(; Bishop and Clifford,

steps in depicting the global structure of the energy 1996; Bishopet al, 1988; Bishopet al,, 1986; Bishop

surfaces.  Theenergy-momentum bifurcation dia-
gram (EMBD)is constructed by plotting the singular
surfaces (Hy(ps(I)),I) in the (h,I) plane, where
(pr(I)) are given by the six families of Table 2.

et al, 1983]. We use the usual convention in bifurca-
tion diagrams by which normally stable circles are de-
noted by solid lines whereas normally hyperbolic cir-
cles are denoted by dashed lines (see Table 1). Differ-
ent colors are used for the different families of invariant



circles (Thick and thin black lifefor the plane wave  somen d.o.f. systems has been recently suggested
and its bifurcating branch and thick and thin grey fine  (see [Litvak-Hinenzon and Rom-Kedar, 2004] and ref-
for the symmetric mode and its bifurcation branch). erences therein).
The allowed region of motion is shaded - for each point

(h,I) in this shaded region there afe b) values sat-

isfying Ho(c,b) = h,I = %(|c|?> 4 [b|?). An energy ,
surface in this diagram is represented by the intersec- 8
tion of a vertical line with the allowed region of motion. ‘

The topology of the level sets for differehtvalues on
a given energy surface is represented by the Fomenkg ==-¢==" (\
graphs.

The Fomenko graphs are constructed by assigning to ;
each connected component of the level sets (on the —
given energy surface) a point on the graph, so there '
is a one-to-one correspondence between them (see
[Fomenko, 1991][Litvak'Hin?nzon and Rom-Kedar, Figure 2. EMBD, Fomenko graph and energy surfaces (nfdte
2004]). Then, an edge of this graph corresponds to a;,, ;. — 1.025.Q =1 h = —0.44.
regular one parameter family of two tori whereas ver-
tices correspond to singular values (@f, I) at which
some families of tori glue together or shrink to a singu-
lar circle. In the standard construction of the Fomenko
graphs [Fomenko, 1991] the main objective is the study 3.3 Level 2: Bifurcating Energy Values
of the topology of the surfaces and the level sets, hence, Intersecting the energy-momentum bifurcation dia-
for example, all the normally elliptic singular circles grams with a vertical line (hyper-surface in thel.o.f.
are assigned with the same symbol (molecule "A’). case) and constructing the corresponding Fomenko
Here, we distinguish between the different singular cir- graphs (branched surfaces) leads to a full description
cles as these correspond to different dynamic in the of a given energy surface. It follows that many changes
NLS. Thus, we denote the invariant circles correspond- in the differential topology of the energy surfaces can
ing to the plane wave familyp(,,,) and the invariant ~ be easily read off from these diagrams (the EMBD) -
circles which emanate from themi,,,), by openand  they correspond to singularities - folds, branchings, in-
full triangles respectively. The invariant circles corre- tersections or asymptotes - of the singularity surfaces.
sponding to the symmetric mode family,{,) and the Furthermore, some of these singularities of the singu-
invariant circles which emanate from thepty(,, ), are larity surfaces are also associated with some dynami-
denoted by open and full circles. In this way the topo- cal phenomena (e.g. resonances and parabolicity). We
logical changes of the level sets are discovered and thewill describe here only folds and branchings, as these
energy surface may be reconstructed from these graphsare the only singularities of the plane wave curve which

The vertical line on Fig. 1 indicates the energy value occur in the relevant range divalues, see [Shlizerman
for which the Fomenko graph is shown in Fig. 2. In and Rom-Kedar, 2005] for the full analysis and descrip-
this figure the relation between the energy momentum tion.
bifurcation diagram, the Fomenko graph and the en-

ergy surface is demonstrated. Projections of the energy 331 Folds in the singularity surfaces and Reso-
surface are plotted twice; the energy surface is the two ngnces Clearly (see for example Fig. 1) the energy
dimensional surface in thier, y, 1) space (respectively  syrfaces change their topology whenever there is a fold
(u, v, I) space) multiplied, for akt # 0 (for all b # 0), in the singularity surfaces. Furthermore, it was estab-
by the circley € S (0 € S*). The redundant presen- jished (see [Litvak-Hinenzon and Rom-Kedar, 2004])
tation in the(u, v, I) space is shown to better explain  that folds of non-parabolic singularity surfaces corre-

the level sets topology near the cirele= 0 where the  spond to strong resonance relations for the lower di-
transformation to théz, y, I) co-ordinates is singular.  mensional invariant tori:

We observe that these Fomenko graphs encode all

needed information for the reconstruction of the en- dH

ergy surfaces, without the explicit computation of the ﬁ(p}) =0& 9 =0

corresponding energy surfaces[Fomenko, 1991]. In Pr

[Shlizerman and Rom-Kedar, 2005] we present the full

sequence of Fomenko graphs for this model for sev- In particular, a minima (or maxima) of the singular-
eral parameter values, and using the above coding thety surface Hy(qs,ps,Iy) of the non-parabolic tori
corresponding energy surfaces may be found. We note(qr, Py, Iy) corresponds to a circle of fixed points.

that a similar construction using branched surfaces for Heénce, to find a set of bifurcating energies we need to
list the extremum of the surfacel(qs,ps,Iy) for

the various singularity manifolds and verify that these
are non-degenerate. In Table 3 we list thealues for

AR
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which folds are created for the six singular surfaces (h,p.m), are drawn as a function éf. The crossing of
of Table 2 and the values df for which the singular  these curves in the diagram corresponds to a bifurca-
circles are parabolic (Table 1). tion of the EMBDsfor this value of(2 the plane wave
is both resonant and parabolic, and the sequence of the
Fomenko graphs changes across this value.of

| I-resonance | I-parabolic | Parabolic Res. |
pw _ )2 pw __ 172 —_
L IT =9 Ip o 2k kpr_pw B \/iﬂ Plane Wave Resonance
sm k2 Q2 sm 2
2.;pm = 220 pem g2 | =[50
3. ]fw’m — 4}321'_57522 [511; _ %kZ kp'r'fpw _ \/ﬁQ 0.2
4. Imm = Q2 I3 = 22 | Fipyoom = /30 04
I
Table 3. Resonant and parabolic singular circles. 06
Using the resonant values of Table 3 in Table 2 we ny
conclude that the following energy values correspond
to bifurcations due to the resonances/folds, of the plane ‘b2 oE o8 1 127 14
wave branch:
Elliptic | Hyperbolic
Parabolic

pre = Lo, 17)
2 Figure 3. Bifurcation diagram of the energy bifurcation values for

k = 1.025, Q is varied.

At this energy the corresponding family of circles,

has a circle of fixed points.

. o Recall that our model is valid for relatively small pe-
3.3.2 Branching surfaces and parabolic circles jogic lengths, so that the NLS pde possesses only one
Another source for bifurcations in the energy surface |inear unstable mode: therefor,is traditionally cho-
structure appears when the singularity surface splits. gap aq7, ~ 6.12 an thusk ~ 1.025. Another tradition
For the two degree of freedom case such a splitting j, this context is to consider the NLS as a valid ap-
is associated with the appearance of a parabolic Cirdeproximation of the SGE equation, which implies that
(for then d.o.f. case we look for a fold in the surface 2 o | Studying the truncated perturbed NLS inde-
of parabolic tori, namely we look for an — 2 reso-  pendently, we allow both parametérands2 to be free.
nant parabolic: — 1 tori, see [Litvak-Hinenzon and " paneating the construction of the integrable structure
Rom-Kedar, 2004] for precise statement). Thus, the fo the tryncated system with these two free bifurcation
appearance of the parabolic ,C'r@im ath = h" parameters we find that the fixed points of the normal
frgm which the brapches of C'rplq’émm EMerge IM- — plane(z,y) and their stability depend only ok and
plies that for energies below this value no such circles g dependence does not change the order by which
appear, and the Fomenko graph has no splitting to two e sojutions change their stability Agrows nor their
branches whereas larger energies have these two C'rdeﬁ/pe (see Table 1). However, constructing the next
as the upper boundary of the energy surface. In Table|eye|s of the hierarchy reveals that the EMBD curves
3 we list the parabolic values @t Plugging these val- change with(k, ) (Table 2) and the bifurcating val-
ues in Table 2 we find an additional energy bifurcation o4 (Table 3) change as well. Thiise parameter
value which is associated with the plane wave: provides additional control for the energy bifurcation
values We show next that at these bifurcation values
e = %kz(ikz _o?) (1g)  differenttypes of chaotic behavior appear.
3.4 Level 3;: Parametric Bifurcations 4 Temporal chaos near plane wave
The EMBD clearly depends on the parameters of the We propose that the above detailed understanding of
problem, the wave numbeérand the forcing frequency the unperturbed structure immediately translates into a
Q. When the order of the energy bifurcation values qualitative understanding of the perturbed motion. Our
changes as these parameters are varied, a parametrigain interest here is in the perturbed solutions near the
bifurcation occurs. In Fig. 3 a bifurcation diagram spatially uniform plane wave.
of the energy bifurcation values associated with the The behavior near the the plane wave solution (singu-
plane wave is shown - the energy values at which the lar surface 1 in table 2) depends primarily on its local
plane wave is resonant.,,), parabolic {,,) and stability and on the rotation rate on i) If it is a nor-
the energy values at which the mixed mode solutions mally elliptic circle we have the usual Birkhoff normal
emanating from the plane wave solution are resonantform/resonant behavior depending on the ratio between



the normal and inner frequencies of the plane wave cir- (z, y) presentation of the Poindasections iny we in-

cle. When the plane wave corresponds to a hyperbolicclude the Probability Distribution Function (PDF) of
circle, for sufficiently small perturbation its separatri- the return times to the section.

ces split and, ify is bounded away from zero, the usual In diagrams (B),(D) and (E) we do not apply any coor-
chaotic zone of area preserving maps appears in thedinate transformation and consider the recovered solu-
Poincaé map iny. We will refer to this behavior as tion, which can be a solution of the NLS pde as well. In
homoclinic chaos When the plane wave corresponds previous works it was suggested that plots®fX, T)|

to a non-resonant parabolic circle, the perturbed mo- as a function of X, T') for a small interval of time (will
tion near it stays close to the integrable circle just as be referred to athe amplitude pldtreveal the differ-

in the elliptic case, since the separatrix is small and its ence between regular and chaotic motion. Besides the
splitting is exponentially small in the distance from the space-time profiles (the amplitude plots) we construct
bifurcation point. similarly to [McLaughlin and Overman, 1995; Cai
The behavior of the perturbed orbits changes dramat-al., 2002], the diagranfRe{B(0,T")},Im{B(0,7)})
ically near strong resonances; When the rotation ratefor some intervall’ (we will call this representation a
vanishes{ = 0), the strongest resonance is created - a B-plane plo). We are allowed to consider the solution
circle of fixed points appears. For normally ellipticres- at X = 0, since in the autonomous NLS equation (2)
onant circles, perturbation leads to the usual resonancehe choice of even solutions ensures that the soliton will
phenomena. When a normally hyperbolic circle be- be centered ak = 0 oratX = i%.

comes resonant, there is a family of heteroclinic orbits In Sec. 3.4 we have shown that the parameteasd
connecting pairs of fixed points on the circle. Under Q2 control the stability of the invariant circles and the
perturbation this family createsgperbolic resonance  rotation rate. By manipulating these parameters we
zone, see [Haller, 1999; Kovacic and Wiggins, 1992]. are able to produce the three types of perturbed orbits
When the singular circle is parabolic and resonant - a which we discuss here. For consistency with the previ-
parabolic resonancés created, and a small perturba- ous works [Bishopet al, 199Gg; Bishopet al.,, 199(]

tion leads to dramatically different dynamics than in we have set the parametersite- 1.025 and have cho-
other types of resonances. The initial conditions near sen to vary2.

the invariant circle do not stay close to it as in the

case of periodic motion on a non-resonant parabolic 4 1 Homoclinic chaos and Hyperbolic resonance
circle [Rom-Kedar, 1997]. We proceed by presenting 5 mqcjinic chaos in the truncated model is formed
the phase space and the numerical solutions of the Peryhen the plane wave possesses homoclinic loops, or
turbed orbits for the three fundamentally different types in other words - unstable. From Table 1, we can pre-
of chaotic motion described above: homoclinic chaos dict that for 7 > 1k? the perturbed soiutions near
(which corresponds to a point on an unstable singular the plane wave will 2exhibit homoclinic chaos for arbi-

curve - a b'r‘:vfﬁat'on of thedflrst Ievfell)(,j hyt[)).?rboh(.: res—f trary parametef). The chaotic zone is created in the
onance (which corresponds to a fold - bifurcation o x — y coordinates, with uniformity in the angle vari-

the second Ievr:l)I and paraboch; resonar\]nce (which COr-aple, since the motion rate does not vanish & 0).
responds to a fold and branching at the same point - The motion near hyperbolic resonant circles is of com-

bifurcation of the third level). pletely different nature [Kovacic and Wiggins, 1992;
Notice that once we have found the perturbed mo- G.Kovacic, 1993; Haller and Wiggins, 1985Haller
tion of the two—modg model we are able to recover g4 Wiggins, 1998 Of particular interest for the
B(X,T) - the approximated solution of the NLS equa- \ g model are the hyperbolic resonant plane wave cir-
tion (5). The relation between the solution in the .oq which exist when?* — 142 < v o— 2
i p -2 r - :
(z,y,1,) space to the truncated solutidi,(X, T) When(2 = 1 these appear only for small wave numbers

and hence to th truncated solutian(X,7) = ¢ /5 namely for sufficiently large intervals. By
By (X, T') exp(—iQ2°T) of the time dependent equation j44ycing the additional paramet@rwe see thafor

is easily found for # 0 via the transformations (5,11): any k value there is an interval of values for which

the resonant plane wave circle is hyperbolitis hy-

B 1, ) perbolic for all2 > Q. = %k Here, we show
By(X,T) = (\/I(T) = 5(96 (1) +y2(1))  (19) some perturbed trajectories which appear near the hy-

+ (&(T) + iy(T)) cos kX) exp(iv(T)) perbolic resonance regime. In Fig. 5 a trajectory which

s is trapped in a stability island is shown. We see that the

$2(X,T) = Ba(X, T) exp(—iQ°T), main difference between the regular homoclinic chaos
and the hyperbolic resonant chaotic motion has to do
To understand the nature of these solutions, we with the non-uniformity in the angle variable - thus it
present them in several ways (Figs. 4, 5 and 6). In di- is not observable in the amplitude plot but is clearly
agrams (A),(C),(F) and (G) of these figures we use the seen in theB plane plots. In principle, we also ex-
action angle coordinatés, y, I, ) to achieve an effec-  pect a spread aP (/=) in (I, z,y) near the hyperbolic
tive comparison between the perturbed and the underly-resonance regime, for unknown reason, so far, we did
ing unperturbed structures. In addition to the standard not succeed to find i.c. which produce this spread. In
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Figure 4. A perturbed orbit near a family of hyperbolic circles for = 1.025, Q2 = 1, ¢ = %1074. Initial Conditions:

(c(0),b(0)) = (v/3,107%) ie. (x(0),y(0),1(0),7(0)) = (1076,0,1.5,0). Red marker stands for a soliton centered at
X = 0 (right side of the plane wave) and the green marker stands for a soliton centé(edat:i:L/Q (left side of the plane wave).

figure 4 we show the behavior near regular homoclinic It is important to notice that by remark 1, for all
orbits whereas figure 5 shows the behavior near res-Q < v/2k, the above scenarios of plane wave parabolic
onant homoclinic orbits. We note that in these plots resonance, hyperbolic resonance and homoclinic chaos
typical chaotic orbits are shown - these orbits shadow occur in the range at which the NLS has only one un-
some of the countable infinity of multipulse homoclinic stable mode.

and heteroclinic orbits that exist due to the transverse

separatrix crossings (see [Haller, 1999] and references o )
therein). 5 Characterization of the perturbed solutions

Consider an even solutioB(X,t) of the perturbed
NLS equation (Eqg. 3) (either a solution of the PDE or

4.2 Parabolic resonance a recovered truncated solution), and examiB&), t)|.

Parabolic resonance is a bifurcation in the energy sur- Our aim is to find the signatures of the different insta-
face structure, which appears when the singularity sur- bilities discussed above on the sighBl0, ¢)|. Such a
face has a cusp and a fold of one of the branches (ormeasure or a technique should suggest simple classifi-
splitin the symmetric case). In Sec. 3.3.2 we found the cation of the perturbed orbits and will be a good can-
energy function:2* (Eq. 18) for bifurcations which  didate for comparison of the truncated recovered so-
appear due to singularity surface branchings. The be-lution with numerical solutions of the perturbed NLS
havior near a branching point is not simple - to analyze equation. Though we can calculate the first two Fourier
it one needs to understand how Hamiltonian trajecto- modes of such solutions and reconstruct the phase dia-
ries cross bifurcations [Lebovitz and Pesci, 1995]. It grams similar to the the previous section, we believe a
appears that the action in the normal plane is a key in- simpler characterization may be of importance for fast
gredient in understanding the perturbed motion as it is and crude classification which is not as dependent on
adiabatically preserved [Neishtadt, 1975]. In Fig. 6 thelow dimensional phase space structure. Observe the
the difference between parabolic resonance and otherupper diagrams of figure 7 in which the sighgl(0, ¢)|
types of motion is demonstrated numerically. This phe- is presented for three types of reconstructed trajecto-
nomenon can be described as a combination of a local-ries. It is clearly seen that the maxima of these signals
ization of elliptic resonance (can be seeliiir-) plot) has quite a different behavior. Now, it follows from
and instabilities due to hyperbolic resonance (can be Eq. 19 that the expressioB|,,q. and|x,q.|, which
seenin(z,y, I) plot). Notice the strong non-uniformity  is the intersection of the homoclinic orbit to the plane
in the B-plane plot and the long tail which appears in wave with the x-axis, are analogous. Since at homo-
the PDF of the return times. Finaly, notice the paths of clinic chaos and at hyperbolic resonance the trajecto-
the trajectory in the EMBD plot which strongly sug- ries follow closely the separatrix, the narrow distribu-
gests that indeed adiabatic description of some seg-tion of the maximal valueg,,...| (and hencéBg|nq.)
ments of the motion is appropriate. measures the non-uniformity of the cross-section of the
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Figure 5. A perturbed orbit near a family of hyperbolic resonant circlesefor 1.025, Q2 = 1, = %1073. Initial Conditions:

(¢(0),5(0)) = (v/2,107%) i.e. (2(0), y(0), I(0),~(0)) = (1079,0,1,0). Anisland of stability is detected.
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Figure 6. A perturbed orbit near a family of parabolic resonant circlegfer 1.025, 22 = k2/2, € = %10_4. Initial Conditions:
(c(0), 5(0)) = (v3,107%) ie. (2(0), 5(0), 1(0),7(0)) = (10-5,0,1,0).

chaotic zone with the x-axis neft,,,..|. On the other  |B(0,t)| as:

hand, at parabolic resonance the trajectories pass grad-

ually from the vicinity of elliptic circles to the vicin- , d

ity of hyperbolic circles and vice versa and this results |Bolmaz = [B(0, ;) st —|B(0,1;)] = 0 &
in a gradual change im,,,,, and correspondingly in d2

| Bo|maz» S€€ thez, y, I) diagrams in Figs. 4,5 and 6. ﬁIB(O, ti) <0&

1
BO.)] > By = 5l

Therefore, we define the set of maximal values of where the last inequality guaranties that we consider
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Figure 7. Upper graphs (from left to right): short evolutiodB(O, t)| for parabolic resonance, hyperbolic resonance and homoclinic chaos.
Lower graph: PDF ofBo|maw and calculation ob,,, .. The color and the marker correspond to the color and the marker of the maximal
points of each type of motion.

only the maximal values of on the right half normal Furthermore, we can now examine the dependence of
plane in our generalized action-angle presentation. Weo,,,,. 0n the perturbation parameter We expect that
compute the normalized standard deviatign,,. of the the growth ofo,, ., will be of order O(e?): for ho-

set of maximal values dBg | 4. moclinic chaos we expegt~ 1, while for hyperbolic
resonance% < p < 1 and for parabolic resonance
5 5 we expect thab < p < é In Fig. 8 we present
o V< [Bolmaz >2 — < |Bol?,4s > (20) omae Values calculated for different, with the fitted
e < |Bo|maz > slopes:pp. = 0.891 = 0.145, pp,, = 0.95 + 0.062 and

ppr = 0.207£0.06. One can observe that for parabolic
resonance the slopejis< % and can be easily distin-
guished. However for hyperbolic resonance and homo-
clinic chaos the values gfare close and do not provide
precise distinction between the two motions. It is plau-
sible that different initial conditions will produce better
distinction between these two cases, and this is under
current study.

and assert thdBg| ... and its distribution supply in-
formation regarding the structure of the chaotic zone
in the x-y plane and hence may be used to distinguish
between the trajectories.

In Fig. 7 we show the PDF ofBg| . for fixed
e = 10—, from which we substantiate that there is a
different distribution of| By |,.... for different types of
motion and the estimate,, ., of parabolic resonance
can be easily distinguished from tlag,,, of hyper-

bolic resonance and homoclinic chaos. 6 Conclusions _ _ _
In this paper we characterized different chaotic solu-

tions of the truncated NLS model. We identified these
solutions by analyzing the integrable structure using
the hierarchy of bifurcations framework. By introduc-
- ] ing the additional parametét, the forcing frequency,
2 0% . we demonstrated that we caantrol the type of chaotic
——— p=0.207 behavior in the truncated model at a fixed periodic
p=0.891 ] length Furthermore, we proposed a simple tool, a sta-
tistical measure, for distinguishing between the variety
f/)/_————’__i(_’__— of chaotic solutions. We have seen that this tool works
AL l well in distinguishing between parabolic resonance and
the hyperbolic trajectories, but so far it did not dis-
5 . . . . tinguish between hyperbolic resonance and homoclinic
5 A48 46 44 42 -4 chaos. We are currently examining the hyperbolic reso-
logle) nance simulations more closely as it is unclear whether
the trajectories which we record are sufficiently close
to the resonant plane wave. Further investigation of this

logig,. )
i)

Figure 8. Dependence of,,, 4, ONE.



tool and its performance on a variety of perturbed so-
lutions is under current study, as is the design of other
simple tools for a precise classification of chaotic orbits
near the plane wave solution. One would hope that such
methodology will help in the classification and compar-
ison of the perturbed PDE solutions with the truncated
model solutions.
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