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1 GENERAL INFORMATION

1.1 Toolbox Overview

One of the fundamental features of the auditory system is its tonotopic organization. The
auditory periphery acts as a frequency analyzer, mapping different frequency components
of sounds to specific locations along the basilar membrane. Functionally, this process can
be modeled as a bank of band-pass filters, namely auditory filters. The shape of the audi-
tory filter, in particular its bandwidth, is highly predictive of perceptual phenomena such as
masking.

While the estimation of the auditory filter plays a fundamental role in the study of auditory
perception, it is traditionally a time-consuming process that may require up to two hours
to complete data collection. Shen and Richards (2013) and Shen et al. (2014) described
a Bayesian adaptive procedure for the efficient estimation of the auditory-filter shape, the
Quick-Auditory-Filter (qAF) Procedure. The toolbox described in this user manual provides
an efficient implementation of the qAF Procedure in Matlab.

The qAF Toolbox provides the following features:

• Various parameterizations of the auditory filter are possible

• Data are organized intuitively

• Parameter-space configurations are flexible

• Implementation of simulations is straightforward

1.2 Authorized Use Permission

The qAF Toolbox is freely available and freely redistributable, according to the conditions
of the GNU General Public License (http://www.gnu.org/licenses/gpl-3.0.txt). You may not
distribute the software, in whole or in part, in conjunction with proprietary code. That means
you only have permission to distribute a program that uses this code if you also make freely
available (under the terms of the GNU GPL) the source code for your whole project. You
may not pass on the software to another party in its current form or any altered, embellished
or reduced form, without acknowledging the author and including a copy of this license. The
software does not come with ANY WARRANTY.

2



2 INSTALLATION

2.1 Software Requirements

The qAF Toolbox is designed to be used with Matlab version 2008a or newer, which supports
an object-oriented framework and syntax with the statistics toolbox installed.

2.2 Hardware Requirements

There are no specific hardware requirements for the qAF Toolbox.

2.3 Installing the qAF Toolbox

1. Download the qAF_Toolbox.zip file to your computer. Unzip the file and place the
contents in a directory that is available to Matlab.

2. In Matlab, select the directory containing the files from the qAF_Toolbox.zip as the
current directory.

3. The qAF Toolbox is ready to use.

2.4 Files Included in the qAF Toolbox.zip File

• qAF.m

• exp_config.m

• template.m

• example_qAF_roex.m

2.5 Quick Start

To construct a new experiment, open the template.m file from the unzipped folder using the
Matlab editor. Follow the instructions in the file. It will lead you through the steps to modify
a template experiment. The user must provide code for stimulus generation and presentation,
for collecting responses, and for saving the resulting data.
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3 HOW DOES THE qAF TOOLBOX WORK?

3.1 The qAF Algorithm

The qAF algorithm is a computational algorithm that adaptively determines the stimuli to be
presented in a notched-noise masking experiment in order to efficiently estimate the auditory-
filter shape. The notched-noise masking experiment has been the main experimental paradigm
for the estimation of the auditory-filter shape (e.g., Patterson, 1976; Patterson et al., 1982).

In a typical experiment, listeners detect the presence of a pure-tone target presented in
noise. The noise, i.e. the masker, contains two frequency bands, one on each side of the target
frequency, forming a spectral notch (see Fig. 1a). The masker can then be fully described
by the upper notchwidth (the distance from the lower edge of the upper masker band to the
target frequency), the lower notchwidth (the distance from the upper edge of the lower masker
band to the target frequency), and the masker spectrum level (Lm, in dB SPL). The upper
and lower notchwidths (gu and gl, respectively) are often expressed on a normalized frequency
scale:

g =
∆f

f0
, (1)

where ∆f is the distance from the target frequency f0.
According to the power spectrum model of masking, the detection threshold is defined at

a certain target-to-masker intensity ratio K at the output of the auditory filter centered at f0.
Therefore, as the masker notches move away from the target frequency, higher masker levels are
needed to mask a fixed-level target. By measuring the masker level needed to mask the target
for various combinations of the upper and lower masker notchwidths, it is possible to reverse-
engineer the shape of the auditory filter with a few assumptions. However, the drawback of
this procedure is that the masker level at threshold has to be measured repeatedly at each
of the notchwidth combinations, leading to time-consuming data collection. For a typical
experiment with more than 10 notchwidth combinations to be tested, the total testing time
could be more than two hours.

The qAF algorithm estimates the auditory-filter shape in a single experimental track, in
which the masker properties (gu, gl, and Lm) are adaptively manipulated on a trial-by-trial
basis (see Shen et al., 2014, for a more detailed description of the qAF algorithm). Following
Rosen et al. (1998) and Oxenham and Shera (2003), the qAF algorithm uses a roex(pwtp)
model (Patterson et al., 1982) for the auditory-filter shape (see Fig. 1b). The filter shape
is made of three components: a high-frequency skirt (described by a slope parameter pu), a
low-frequency tip (described by a slope parameter pl), and a low-frequency tail (described
by a slope parameter t). On the low-frequency side, the relative contributions of the tip
and tail components are determined by a weight parameter w. Therefore, to fully describe
the auditory-filter shape, all four parameters (pu, pl, t, and w) and the detection efficiency
parameter K must be estimated.

The estimation of the model parameters is achieved by the qAF algorithm in the follow-
ing way (see Fig. 1c). First, a prior distribution is specified for each of the parameters by
the experimenter, providing an “initial guess” to the parameter values. As the experiment
progresses, the posterior distributions of these parameters are updated iteratively. On each
trial, the interim model estimate (based on the posterior parameter distributions) is used to
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Figure 1: The qAF Procedure for the estimation of auditory-filter shapes. (a): Stimulus design
in a notch-noise masking experiment showing the target tone as a red line and the upper and
lower masker bands as two gray areas. (b): Formulation of the auditory-filter shape using the
roex(pwtp) function. (c): Iterative computations in the qAF procedure. During each iteration,
the five-dimensional posterior parameter distribution is updated based on the most recently
collected response. The stimulus to be presented in the following trial is then determined by
searching for the combination of the stimulus parameters that minimize the expected entropy
of the posterior distribution. The final estimates correspond to the mean of the posterior
distribution.
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search for the stimulus parameters (gu, gl, and Lm) that maximized the potential information
gain from the trial to be tested (Kontsevich and Tyler, 1999). Then, an experimental trial is
run using the optimized stimulus and a response is collected from the subject. The posterior
parameter distributions are then updated using an extended-Kalman filtering algorithm (Fah-
meir, 1992). Each qAF track terminates when a preset number of trials is reached or when a
user-specified termination criterion is met.

Compared to the traditional procedure, the qAF procedure is more efficient because all
three stimulus parameters are manipulated adaptively according to previous responses col-
lected rather than repeating threshold measurements for a series of preselected notchwidth
combinations. It has been demonstrated that the qAF procedure can achieve satisfactory
reliability using 200 trials for normal-hearing listeners who are naive to any psychoacoustical
experiments (Shen et al., 2014).

3.2 Organization of the qAF Toolbox

The qAF Toolbox contains software routines that enable the efficient implementation of the
qAF procedure in Matlab. To allow a flexible and intuitive organization of the experimental
variables and the computational algorithms, the routines and relevant variables are organized
into a qAF class. To create an experiment, the user creates an object in the qAF class (e.g.,
qaf = qAF(par), see the following section for details). Each qAF object is a data structure that
holds several variables and methods. The variables store parameters such as the auditory filter
parameters, trial-by-trial data (e.g., signal strength and observer’s responses), and internal
parameters (e.g., the counter for the trial number). The methods conduct operations on the
variables, including setting and returning the variable values, providing the Bayesian estimates
of the auditory filter, and updating the signal strength. Tables 1 and 2 list the variables and
methods, respectively. Figure. 2 illustrates how the variables and methods are organized in a
qAF object and their role in the (1) Initialization and (2) Iteration phases of an experiment.

In the initialization phase of an experiment, a qAF object is constructed. The constructor
qaf = qAF(par) sets the initial stimulus parameters qaf.x0 (i.e. gu, gl, and Lm for the
first trial) and initializes the prior parameter distribution (i.e. the initial guesses for the
model parameters). In the iteration phase of the experiment, the variable qaf.x is a matrix
that holds information regarding the stimulus parameters on each trial. The values of gu,
gl, and Lm are arranged in the three columns in qaf.x, in that order; and the stimuli on
various experimental trials correspond to rows in qaf.x. Following each trial, a new row is
added to qaf.x. The variables qaf.phi and qaf.P hold the mean and covariance matrix of
the posterior parameter distribution, which are updated following each trial. The variable
qaf.phi is a matrix that holds the means of the posterior distributions following every trial,
arranged in columns. The values in the ith column are considered as the interim parameter
estimates following the ith trial. The variabl qaf.P is a three-dimensional matrix. The third
dimension of the matrix is associated with different trials, while the first two dimensions are
used to store the covariance matrix of the posterior parameter distribution following each
trial. The values of the variables qaf.x, qaf.phi, and qaf.P are updated after each trial by
the method qaf.update(r) according to the collected response r from that trial. As part of
the updating process in qaf.update(r), the current percent correct qaf.PC and the optimal
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Table 1: List of the variables in the qAF Toolbox.

Variables Comments
qaf.par Data structure containing the configurations of the pa-

rameter space
qaf.n Current trial number
qaf.x Stimulus parameter (i.e. gu, gl, and Lm)
qaf.xnext Next stimulus parameter based on previous trials
qaf.phi Mean of the posterior parameter distribution
qaf.P Covariance matrix of the posterior parameter distribu-

tion
qaf.r Listeners binary responses in terms of correctness
qaf.PC Percent correct
qaf.phi0 “True” parameter values for a virtual listener used for

the purpose of simulations

stimulus to be used on the next trial qaf.xnext are also calculated.

4 HOW TO USE THE qAF TOOLBOX

4.1 Configuring an Experiment

Before creating a "qAF"track, relevant parameters of the experiment must be set. The routines
included in the qAF Toolbox assume a specific data structure for these parameters. Users
should follow the example given in the qAF package and modify the exp_config.m function.
This function constructs a structure par that includes experiment configurations, initial status
of the adaptive track, and the prior parameter distributions.

To modifiy exp_config.m, first set the model name in the par.model parameter. Cur-
rently, only the roex model is supported.

par.model = ’roex’;

The parameter npar indicates the number of parameters used to describe the auditory filter.
This is one of the input arguments passed to the exp_config.m function when it is called.
Accepted values are 3, 4, and 5. If npar = 5, then parameters pu, pl, t, w, and K are estimated.
If npar = 4, then parameters pu, pl, w, and K are estimated, and parameter t is set to a value
of 9. If npar = 3, then parameters pl, w, and K are used, parameters pu and pl are assumed
to be equal, and t is set to a value of 9.

par.npar = npar;

The parameter γ refers to the chance proportion correct for the experiment. A γ value
of 0.5 is appropriate for a two-alternative forced-choice (2AFC) design. In case of a 3AFC
design, the γ parameter should be set to 1/3, etc.
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Table 2: List of the methods in the qAF Toolbox.

Methods Comments
Initialization:
qaf = qAF(par) Constructs a qAF object.

Iteration:
qaf.update(r) Updates posterior and xnext based on the

previous posterior and the new response r.

Simulation:
qaf.setPhi0(phi0) Sets the parameters in the psychometric

function of the virtual observer for simula-
tion.

r = qaf.simulateResponse(x) Returns a response from the virtual observer.

Other:
qaf.plotPhi() Plots the parameter estimates.
qaf.plotP() Plots the posterior parameter distribution.
qaf.plotAF() Plots the auditory filter.
qaf.plotStim() Plots the stimulus.

par.pf_par.gamma = 1/3;

The parameter β refers to the assumed slope of the auditory filter. The choice of assumed
β value only influences the result to a very limited degree (Shen and Richards, 2013).

par.pf_par.beta = 1;

The parameter stim_par.fo is the stimulus signal frequency. This is one of the input
arguments passed to the exp_config.m function when it is called.

par.stim_par.fo = fo;

The parameter stim_par.siglev indicates the stimulus signal level in dB SPL. This is
one of the input arguments passed to the exp_config.m function when it is called.

par.stim_par.siglev = siglev_spl;

The parameter stim_par.BW is the bandwidth of the masker, measured in hertz. In the
following example, the bandwidth is set to one quarter of the stimulus signal frequency.

par.stim_par.BW = 0.25*par.stim_par.fo
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Figure 2: Schematic of an experiment constructed using the qAF Toolbox.

The parameter x_lim describes the masker. The three columns in this parameter are
the upper notchwidth gu, the lower notchwidth gl, and the masker spectrum level Lm. The
two rows in this parameter describe the range boundaries of gu, gl, and Lm. The parameter
par.x_n represents the number of points along the three axes.

par.x_lim = [0 0 -10;0.4 0.6 55];

par.x_n = [3 13 20];

In the above example, the potential values of gu are three linearly spaced values between 0
and 0.4; the potential values of gl are 13 linearly spaced values between 0 and 0.6; and the
potential values of Lm are 20 linearly space values between -10 and 55 dB SPL.

The prior parameter distribution is established by seting two parameters, the parameters
par.prior_phi and par.prior_P, corresponding to the mean and the covariance matrix of
the prior distribution, respectively. The parameter par.prior_phi has to be a column vector
with a size of npar by 1, while the parameter par.prior_P has to be a diagonal matrix with
a size of npar by npar.

par.prior_phi = [40; 40; 5; -30; 5];

par.prior_P = diag([40 40 5 40 20].^2)

In the above example, the prior distribution is set for a five-parameter model. The prior
distribution for each parameter takes the form of a Gaussian distribution. The prior means
for pu, pl, t, 10 logw, and 10 logK are 40, 40, 5, -30, and 5, respectively. The prior standard
deviations for pu, pl, t, 10 logw, and 10 logK are 40, 40, 5, 40, and 20, respectively.
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4.2 Running an Experiment

Once the configuration for the experiment has been established in the exp_config.m file,
three steps are needed to carry out the experiment. An example of setting up the experiment
is provided in template.m and copied below.

% step 1, configure the experiment parameters

configpar = exp_config_roex(5, 50, 2000);

% step 2, create a qAF object

qaf = qAF(configpar);

% step 3, create an experimental loop (one trial per loop), and update

% signal level using the update method

N = 80; % total number of trials to run

for i = 1:N

%------------------------------------

% For an actual psychophysical experiment, a user-defined function is

% needed here, in the format of:

%

% r = UserFunction(qaf.xnext);

%

% It takes the stimulus parameter as the input argument and returns,

% presents the stimulus, obtains the response, and return the response

% correctness as the output argument.

%------------------------------------

% update the model parameters

qaf.update(r);

end

First, the data structure configpar is created by the function exp_config_roex(). In
this example, a five-parameter model is used and the signal level and frequency are set to 50
dB SPL and 2000 Hz, respectively. Second, a qAF object is constructed. Finally, stimuli are
presented to the test subject and responses are collected iteratively using a loop structure.
Stimulus generation, presentation, and recording the subject’s responses are acheived through
a user-defined function appropriate for research of interest. Within each loop, the method
qaf.update(r) updates the signal strength x according to the response, r, on that trial. The
method x = qaf.update(r) also updates the variables held within the qAF object, including
the stimulus parameters qaf.x and response qaf.r, the posterior parameter distribution
qaf.phi and qaf.P, the percent correct qaf.PC, and the signal level to be used for the
stimulus presentation on the next trial qaf.xnext. These variables are accessible both within
the experimental loop (for online data peeking) and after the experiment is finished (for data
storage).
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4.3 Simulating Experiments

Using the qAF toolbox, simulations are easy to carry out. For simulations a virtual observer
provides responses to the stimuli in accordance with a “true” set of auditory-filter parameters
phi0. Simulations are useful, for example, to study the effects of different prior distributions
on the convergence of the parameter estimates, determine the appropriate ranges for the
parameters, etc. Below is an example (provided in the file example_qAF_roex.m).

% initialize the qAF procedure using the five-parameter roex model with

% a signal level of 50 dB SPL and a signal frequency of 2000 Hz.

configpar = exp_config_roex(5, 50, 2000);

qaf = qAF(configpar);

% setting the true parameter for a virtual observer

phi0 = [44.7281 45.8076 8.0470 -41.3365 10.8181];

qaf.setPhi0(phi0);

ntrials = 200; % total number of trials to run

for i = 1:ntrials

% simulating a response from the virtual observer

r = qaf.simulateResponse(qaf.xnext);

% Update model parameters

qaf.update(r);

end

% Plot the stimuli sampled and the auditory filter estimated.

figure(1);

qaf.plotStim();

% Plot the parameter estimates as functions of trial number.

figure(2);

qaf.plotPhi();

% Plot the posterior distribution

figure(3);

qaf.plotP();
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