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Abstract A subject’s sensitivity to a stimulus variation can
be studied by estimating the psychometric function.
Generally speaking, three parameters of the psychometric
function are of interest: the performance threshold, the slope
of the function, and the rate at which attention lapses occur.
In the present study, three psychophysical procedures were
used to estimate the three-parameter psychometric function
for an auditory gap detection task. These were an up–down
staircase (up–down) procedure, an entropy-based Bayesian
(entropy) procedure, and an updated maximum-likelihood
(UML) procedure. Data collected from four young, normal-
hearing listeners showed that while all three procedures
provided similar estimates of the threshold parameter, the
up–down procedure performed slightly better in estimating
the slope and lapse rate for 200 trials of data collection.
When the lapse rate was increased by mixing in random
responses for the three adaptive procedures, the larger lapse
rate was especially detrimental to the efficiency of the up–
down procedure, and the UML procedure provided better
estimates of the threshold and slope than did the other two
procedures.
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Many psychophysical experiments measure people’s ability
to detect a change in one or more aspects of a physical
stimulus. As the magnitude of the change, or the signal
strength, increases, the probability of detecting the change
typically increases as well. Psychometric functions describe
the dependence of detectability on signal strength, making
psychometric functions an important tool for the study and

modeling of perceptual sensitivity. Typically, a psychomet-
ric function takes the form of a sigmoidal function, which
can be described using three parameters: (1) the detection
threshold—that is, the signal strength at the center of the
psychometric function’s dynamic range; (2) the slope of the
psychometric function; and (3) the lapse rate—that is, the
distance between 100 % correct and the function’s upper
asymptote. The lapse rate is named so because attentional
lapses provide an explanation for the observation that the
measured psychometric function may not reach 100 % cor-
rect responses.

A classic procedure for estimating the psychometric func-
tion utilizes the method of constant stimuli. In this procedure,
the percent correct is estimated at each of several preselected
signal strengths. The psychometric function is obtained by
fitting the resulting percent-correct data to a prespecified
function. Although it is a widely accepted procedure, the
method of constant stimuli can lead to very time-consuming
data collection. Consequently, adaptive tracking procedures
have been proposed with the goal of more efficient estimation
of either threshold, or more generally, psychometric functions.
Most of these procedures use information gained from previ-
ous trials to determine the stimulus placement on the follow-
ing trials and can roughly be classified into three categories:
(1) up–down staircase adaptive tracking procedures (e.g.,
Levitt, 1971), (2) min-variance Bayesian procedures (e.g.,
Green, 1990), and (3) min-entropy Bayesian procedures
(e.g., Kontsevich & Tyler, 1999).

Nonparametric staircase procedures are typically used to
estimate the signal strength at a predetermined percentage
correct (i.e., threshold). Typically, signal strength is reduced
following a correct response or increased following an in-
correct response. To ensure that the signal strength con-
verges rapidly toward the target percentage correct, many
procedures adaptively adjust the step size by which the
signal strength is manipulated following each trial (e.g.,
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PEST procedure; Kaernbach, 1991; Taylor & Creelman,
1967), while others use a fixed step size and modulate the
probability of increasing versus decreasing the signal
strength after each trial (e.g., Derman, 1957; Durham &
Flournoy, 1995). Levitt (1971) described a transformed
up–down procedure, in which different rules for the incre-
ments and decrements of signal strength yield different
target percent-correct convergences. For instance, given a
fixed step size, if an increment of signal strength takes place
following one incorrect response and a decrement occurs
after one correct response (one-down, one-up track), the
procedure would place the signal strength at the 50 %-cor-
rect point on the psychometric function. On the other hand,
if two consecutive correct responses are required for a
decrement but a single incorrect response leads to an incre-
ment (two-down, one-up track), the signal strength would be
placed at the 70.7 % point.

Although staircase procedures were originally proposed
to estimate one point on the psychometric function (i.e., the
threshold), several studies have been conducted to explore
their usefulness in estimating the slope of the psychometric
function using maximum-likelihood algorithms. Leek,
Hanna, and Marshall (1992) investigated the reliability and
accuracy of using transformed up–down procedures for
slope estimation and found that accurate psychometric func-
tion slope estimates can be achieved using these procedures;
however, when the number of experimental trials is small
(e.g., less than 100 trials), the slope estimates could be
biased, particularly when the slope of the true psychometric
function is relatively shallow. In a simulation study,
Kaernbach (2001) studied the origin of this type of bias in
the slope estimates and found that the staircase procedures
that estimate thresholds at a certain percentage correct on the
psychometric function would introduce sequential depen-
dency between adjacent trials. However, the maximum-
likelihood estimation of the psychometric function requires
independent data across trials. As a result, the estimated
slopes using maximum-likelihood algorithms are usually
steeper than the true psychometric function slopes. The
author suggested that to prevent biases in the slope esti-
mates, experimenters could use either interleaved staircase
tracks targeting two different points on the psychometric
function or Bayesian adaptive procedures that provide interim
estimation of the psychometric function slope during the run.
Unlike for the slope parameter, no study has systematically
addressed the question of whether the lapse rate can be reli-
ably estimated using transformed up–down procedures.

In addition to staircase procedures, Bayesian adaptive
procedures have been proposed (e.g., QUEST, Watson &
Pelli, 1983; ZEST, King-Smith & Rose, 1997), and, with
increasingly fast computers, are gaining popularity. These
procedures update the posterior distributions of the psy-
chometric function parameters on a trial-by-trial basis

according to Bayes’s rule. Closely related to these
Bayesian procedures are maximum-likelihood procedures
(Green, 1990, 1993) based on the same type of analysis,
although rather than posteriors, they use the likelihood
functions for parameter estimation.1 On a given trial, a
current best estimate of the psychometric function is
obtained on the basis of either posterior distributions or
likelihood functions. The signal strength of the following
trial is then chosen, according to a predefined sampling
strategy, at one of a few specific points on the best-fitting
psychometric function. These special locations for stimu-
lus placement, the so-called “sweet points,” are derived so
as to minimize the expected variances in the parameter. It
has been found that for psychometric functions taking the
form of a logistic function, there exists one sweet point
optimized for the estimation of the threshold parameter
(Green, 1990), and two sweet points for the slope param-
eter (Brand & Kollmeier, 2002; King-Smith & Rose,
1997). In a recent study, Shen and Richards (2012) also
showed that the best sampling strategy for estimating the
lapse rate is to present stimuli at the upper limit of signal
strength. Therefore, several sweet points might coexist,
and rules must be implemented to select the appropriate
sweet point on each trial. In their ZEST procedure, King-
Smith and Rose used an alternating sweet-point selection
rule, in which the stimulus was placed alternatingly at one
of the two sweet points for the slope parameter.

To enable the inclusion of more than two sweet points for
concurrent estimation of multiple parameters of the psycho-
metric function, Shen and Richards (2012) described a
sweet-point selection rule based on the transformed up–
down procedure, in which the signal strength was shifted
down to the next-highest sweet point after n consecutive
correct responses, and shifted up to the next-lowest sweet
point after a single incorrect response. Note that the signal
strength might change even though the same sweet point
was visited on two different trials, because sweet-point
estimates are changed as the estimate of the psychometric
function is updated trial by trial. This n-down, one-up
sweet-point selection rule has the potential advantage of
making the experiment easy to follow for naïve listeners,
allowing the subjects to maintain performance at a certain
percentage correct. Using this sweet-point selection rule,
Shen and Richards investigated the efficiency of an updated
maximum-likelihood procedure (UML) that utilized four

1 Note that the maximum-likelihood procedure (e.g., Green, 1990) and
the maximum-likelihood algorithm for estimating the psychometric
function are two different concepts. The maximum-likelihood algo-
rithm is a computational method to fit the psychometric function to
collected data. On the other hand, the maximum-likelihood procedure
is an adaptive psychophysical procedure by which the psychometric
function parameters are estimated following each experimental trial
using the maximum-likelihood algorithm.
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sweet points in a simulation study. Their results suggested
that extending the stimulus placement to four sweet points
improved the estimation of the psychometric function
parameters, especially for the slope and lapse rate.

The procedures described above have used sampling strat-
egies that minimize the variances of the parameter estimates.
Criteria other than variance minimization have also been used
in Bayesian adaptive procedures. Kontsevich and Tyler (1999)
described a procedure that determines signal strength by
performing a one-step-ahead search that minimized the
expected entropy function. For example, after a trial, the
parameter posterior distributions might be concentrated into
narrow regions, and thus exhibiting low entropies, or widely
spread across the parameter space, exhibiting high entropies.
Depending on the signal strength on the following trial, the
total entropies might be expected to increase or decrease.
According to Kontsevich and Tyler, the optimal place to
sample is at the signal strength that minimizes overall
expected entropy, thereby maximizing the expected informa-
tion gain. Both computer simulations and psychophysical
experiments suggested that the entropy-based Bayesian pro-
cedure with a two-alternative forced choice task yielded accu-
rate threshold estimates (within 2 dB) with as few as 30 trials,
while a good estimate of the psychometric function slope
takes, on average, 300 trials.

In the present study, three adaptive procedures were
compared in auditory gap detection experiments: the up–
down staircase procedure (Levitt, 1971), the entropy-based
Bayesian procedure (Kontsevich & Tyler, 1999), and the
UML procedure (Shen & Richards, 2012). In Experiment 1,
the three procedures were evaluated in terms of the variabil-
ity of the parameter estimates, test–retest repeatability and
rates of convergence. Experiment 2 evaluated the perfor-
mance of these procedures when frequent lapses of attention
occurred.

Experiment 1: Estimating the psychometric function
using three adaptive procedures

Method

Subjects Four normal-hearing listeners (S1–S4) partici-
pated in the present experiment. All of the listeners
were 18 to 35 years of age and had audiometric thresh-
olds equal to or better than 15 dB HL between 250 and
8,000 Hz in both ears. The left ears of the listeners
were tested in the experiment. The subjects practiced
the gap detection task for at least 2 h before the data
collection began, after which the experiment was con-
ducted in 2-h sessions. For each listener, no more than
one session was run on a single day, and listeners were
paid for their participation.

Stimuli The ability to detect a silent gap in an otherwise
continuous sound is a measure of the auditory system’s sen-
sitivity to intensity fluctuations over time (e.g., Fitzgibbons &
Wightman, 1982; Penner, 1975; Plomp, 1964; Shailer &
Moore, 1983). In the present study, the detection of a silent
gap in a broadband noise carrier was measured for four young,
normal-hearing listeners. Four sound intervals were presented
on each trial, separated by 500-ms interstimulus intervals.
Each interval contained broadband noise presented at 70 dB
SPL. The duration of the noise was 500 ms, including 5-ms
cosine-squared onset/offset ramps. In either the second or the
third interval, a brief silent gap was introduced to the temporal
center of the noise. The duration of the gap was defined from
the half-amplitude point of its cosine-squared onset to that of
its offset. The listeners were instructed to select the interval
that contained the gap, with the understanding that the gap
would only occur in one of the middle two intervals.

All stimuli were generated digitally at a sampling fre-
quency of 44,100 Hz and were presented to the left ear of
each listener via a 24-bit sound card (Envy23 PCI controller,
VIA Technologies, Inc., Taipei, Taiwan) installed on the
experimental computer, a programmable attenuator (PA4,
Tucker-Davis Technologies, Inc., Alachua, FL), a head-
phone buffer (HB6, Tucker-Davis Technologies), and a
headphone (HD410 SL, Sennheiser, Old Lyme, CT). Each
stimulus presentation was followed by visual feedback in-
dicating the correct response. The experiment was con-
ducted in a double-walled, sound-attenuating booth.

Procedure For the gap detection task, the psychometric
function was assumed to take the form of a logistic function:

p ¼ g þ 1� g � 1ð Þ 1þ e�b x�að Þ
� �.

; ð1Þ

where p indicates the proportion correct; x, the gap duration
in decibel units [x = 20 log(gap duration)/(1 × 10−3)]; α, β,
and λ are the threshold, slope, and lapse rate of the psycho-
metric function; and γ = .5 is the chance performance level
for the two-alternative forced choice paradigm.

Three procedures were used for data collection: (1)
the up–down staircase procedure, (2) the entropy-based
Bayesian procedure, and (3) the UML procedure. For
the staircase procedure, 200 trials were run, which con-
sisted of four adaptive tracks of 50 trials. On the first
trial, the gap duration was 35 dB (56.2 ms, in the
physical scale), which was reduced after two consecu-
tive correct responses and increased after a single incor-
rect response. The initial step size of 8 dB was reduced
to 5 dB after the first two reversals, and was reduced
further to 2 dB after the first four reversals.

For the entropy procedure, the parameter space was a grid
of α, β, and 1 values. The α parameter took 18 values,
ranging from −3 to 31 dB (0.7 to 35.5 ms) with 2-dB
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spacing. The β parameter took 11 log-spaced values, rang-
ing from 0.1 to 10. The 1 parameter took five values,
linearly spaced between 0 and 0.2. Flat, uninformative priors
were used for the three parameters. The signal strength—
that is, the gap duration—had 21 potential values, line-
arly spaced between −9 and 35 dB (logarithmically
spaced between 0.35 and 56.2 ms). Each adaptive track
consisted of 200 trials, which were divided into four
blocks of 50 trials. Following the procedure described
by Kontsevich and Tyler (1999), before each trial, the
posterior parameter distributions were calculated for
each potential gap duration and each potential response
(correct or incorrect). The entropies of these parameter
distributions were calculated, and the expected total
entropy was then derived for each potential gap dura-
tion. The gap duration that led to the minimum
expected entropy was used in the following stimulus
presentation. After obtaining the listener’s response, the
posterior parameter distributions were updated, and the
procedure was repeated to select the gap duration for
the next trial.

The parameter space for the UML procedure was the
same as the one used in the entropy procedure. Each
adaptive track consisted of 200 trials, which were di-
vided into four blocks of 50 trials. The initial gap
duration was 35 dB (56.2 ms). Following each trial,
the posterior parameter distributions were calculated on
the basis of the listener’s response, which updated the
best-fitting psychometric function. Then, the signal
strength was placed at one of the four sweet points
according to a two-down, one-up sweet-point selection
rule (Shen & Richards, 2012). From short to long gap
durations on the psychometric function, the four sweet
points were the lower β sweet point, the α sweet point,
the upper β sweet point, and the 1 sweet point. The
sweet points for the α and β parameters were reesti-
mated on a trial-by-trial basis, while the sweet point for
the 1 parameter was fixed at 35 dB.2 The gap duration
was shifted to the adjacent lower sweet point after two
consecutive correct responses, and was shifted to the
adjacent higher sweet point after a single incorrect
response. When the gap duration was already at the
lowest sweet point (i.e., the lower β sweet point), the
gap duration remained the same even if two correct
responses were collected. Similarly, when the gap du-
ration was at the highest sweet point (i.e., the 1 sweet
point), the gap duration stayed at that sweet point, even
after an incorrect response was collected.

For each listener, gap detection data were collected using
the three procedures in random order.3 This included four
adaptive tracks for the up–down procedure, and one track
for each of the entropy and UML procedures.4 When com-
pleted, the process was repeated, with the three procedures
being tested in the reverse order.

Psychometric functions for individual listeners were es-
timated from the data collected for each procedure, one
function for each repetition, yielding six psychometric func-
tions per listener. This was done using the psignifit routine
developed by Witchmann and Hill (2001a, 2001b). Flat
priors were used for all parameters. The ranges of the
parameters were from –20 to 20 for α, from 0.1 to 10 for
β, and from 0 to .3 for 1. To provide a best estimate of the
true underlying psychometric function, all of the data col-
lected from each listener were pooled (1,200 trials), and the
parameter estimates were calculated using the psignifit
routine.

For each procedure and each of the α, β, and 1 parame-
ters, let ϕk denote the best parameter estimate using the
pooled data for the kth listener, and let ϕr,k,n denote the
parameter estimate obtained from the kth listener in the rth
repetition and after the nth trial. The goodness of the pa-
rameter estimate for the kth listener, the rth repetition, and
after n = 200 trials was quantified by a deviation |ϕr,k,200 –
ϕk|. When

fr ;k;200 � fk

��� ��� > 0:5fk ; ð2Þ

the parameter estimate for the kth listener in the rth repetition
was considered poor. Besides the accuracy of the parameter
estimates, two additional aspects of the experimental proce-
dures—repeatability and rate of convergence—were also es-
timated. To quantify the repeatability, an across-repetition
deviation R (at the end of 200 trials and averaged across
listeners) was calculated as

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k f1;k;200 � f2;k;200
� �2

4

s
: ð3Þ

Smaller values of R indicated better repeatability. To
investigate the rate of convergence, the root-mean-squared

2 The expected variance of λ estimates was a monotonically decreasing
function of x. Therefore, the λ sweet point did not correspond to a
unique signal strength. Instead, it was defined at the upper limit of the
stimulus parameter space.

3 According to this design, the order in which the three procedures
were tested could have been the same, by chance, for two or more
listeners. However, this did not occur in either Experiment 1 or 2.
4 The data collection for the up–down procedure consisted of four
tracks of 50 trials, while for the entropy and UML procedures, data
were collected in tracks of 200 trials. Four tracks were used with the
up–down procedure (1) to represent the common practice of averaging
threshold estimates from multiple up–down tracks, and (2) to increase
stimulus sampling at long gap durations, usually occurring at the
beginning of each up–down track. Frequent stimulus sampling at long
gap durations is expected to improve the estimation of the lapse
parameter of the psychometric function (Shen & Richards, 2012).
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(RMS) deviation from the best estimate after the nth trial
was calculated as

Dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

r

P
k fr;k;n � fk
� �2
8

s
: ð4Þ

Note that Dn was defined for each trial, averaged across
listeners and repetitions. The rate of convergence was
reflected in how rapidly the value of Dn dropped with
increasing numbers of trials.5

Results and discussion

The best parameter estimates (from the pooled data) and the
estimates from the two repetitions of the three procedures
are listed in the different columns of Table 1. The results are
shown for each individual listener and for the three param-
eters of the psychometric function, in rows. Previous works
have suggested that for broadband noise carriers, the gap
detection threshold was about 2 ms (for 71 % correct; e.g.,
Forrest & Green, 1987), which corresponds to 6 dB on the
stimulus parameter scale used in the present study. The α
estimates obtained here are approximately the same.

Using the criterion specified in Eq. 2, the poor parameter
estimates are indicated in Table 1 by hash marks.
Comparing across the three procedures, poor parameter
estimates occurred less frequently for the up–down proce-
dure (four out of 24 occasions) than for the entropy (eight
out of 24 occasions) and UML (eight out of 24 occasions)
procedures. All three procedures provided fairly reliable
estimates of the α parameter, for which no poor estimates
were observed. The up–down and entropy procedures
seemed to provide better estimation of the β parameter than
did the UML procedure, while the up–down and UML
procedures outperformed the entropy procedure in terms of
the 1 estimation.

Table 2 lists the values of R (Eq. 3) for α, ln β, and 1

from the three procedures. Recall that R is a summary
statistic, and smaller values of R mean better test–retest
reliability. The values of R were comparable across different
procedures, suggesting similar repeatability for the three
procedures tested. Figure 1 plots the RMS deviation from
the best estimate, Dn, as a function of trial number. For the α
parameter (left panel), fast convergence of the estimates
over the first 100 trials was observed. The rates of conver-
gence were comparable across the three procedures. In
contrast, the value of ln β converged gradually. Here, the
rates of convergence were initially similar among the three
procedures; after 100 trials, the up–down procedure began

to converge more rapidly than the other two procedures, and
ultimately provided the best estimate of β. For the 1 param-
eter, the RMS deviations did not decrease with the trial
number in a systematic fashion for the up–down and entropy
procedures. On the other hand, a generally monotonic de-
creasing Dn was observed for the UML procedure.

Figure 2 illustrates the differences in stimulus placement for
the three procedures. Each panel of Fig. 2 plots histograms of
the gap durations presented to one of the listeners. The vertical
dashed lines mark the sweet points according to the best
parameter estimate for this listener. These sweet points are
the optimal places to sample in order to minimize the variances
in the threshold, slope, and lapse rate estimates, assuming a
logistic psychometric function (e.g., Shen & Richards, 2012).
For all three procedures, significant numbers of trials had
signal strengths near the α and β sweet points (the leftmost
three dashed lines). In this regard, the distributions of the gap
durations were similar across procedures and listeners, except
that listeners S2 and S4 showed a more concentrated distribu-
tion for the UML procedure than for the other two procedures.
Moreover, all three procedures visited the 1 sweet point (the
rightmost dashed line), though the entropy and UML proce-
dures spent more trials at the 1 sweet point than did the up–
down procedure. It is worth pointing out that although the 1

sweet point was the best place (within the defined parameter
space) to sample the stimuli for the estimation of 1, all gap
durations associated with high percentages correct (see the
labels above the dashed lines) contributed to the 1 estimate.
Although the up–down procedure visited the 1 sweet point less
frequently than did the other two procedures, it spent a signif-
icant proportion of trials at other gap durations in the high-
percentage-correct region. Therefore, a reasonable estimate of
1 was achieved using the up–down procedure, even though it
did not specifically sample the stimuli at the 1 sweet point.

The results from the present experiment suggested that
although the algorithms for updating the stimulus placement
were different for these procedures, the resulting distribu-
tions for the stimulus presentation were strikingly similar
(Fig. 2). The up–down procedure, despite of its simplicity,
provided better estimates of the β parameter than did the
UML procedure, and better estimates of the 1 parameter
than did the entropy procedure. The success of the up–down
procedure was consistent with the findings of Leek et al.
(1992). These authors showed that when the lapse rate was
assumed to be zero, the transformed up–down procedure
provided accurate estimates of the psychometric function
threshold and slope using 200 experimental trials.

For both the entropy and UML procedures, their perfor-
mance would likely to be improved if appropriate prior
parameter distributions were implemented. Informative pri-
or distributions might help prevent the placement of the
stimuli at extreme signal strengths during the entropy pro-
cedure, enhancing its efficiency. It is not clear, however,

5 Note that, for the slope parameter, the calculations of R and Dn were
based on ln β.

Atten Percept Psychophys



whether the introduction of priors would cause the entropy
procedure to outperform the UML procedure, or vice versa.
A systematic investigation of the effect of the prior distri-
bution would be needed to explore this question.

In the present experiment, the quality of the parameter
estimates was evaluated by comparing individual estimates to
the best estimate ϕk, based on the pooled data across the three
procedures (see Eqs. 2–4). However, if ϕk provided a biased
estimate of the true psychometric function, the usefulness of
these quality measures could be undermined. As pointed out by
Kaernbach (2001), biases in parameter estimates could be a
consequence of the sequential dependency inherent in adaptive
procedures. Therefore, it is important to check whether ϕk
agrees with the estimates from procedures in which the sam-
pling of stimuli is independent of responses on previous trials.
For this purpose, the estimation of the psychometric function
was repeated for one of the listeners (S4) using the method of
constant stimuli. Five blocks were run, each of which contained
60 trials. Within the 60 trials, six gap durations (3, 5, 7, 9, 11,
and 13 dB) were tested in quasirandom manner, with ten
responses being collected at each of the gap durations.
Following the data collection, 300 trials of data were used to

estimate the psychometric function using the psignifit routine.
The resulting estimates were 6.48 for α, 0.75 for β, and .01 for
1. These estimates using the method of constant stimuli
matched very closely to the best estimates from the pooled data
listed in Table 1 for listener S4. No obvious bias was observed,
except that the 1 estimate was smaller using the method of
constant stimuli. The close agreement between procedures with
and without sequential dependency in stimulus sampling pro-
vided support for the validity of the best estimates ϕk.

Experiment 2: Effect of inattention on estimates
of the psychometric function

When estimating the threshold, slope, and lapse rate simulta-
neously, one of the major difficulties faced by the estimation
algorithm (such as the psignifit routine) is that a shallow slope
is easily confused with a high lapse rate, causing a bimodal
instability. This occurs frequently when the lapse rate is high.
This problem severely prevents the reliable measurement of
the psychometric function in subjects who typically exhibit
high lapse rates, such as naive subjects, subjects from clinical
populations, infants, young children, and laboratory animals.
The present experiment was designed to investigate whether
this difficulty of estimating the psychometric function associ-
ated with the lapse of attention could be alleviated by the
sampling strategies used by the three procedures.

Method

The same four listeners participated in Experiment 2. The
stimuli and procedure used in the present experiment were
identical to those of Experiment 1, except that on one fourth

Table 2 The across-repetition deviations R for the up–down, entropy,
and updated maximum-likelihood (UML) procedures in Experiment 1.
Smaller values indicate smaller difference in parameter estimates
across replicates

Up–Down Entropy UML

α 1.74 2.39 1.74

ln β 0.30 0.31 0.48

1 .05 .08 .03

Table 1 The threshold (α), slope (β), and lapse rate (1) parameters esti-
mated for individual listeners for the two repetitions of Experiment 1.
Parameterswere estimated using three different procedures: (1) the up–down

staircase procedure (up–down), (2) the entropy-based Bayesian procedure
(entropy), and (3) the updated maximum-likelihood procedure (UML). The
hash marks indicate the poor estimates (see the criterion of Eq. 2)

Pooled Up–Down Entropy UML

Rep1 Rep2 Rep1 Rep2 Rep1 Rep2

α S1 5.90 5.78 5.84 3.77 7.32 4.37 5.61

S2 4.92 5.41 5.05 4.88 5.28 3.69 5.18

S3 6.96 8.00 5.72 6.97 6.40 9.00 6.42

S4 6.81 5.25 7.86 4.57 7.70 5.85 7.17

β S1 0.53 0.84# 0.32 2.44# 0.67 0.32 1.94#

S2 0.63 0.91 0.43 0.48 0.68 1.80# 0.94#

S3 0.64 0.57 0.96 1.24# 0.83 1.10# 0.50

S4 0.78 0.81 1.27# 0.54 0.71 0.58 1.22#

1 S1 .12 .06 .08 .25# .15 .11 .12

S2 .03 .02 .03 .00# .02 .04# .03

S3 .04 .02 .03 .00# .13# .02 .08#

S4 .04 .09# .00# .00# .00# .07# .03
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of the trials, determined at random, the listeners’ responses
were discarded and random responses were assigned. This
manipulation was introduced as a simulation of frequent
inattention during the experiment. Because during these
inattention trials the correctness of responses was deter-
mined at random, the maximum proportion correct was
bounded by .875 instead of 1. Therefore, the 1 parameter
was expected to be at least .125.

For each listener, best estimates of the psychometric
function parameters were calculated, which were used as
references to assess the accuracy provided by the three
procedures. In contrast to Experiment 1, these best estimates
were not obtained using the pooled data across procedures
and repetitions. Because the expected lapse rates were very
high, even pooling all of the collected data for each listener
(1,200 trials) would not guarantee a reliable estimate of the
psychometric function. When fitting the logistic psychomet-
ric function to the pooled data from Experiment 2 using the

psignifit routine, the confidence intervals of the parameters
were sometimes extremely large. On the other hand, when
performing the same analyses on the pooled data from
Experiment 1, much narrower confidence intervals were
obtained. Therefore, the best parameter estimates of
Experiment 2 were derived from the best estimates obtained
using the pooled data from Experiment 1. Let p1 be the best
estimated psychometric function in Experiment 1; the best
psychometric function estimate in Experiment 2 then was
given by

p2 a2; b2; 12; xð Þ ¼ :75 � p1 a1; b1; 11; xð Þ þ :25 � :5: ð5Þ
Consequently, the best parameter estimates for the two

experiments followed the relationship α2 = α1, β2 = β1, and
12 = .7511 + .125. To assess the goodness, repeatability, and
rate of convergence of the estimates, |ϕr,k,200 – ϕk|, R, and Dn

were calculated, respectively, following the same procedure
as in Experiment 1.
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Results and discussion

The derived best parameter estimates and the estimates from
the three procedures for the two repetitions are listed in the
different columns of Table 3. The results are arranged as in
Table 1. Comparing across the three procedures, poor param-
eter estimates (hash marks) occurred less frequently for the
UML procedure (four out of 24 occasions) than for the entro-
py (six out of 24 occasions) and up–down (12 out of 24
occasions) procedures. The UML procedure was more suc-
cessful in estimating the α and β parameters, as compared to
the other two procedures. Relative to the results from
Experiment 1 (Table 1), the parameter estimates were more
variable, and the total number of the poor estimates was higher
in Experiment 2. For example, for listener S1, the estimates
provided by the up–down procedure in the present experiment
did not at all resemble the best estimates. Theα estimates were
about 20 and 13 dB in the two repetitions, while the expected
α value based on the results from Experiment 1 was approx-
imately 6 dB. These results suggested that introducing fre-
quent lapses of attention brought difficulties to the procedures.
Among the three procedures tested, the UML procedure
seemed to be the most resistant to inattention.

Table 4 lists the across-repetition deviations R for
Experiment 2. The UML procedure exhibited smaller values
of R, and hence better repeatability, for the α and 1 param-
eters, whereas the up–down procedure had smaller values of
R for ln β. Figure 3 plots the values of Dn as a function of
trial number. For the α parameter (left panel), fast conver-
gence of the estimates over the first 100 trials was observed
for all three procedures. However, only the α estimate in the
UML procedure converged to a value that was close to the

expected value. The up–down and entropy procedures gave
biased estimates for the α parameter, and these biases were
largely associated with a single listener (S1). For this listen-
er, the α estimates obtained from the up–down procedure
and from the first repetition of the entropy procedure were
much larger than the best estimates predicted using the data
from Experiment 1 (see Table 3). The convergence of ln β
was fairly unstable for all of the procedures, but for the
UML procedure, the convergence was somewhat more con-
sistent: After 200 trials, the UML procedure provided the
best estimates of β. For the 1 parameter, all three procedures
showed rapid convergence, with the values of Dn being
comparable across procedures throughout the 200 trials.

Figure 4 illustrates the differences in stimulus placement
for the three procedures tested. For the UML procedure, the
distributions of gap durations were very similar to those
obtained in Experiment 1 (see Fig. 2). The stimuli were
concentrated into two areas: One was near the α and β
sweet points, and the other was at the upper limit of the
gap durations (56.2 ms). The stimulus distributions for the
entropy procedure were similar to those for the UML pro-
cedure for three of the listeners (S2, S3, and S4). For listener
S1, however, the stimuli were broadly distributed across all
gap durations. This was also the listener who had exhibited

Table 3 The threshold (α), slope (β), and lapse rate (1) parameters
estimated for individual listeners for the two repetitions of Experiment
2. Parameters were estimated using three different procedures: (1) the
up–down staircase procedure (up–down), (2) the entropy-based

Bayesian procedure (entropy), and (3) the updated maximum-likeli-
hood procedure (UML). The hash marks indicate the poor estimates
(see the criterion of Eq. 2)

Predicted Up–Down Entropy UML

Rep1 Rep2 Rep1 Rep2 Rep1 Rep2

α S1 5.90 19.90# 13.28# 19.93# 6.63 3.45 6.94

S2 4.92 5.02 7.60# 4.86 5.16 5.01 4.90

S3 6.96 8.04 8.95 4.82 5.85 4.63 6.03

S4 6.81 6.80 8.12 6.96 9.00 8.86 9.01

β S1 0.53 0.10# 0.10# 0.10# 0.27 0.67 7.18#

S2 0.63 0.76 4.94# 5.30# 0.44 0.59 1.96#

S3 0.64 0.24# 0.15# 7.29# 0.27# 0.38 0.49

S4 0.78 1.25# 1.71# 6.45# 1.02 1.11 2.55#

1 S1 .21 .01# .22 .21 .19 .21 .26

S2 .14 .08 .14 .19 .08 .10 .14

S3 .16 .12 .00# .22 .10 .16 .14

S4 .15 .15 .12 .16 .13 .10 .08#

Table 4 The across-repetition deviations R for the up–down, entropy,
and updated maximum-likelihood (UML) procedures in Experiment 2

Up–Down Entropy UML

α 3.64 6.75 1.88

ln β 0.42 1.00 0.61

1 .12 .08 .03
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the largest lapse rate in Experiment 1. Therefore, it seems
possible that listeners who naturally have high lapse rates
would be more likely to exhibit suboptimal sampling of
stimuli and poor psychometric function estimates when
additional lapses of attention are artificially introduced. In
such situations, the dynamic range of the psychometric
function, from the chance performance level to the upper
asymptote, would be very narrow, which would make the
identification of the optimal place to sample the stimuli
extremely difficult. However, it is not clear why a large
lapse rate would affect the entropy procedure more than
the UML procedure. Broad distributions of gap durations
were observed for the up–down procedure for all four lis-
teners. Listeners S2, S3, and S4 had the highest concentra-
tions of stimuli near the α and β sweet points, while for
listener S1, almost all stimuli were presented at gap dura-
tions above the α and β sweet points. These results indicated

that when the lapse rate was high, it would take large
numbers of trials for the stimuli in an up–down track to
approach its targeted percentage correct (e.g., 70.7 % correct
for a two-down, one-up track; Levitt, 1971).

In summary, the present experiment introduced random
responses in order to simulate lapses of attention. Among
the three procedures tested, the UML procedure seemed to
be less affected by this manipulation, demonstrating a sim-
ilar accuracy, repeatability, and rate of convergence as com-
pared to Experiment 1, where no artificial inattention was
introduced. On the other hand, frequent lapses of attention
had detrimental effects on performance for the up–down
procedure. Poor estimates of the α and β parameters and
poor convergence of ln β were found in the present exper-
iment. The entropy procedure gave reasonable estimates of
the psychometric function, except for one listener, who also
had the highest lapse rate. For the up–down and entropy
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procedures, the failures in the estimation of the psychomet-
ric function were associated with poor sampling strategies.

Conclusions

Three adaptive procedures were compared against one another
as means of estimating the psychometric function for an
auditory gap detection task. The psychometric function was
modeled as a logistic function that was described by three
parameters: threshold, slope, and lapse rate. The results from
four listeners showed that the up–down staircase procedure
(up–down procedure; Levitt, 1971), the entropy-based
Bayesian procedure (entropy procedure; Kontsevich &
Tyler, 1999), and the updated maximum-likelihood procedure
(UML procedure; Shen & Richards, 2012) performed similar-
ly in estimating the threshold of the psychometric function for
this task. The up–down procedure provided more efficient
estimation of the slope and the lapse rate than did the other
two procedures. When the lapse rates of the listeners were
elevated via experimental manipulations, the up–down proce-
dure gave poor estimates of the threshold and slope of the
psychometric function, presumably because it failed to opti-
mize the stimuli for estimating these parameters. The UML
procedure was less sensitive to the increased occurrences of
inattention as compared to the entropy procedure. Therefore,
if low lapse rates are expected, the up–down procedure could
be a simpler and slightly superior method for estimating the
parameters of the psychometric function simultaneously.
However, when high lapse rates are expected or the lapse rates
are unknown, the UML procedure is more likely to provide
reliable estimates of the psychometric function.
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