Sharon R Browning, PhD

I am a Research Professor in the Department of Biostatistics at the University of Washington in Seattle.

Phone: +1 206 616 5037.
Location: Health Sciences Building F-671.
For mailing/fax information see the Department of Biostatistics contact page.


My research is focussed on population genetics methods for large scale genetic data. I develop statistical methods that make use of the correlation structure in closely spaced genetic markers, and that are computationally efficient for application to whole genome sequence data.

Recent work by our group investigated the contribution of archaic humans to current-day human genomes:

This work was covered by the news media, including The Washington Post, The Los Angeles Times, and The Atlantic.


Software from my collaborations with Brian Browning, including BEAGLE, Refined IBD, IBDNe, and SPrime, can be found via Brian's website.

Scripts for estimating relatedness/kinship from IBD segments, ancestry-specific recent population size estimation, IBD mapping, clustering pairwise IBD into multi-IBD groups, and ancestry-specific PCA are also available.

Browning research group

The Browning research group includes the following talented postdoc and students: Ying (Joe) Zhou, Xiaowen Tian, and Kelsey Grinde. The group photo was taken in April 2018 (photo credit: Yu/Joe).

CV and Publications


To see a full list of my papers, go to my ResearcherID page or my Google Scholar page.

Selected publications

Browning, B. L., Y. Zhou, S. R. Browning, 2018. A one-penny imputed genome from next-generation reference panels. American Journal of Human Genetics, 103:338-348 (link to article).

Browning, S. R., B. L. Browning, Y. Zhou, S. Tucci, J. M. Akey, 2018. Analysis of Human Sequence Data Reveals Two Pulses of Archaic Denisovan Admixture. Cell, 173:53-61 (link to article).

Browning, S. R., et al., 2018. Ancestry-specific recent effective population size in the Americas. PLOS Genetics, 14:e1007385 (link to article).

Browning, S. R. and B. L. Browning, 2015. Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent. American Journal of Human Genetics, 97:404-418 (link to article). IBDNe is a method for estimating recent (past 200 generations) effective population size from population samples of SNP array or sequence data.

Browning, B. L. and S. R. Browning, 2013. Improving the Accuracy and Efficiency of Identity by Descent Detection in Population Data. Genetics, 194: 459-471 (link to open access article). Beagle's Refined IBD method finds candidate IBD segments using a hashing method and evaluates their significance via a likelihood ratio. The method is accurate, powerful, and relatively fast for large data sets.

Browning, S. R. and B. L. Browning, 2012. Identity by Descent Between Distant Relatives: Detection and Applications. Annual Review of Genetics, 46: 617-633 (link with free access to article). A review article.

Madsen, B. E. and S. R. Browning, 2009. A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic. PLOS Genetics, 5: e1000384 (link to article). We provide a test for whether mutations are more common in cases than in controls (in a gene or set of genes), which provides a useful complement to single-marker association testing, particularly in those diseases for which de novo mutations play an important role.

Browning, S. R. and B. L. Browning, 2007. Rapid and accurate haplotype phasing and missing data inference for whole genome association studies using localized haplotype clustering. American Journal of Human Genetics, 81:1084-1097 (link to article). A method for haplotype phasing that is fast and accurate on genome wide SNP-chip data.