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A First Course in String Theory
Second Edition

Barton Zwiebach is once again faithful to his goal of making string theory accessible to
undergraduates. He presents the main concepts of string theory in a concrete and physical
way to develop intuition before formalism, often through simplified and illustrative exam-
ples. Complete and thorough in its coverage, this new edition now includes the AdS/CFT
correspondence and introduces superstrings. It is perfectly suited to introductory courses
in string theory for students with a background in mathematics and physics.

This new edition contains completely new chapters on the AdS/CFT correspondence,
an introduction to superstrings, and new sections covering strings on orbifolds, cos-
mic strings, moduli stabilization, and the string theory landscape. There are almost 300
problems and exercises, with password protected solutions available to instructors at
www.cambridge.org/zwiebach.

Barton Zwiebach is Professor of Physics at the Massachusetts Institute of Technology.
His central contributions have been in the area of string field theory, where he did the
early work on the construction of the field theory of open strings and then developed the
field theory of closed strings. He has also made important contributions to the subjects of
D-branes with exceptional symmetry and tachyon condensation.

From the first edition
‘A refreshingly different approach to string theory that requires remarkably little previous
knowledge of quantum theory or relativity. This highlights fundamental features of the the-
ory that make it so radically different from theories based on point-like particles. This book
makes the subject amenable to undergraduates but it will also appeal greatly to beginning
researchers who may be overwhelmed by the standard textbooks.’

Professor Michael Green, University of Cambridge

‘Barton Zwiebach has written a careful and thorough introduction to string theory that is
suitable for a full-year course at the advanced undergraduate level. There has been much
demand for a book about string theory at this level, and this one should go a long way
towards meeting that demand.’

Professor John Schwarz, California Institute of Technology

‘There is a great curiosity about string theory, not only among physics undergraduates but
also among professional scientists outside of the field. This audience needs a text that goes
much further than the popular accounts but without the full technical detail of a graduate
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text. Zwiebach’s book meets this need in a clear and accessible manner. It is well-grounded
in familiar physical concepts, and proceeds through some of the most timely and exciting
aspects of the subject.’

Professor Joseph Polchinski, University of California, Santa Barbara

‘Zwiebach, a respected researcher in the field and a much beloved teacher at MIT, is truly
faithful to his goal of making string theory accessible to advanced undergraduates – the
test develops intuition before formalism, usually through simplified and illustrative exam-
ples . . . Zwiebach avoids the temptation of including topics that would weigh the book
down and make many students rush it back to the shelf and quit the course.’

Marcelo Gleiser, Physics Today

‘. . . well-written . . . takes us through the hottest topics in string theory research, requiring
only a solid background in mechanics and some basic quantum mechanics . . . This is not
just one more text in the ever-growing canon of popular books on string theory . . . ’

Andreas Karch, Times Higher Education Supplement

‘. . . the book provides an excellent basis for an introductory course on string theory and
is well-suited for self-study by graduate students or any physicist who wants to learn the
basics of string theory’.

Zentralblatt MATH

‘. . . excellent introduction by Zwiebach . . . aimed at advanced undergraduates who have
some background in quantum mechanics and special relativity, but have not necessarily
mastered quantum field theory and general relativity yet . . . the book . . . is a very thorough
introduction to the subject . . . Equipped with this background, the reader can safely start
to tackle the books by Green, Schwarz and Witten and by Polchinski.’

Marcel L. Vonk, Mathematical Reviews Clippings

Cover illustration: a composite illustrating open string motion as we vary the strength of
an electric field that points along the rotational axis of symmetry. There are three surfaces,
each composed of two lobes joined at the origin and shown with the same color. Each
surface is traced by a rotating open string that, at various times, appears as a line stretching
from the boundary of a lobe down to the origin and then out to the boundary of the opposite
lobe. The inner, middle, and elongated lobes arise as the magnitude of the electric field is
increased. For further details, see Problem 19.2.
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Foreword

String theory is one of the most exciting fields in theoretical physics. This ambitious and
speculative theory offers the potential of unifying gravity and all the other forces of nature
and all forms of matter into one unified conceptual structure.

String theory has the unfortunate reputation of being impossibly difficult to understand.
To some extent this is because, even to its practitioners, the theory is so new and so ill
understood. However, the basic concepts of string theory are quite simple and should be
accessible to students of physics with only advanced undergraduate training.

I have often been asked by students and by fellow physicists to recommend an intro-
duction to the basics of string theory. Until now all I could do was point them either to
popular science accounts or to advanced textbooks. But now I can recommend to them
Barton Zwiebach’s excellent book.

Zwiebach is an accomplished string theorist, who has made many important contribu-
tions to the theory, especially to the development of string field theory. In this book he
presents a remarkably comprehensive description of string theory that starts at the begin-
ning, assumes only minimal knowledge of advanced physics, and proceeds to the current
frontiers of physics. Already tested in the form of a very successful undergraduate course
at MIT, Zwiebach’s exposition proves that string theory can be understood and appreciated
by a wide audience.

I strongly recommend this book to anyone who wants to learn the basics of string theory.

David Gross
Director, Kavli Institute For Theoretical Physics

University of California, Santa Barbara





From the Preface to the First Edition

The idea of having a serious string theory course for undergraduates was first suggested to
me by a group of MIT sophomores sometime in May of 2001. I was teaching Statistical
Physics, and I had spent an hour-long recitation explaining how a relativistic string at high
energies appears to approach a constant temperature (the Hagedorn temperature). I was
intrigued by the idea of a basic string theory course, but it was not immediately clear to me
that a useful one could be devised at this level.

A few months later, I had a conversation with Marc Kastner, the Physics Department
Head. In passing, I told him about the sophomores’ request for a string theory course.
Kastner’s instantaneous and enthusiastic reaction made me consider seriously the idea for
the first time. At the end of 2001, a new course was added to the undergraduate physics
curriculum at MIT. In the spring term of 2002 I taught String Theory for Undergraduates
for the first time. This book grew out of the lecture notes for that course.

When we think about teaching string theory at the undergraduate level the main question
is, “Can the material really be explained at this level?”. After teaching the subject two
times, I am convinced that the answer to the question is a definite yes. Although a complete
mastery of string theory requires a graduate-level physics education, the basics of string
theory can be well understood with the limited tools acquired in the first two or three years
of an undergraduate education.

What is the value of learning string theory, for an undergraduate? By exposing the stu-
dents to cutting-edge ideas, a course in string theory can help nurture the excitement and
enthusiasm that led them to choose physics as a major. Moreover, students will find in string
theory an opportunity to sharpen and refine their understanding of most of the undergradu-
ate physics curriculum. This is valuable even for students who do not plan to specialize in
theoretical physics.

This book was tailored to be understandable to an advanced undergraduate. Therefore,
I believe it will be a readable introduction to string theory for any graduate student or, in
fact, for any physicist who wants to learn the basics of string theory.

Acknowledgements

I would like to thank Marc Kastner, Physics Department Head, for his enthusiastic support
and his interest. I am also grateful to Thomas Greytak, Associate Head for Education,
and to Robert Jaffe, Director of the Center for Theoretical Physics, both of whom kindly
supported this project.
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Teaching string theory to a class composed largely of bright undergraduates was both a
stimulating and a rewarding experience. I am grateful to the group of students that com-
posed the first class:

Jeffrey Brock Adam Granich Trisha Montalbo
Zilong Chen Markéta Havlı́čková Eugene Motoyama
Blair Connely Kenneth Jensen Megha Padi
Ivailo Dimov Michael Krypel Ian Parrish
Peter Eckley Francis Lam James Pate
Qudsia Ejaz Philippe Larochelle Timothy Richards
Kasey Ensslin Gabrielle Magro James Smith
Teresa Fazio Sourav Mandal Morgan Sonderegger
Caglar Girit Stefanos Marnerides David Starr
Donglai Gong

They were enthusiastic, funny, and lively. My lectures were voice-recorded and three
of the students, Gabrielle Magro, Megha Padi, and David Starr, turned the tapes and the
blackboard equations into LATEX files. I am grateful to the three of them for their dedication
and for the care they took in creating accurate files. They provided the impetus to start the
process of writing a book. I edited the files to produce lecture notes.

Additional files for a set of summer lectures were created by Gabrielle and Megha. In
the next six months the lecture notes became the draft for a book. After teaching the course
for a second time in the spring term of 2003 and a long summer of edits and revisions, the
book was completed in October 2003.

By the time the lecture notes had become a book draft, David Starr offered to read it
critically. He basically marked every paragraph, suggesting improvements in the exposition
and demonstrating an uncanny ability to spot weak points. His criticism forced me to go
through major rewriting. His input was tremendous. Whatever degree of clarity has been
achieved, it is in no small measure thanks to his effort.

I am delighted to acknowledge help and advice from my friend and colleague Jeffrey
Goldstone. He shared generously his understanding of string theory, and several sections
in this book literally grew out of his comments. He helped me teach the course the second
time that it was offered. While doing so, he offered perceptive criticism of the whole text.
He also helped improve many of the problems, for which he wrote elegant solutions.

The input of my friend and collaborator Ashoke Sen was critical. He believed that string
theory could be taught at a basic level and encouraged me to try to do it. I consulted
repeatedly with him about the topics to be covered and about the strategies to present them.
He kindly read the first full set of lecture notes and gave invaluable advice that helped shape
the form of this book.

The help and interest of many people made writing this book a very pleasant task. For
detailed comments on all of its content I am indebted to Chien-Hao Liu and to James
Stasheff. Alan Dunn and Blake Stacey helped test the problems that could not be assigned
in class. Jan Troost was a sounding board and provided advice and criticism. I’ve relied
on the knowledge of my string theory colleagues – Amihay Hanany, Daniel Freedman,
and Washington Taylor. I’d like to thank Philip Argyres, Andreas Karch, and Frieder Lenz
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for testing the lecture notes with their students. Juan Maldacena and Samir Mathur pro-
vided helpful input on the subject of string thermodynamics and black holes. Boris Körs,
Fernando Quevedo, and Angel Uranga helped and advised on the subject of string phe-
nomenology. Thanks are also due to Tamsin van Essen, editor at Cambridge, for her advice
and her careful work during the entire publishing process.

Finally, I would like to thank my wife Gaby and my children Cecile, Evy, Margaret, and
Aaron. At every step of the way I was showered with their love and support. Cecile and
Evy read parts of the manuscript and advised on language. Questions on string theory from
Gaby and Margaret tested my ability to explain. Young Aaron insisted that a ghost sitting
on a string would make a perfect cover page, but we settled for strings moving in electric
fields.

Barton Zwiebach
Cambridge, Massachusetts, 2003





Preface to the Second Edition

It has been almost five years since I finished writing the first edition of A First Course
in String Theory. I have since taught the undergraduate string theory course at MIT three
times, and I have received comments and suggestions from colleagues all over the world. I
have learned what parts of the book are most challenging for the students, and I have heard
requests for extra material.

As in the first edition, the book is broadly divided into Part I (Basics) and Part II (Devel-
opments). In this second edition I have improved the clarity of many arguments and the
general readability of Part I. This part is studied by the largest number of readers, many of
them independently and outside of the classroom setting. The changes should make study
easier. There are more figures and the number of problems has been increased to better
cover the range of ideas developed in the text. Part I has five new sections and one new
chapter. The new sections discuss the classical motion of closed strings, cosmic strings,
and orbifolds. The new chapter, Chapter 14, is the last one of Part I. It explains the basics
of superstring theory.

Part II has changed as well. The ordering of chapters has been altered to bring T-
duality earlier into the book. The material relevant to particle physics has been collected
in Chapter 21 and includes a new section on moduli stabilization and the landscape.
Chapter 23 is new and is entirely devoted to strong interactions and the AdS/CFT cor-
respondence. I aim to give there a gentle introduction to this lively area of research. The
number of chapters in the book has gone from twenty-three to twenty-six, a nice number
to end a book on string theory!

I want to thank Hong Liu and Juan Maldacena for helpful input on the subject of
AdS/CFT. Many thanks are also due to Alan Guth, who helped me teach the string the-
ory course in the spring term of 2007. He tested many of the new problems and offered
very valuable criticism of the text.

About this book

A First Course in String Theory should be accessible to anyone who has been exposed to
special relativity, basic quantum mechanics, electromagnetism, and introductory statistical
physics. Some familiarity with Lagrangian mechanics is useful but not indispensable.

Except for the introduction, all chapters contain exercises and problems. The exercises,
called Quick calculations, are inserted at various points throughout the text. They are con-
trol calculations that are expected to be straightforward. Undue difficulty in carrying them
out may indicate problems understanding the material. The problems at the end of the
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chapters are more challenging and sometimes develop new ideas. A problem marked with
a dagger† is one whose results are cited later in the text. A mastery of the material requires
solving all the exercises and many of the problems. All the problems should be read, at
least.

Throughout most of the book the material is developed in a self-contained way, and very
little must be taken on faith. Chapters 14, 21, 22, and 23 contain a few sections that address
subjects of much interest for which a full explanation cannot be provided at the level of this
book. The reader will be asked to accept some reasonable facts at face value, but otherwise
the material is developed logically and should be fully understandable. These sections are
not addressed to experts.

This book has two parts. Part I is called “Basics,” and Part II is called “Developments.”
Part I begins with Chapter 1 and concludes with Chapter 14. Part II comprises the rest of
the book: it begins with Chapter 15 and it ends with Chapter 26.

Chapter 1 serves as an introduction. Chapter 2 reviews special relativity, but it also intro-
duces concepts that are likely to be new: light-cone coordinates, light-cone energy, compact
extra dimensions, and orbifolds. In Chapter 3 we review electrodynamics and its manifestly
relativistic formulation. We make some comments on general relativity and study the effect
of compact dimensions on the Planck length. We are able at this point to examine the excit-
ing possibility that large extra dimensions may exist. Chapter 4 uses nonrelativistic strings
to develop some intuition, to review the Lagrangian formulation of mechanics, and to intro-
duce terminology. Chapter 5 uses the relativistic point particle to prepare the ground for
the study of the relativistic string. The power and elegance of the Lagrangian formulation
become evident at this point. The first encounter with string theory happens in Chapter 6,
which deals with the classical dynamics of the relativistic string. This is a very important
chapter, and it must be understood thoroughly. Chapter 7 solidifies the understanding of
string dynamics through the detailed study of string motion, both for open and for closed
strings. It includes a section on cosmic strings, a topic of potential experimental relevance.
Chapters 1 through 7 could comprise a mini-course in string theory.

Chapters 8 through 11 prepare the ground for the quantization of relativistic strings. In
Chapter 8, one learns how to calculate conserved quantities, such as the momentum and
the angular momentum of free strings. Chapter 9 gives the light-cone gauge solution of
the string equations of motion and introduces the terminology that is used in the quantum
theory. Chapter 10 explains the basics of quantum fields and particle states, with emphasis
on the counting of the parameters that characterize scalar field states, photon states, and
graviton states. In Chapter 11 we perform the light-cone gauge quantization of the rela-
tivistic particle. It all comes together in Chapter 12, another important chapter that should
be understood thoroughly. This chapter presents the light-cone gauge quantization of the
open relativistic string. The critical dimension is obtained and photon states are shown to
emerge. Chapter 12 contains a section on the subject of tachyon condensation. Chapter 13
discusses the quantization of closed strings and the emergence of graviton states. It also
contains two sections that deal with quantum closed strings on the simplest orbifold, the
half-line. Chapter 14 is the last chapter of Part I. It introduces the subject of superstrings.
The Ramond and Neveu–Schwarz sectors of open strings are presented and combined to
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obtain a supersymmetric theory. The chapter concludes with a brief discussion of type II
closed string theories.

The first part of this book can be characterized as an uphill road that leads to the quantiza-
tion of the string at the summit. In the second part of this book the climb is over. The pace
slows down a little, and the material elaborates upon previously introduced ideas. In Part II
one reaps many rewards for the effort exerted in Part I.

The first chapter in Part II, Chapter 15, deals with the important subject of open strings
on various D-brane configurations. The discussion of orientifolds has been relegated to the
problems at the end of the chapter. Chapter 16 introduces the concept of string charge and
demonstrates that the endpoints of open strings carry Maxwell charge. The next four chap-
ters are organized around the fascinating subject of T-duality. Chapters 17 and 18 present
the T-duality properties of closed and open strings, respectively. Chapter 19 studies D-
branes with electromagnetic fields, using T-duality as the main tool. Chapter 20 introduces
the general framework of nonlinear electrodynamics. It demonstrates that electromagnetic
fields in string theory are governed by Born–Infeld theory, a nonlinear theory in which the
self-energy of point charges is finite.

String models of particle physics are considered in Chapter 21. This chapter explains
in detail the particle content of the Standard Model and discusses one approach, based
on intersecting D6-branes, to the construction of a realistic string model. The chapter
concludes with some material on moduli stabilization and the landscape.

Chapter 22 begins with string thermodynamics, followed by the subject of black hole
entropy. It presents string theory attempts to derive the entropy of Schwarzschild black
holes and the successful derivation of the entropy for a supersymmetric black hole. The
applications of string theory to strong interactions are studied in Chapter 23. After a dis-
cussion of Regge trajectories and the quark–antiquark potential, the subject turns to the
AdS/CFT correspondence. The correspondence is discussed in some detail, with emphasis
on the geometry of AdS spaces. A section on the quark–gluon plasma is included.

Chapter 24 gives an introduction to the Lorentz covariant quantization of strings. It also
introduces the Polyakov string action. The last two chapters in the book, Chapters 25
and 26, examine string interactions. We learn that the string diagrams which represent
the processes of string interactions are Riemann surfaces. These two chapters assume a lit-
tle familiarity with complex variables and have a mathematical flavor. One important goal
here is to provide insight into the absence of ultraviolet divergences in string theory, the
fact that made string theory the first candidate for a theory of quantum gravity.

In this book I have tried to emphasize the connections with ideas that students have learned
before. The quantization of strings is described as the quantization of an infinite number
of oscillators. String charge is visualized as a Maxwell current. The effects of Wilson lines
on circles are compared with the Bohm–Aharonov effect. The modulus of an annulus is
related to the capacitance of a cylindrical conductor, and so forth and so on. The treatment
of topics is generally explicit and detailed, with formalism kept to a minimum.

The choice was made to use the light-cone gauge to quantize the strings. This approach
to quantization can be understood in full detail by students with some prior exposure to
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quantum mechanics. The same is not true for the Lorentz covariant quantization of strings,
where states of negative norms must be dealt with, the Hamiltonian vanishes, and there is
no conventional looking Schrödinger equation. The light-cone approach suffices for most
physical problems and, in fact, simplifies the treatment of several questions.

This book as a textbook

Part I of the book is structured tightly. Little can be omitted without hampering the under-
standing of string quantization. The first chapter in Part II (on D-branes) is important
for much of the later material. Many choices among the remaining chapters are possible.
Different readers/instructors may take different routes.

My experience suggests that the complete book can be covered in a full-year course at
the undergraduate level. In a school with an academic year composed of three quarters,
Part I and four chapters from Part II may be covered in two quarters. In a school with an
academic year composed of two semesters, Part I and two chapters from Part II may be
covered in one semester. In either case, the choice of chapters from Part II is a matter of
taste. Chapters 21, 22, and 23 give an appreciation for current research in string theory.
Lecturers who prefer to focus on T-duality and its implications will cover as much as
possible from Chapters 17–20. If this book is used to teach exclusively to graduate students,
the pace can be quickened considerably.

An updated list of corrections can be found at http://xserver.lns.mit.edu/∼zwiebach/
firstcourse.html. Solutions to the problems in the book are available to lecturers via
solutions@cambridge.org.
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1 A brief introduction

Here we meet string theory for the first time. We see how it fits into the historical
development of physics, and how it aims to provide a unified description of all
fundamental interactions.

1.1 The road to unification

Over the course of time, the development of physics has been marked by unifications:
events when different phenomena were recognized to be related and theories were adjusted
to reflect such recognition. One of the most significant of these unifications occurred in the
nineteenth century.

For a while, electricity and magnetism had appeared to be unrelated physical phenom-
ena. Electricity was studied first. The remarkable experiments of Henry Cavendish were
performed in the period from 1771 to 1773. They were followed by the investigations of
Charles Augustin de Coulomb, which were completed in 1785. These works provided a
theory of static electricity, or electrostatics. Subsequent research into magnetism, however,
began to reveal connections with electricity. In 1819 Hans Christian Oersted discovered
that the electric current on a wire can deflect the needle of a compass placed nearby.
Shortly thereafter, Jean-Baptiste Biot and Felix Savart (1820) and André-Marie Ampère
(1820–1825) established the rules by which electric currents produce magnetic fields. A
crucial step was taken by Michael Faraday (1831), who showed that changing magnetic
fields generate electric fields. Equations that described all of these results became available,
but they were, in fact, inconsistent. It was James Clerk Maxwell (1865) who constructed a
consistent set of equations by adding a new term to one of the equations. Not only did this
term remove the inconsistencies, but it also resulted in the prediction of electromagnetic
waves. For this great insight, the equations of electromagnetism (or electrodynamics) are
now called “Maxwell’s equations.” These equations unify electricity and magnetism into
a consistent whole. This elegant and aesthetically pleasing unification was not optional.
Separate theories of electricity and magnetism would be inconsistent.

Another fundamental unification of two types of phenomena occurred in the late 1960s,
about one-hundred years after the work of Maxwell. This unification revealed the deep
relationship between electromagnetic forces and the forces responsible for weak interac-
tions. To appreciate the significance of this unification it is necessary first to review the
main developments that occurred in physics since the time of Maxwell.
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An important change of paradigm was triggered by Albert Einstein’s special theory of
relativity. In this theory one finds a striking conceptual unification of the separate notions of
space and time. Different from a unification of forces, the merging of space and time into a
spacetime continuum represented a new recognition of the nature of the arena where phys-
ical phenomena take place. Newtonian mechanics was replaced by relativistic mechanics,
and older ideas of absolute time were abandoned. Mass and energy were shown to be
interchangeable.

Another change of paradigm, perhaps an even more dramatic one, was brought forth by
the discovery of quantum mechanics. Developed by Erwin Schrödinger, Werner Heisen-
berg, Paul Dirac and others, quantum theory was verified to be the correct framework
to describe microscopic phenomena. In quantum mechanics classical observables become
operators. If two operators fail to commute, the corresponding observables cannot be mea-
sured simultaneously. Quantum mechanics is a framework, more than a theory. It gives the
rules by which theories must be used to extract physical predictions.

In addition to these developments, four fundamental forces had been recognized to exist
in nature. Let us have a brief look at them.

One of them is the force of gravity. This force has been known since antiquity, but it was
first described accurately by Isaac Newton. Gravity underwent a profound reformulation in
Albert Einstein’s theory of general relativity. In this theory, the spacetime arena of special
relativity acquires a life of its own, and gravitational forces arise from the curvature of this
dynamical spacetime. Einstein’s general relativity is a classical theory of gravitation. It is
not formulated as a quantum theory.

The second fundamental force is the electromagnetic force. As we discussed above,
the electromagnetic force is well described by Maxwell’s equations. Electromagnetism, or
Maxwell theory, is formulated as a classical theory of electromagnetic fields. As opposed
to Newtonian mechanics, which was modified by special relativity, Maxwell theory is fully
consistent with special relativity.

The third fundamental force is the weak force. This force is responsible for the process
of nuclear beta decay, in which a neutron decays into a proton, an electron, and an anti-
neutrino. In general, processes that involve neutrinos are mediated by weak forces. While
nuclear beta decay had been known since the end of the nineteenth century, the recognition
that a new force was at play did not take hold until the middle of the twentieth century.
The strength of this force is measured by the Fermi constant. Weak interactions are much
weaker than electromagnetic interactions.

Finally, the fourth force is the strong force, nowadays called the color force. This force
is at play in holding together the constituents of the neutron, the proton, the pions, and
many other subnuclear particles. These constituents, called quarks, are held so tightly by
the color force that they cannot be seen in isolation.

We are now in a position to return to the subject of unification. In the late 1960s the
Weinberg–Salam model of electroweak interactions put together electromagnetism and the
weak force into a unified framework. This unified model was neither dictated nor justified
only by considerations of simplicity or elegance. It was necessary for a predictive and con-
sistent theory of the weak interactions. The theory is initially formulated with four massless
particles that carry the forces. A process of symmetry breaking gives mass to three of these
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particles: the W+, the W−, and the Z0. These particles are the carriers of the weak force.
The particle that remains massless is the photon, which is the carrier of the electromagnetic
force.

Maxwell’s equations, as we discussed before, are equations of classical electromag-
netism. They do not provide a quantum theory. Physicists have discovered quantization
methods, which can be used to turn a classical theory into a quantum theory – a theory
that can be calculated using the principles of quantum mechanics. While classical electro-
dynamics can be used confidently to calculate the transmission of energy in power lines
and the radiation patterns of radio antennas, it is neither an accurate nor a correct theory
for microscopic phenomena. Quantum electrodynamics (QED), the quantum version of
classical electrodynamics, is required for correct computations in this arena. In QED, the
photon appears as the quantum of the electromagnetic field. The theory of weak interac-
tions is also a quantum theory of particles, so the correct, unified theory is the quantum
electroweak theory.

The quantization procedure is also successful in the case of the strong color force, and
the resulting theory has been called quantum chromodynamics (QCD). The carriers of the
color force are eight massless particles. These are colored gluons, and just like the quarks,
they cannot be observed in isolation. The quarks respond to the gluons because they carry
color. Quarks can come in three colors.

The electroweak theory together with QCD form the Standard Model of particle physics.
In the Standard Model there is some interplay between the electroweak sector and the
QCD sector because some particles feel both types of forces. But there is no real and
deep unification of the weak force and the color force. The Standard Model summarizes
completely the present knowledge of particle physics. So, in fact, we are not certain about
any possible further unification.

In the Standard Model there are twelve force carriers: the eight gluons, the W+, the W−,
the Z0, and the photon. All of these are bosons. There are also many matter particles, all of
which are fermions. The matter particles are of two types: leptons and quarks. The leptons
include the electron e−, the muon μ−, the tau τ−, and the associated neutrinos νe, νμ, and
ντ . We can list them as

leptons : e−, μ−, τ−, νe, νμ, ντ .

Since we must include their antiparticles, this adds up to a total of twelve leptons. The
quarks carry color charge, electric charge, and can respond to the weak force as well.
There are six different types of quarks. Poetically called flavors, these types are: up (u),
down (d), charm (c), strange (s), top (t), and bottom (b). We can list them as

quarks : u, d, c, s, t, b.

The u and d quarks, for example, carry different electric charges and respond differently
to the weak force. Each of the six quark flavors listed above comes in three colors, so this
gives 6 × 3 = 18 particles. Including the antiparticles, we get a total of 36 quarks. Adding
leptons and quarks together we have a grand total of 48 matter particles. Adding matter
particles and force carriers together we have a total of 60 particles in the Standard Model.

Despite the large number of particles it describes, the Standard Model is reasonably
elegant and very powerful. As a complete theory of physics, however, it has two significant
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shortcomings. The first one is that it does not include gravity. The second one is that it
has about twenty parameters that cannot be calculated within its framework. Perhaps the
simplest example of such a parameter is the dimensionless (or unit-less) ratio of the mass
of the muon to the mass of the electron. The value of this ratio is about 207, and it must be
put into the model by hand.

Most physicists believe that the Standard Model is only a step towards the formulation of
a complete theory of physics. A large number of physicists also suspect that some unifica-
tion of the electroweak and strong forces into a Grand Unified Theory (GUT) will prove to
be correct. At present, however, the unification of these two forces appears to be optional.

Another attractive possibility is that a more complete version of the Standard Model
includes supersymmetry. Supersymmetry is a symmetry that relates bosons to fermions.
Since all matter particles are fermions and all force carriers are bosons, this remarkable
symmetry unifies matter and forces. In a theory with supersymmetry, bosons and fermions
appear in pairs of equal mass. The particles of the Standard Model do not have this property,
so supersymmetry, if it exists in nature, must be spontaneously broken. Supersymme-
try is such an appealing symmetry that many physicists believe that it will eventually be
discovered.

While the above extensions of the Standard Model may or may not occur, it is clear that
the inclusion of gravity into the particle physics framework is not optional. Gravity must
be included, with or without unification, if one is to have a complete theory. The effects of
the gravitational force are presently quite negligible at the microscopic level, but they are
crucial in studies of cosmology of the early universe.

There is, however, a major problem when one attempts to incorporate gravitational
physics into the Standard Model. The Standard Model is a quantum theory, while Einstein’s
general relativity is a classical theory. It seems very difficult, if not altogether impossible,
to have a consistent theory that is partly quantum and partly classical. Given the successes
of quantum theory, it is widely believed that gravity must be turned into a quantum theory.
The procedures of quantization, however, encounter profound difficulties in the case of
gravity. The resulting theory of quantum gravity appears to be ill-defined. As a practical
matter, in many circumstances one can work confidently with classical gravity coupled to
the Standard Model. For example, this is done routinely in present-day descriptions of the
universe. A theory of quantum gravity is necessary, however, to study physics at times very
near to the Big Bang, and to study certain properties of black holes. Formulating a quan-
tum theory that includes both gravity and the other forces seems fundamentally necessary.
A unification of gravity with the other forces might be required to construct this complete
theory.

1.2 String theory as a unified theory of physics

String theory is an excellent candidate for a unified theory of all forces in nature. It is also
a rather impressive prototype of a complete theory of physics. In string theory all forces
are truly unified in a deep and significant way. In fact, all the particles are unified. String



7 1.2 String theory as a unified theory of physics
�

α
γ γ

β
β

α

�Fig. 1.1 The decay α → β + γ as a particle process (left) and as a string process (right).

theory is a quantum theory, and, because it includes gravitation, it is a quantum theory
of gravity. Viewed from this perspective, and recalling the failure of Einstein’s gravity to
yield a quantum theory, one may conclude that in string theory all other interactions are
necessary for the consistency of the quantum gravitational sector! While it may be difficult
to measure the effects of quantum gravity directly, a theory of quantum gravity such as
string theory may have testable predictions concerning the other interactions.

Why is string theory a truly unified theory? The reason is simple and goes to the heart
of the theory. In string theory, each particle is identified as a particular vibrational mode
of an elementary microscopic string. A musical analogy is very apt. Just as a violin string
can vibrate in different modes and each mode corresponds to a different sound, the modes
of vibration of a fundamental string can be recognized as the different particles we know.
One of the vibrational states of strings is the graviton, the quantum of the gravitational
field. Since there is just one type of string, and all particles arise from string vibrations,
all particles are naturally incorporated into a single theory. When we think in string theory
of a decay process α → β + γ , where an elementary particle α decays into particles β

and γ , we imagine a single string vibrating in such a way that it is identified as particle
α that breaks into two strings that vibrate in ways that identify them as particles β and
γ (Figure 1.1). Since strings may turn out to be extremely tiny, it may be difficult to observe
directly the string-like nature of particles.

Are we sure that string theory is a good quantum theory of gravity? There is no complete
certainty yet, but the evidence is very good. Indeed, the problems that occur when one tries
to quantize Einstein’s theory do not seem to appear in string theory.

For a theory as ambitious as string theory, a certain degree of uniqueness is clearly desir-
able. It would be somewhat disappointing to have several consistent candidates for a theory
of all interactions. The first sign that string theory is rather unique is that it does not have
adjustable dimensionless parameters. As we mentioned before, the Standard Model of par-
ticle physics has about twenty parameters that must be adjusted to some precise values. A
theory with adjustable dimensionless parameters is not really unique. When the parameters
are set to different values one obtains different theories with potentially different predic-
tions. String theory has one dimensionful parameter, the string length �s . Its value can be
roughly imagined as the typical size of strings.

Another intriguing sign of the uniqueness of string theory is the fact that the dimen-
sionality of spacetime is fixed. Our physical spacetime is four-dimensional, with one time
dimension and three space dimensions. In the Standard Model this information is used
to build the theory, it is not derived. In string theory, on the other hand, the number of
spacetime dimensions emerges from a calculation. The answer is not four, but rather ten.
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Some of these dimensions may hide from plain view if they curl up into a space that is
small enough to escape detection in experiments done with low energies. If string theory
is correct, some mechanism must ensure that the observable dimensionality of spacetime
is four.

The lack of adjustable dimensionless parameters is a sign of the uniqueness of string
theory: it means that the theory cannot be deformed or changed continuously by changing
these parameters. But there could be other theories that cannot be reached by continuous
deformations. So how many string theories are there?

Let us begin by noting two broad subdivisions. There are open strings and there are closed
strings. Open strings have two endpoints, while closed strings have no endpoints. One
can consider theories with only closed strings and theories with both open and closed
strings. Since open strings generally can close to form closed strings, we do not consider
theories with only open strings. The second subdivision is between bosonic string theories
and superstring theories. Bosonic strings live in 26 dimensions, and all of their vibrations
represent bosons. Since they lack fermions, bosonic string theories are not realistic. They
are, however, much simpler than the superstrings, and most of the important concepts in
string theory can be explained in the context of bosonic strings. The superstrings live in ten-
dimensional spacetime, and their spectrum of states includes bosons and fermions. In fact,
these two sets of particles are related by supersymmetry. Supersymmetry is therefore an
important ingredient in string theory. All realistic models of string theory are built from
superstrings. In all string theories the graviton appears as a vibrational mode of closed
strings. In string theory gravity is unavoidable.

By the mid 1980s five ten-dimensional superstring theories were known to exist. In the
years that followed, many interrelations between these theories were found. Moreover,
another theory was discovered by taking a certain strong coupling limit of one of the
superstrings. This theory is eleven-dimensional and has been dubbed M-theory, for lack
of a better name. It has now become clear that the five superstrings and M-theory are only
facets or different limits of a single unique theory! At present, this unique theory remains
fairly mysterious. It is not yet clear whether or not the set of bosonic string theories is
connected to the web of superstring theories.

All in all, we see that string theory is a truly unified and possibly unique theory. It is a
candidate for a unified theory of physics, a theory Albert Einstein tried to find ever since his
discovery of general relativity. Einstein would have been surprised, or perhaps disturbed,
by the prominent role that quantum mechanics plays in string theory. But string theory
appears to be a worthy successor of general relativity. It is almost certain that string theory
will give rise to a new conception of spacetime. The prominence of quantum mechanics in
string theory would not have surprised Paul Dirac. His writings on quantization suggest that
he felt that deep quantum theories arise from the quantization of classical physics. This is
precisely what happens in string theory. This book will explain in detail how string theory,
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at least in its simplest form, is nothing but the quantum mechanics of classical relativistic
strings.

1.3 String theory and its verification

It should be said at the outset that, as of yet, there has been no experimental verification
of string theory. In order to have experimental verification one needs a sharp prediction.
It has been difficult to obtain such a prediction. String theory is still at an early stage
of development, and it is not so easy to make predictions with a theory that is not well
understood. Still, some interesting possibilities have emerged.

As we mentioned earlier, superstring theory requires a ten-dimensional spacetime: one
dimension of time and nine of space. If string theory is correct, extra spatial dimensions
must exist, even if we have not seen them yet. Can we test the existence of these extra
dimensions? If the extra dimensions are the size of the Planck length �P (the length scale
associated with four-dimensional gravity), they will remain beyond direct detection, per-
haps forever. Indeed, �P ∼ 10−33 cm, and this distance is many orders of magnitude smaller
than 10−16 cm, which is roughly the smallest distance that has been explored with particle
accelerators. This scenario was deemed to be most likely. It was assumed that in string
theory the length scale �s coincides with the Planck length, in which case extra dimensions
would be of Planck length, as well.

It turns out, however, that string theory allows extra dimensions that are as large as
a tenth of a millimeter! Surprisingly, extra dimensions that large may have gone unde-
tected. To make this work out, the string length �s is taken to be of the order of 10−18 cm.
Moreover, our three-dimensional space emerges as a hypersurface embedded inside the
nine-dimensional space. The hypersurface, or higher-dimensional membrane, is called a
D-brane. D-branes are real, physical objects in string theory. In this setup, the presence
of large extra dimensions is tested by gravitational experiments. Extra dimensions much
larger than �P but still very small may be detected with particle accelerators. If extra dimen-
sions are detected, this would be strong evidence for string theory. We discuss the subject
of large extra dimensions in Chapter 3.

A striking confirmation of string theory may result from the discovery of a cosmic string.
Left-over from early universe processes, a cosmic string can stretch across the observable
universe and may be detected via gravitational lensing or, more indirectly, through the
detection of gravitational waves. No cosmic strings have been detected to date, but the
searches have not been exhaustive and they continue. If found, a cosmic string must be
studied in detail to confirm that it is a string from string theory and not the kind of string
that can arise from conventional theories of particle physics. We discuss the subject of
cosmic strings in Chapter 7.

Another interesting possibility has to do with supersymmetry. If we start with a
ten-dimensional superstring theory and compactify the six extra dimensions, the result-
ing four-dimensional theory is, in many cases, supersymmetric. No unique predictions
have emerged for the specific details of the four-dimensional theory, but supersymmetry
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may be a rather generic feature. An experimental discovery of supersymmetry in future
accelerators would suggest very strongly that string theory is on the right track.

Leaving aside predictions of new phenomena, we must ask whether the Standard Model
emerges from string theory. It should, since string theory is supposed to be a unified the-
ory of all interactions, and it must therefore reduce to the Standard Model for sufficiently
low energies. While string theory certainly has room to include all known particles and
interactions, and this is very good news indeed, no one has yet been able to show that
they actually emerge in fine detail. In Chapter 21 we will study some models which use
D-branes and have an uncanny resemblance to the world as we know it. In these models the
particle content is in fact precisely that of the Standard Model (the particles are obtained
with zero mass, however, and it is not clear whether the process that gives them mass can
work out correctly). Our four-dimensional world is part of the D-branes, but these D-branes
happen to have more than three spatial directions. The additional D-brane dimensions are
wrapped on the compact space (we will learn how to imagine such configurations!). The
gauge bosons and the matter particles in the model arise from vibrations of open strings
that stretch between D-branes. As we will learn, the endpoints of open strings must remain
attached to the D-branes. If you wish, the musical analogy for strings is improved. Just as
the strings of a violin are held stretched by pegs, the D-branes hold fixed the endpoints
of the open strings whose lowest vibrational modes could represent the particles of the
Standard Model!

String theory shares with Einstein’s gravity a problematic feature. Einstein’s equations
of gravitation admit many cosmological solutions. Each solution represents a consistent
universe, but only one of them represents our observable universe. It is not easy to explain
what selects the physical solution, but in cosmology this is done using arguments based
on initial conditions, symmetry, and simplicity. The smaller the number of solutions a
theory has, the more predictive it is. If the set of solutions is characterized by continuous
parameters, selecting a solution is equivalent to adjusting the values of the parameters.
In this way, a theory whose formulation requires no adjustable parameters may generate
adjustable parameters through its solutions! It seems clear that in string theory the set of
solutions (string models) is characterized by both discrete and continuous parameters.

In order to reproduce the Standard Model it seems clear that the string model must
not have continuous parameters; such parameters imply the existence of massless fields
that have not been observed. It was not easy to find models without continuous parame-
ters, but that became possible recently in the context of flux compactifications; models in
which the extra dimensions are threaded by analogs of electric and magnetic fields. There
is an extraordinary large number of such models, certainly more than 10500 of them. There
may be even more models that manage to avoid continuous parameters by other means.
Physicists speak of a vast landscape of string solutions or models.

In this light we can wonder what are the possible outcomes of the search for a realistic
string model. One possible outcome (the worst one) is that no string model in the land-
scape reproduces the Standard Model. This would rule out string theory. Another possible
outcome (the best one) is that one string model reproduces the Standard Model. Moreover,
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the model represents a well-isolated point in the landscape. The parameters of the Stan-
dard Model are thus predicted. The landscape may be so large that a strange possibility
emerges: many string models with almost identical properties all of which are consistent
with the Standard Model to the accuracy that it is presently known. In this possibility there
is a loss of predictive power. Other outcomes may be possible.

String theorists sometimes say that string theory has already made at least one successful
prediction: it predicted gravity! (I heard this from John Schwarz.) There is a bit of jest in
saying so – after all, gravity is the oldest known force in nature. I believe, however, that
there is a very substantial point to be made here. String theory is the quantum mechanics of
a relativistic string. In no sense whatsoever is gravity put into string theory by hand. It is a
complete surprise that gravity emerges in string theory. Indeed, none of the vibrations of the
classical relativistic string correspond to the particle of gravity. It is a truly remarkable fact
that we find the particle of gravity among the quantum vibrations of the relativistic string.
You will see in detail how this happens as you progress through this book. The striking
quantum emergence of gravitation in string theory has the full flavor of a prediction.

1.4 Developments and outlook

String theory has been a very stimulating and active area of research ever since Michael
Green and John Schwarz showed in 1984 that superstrings are not afflicted with fatal
inconsistencies that threaten similar particle theories in ten dimensions. Much progress
has been made since then.

String theory has provided new and powerful tools for the understanding of conven-
tional particle physics theories, gauge theories in particular. These are the kinds of theories
that are used to formulate the Standard Model. Close cousins of these gauge theories
arise on string theory D-branes. We examine D-branes and the theories that arise on them
in detail beginning in Chapter 15. A remarkable physical equivalence between a certain
four-dimensional gauge theory and a closed superstring theory (the AdS/CFT correspon-
dence) is discussed in Chapter 23. As we will explain, the correspondence has been used to
understand hydrodynamical properties of the quark-gluon plasma created in the collision
of gold nuclei at heavy ion colliders.

String theory has also made good strides towards a statistical mechanics interpretation of
black hole entropy. We know from the pioneering work of Jacob Bekenstein and Stephen
Hawking that black holes have both entropy and temperature. In statistical mechanics these
properties arise if a system can be constructed in many degenerate ways using its basic
constituents. Such an interpretation is not available in Einstein’s gravitation, where black
holes seem to have few, if any, constituents. In string theory, however, certain black holes
can be built by assembling together various types of D-branes and strings in a controlled
manner. For such black holes, the predicted Bekenstein entropy is obtained by counting
the ways in which they can be built with their constituent D-branes and strings. In fact, the
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class of black holes amenable to string theory analysis continues to grow. We discuss this
important development in Chapter 22.

String theory will be needed to study cosmology of the Very Early Universe. String
theory may provide a concrete model for the realization of inflation – a period of dramatic
exponential expansion that the universe is likely to have experienced at the earliest times.
The theory of inflation suggests that our universe is a growing bubble or region inside a
space that continues to inflate for eternity. Bubbles continue to emerge forever and some
have remarked that every model in the landscape may be physically realized in some bub-
ble. Inflation does not appear to be eternal in the past, so some kind of beginning seems
necessary. The deepest mysteries of the universe seem to lie hidden in a regime where
classical general relativity surely breaks down. String theory should allow us to peer into
this unknown realm. Some day we may be able to understand how the universe comes into
being, if it does, or how the universe could have existed forever in the past, if it did.

Most likely, answering such questions will require a mastery of string theory that goes
beyond our present abilities. String theory is in fact an unfinished theory. Much has been
learned about it, but in reality we have no complete formulation of the theory. A compar-
ison with Einstein’s theory is illuminating. Einstein’s equations for general relativity are
elegant and geometrical. They embody the conceptual foundation of the theory and feel
completely up to the task of describing gravitation. No similar equations are known for
string theory, and the conceptual foundation of the theory remains largely unknown. String
theory is an exciting research area because the central ideas remain to be found.

Describing nature and formulating the theory – those remain the present-day challenges
of string theory. If surmounted, we will have a theory of all interactions, allowing us to
understand the fate of spacetime and the mysteries of a quantum mechanical universe. With
such high stakes, physicists are likely to investigate string theory until definite answers are
found.



2 Special relativity and extra dimensions

The word relativistic, as used in the term “relativistic strings,” indicates consis-
tency with Einstein’s theory of special relativity. We review special relativity and
introduce the light-cone frame, light-cone coordinates, and light-cone energy. We
then turn to the idea of additional, compact space dimensions and show with an
example from quantum mechanics that, if small, these dimensions have little
effect at low energies.

2.1 Units and parameters

Units are nothing other than fixed quantities that we use for purposes of reference.
A measurement involves finding the unit-free ratio of an observable quantity to the appro-
priate unit. Consider, for example, the definition of a second in the international system of
units (SI system). The SI second (s) is defined to be the duration of 9 192 631 770 periods
of the radiation emitted in the transition between the two hyperfine levels of the cesium-
133 atom. When we measure the time elapsed between two events, we are really counting a
unit-free, or dimensionless, number: the number that tells us how many seconds fit between
the two events or, alternatively, how many periods of the cesium radiation fit between the
two events. The same goes for length. The unit called the meter (m) is nowadays defined as
the distance traveled by light in a certain fraction of a second (1/299 792 458 of a second,
to be precise). Mass introduces a third unit, the prototype kilogram (kg), kept safely in
Sèvres, France.

When doing dimensional analysis, we denote the units of length, time, and mass by L ,
T , and M , respectively. These are called the three basic units. A force, for example, has
units

[F] = M LT−2 , (2.1)

where [X ] denotes the units of the quantity X . Equation (2.1) follows from Newton’s law
that equates the force on an object to the product of its mass and its acceleration. The
newton (N) is the SI unit of force, and it equals kg·m/s2.

It is interesting that no additional basic units are needed to describe other quantities.
Consider, for example, electric charge. Do we need a new unit to describe charge? Not



14 Special relativity and extra dimensions
�

really. This is easy to see in Gaussian units. In these units, Coulomb’s law for the force | �F |
between two charges q1 and q2 separated by a distance r reads

| �F | = |q1q2|
r2

. (2.2)

The units of charge are fixed in terms of other units because we have a force law where
charges appear and all other quantities have known units. The esu is the Gaussian unit of
charge, and it is defined by stating that two charges of one esu each, placed at a distance of
one centimeter apart, repel each other with a force of one dyne (the Gaussian unit of force,
10−5 N). Thus

esu2 = dyne · cm2 = 10−5 N · (10−2m)2 = 10−9 N · m2. (2.3)

It follows from this equation that

[esu2] = [ N · m2] , (2.4)

and, using (2.1), finally we get

[esu] = M1/2L3/2 T−1. (2.5)

This expresses the esu in terms of the three basic units.
In SI units, charge is measured in coulombs (C). The situation in SI units is a little

more intricate, but the essential point is the same. A coulomb is defined in SI units as the
amount of charge carried by a current of one ampere (A) in one second. The ampere itself
is defined as the amount of current that, when carried by two wires separated by a distance
of one meter, produces a force of 2× 10−7 N/m. The coulomb, as opposed to the esu, is
not expressed in terms of meters, kilograms, and seconds. Coulomb’s law in SI units is

| �F | = 1

4πε0

|q1q2|
r2

, with
1

4πε0
= 8.99 × 109 N · m2

C2
. (2.6)

Note the presence of C−2 in the definition of the constant prefactor. Since each charge
carries one factor of C, all the factors of C cancel in the calculation of the force. Two
charges of one coulomb each, placed one meter apart, will each experience a force of
8.99 × 109 N. This fact allows you to deduce (Problem 2.1) how many esus there are in
a coulomb. Even though we do not write coulombs in terms of other units, this is just a
matter of convenience. Coulombs and esus are related, and esus are written in terms of the
three basic units.

When we speak of parameters in a theory, it is convenient to distinguish between dimen-
sionful parameters and dimensionless parameters. Consider, for example, a theory in which
there are three types of particles with masses m1, m2, and m3. We can think of the the-
ory as having one dimensionful parameter, the mass m1 of the first particle, say, and two
dimensionless parameters, the mass ratios m2/m1 and m3/m1.

String theory is said to have no adjustable parameters. By this it is meant that no dimen-
sionless parameter is needed to formulate string theory. String theory does, however, have
one dimensionful parameter. That parameter is the string length �s . This length sets the
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scale in which the theory operates. In the early 1970s, when string theory was first being
formulated, the theory was thought to be a theory of hadrons. Back then, the string length
was taken to be comparable to the nuclear scale. Nowadays, we think that string theory is
a theory of fundamental forces and interactions. Accordingly, we set the string length to be
much smaller than the nuclear scale.

2.2 Intervals and Lorentz transformations

Special relativity is based on the experimental fact that the speed of light (c � 3 × 108

m/s) is the same for all inertial observers. This fact leads to some rather surprising conclu-
sions. Newtonian intuition about the absolute nature of time, the concept of simultaneity,
and other familiar ideas must be revised. In comparing the coordinates of events, two
inertial observers, henceforth called Lorentz observers, find that the appropriate coordinate
transformations mix space and time.

In special relativity, events are characterized by the values of four coordinates: a time
coordinate t and three spatial coordinates x, y, and z. It is convenient to collect these four
numbers in the form (ct, x, y, z), where the time coordinate is scaled by the speed of light
so that all coordinates have units of length. To make the notation more uniform, we use
indices to relabel the space and time coordinates as follows:

xμ = (x0, x1, x2, x3) ≡ (ct, x, y, z). (2.7)

Here the superscript μ takes the four values 0, 1, 2, and 3. The xμ are spacetime
coordinates.

Consider a Lorentz frame S in which two events are represented by the coordinates xμ

and xμ +�xμ. Consider now a second Lorentz frame S′, in which the same two events are
described by the coordinates x ′μ and x ′μ +�x ′μ, respectively. In general, not only are the
coordinates xμ and x ′μ different, so too are the coordinate differences �xμ and �x ′μ. On
the other hand, both observers will agree on the value of the invariant interval �s2. This
interval is defined by

−�s2 ≡ −(�x0)2 + (�x1)2 + (�x2)2 + (�x3)2. (2.8)

Note the minus sign in front of (�x0)2, as opposed to the plus sign appearing before
the spacelike differences (�xi )2 (i = 1, 2, 3). This sign encodes the fundamental differ-
ence between time and space coordinates. The agreement on the value of the intervals is
expressed as

− (�x0)2 + (�x1)2 + (�x2)2 + (�x3)2 = −(�x ′0)2 + (�x ′1)2 + (�x ′2)2 + (�x ′3)2,

(2.9)
or, in brief:

�s2 = �s′2. (2.10)



16 Special relativity and extra dimensions
�

The minus sign on the left-hand side of (2.8) implies that �s2 > 0 for events that are
timelike separated. Timelike separated events are events for which

(�x0)2 > (�x1)2 + (�x2)2 + (�x3)2. (2.11)

The history of a particle is represented in spacetime as a curve, the world-line of
the particle. Any two events on the world-line of a particle are timelike separated,
because no particle can move faster than light and therefore the distance light would
have traveled in the time interval that separates the events must be larger than the
space separation between the events. This is the content of (2.11). You at the time
you were born and you at this moment are timelike separated events: a long time
has passed and you have not gone that far. Events connected by the world-line of
a photon are said to be lightlike separated. For such a pair of events, we have
�s2 = 0, because in this case the two sides of (2.11) are identical: the spatial sepa-
ration between the events coincides with the distance that light would have traveled
in the time that separates the events. Two events for which �s2 < 0 are said to be
spacelike separated. Events that are simultaneous in a Lorentz frame but occur at dif-
ferent positions in that same frame are spacelike separated. It is because �s2 can
be negative that it is not written as (�s)2. For timelike separated events, however,
we define

�s ≡
√

�s2 if �s2 > 0 (timelike interval). (2.12)

Many times it is useful to consider events that are infinitesimally close to each other.
Small coordinate differences are needed to define velocities and are also useful in gen-
eral relativity. Infinitesimal coordinate differences are written as dxμ, and the associated
invariant interval is written as ds2. Following (2.8), we have

− ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2. (2.13)

The equality of intervals is the statement

ds2 = ds′2. (2.14)

A very useful notation can be motivated by trying to simplify the expression for the
invariant ds2. To do this, we introduce symbols that carry subscripts instead of superscripts.
Let us define

dx0 ≡ −dx0, dx1 ≡ dx1, dx2 ≡ dx2, dx3 ≡ dx3. (2.15)

The only significant change is the inclusion of a minus sign for the zeroth component. All
together, we write

dxμ = (dx0, dx1, dx2, dx3) ≡ (−dx0, dx1, dx2, dx3). (2.16)

Now we can rewrite ds2 in terms of dxμ and dxμ:

−ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

= dx0dx0 + dx1dx1 + dx2dx2 + dx3dx3, (2.17)
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and we see that the minus sign in (2.13) is gone. The invariant interval has become

− ds2 =
3∑

μ=0

dxμdxμ. (2.18)

Throughout the rest of the text we will use Einstein’s summation convention. In this con-
vention, indices repeated in a single term are to be summed over the appropriate set of
values. We do not consider indices to be repeated when they appear in different terms.
For example, there are no sums implied by aμ + bμ or aμ = bμ, but there is an implicit
sum in aμbμ. A repeated index must appear once as a subscript and once as a superscript
and should not appear more than twice in any one term. The letter chosen for the repeated
index is not important; thus aμbμ is the same as aνbν . Because of this, repeated indices
are sometimes called dummy indices! Using the summation convention, we can rewrite
(2.18) as

− ds2 = dxμdxμ. (2.19)

Just as we did for finite coordinate differences in (2.12), for infinitesimal timelike intervals
we define the quantity

ds ≡
√

ds2 if ds2 > 0 (timelike interval) . (2.20)

We can also express the interval ds2 using the Minkowski metric ημν . This is done by
writing

− ds2 = ημν dxμdxν . (2.21)

Equation (2.21), by itself, does not determine the metric ημν . If, in addition, we require
ημν to be symmetric under an exchange in the order of its indices,

ημν = ηνμ , (2.22)

then this together with (2.21) completely determines a metric called the Minkowski met-
ric. It is reasonable to declare that ημν be symmetric for, as we shall now see, any
antisymmetric component would be irrelevant.

Any two-index object Mμν can be decomposed into a symmetric part and an antisym-
metric part:

Mμν = 1

2
(Mμν + Mνμ)+ 1

2
(Mμν − Mνμ) . (2.23)

The first term on the right-hand side, the symmetric part of M , is invariant under exchange
of the indices μ and ν. The second term on the right-hand side, the antisymmetric part of
M , changes sign under exchange of the indices μ and ν. If ημν had an antisymmetric part
ξμν (= −ξνμ), then its contribution would drop out of the right-hand side of (2.21). We
can see this as follows:

ξμν dxμdxν = (−ξνμ) dxμdxν = −ξμν dxνdxμ = −ξμν dxμdxν . (2.24)

In the first step, we used the antisymmetry of ξμν . In the second step, we relabeled the
dummy indices: the μ were changed into ν and vice versa. In the third step, we switched
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the order of the dxμ and dxν factors. The result is that ξμνdxμdxν is identical to minus
itself, and therefore it vanishes. It would be useless for ημν to have an antisymmetric part,
so we simply declare that it has none.

Since repeated indices are summed over, equation (2.21) means that

− ds2 = η00dx0dx0 + η01dx0dx1 + η10dx1dx0 + η11dx1dx1 + · · ·. (2.25)

Comparing with (2.17) and using (2.22), we see that η00 = −1, η11 = η22 = η33 = 1, and
all other components vanish. We collect these values in matrix form:

ημν =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (2.26)

In this equation, which follows a common identification of two-index objects with matri-
ces, we think of μ, the first index in η, as the row index, and ν, the second index in η, as
the column index. The Minkowski metric can be used to “lower indices.” Indeed, equation
(2.15) can be rewritten as

dxμ = ημν dxν. (2.27)

If we are handed a set of quantities bμ, we always define

bμ ≡ ημνbν. (2.28)

Given objects aμ and bμ, the relativistic scalar product a · b is defined as

a · b ≡ aμbμ = ημν aμbν = −a0b0 + a1b1 + a2b2 + a3b3. (2.29)

Applied to (2.19), this gives −ds2 = dx · dx . Note that aμbμ = aμbμ.
It is convenient to introduce the matrix inverse for ημν . Written conventionally as ημν ,

it is given by

ημν =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (2.30)

You can see by inspection that this matrix is indeed the inverse of the matrix in (2.26).
When thinking of ημν as a matrix, as with ημν , the first index is a row index and the
second index is a column index. In index notation the inverse property is written as

ηνρ ηρμ = δν
μ , (2.31)

where the Kronecker delta δν
μ is defined by

δν
μ =

{
1 if μ = ν

0 if μ 	= ν.
(2.32)
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v

�Fig. 2.1 Two Lorentz frames connected by a boost. S′ is boosted along the +x direction of S with
boost parameter β = v/c.

Note that the repeated index ρ in (2.31) produces the desired matrix multiplication. The
Kronecker delta can be thought of as the index representation of the identity matrix. The
metric with upper indices can be used to “raise indices.” Using (2.28) and (2.31), we get

ηρμ bμ = ηρμ (ημν bν) = (ηρμ ημν) bν = δρ
ν bν = bρ. (2.33)

The lower μ index of bμ was raised by ηρμ to become an upper ρ index. The last step in
the above calculation needs a little explanation: δ

ρ
ν bν = bρ because as we sum over ν, δ

ρ
ν

vanishes unless ν = ρ, in which case it equals one.

Lorentz transformations are the relations between coordinates in two different inertial
frames. Consider a frame S and a frame S′, that is moving along the positive x direction
of the S frame with a velocity v, as shown in Figure 2.1. Assume the coordinate axes for
both systems are parallel, and that the origins coincide at the common time t = t ′ = 0. We
say that S′ is boosted along the x direction with velocity parameter β ≡ v/c. The Lorentz
transformations in this case read

x ′ = γ (x − βct),

ct ′ = γ (ct − βx),

y′ = y,

z′ = z, (2.34)

where the Lorentz factor γ is given by

γ ≡ 1√
1 − β2

= 1√
1 − v2

c2

. (2.35)

Using indices, and changing the order of the first two equations, we arrive at

x ′0 = γ (x0 − βx1),

x ′1 = γ (−βx0 + x1),

x ′2 = x2,

x ′3 = x3. (2.36)
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In the above transformations, the coordinates x2 and x3 remain unchanged. These are the
coordinates orthogonal to the direction of the boost. The inverse Lorentz transformations
give the values of the x coordinates in terms of the x ′ coordinates. They are readily found
by solving for the x in the above equations. The result is the same set of transformations
with x and x ′ exchanged and with β replaced by (−β), as required by symmetry.

The coordinates in the above equations satisfy the relation

(x0)2 − (x1)2 − (x2)2 − (x3)2 = (x ′0)2 − (x ′1)2 − (x ′2)2 − (x ′3)2 , (2.37)

as you can show by direct computation. This is just the statement of invariance of the inter-
val �s2 between two events: the first event is represented by (0, 0, 0, 0) in both S and
S′, and the second event is represented by coordinates xμ in S and x ′μ in S′. By defini-
tion, Lorentz transformations are the linear transformations of coordinates that respect the
equality (2.37).

In general, we write a Lorentz transformation as the linear relation

x ′μ = Lμ
ν xν , (2.38)

where the entries Lμ
ν are constants that define the linear transformation. For the boost in

(2.36), we have

[L] = Lμ
ν =

⎛
⎜⎜⎝

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (2.39)

In defining the matrix L as [L] = Lμ
ν , we are following the convention that the first index

is a row index and the second index is a column index. This is why the lower index in Lμ
ν

is written to the right of the upper index.
The coefficients Lμ

ν are constrained by equation (2.37). In index notation, this equation
requires

ηαβ xαxβ = ημν x ′μx ′ν . (2.40)

Using (2.38) twice on the right-hand side above gives

ηαβ xαxβ = ημν (Lμ
α xα)(Lν

β xβ) = ημν Lμ
α Lν

β xα xβ . (2.41)

Equivalently, we have the equation

kαβ xα xβ = 0 , with kαβ ≡ ημν Lμ
α Lν

β − ηαβ . (2.42)

Since kαβ xα xβ = 0 must hold for all values of the coordinates x , we find that

kαβ + kβα = 0 , (2.43)

as you should convince yourself by writing out the sums over α and β. Since kαβ is in
fact symmetric under the exchange in the order of its indices, (2.43) implies kαβ = 0. This
means that

ημν Lμ
α Lν

β = ηαβ . (2.44)
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Rewriting (2.44) to make it look more like matrix multiplication, we have

Lμ
α ημν Lν

β = ηαβ . (2.45)

The sum over the ν index works well: it is a column index in ημν and a row index in Lν
β .

The μ index, however, is a row index in Lμ
α , while it should be a column index to match

the row index in ημν . Moreover, the α index in Lμ
α is a column index, while it is a row

index in ηαβ . This means that we should exchange the columns and rows of Lμ
α , which

is the matrix operation of transposition. Therefore equation (2.45) can be rewritten as the
matrix equation

LT η L = η . (2.46)

Here η is the matrix whose entries are ημν . This neat equation is the constraint that L must
satisfy to be a Lorentz transformation.

An important property of Lorentz transformations can be deduced by taking the deter-
minant of each side of equation (2.46). Since the determinant of a product is the product of
the determinants, we get

(det LT)(det η)(det L) = det η . (2.47)

Cancelling the common factor of det η and recalling that the operation of transposition
does not change a determinant, we find

(det L)2 = 1 −→ det L = ±1 . (2.48)

You can check that det L = 1 for the boost in (2.39). Since det L never vanishes, the matrix
L is always invertible and, consequently, all Lorentz transformations are invertible linear
transformations.

The set of Lorentz transformations includes boosts along each of the spatial coordinates. It
also includes rotations of the spatial coordinates. Under a spatial rotation, the coordinates
(x0, x1, x2, x3) of a point transform into coordinates (x ′0, x ′1, x ′2, x ′3), for which x0 =
x ′0, because time is unaffected. Since the spatial distance from a point to the origin is
preserved under a rotation, we have

(x1)2 + (x2)2 + (x3)2 = (x ′1)2 + (x ′2)2 + (x ′3)2 . (2.49)

This, together with x0 = x ′0, implies that (2.37) holds. Therefore spatial rotations are
Lorentz transformations.

Any set of four quantities which transforms under Lorentz transformations in the same
way as the xμ do is said to be a four-vector, or Lorentz vector. When we use index notation
and write bμ, we mean that bμ is a four-vector. Taking differentials of the linear equations
(2.36), we see that the linear transformations that relate x ′ to x also relate dx ′ to dx .
Therefore the differentials dxμ define a Lorentz vector. In the spirit of index notation, a
quantity with no free indices must be invariant under Lorentz transformations. A quantity
has no free indices if it carries no index or if it contains only repeated indices, such as aμbμ.

A four-vector aμ is said to be timelike if a2 = a · a < 0, spacelike if a2 > 0, and null
if a2 = 0. Recalling our discussion below (2.11), we see that the coordinate differences
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between timelike-separated events define a timelike vector. Similarly, the coordinate dif-
ferences between spacelike-separated events define a spacelike vector, and the coordinate
differences between lightlike-separated events define a null vector.

Quick calculation 2.1 Verify that the invariant ds2 is indeed preserved under the Lorentz
transformations (2.36).

Quick calculation 2.2 Consider two Lorentz vectors aμ and bμ. Write the Lorentz trans-
formations aμ → a′μ and bμ → b′μ analogous to (2.36). Verify that aμbμ is invariant
under these transformations.

2.3 Light-cone coordinates

We now discuss a coordinate system that will be extremely useful in our study of string
theory, the light-cone coordinate system. The quantization of the relativistic string can
be worked out most directly using light-cone coordinates. There is a different approach
to the quantization of the relativistic string, in which no special coordinates are used. This
approach, called Lorentz covariant quantization, is discussed briefly in Chapter 24. Lorentz
quantization is very elegant, but a full discussion requires a great deal of background
material. We will use light-cone coordinates to quantize strings in this book.

We define the two light-cone coordinates x+ and x− as two independent linear combi-
nations of the time coordinate and a chosen spatial coordinate, conventionally taken to be
x1. This is done by writing

x+ ≡ 1√
2

(x0 + x1),

x− ≡ 1√
2

(x0 − x1). (2.50)

The coordinates x2 and x3 play no role in this definition. In the light-cone coordinate
system, (x0, x1) is traded for (x+, x−), but the other two coordinates x2, x3 are kept. Thus,
the complete set of light-cone coordinates is (x+, x−, x2, x3).

The new coordinates x+ and x− are called light-cone coordinates because the associated
coordinate axes are the world-lines of beams of light emitted from the origin along the x1

axis. For a beam of light moving in the positive x1 direction, we have x1 = ct = x0, and
thus x− = 0. The line x− = 0 is, by definition, the x+ axis (Figure 2.2). For a beam of light
moving in the negative x1 direction, we have x1 = −ct = −x0, and thus x+ = 0. This
corresponds to the x− axis. The x± axes are lines at 45◦ with respect to the x0, x1 axes.

Can we think of x+, or perhaps x−, as a new time coordinate? Yes. In fact, both have
equal right to be called a time coordinate, although neither one is a time coordinate in
the standard sense of the word. Light-cone time is not quite the same as ordinary time.
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�Fig. 2.2 A spacetime diagram with x1 and x0 represented as orthogonal axes. Shown are the
light-cone axes x± = 0. The curves with arrows are possible world-lines of physical particles.

Perhaps the most familiar property of time is that it goes forward for any physical motion
of a particle. Physical motion starting at the origin is represented in Figure 2.2 as curves that
remain within the light-cone and whose slopes never go below 45◦. For all these curves,
both x+ and x− increase as we follow the arrows. The only subtlety is that, for special
light rays, light-cone time will freeze! As we saw above, x+ remains constant for a light
ray in the negative x1 direction, while x− remains constant for a light ray in the positive
x1 direction.

For definiteness, we will take x+ to be the light-cone time coordinate. Accordingly,
we will think of x− as a spatial coordinate. Of course, these light-cone time and space
coordinates will be somewhat strange.

Taking differentials of (2.50), we readily find that

2 dx+dx− = (dx0 + dx1) (dx0 − dx1) = (dx0)2 − (dx1)2 . (2.51)

It follows that the invariant interval (2.13), expressed in terms of the light-cone coordinates
(2.50), takes the form

−ds2 = −2 dx+dx− + (dx2)2 + (dx3)2 . (2.52)

The symmetry in the definitions of x+ and x− is evident here. Notice that, if we are given
ds2, solving for dx− or for dx+ does not require us to take a square root. This is a very
important feature of light-cone coordinates, as we will see in Chapter 9.

How do we represent (2.52) with index notation? We still need indices that run over four
values, but this time the values will be called

+ ,− , 2 , 3. (2.53)
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Just as we did in (2.21), we write

− ds2 = η̂μνdxμdxν . (2.54)

Here we have introduced a light-cone metric η̂ which, like the Minkowski metric, is also
defined to be symmetric under the exchange of its indices. Expanding this equation, and
comparing with (2.52), we find

η̂+− = η̂−+ = −1 , η̂++ = η̂−− = 0 . (2.55)

In the (+,−) subspace, the diagonal elements of the light-cone metric vanish, but the off-
diagonal elements do not. We also find that η̂ does not couple the (+,−) subspace to the
(2, 3) subspace:

η̂+I = η̂−I = 0 , I = 2, 3 . (2.56)

The matrix representation of the light-cone metric is

η̂μν =

⎛
⎜⎜⎝

0 −1 0 0
−1 0 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (2.57)

The light-cone components of any Lorentz vector aμ are defined in analogy with (2.50):

a+ ≡ 1√
2

(a0 + a1) ,

a− ≡ 1√
2

(a0 − a1) . (2.58)

The scalar product between vectors, shown in (2.29), can be written using light-cone
components. This time we have

a · b = −a−b+ − a+b− + a2b2 + a3b3 = η̂μν aμbν . (2.59)

The last equality follows immediately from summing over the repeated indices and using
(2.57). The first equality needs a small computation. In fact, it suffices to check that

− a−b+ − a+b− = −a0b0 + a1b1. (2.60)

This is quickly done using (2.3) and the analogous equations for b±. We can also introduce
lower light-cone indices. Consider the expression a · b = aμbμ, and expand the sum over
the index μ using the light-cone labels:

a · b = a+b+ + a−b− + a2b2 + a3b3. (2.61)

Comparing with (2.59), we find that

a+ = −a−, a− = −a+. (2.62)
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When we lower or raise the zeroth index in a Lorentz frame, we get an extra sign. In light-
cone coordinates, the indices of the first two coordinates switch and we get an extra sign.

Since physics described using light-cone coordinates looks unusual, we must develop an
intuition for it. To do this, we will look at an example where the calculations are simple
but the results are surprising.

Consider a particle moving along the x1 axis with speed parameter β = v/c. At time
t = 0, the positions x1, x2, and x3 are all zero. Motion is nicely represented when the
positions are expressed in terms of time:

x1(t) = vt = βx0, x2(t) = x3(t) = 0. (2.63)

How does this look in light-cone coordinates? Since x+ is time and x2 = x3 = 0, we must
simply express x− in terms of x+. Using (2.63), we find

x+ = x0 + x1

√
2

= 1 + β√
2

x0. (2.64)

As a result,

x− = x0 − x1

√
2

= (1 − β)√
2

x0 = 1 − β

1 + β
x+ . (2.65)

Since it relates light-cone position to light-cone time, we identify the ratio

dx−

dx+
= 1 − β

1 + β
(2.66)

as the light-cone velocity. How strange is this light-cone velocity? For light moving to the
right (β = 1) it equals zero. Indeed, light moving to the right has zero light-cone veloc-
ity because x− does not change at all. This is shown as line 1 in Figure 2.3. Suppose
you have a particle moving to the right with high conventional velocity, so that β � 1
(line 2 in the figure). Its light-cone velocity is then very small. A long light-cone time
must pass for this particle to move a little in the x− direction. Perhaps more interestingly,
a static particle in standard coordinates (line 3) is moving quite fast in light-cone coordi-
nates. When β = 0 the particle has unit light-cone speed. This light-cone speed increases
as β grows negative: the numerator in (2.66) is larger than one and increasing, while the
denominator is smaller than one and decreasing. For β = −1 (line 5), the light-cone veloc-
ity is infinite! While this seems odd, there is no clash with relativity. Light-cone velocities
are just unusual. The light-cone is a frame in which kinematics has a nonrelativistic fla-
vor and infinite velocities are possible. Note that light-cone coordinates were introduced
as a change of coordinates, not as a Lorentz transformation. There is no Lorentz trans-
formation that takes the coordinates (x0, x1, x2, x3) into coordinates (x ′0, x ′1, x ′2, x ′3) =
(x+, x−, x2, x3).

Quick calculation 2.3 Convince yourself that the last statement above is correct.



26 Special relativity and extra dimensions
�

1

2
3

4

5

O

x 
+x 

–

x 
0

x 
1

�Fig. 2.3 World-lines of particles with various light-cone velocities. Particle 1 has zero light-cone
velocity. The velocities increase through that of particle 5, which is infinite.

2.4 Relativistic energy and momentum

In special relativity there is a basic relationship between the rest mass m of a point particle,
its relativistic energy E , and its relativistic momentum �p. This relationship is given by

E2

c2
−�p · �p = m2c2. (2.67)

The relativistic energy and momentum are given in terms of the rest mass and velocity by
the following familiar relations:

E = γ mc2 , �p = γ m�v. (2.68)

Quick calculation 2.4 Verify that the above E and �p satisfy (2.67).

Energy and momentum can be used to define a momentum four-vector, as we will prove
shortly. This four-vector is

pμ = (p0, p1, p2, p3) ≡
( E

c
, px , py, pz

)
. (2.69)

Using the last two equations, we have

pμ =
( E

c
, �p

)
= mγ (c, �v). (2.70)

We use (2.28) to lower the index in pμ:

pμ = (p0, p1, p2, p3) = ημν pν =
(
− E

c
, px , py, pz

)
. (2.71)

The above expressions for pμ and pμ give

pμ pμ = −(p0)2 + �p · �p = − E2

c2
+ �p · �p , (2.72)
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and, making use of (2.67), we have

pμ pμ = −m2c2. (2.73)

Since pμ pμ has no free index it must be a Lorentz scalar. Indeed, all Lorentz observers
agree on the value of the rest mass of a particle. Using the relativistic scalar product
notation, condition (2.73) reads

p2 ≡ p · p = −m2c2. (2.74)

A central concept in special relativity is that of proper time. Proper time is a Lorentz
invariant measure of time. Consider a moving particle and two events along its trajectory.
Different Lorentz observers record different values for the time interval between the two
events. But now imagine that the moving particle is carrying a clock. The proper time
elapsed is the time elapsed between the two events on that clock. By definition, it is an
invariant: all observers of a particular clock must agree on the time elapsed on that clock!

Proper time enters naturally into the calculation of invariant intervals. Consider an
invariant interval for the motion of a particle along the x axis:

− ds2 = −c2dt2 + dx2 = −c2dt2 (1 − β2). (2.75)

Now evaluate the interval using a Lorentz frame attached to the particle. This is a frame in
which the particle does not move and time is recorded by the clock that is moving with the
particle. In this frame dx = 0 and dt = dtp is the proper time elapsed. As a result,

− ds2 = −c2 dtp
2. (2.76)

We cancel the minus signs and take the square root (using (2.20)) to find

ds = c dtp. (2.77)

This shows that, for timelike intervals, ds/c is the proper time interval. Similarly,
cancelling minus signs and taking the square root of (2.75) gives

ds = cdt
√

1 − β2 −→ dt

ds
= γ

c
. (2.78)

Being a Lorentz invariant, ds can be used to construct new Lorentz vectors from old
Lorentz vectors. For example, a velocity four-vector uμ is obtained by taking the ratio
of dxμ and ds. Since dxμ is a Lorentz vector and ds is a Lorentz scalar, the ratio is also a
Lorentz vector:

uμ = c
dxμ

ds
= c

(d(ct)

ds
,

dx

ds
,

dy

ds
,

dz

ds

)
. (2.79)

The factor of c is included to give uμ the units of velocity. The components of uμ can be
simplified using the chain rule and (2.78). For example,

dx

ds
= dx

dt

dt

ds
= vxγ

c
. (2.80)
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Back in (2.79), we find

uμ = γ (c, vx , vy, vz) = γ (c, �v). (2.81)

Comparing with (2.70), we see that the momentum four-vector is just mass times the
velocity four-vector:

pμ = muμ. (2.82)

This confirms our earlier assertion that the components of pμ form a four-vector. Since
any four-vector transforms under Lorentz transformations as the xμ do, we can use (2.36)
to find that under a boost in the x-direction the pμ transform as

E ′

c
= γ

( E

c
− β px

)
,

p′x = γ
(
−β

E

c
+ px

)
. (2.83)

2.5 Light-cone energy and momentum

The light-cone components p+ and p− of the momentum Lorentz vector are obtained
using the rule (2.3):

p+ = 1√
2

(p0 + p1) = −p−,

p− = 1√
2

(p0 − p1) = −p+. (2.84)

Which component should be identified with light-cone energy? The naive answer would
be p+. In any Lorentz frame, both the time and energy are the zeroth components of their
respective four-vectors. Since light-cone time was chosen to be x+, we might conclude that
light-cone energy should be taken to be p+. This is not appropriate, however. Light-cone
coordinates do not transform as Lorentz ones do, so we should be careful and examine this
question in detail. Both p± are energy-like, since both are positive for physical particles.
Indeed, from (2.67), and with m 	= 0, we have

p0 = E

c
=
√
�p · �p + m2c2 > | �p | ≥ |p1| . (2.85)

As a result, p0 ± p1 > 0, and thus p± > 0. While both are plausible candidates for energy,
the physically motivated choice turns out to be −p+, which happens to coincide with p−.

Before we explain this choice, let us first evaluate pμxμ. In standard coordinates,

p · x = p0x0 + p1x1 + p2x2 + p3x3. (2.86)

In light-cone coordinates, using (2.61),

p · x = p+x+ + p−x− + p2x2 + p3x3. (2.87)
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In standard coordinates, p0 = −E/c appears together with the time x0. In light-cone coor-
dinates, p+ appears together with the light-cone time x+. We would therefore expect p+
to be minus the light-cone energy.

Why is this pairing significant? Energy and time are conjugate variables. As you learned
in quantum mechanics, the Hamiltonian operator measures energy and generates time
evolution. The wavefunction of a point particle with energy E and momentum �p is given by

ψ(t, �x) = exp
(
− i

h̄
(Et − �p · �x)

)
. (2.88)

Indeed, this wavefunction satisfies the Schrödinger equation

i h̄
∂ψ

∂x0
= E

c
ψ. (2.89)

Similarly, light-cone time evolution and light-cone energy Elc should be related by

i h̄
∂ψ

∂x+
= Elc

c
ψ. (2.90)

To find the x+ dependence of the wavefunction, we recognize that

ψ(t, �x) = exp
( i

h̄
(p0x0 + �p · �x)

)
= exp

( i

h̄
p · x

)
, (2.91)

and, using (2.87), we have

ψ(x) = exp
( i

h̄
(p+x+ + p−x− + p2x2 + p3x3)

)
. (2.92)

We can now return to (2.90) and evaluate:

i h̄
∂ψ

∂x+
= −p+ψ −→ −p+ = Elc

c
. (2.93)

This confirms our identification of (−p+) with light-cone energy. Since, presently,−p+ =
p−, it is convenient to use p− as the light-cone energy in order to eliminate the sign in the
above equation:

p− = Elc

c
. (2.94)

Some physicists like to raise and lower + and − indices to simplify expressions involving
light-cone quantities. While this is sometimes convenient, it can easily lead to errors. If
you talk with a friend over the phone, and she says “. . . p-plus times . . .,” you will have to
ask, “plus up, or plus down?” In the rest of this book we will not lower the + or − indices.
They will always be up, and the energy will always be p−.

We can check that the identification of p− as light-cone energy fits together nicely with
the intuition that we have developed for light-cone velocity. To this end, we confirm that a
particle with small light-cone velocity also has small light-cone energy. Suppose we have
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a particle moving very fast in the +x1 direction. As discussed below (2.66), its light-cone
velocity is very small. Since p1 is very large, equation (2.67) gives

p0 =
√

(p1)2 + m2c2 = p1

√
1 + m2c2

(p1)2
� p1 + m2c2

2p1
. (2.95)

The light-cone energy of the particle is therefore

p− = 1√
2

(p0 − p1) � m2c2

2
√

2 p1
. (2.96)

As anticipated, both the light-cone velocity and the light-cone energy decrease as p1

increases.

2.6 Lorentz invariance with extra dimensions

If string theory is correct, we must entertain the possibility that spacetime has more than
four dimensions. The number of time dimensions must be kept equal to one – it seems
very difficult, if not altogether impossible, to construct a consistent theory with more than
one time dimension. The extra dimensions must therefore be spatial. Can we have Lorentz
invariance in worlds with more than three spatial dimensions? Yes. Lorentz invariance is a
concept that admits a very natural generalization to spacetimes with additional dimensions.

We first extend the definition of the invariant interval ds2 to incorporate the additional
space dimensions. In a world with five spatial dimensions, for example, we would write

− ds2 = −c2dt2 + (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2 + (dx5)2. (2.97)

Lorentz transformations are then defined as the linear changes of coordinates that leave
ds2 invariant. This ensures that every inertial observer in the six-dimensional spacetime
will agree on the value of the speed of light. With more dimensions, come more Lorentz
transformations. While in four-dimensional spacetime we have boosts in the x1, x2, and
x3 directions, in this new world we have boosts along each of the five spatial dimensions.
With three spatial coordinates, there are three basic spatial rotations: rotations that mix x1

and x2, those that mix x1 and x3, and finally those that mix x2 and x3. The equality of
the number of boosts and the number of rotations is a special feature of four-dimensional
spacetime. With five spatial coordinates, we have ten rotations, which is twice the number
of boosts.

The higher-dimensional Lorentz invariance includes the lower-dimensional one: if noth-
ing happens along the extra dimensions, then the restrictions of lower-dimensional Lorentz
invariance apply. This is clear from (2.97). For motion that does not involve the extra
dimensions, dx4 = dx5 = 0, and the expression for ds2 reduces to that used in four
dimensions.



31 2.7 Compact extra dimensions
�

2πR 2πR
x

�Fig. 2.4 A one-dimensional world that repeats each 2πR. Several copies of Phil are shown.

2.7 Compact extra dimensions

It is possible for additional spatial dimensions to be undetected by low energy experiments
if the dimensions are curled up into a compact space of small volume. In this section, we
will try to understand what a compact dimension is. We will focus mainly on the case of
one dimension. In Section 2.10 we will explain why small compact dimensions are hard to
detect.

Consider a one-dimensional world, an infinite line, say, and let x be a coordinate along
this line. For each point P along the line, there is a unique real number x(P) called the
x-coordinate of the point P . A good coordinate on this infinite line satisfies two conditions.

• Any two distinct points P1 	= P2 have different coordinates: x(P1) 	= x(P2).
• The assignment of coordinates to points is continuous: nearby points have nearly equal

coordinates.

If a choice of origin is made for this infinite line, then we can use distance from the origin
to define a good coordinate. The coordinate assigned to each point is the distance from that
point to the origin, with a sign depending upon which side of the origin the point lies.

Imagine that you live in a world with one spatial dimension. Suppose you are walking
along and notice a strange pattern: the scenery repeats each time you move a distance
2π R, for some value of R. If you meet your friend Phil, you see that there are Phil clones
at distances 2π R, 4π R, 6π R, . . . down the line (see Figure 2.4). In fact, there are clones
up the line, as well, with the same spacing.

There is no way to distinguish an infinite line with such a strange property from a circle
with circumference 2π R. Indeed, saying that this strange line is a circle explains the pecu-
liar property – there really are no Phil clones; you meet the same Phil again and again as
you go around the circle!

How do we express this mathematically? We can think of the circle as the open line
with an identification. That is, we declare that points with coordinates that differ by 2π R
are the same point. More precisely, two points are declared to be the same point if their
coordinates differ by an integer number of 2π R:

P1 ∼ P2 ←→ x(P1) = x(P2)+ 2π R n, n ∈ Z. (2.98)
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�Fig. 2.5 The interval 0 ≤ x < 2πR is a fundamental domain for the line with the identification
(2.99). The identified space is a circle of radius R.

This is precise, but somewhat cumbersome, notation. With no risk of confusion, we can
simply write

x ∼ x + 2π R, (2.99)

which should be read as “identify any two points whose coordinates differ by 2π R.” With
such an identification, the open line becomes a circle. The identification has turned a non-
compact dimension into a compact one. It may seem to you that a line with identifications
is only a complicated way to think about a circle. We will see, however, that many physical
problems become clearer when we view a compact dimension as an extended one with
identifications.

The interval 0 ≤ x < 2π R is a fundamental domain for the identification (2.99) (see
Figure 2.5). A fundamental domain is a subset of the entire space that satisfies two
conditions.

1. No two points in the fundamental domain are identified.
2. Any point in the entire space is in the fundamental domain or is related by the

identification to some point in the fundamental domain.

Whenever possible, as we did here, the fundamental domain is chosen to be a connected
region. To build the space implied by the identification, we take the fundamental domain
together with its boundary, and implement the identifications on the boundary. In our case,
the fundamental domain together with its boundary is the segment 0 ≤ x ≤ 2π R. In this
segment we identify the point x = 0 with the point x = 2π R. The result is the circle.

A circle of radius R can be represented in a two-dimensional plane as the set of points that
are at a distance R from a point called the center of the circle. Note that the circle obtained
above has been constructed directly, without the help of an embedding two-dimensional
space. For our circle, there is no point, anywhere, that represents the center of the circle.
We can still speak, figuratively, of the radius R of the circle, but in our case, the radius is
simply the quantity which multiplied by 2π gives the total length of the circle.

On the circle, the coordinate x is no longer a good coordinate. The coordinate x is now
either multivalued or discontinuous. This is a problem with any coordinate on a circle.
Consider using angles to assign coordinates on the unit circle (Figure 2.6). Fix a reference
point Q on the circle, and let O denote the center of the circle. To any point P on the circle
we assign as a coordinate the angle θ(P) = 	 P O Q. This angle is naturally multivalued.
The reference point Q, for example, has θ(Q) = 0◦ and θ(Q) = 360◦. If we force angles
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�Fig. 2.6 Using the angle θ to define a coordinate on a circle. The reference point Q is assigned zero
angle: θ(Q) = 0. The coordinate θ is naturally multivalued.

to be single valued by restricting 0◦ ≤ θ < 360◦, for example, then they become discon-
tinuous. Indeed, two nearby points, Q and Q′, then have very different angles: θ(Q) = 0,
while θ(Q′) ∼ 360◦. It is easier to work with multivalued coordinates than it is to work
with discontinuous ones.

If we have a world with several open dimensions, then we can apply the identification
(2.99) to one of the dimensions, while doing nothing to the others. The dimension described
by x turns into a circle, and the other dimensions remain open. It is possible, of course, to
make more than one dimension compact. Consider, for example, the (x, y) plane, subject
to two identifications:

x ∼ x + 2π R , y ∼ y + 2π R. (2.100)

It is perhaps clearer to show both coordinates simultaneously while writing the identifica-
tions. In that fashion, the two identifications are written as

(x, y) ∼ (x + 2π R, y), (2.101)

(x, y) ∼ (x, y + 2π R). (2.102)

The first identification implies that we can restrict our attention to 0 ≤ x < 2π R, and the
second identification implies that we can restrict our attention to 0 ≤ y < 2π R. Thus the
fundamental domain can be taken to be the square region 0 ≤ x, y < 2π R, as shown in
Figure 2.7. To build the space implied by the identifications, we take the fundamental
domain together with its boundary, forming the full square 0 ≤ x, y ≤ 2π R, and imple-
ment the identifications on the boundary. The vertical edges are identified because they
correspond to points of the form (0, y) and (2π R, y), which are identified by (2.101). The
horizontal edges are identified because they correspond to points of the form (x, 0) and
(x, 2π R), which are identified by (2.102). The resulting space is called a two-dimensional
torus. One can visualize the torus by taking the fundamental domain (with its boundary)
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�Fig. 2.7 A square region in the plane with identifications indicated by the dashed lines and
arrowheads. The resulting surface is a torus. The identification of the vertical lines gives a
cylinder, shown to the right of the square region. The cylinder, shown horizontally and
flattened in the bottom left, must have its edges glued to form the torus.

and gluing the vertical edges as their identification demands. The result is a cylinder, as
shown in the top right corner of Figure 2.7 (with the gluing seam dashed). In this cylin-
der, however, the bottom circle and the top circle must also be glued, since they are nothing
other than the horizontal edges of the fundamental domain. To do this with paper, you must
flatten the cylinder and then roll it up to glue the circles. The result looks like a flattened
doughnut. With a flexible piece of garden hose, you could simply identify the two ends to
obtain the familiar picture of a torus.

We have seen how to compactify coordinates using identifications. Some compact spaces
are constructed in other ways. In string theory, however, compact spaces that arise from
identifications are particularly easy to work with. We shall focus on such spaces throughout
this book.

Quick calculation 2.5 Consider the plane (x, y) with the identification

(x , y) ∼ (x + 2π R, y + 2π R) . (2.103)

What is the resulting space? Hint: the space is most clearly exhibited using a fundamental
domain for which the line x + y = 0 is a boundary.
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2.8 Orbifolds

Sometimes identifications have fixed points, points that are related to themselves by the
identification. For example, consider the real line parameterized by the coordinate x and
subject to the identification x ∼ −x . The point x = 0 is the unique fixed point of the identi-
fication. A fundamental domain can be chosen to be the half-line x ≥ 0 (Figure 2.8). Note
that the boundary point x = 0 must be included in the fundamental domain. The space
obtained by the above identification is in fact the fundamental domain x ≥ 0. This is the
simplest example of an orbifold, a space obtained by identifications that have fixed points.
An orbifold is singular at the fixed points. While the half-line x ≥ 0 is a conventional
one-dimensional manifold for x > 0, neighborhoods of the point x = 0 fail to be typi-
cal. This orbifold is called an R

1/Z2 orbifold. Here R
1 stands for the (one-dimensional)

real line, and Z2 describes a basic property of the identification when it is viewed as the
transformation x→−x : if applied twice, it gives back the original coordinate.

Certain two-dimensional cones can be obtained as orbifolds. Begin with the (x, y) plane
and identify every point with the image obtained by rotation around the origin through the
angle 2π/N , where N ≥ 2 is an integer. A simple description of the identification makes
use of the complex coordinate z = x + iy:

z ∼ e
2π i
N z . (2.104)

This identification does as expected: multiplication of any complex number by a phase
eiα (α real) rotates the complex number by the angle α. The identification is of ZN type:

viewed as the transformation z → e
2π i
N z, if applied N times, it gives back the original

coordinate. A point must be identified with all the N − 1 images obtained by repeated
action of the transformation. The only fixed point of the ZN transformation is the origin
z = 0. A fundamental domain for (2.104), as we will explain below, is provided by the
points z that satisfy the constraint

0 ≤ arg(z) <
2π

N
. (2.105)

Here we recall that for z = reiθ , with r and θ real, we have arg(z) = θ . The fundamental
domain is shown in Figure 2.9. To the right one sees the cone, obtained by gluing the
rays arg(z) = 0 and arg(z) = 2π/N using the identification (2.104). The resulting cone is
called the C/ZN orbifold, where C denotes the complex plane, namely, the original two-
dimensional plane equipped with a complex coordinate. The cone is singular at the apex
z = 0 in the sense that it has concentrated curvature.

0 x 0 x

�Fig. 2.8 The identification x ∼ −x on the real line yields the half-line. This is the R
1/Z2 orbifold.
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�Fig. 2.9 The fundamental domain for the identification z ∼ e
2π i
N z is shown shaded. After

identification we obtain a cone – the C/ZN orbifold.

Let us explain why the region defined by (2.105) is a fundamental domain. Acting

repeatedly on the region with the transformation z → e
2π i
N z, we find N − 1 images that

together with the region cover seamlessly the full complex plane. Since each point in the
region has exactly N − 1 copies, all outside the region, no two points in the region are
identified. Any point in C that is not in the region must lie in one of its N − 1 copies and
therefore it has an image in the region. Note that our argument used the fact that N is an
integer; for N irrational, for example, any point would have an infinite number of images.
Our construction gives only the cones whose total angle at the apex is 2π divided by an
integer. Cones with other angles exist, but they are not obtained as orbifolds. The case
when N is replaced by a rational number is examined in Problem 2.7. Additional examples
of orbifolds are considered in Problems 2.5, 2.6, and 2.10.

Physics on spaces with generic singularities is typically complicated and sometimes even
inconsistent. Orbifolds are spaces with tractable singularities, at least as far as strings are
concerned. The physics of quantum strings on an orbifold, as we will see in Chapter 13,
is completely regular because the orbifold arises from identifications applied to a non-
singular space where the quantum string is simple. The strings on the orbifold inherit that
simplicity.

2.9 Quantum mechanics and the square well

Planck’s constant h̄ appears as the constant of proportionality relating the energy E and
the angular frequency ω of a photon:

E = h̄ω. (2.106)
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Since ω has units of inverse time, h̄ has units of energy times time. Energy has units of
M L2T−2 and, therefore,

[h̄] = [Energy] × [Time] = M L2T−1. (2.107)

The value of Planck’s constant is h̄ � 1.055 × 10−27 erg · s.
The constant h̄ appears in the basic commutation relations of quantum mechanics. The

Schrödinger position and momentum operators satisfy

[x, p ] = i h̄. (2.108)

If we have several spatial dimensions, then the commutation relations are

[
xi , p j

]
= i h̄ δi

j , (2.109)

where the Kronecker delta is defined as in (2.32):

δi
j =

{
1 if i = j

0 if i 	= j .
(2.110)

In three spatial dimensions, the indices i and j run from 1 to 3. The generalization of
quantum mechanics to higher dimensions is straightforward. With d spatial dimensions,
the indices in (2.109) simply run over the d possible values.

To set the stage for the analysis of a small extra dimension, we review a standard quantum
mechanics problem. Consider the time-independent Schrödinger equation

− h̄2

2m
∇2ψ(x)+ V (x)ψ(x) = E ψ(x) (2.111)

applied to the case of a one-dimensional square-well potential of infinite height:

V (x) =
{

0 if x ∈ (0, a)

∞ if x 	∈ (0, a) .
(2.112)

For x 	∈ (0, a), the infinite potential implies ψ(x) = 0. In particular, ψ(0) = ψ(a) = 0.
This is just the quantum mechanics of a particle living on a segment, as shown in
Figure 2.10.

When x ∈ (0, a), the Schrödinger equation becomes

− h̄2

2m

d2ψ

dx2
= Eψ. (2.113)

The solutions of (2.113), consistent with the boundary conditions, are

ψk (x) =
√

2

a
sin

(
kπx

a

)
, k = 1, 2, . . .,∞ . (2.114)
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�Fig. 2.10 Left: the square-well potential in one dimension. Here the particle lives on a segment.
Right: in the (x, y) plane the particle must remain within 0 < x < a. The direction y is
identified as y ∼ y + 2πR. The particle lives on a cylinder.

The value k = 0 is not allowed since it would make the wavefunction vanish everywhere.
By performing the differentiation indicated in (2.113), we see that the energy Ek associated
with the wavefunction ψk is

Ek = h̄2

2m

(
kπ

a

)2

. (2.115)

2.10 Square well with an extra dimension

We now add an extra dimension to the square-well problem (no pun intended!). In addition
to x , we include a dimension y that is curled up into a small circle of radius R. In other
words, we make the identification

(x, y) ∼ (x, y + 2π R). (2.116)

The original dimension x has not been changed (see Figure 2.10). Since the y direction has
been turned into a circle of circumference 2π R, the space where the particle moves is now
a cylinder. The cylinder has length a and circumference 2π R. The potential V (x, y) will
remain given by (2.112) and is y-independent.

We will see that, as long as R is small, and as long as we look only at low energies, the
quantum mechanics of the particle on the segment is very similar to the quantum mechan-
ics of the particle on the cylinder. The only length scale in the original problem is the size
a of the segment, so small R means R � a.

In two dimensions, the Schrödinger equation (2.111) becomes

− h̄2

2m

(
∂2ψ

∂x2
+ ∂2ψ

∂y2

)
= Eψ. (2.117)
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We use separation of variables in order to solve this equation. We let ψ (x, y) =
ψ (x) φ (y) and find that the equation takes the form

− h̄2

2m

1

ψ(x)

d2ψ(x)

dx2
− h̄2

2m

1

φ(y)

d2φ(y)

dy2
= E . (2.118)

The x-dependent and y-dependent terms of this equation must separately be constant, and
the solutions are of the form ψk,l(x, y) = ψk(x)φl(y), where

ψk (x) = ck sin
(kπx

a

)
, (2.119)

φl (y) = al sin
( ly

R

)
+ bl cos

( ly

R

)
. (2.120)

The physics along the x dimension is unchanged, since the wavefunction must still vanish
at the ends of the segment. Therefore (2.119) takes the same form as (2.114) and k =
1, 2, . . .. The boundary condition for φl(y) arises from the identification y ∼ y + 2π R.
Since y and y + 2π R are coordinates that represent the same point, the wavefunction must
take the same value at these two arguments:

φl(y) = φl(y + 2π R). (2.121)

As opposed to ψk(x), the function φl(y) need not vanish for any y. As a result, the gen-
eral periodic solution, recorded in (2.120), includes both sines and cosines. The presence
of cosines allows a nonvanishing constant solution: for l = 0, we get φ0(y) = b0. This
solution is the key to understanding why a small extra dimension does not change the low
energy physics very much.

The energy eigenvalues of the ψk,l are

Ek,l = h̄2

2m

[(kπ

a

)2 +
( l

R

)2 ]
. (2.122)

These energies correspond to doubly degenerate states when l 	= 0, because in this case
(2.120) contains two linearly independent solutions. The extra dimension has changed the
spectrum dramatically. We will see, however, that if R � a, then the low-lying part of
the spectrum is unchanged. The rest of the spectrum changes, but these changes are not
accessible at low energies.

Since l = 0 is permitted, the energy levels Ek,0 coincide with the old energy levels
Ek! The new system contains all the energy levels of the old system. But it also includes
additional energy levels. What is the lowest new energy level? To minimize the energy,
each of the terms in (2.122) must be as low as possible. The minimum occurs when k = 1,
since k = 0 is not allowed, and l = 1, since l = 0 gives us the old levels. The lowest new
energy level is

E1,1 = h̄2

2m

[(π

a

)2 +
( 1

R

)2 ]
. (2.123)

When R � a, the second term is much larger than the first, and

E1,1 ∼ h̄2

2m

( 1

R

)2
. (2.124)



40 Special relativity and extra dimensions
�

This energy is comparable to that of the level k eigenstate of the original problem (see
(2.115)) when

kπ

a
∼ 1

R
→ k ∼ 1

π

a

R
. (2.125)

Since R is much smaller than a, k is a very large number. So the first new energy level
appears at an energy far above that of the low-lying original states. We therefore conclude
that an extra dimension can remain hidden from experiments at a particular energy level
as long as the dimension is small enough. Once the probing energies become sufficiently
high, the effects of an extra dimension can be observed.

Curiously, the quantum mechanics of a string introduces new features. For an extra
dimension much smaller than the already small string length �s , new low-lying states can
appear! These correspond to strings that wrap around the extra dimension. They have no
analog in the quantum mechanics of a point particle, and we will study them in detail in
Chapter 17. In string theory, the conclusion remains true that no new low energy states arise
from a small extra dimension, but there is a small qualification: the dimension must not be
significantly smaller than �s . We will learn in Chapter 17 that, in string theory, the effects
of a compact dimension of radius smaller than �s cannot be distinguished from those of
another compact dimension with a radius larger than �s .

Problems

Problem 2.1 Exercises with units.

(a) Find the relation between coulombs (C) and esus.
(b) Explain the meaning of the unit K (degree kelvin) used for measuring temperatures,

and explain its relation to the basic length, mass, and time units.
(c) Construct and evaluate a dimensionless number using the charge e of the electron (as

defined in the Gaussian system of units), h̄, and c. (In Heaviside–Lorentz units, the

Gaussian e2 is replaced by e2

4π
.)

Problem 2.2 Lorentz transformations for light-cone coordinates.

Consider coordinates xμ = (x0, x1, x2, x3) and the associated light-cone coordinates
(x+, x−, x2, x3). Write the following Lorentz transformations in terms of the light-cone
coordinates.

(a) A boost with velocity parameter β in the x1 direction.
(b) A rotation with angle θ in the x1, x2 plane.
(c) A boost with velocity parameter β in the x3 direction.

Problem 2.3 Lorentz transformations, derivatives, and quantum operators.

(a) Give the Lorentz transformations for the components aμ of a vector under a boost
along the x1 axis.
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(b) Show that the objects ∂
∂xμ transform under a boost along the x1 axis in the same way

as the aμ considered in (a) do. This checks, in a particular case, that partial derivatives
with respect to upper-index coordinates xμ behave as a four-vector with lower indices,
which is why they are written as ∂μ.

(c) Show that, in quantum mechanics, the expressions for the energy and momentum in
terms of derivatives can be written compactly as pμ = h̄

i
∂

∂xμ .

Problem 2.4 Lorentz transformations as matrices.

A matrix L that satisfies (2.46) is a Lorentz transformation. Show the following.

(a) If L1 and L2 are Lorentz transformations so is the product L1L2.
(b) If L is a Lorentz transformation so is the inverse matrix L−1.
(c) If L is a Lorentz transformation so is the transpose matrix LT .

Problem 2.5 Constructing simple orbifolds.

(a) Consider a circle S1, presented as the real line with the identification x ∼ x + 2.
Choose −1 < x ≤ 1 as the fundamental domain. The circle is the space −1 ≤ x ≤ 1
with the points x = ±1 identified. The orbifold S1/Z2 is defined by imposing the (so-
called) Z2 identification x ∼ −x . Describe the action of this identification on the circle.
Show that there are two points on the circle that are left fixed by the Z2 action. Find a
fundamental domain for the two identifications. Describe the orbifold S1/Z2 in simple
terms.

(b) Consider a torus T 2, presented as the (x, y) plane with the identifications x ∼ x + 2
and y ∼ y + 2. Choose −1 < x, y ≤ 1 as the fundamental domain. The orbifold
T 2/Z2 is defined by imposing the Z2 identification (x, y) ∼ (−x,−y). Prove that
there are four points on the torus that are left fixed by the Z2 transformation. Show
that the orbifold T 2/Z2 is topologically a two-dimensional sphere, naturally presented
as a square pillowcase with seamed edges.

Problem 2.6 Constructing the T 2/Z3 orbifold.

Consider the complex plane z = x + iy subject to the following two identifications

z ∼ T1(z) = z + 1 , and z ∼ T2(z) = z + eiπ/3 .

(a) A fundamental domain, with its boundary, is the parallelogram with corners at z = 0, 1,
and eiπ/3. Where is the fourth corner? Make a sketch and indicate the identifications
on the boundary. The resulting space is an oblique torus.

(b) Consider now the additional Z3 identification

z ∼ R(z) = e2π i/3z .

To understand how this identification acts on the oblique torus, draw the short diagonal
that divides the torus into two equilateral triangles. Describe carefully the Z3 action on
each of the two triangles (recall that the action of R can be followed by arbitrary action
with T1, T2, and their inverses).
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(c) Determine the three fixed points of the Z3 action on the torus. Show that the orbifold
T 2/Z3 is topologically a two-dimensional sphere, naturally presented as a triangular
pillowcase with seamed edges and corners at the fixed points.

Problem 2.7 A more general construction for cones?

Consider the (x, y) plane and the complex coordinate z = x + iy. We have seen that the

identification z ∼ e
2π i
N z, with N an integer greater than two, can be used to construct a

cone.

Examine now the identification

z ∼ e2π i M
N z , N > M ≥ 2 ,

where M and N are relatively prime integers (their greatest common divisor is one). One
may guess that a fundamental domain is provided by the points z that satisfy 0 ≤ arg(z) <

2π M
N . Play with low values of M and N to convince yourself that this is not true. Determine

a fundamental domain for the identification. [Hint: use the following result. Given two
relatively prime integers a and b, there exist integers m and n such that ma + nb = 1.
Finding m and n is not easy unless you use Euclid’s algorithm. Try to find, for example,
integers m and n that satisfy 187m + 35n = 1.]

Problem 2.8 Spacetime diagrams and Lorentz transformations.

Consider a spacetime diagram in which the x0 and x1 axes of a Lorentz frame S are rep-
resented as vertical and horizontal axes, respectively. Show that the x ′0 and x ′1 axes of
the Lorentz frame S′, related to S via (2.36), appear in the original spacetime diagram as
oblique axes. Find the angle between the primed and unprimed axes. Show in detail how
the axes appear when β > 0 and when β < 0, indicating in both cases the directions of
increasing values of the coordinates.

Problem 2.9 Lightlike compactification.

The identification x ∼ x + 2π R, is the statement that the coordinate x has been compact-
ified into a circle of radius R. In this identification, the time dimension is left untouched.
Consider now the strange “lightlike” compactification, in which we identify events with
position and time coordinates related by(

x
ct

)
∼
(

x
ct

)
+ 2π

(
R

−R

)
. (1)

(a) Rewrite this identification using light-cone coordinates.
(b) Consider coordinates (ct ′, x ′) related to (ct, x) by a boost with velocity parameter β.

Express the identifications in terms of the primed coordinates.

To interpret (1) physically, consider the family of identifications(
x
ct

)
∼
(

x
ct

)
+ 2π

( √
R2 + R2

s
−R

)
, (2)

where Rs is a length that will eventually be taken to zero, in which case (2) reduces to (1).
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(c) Show that there is a boosted frame S′ in which the identification (2) becomes a standard
identification (i.e., the space coordinate is identified but the time coordinate is not).
Find the velocity parameter of S′ with respect to S and the compactification radius in
this Lorentz frame S′.

(d) Represent your answer to part (c) in a spacetime diagram. Show two points related by
the identification (2) and the space and time axes for the Lorentz frame S′ in which the
compactification is standard.

(e) Fill in the blanks in the following statement: Lightlike compactification with radius
R arises by boosting a standard compactification with radius . . . with Lorentz factor
γ ∼ R/ . . ., in the limit as . . . → 0.

Problem 2.10 A spacetime orbifold in two dimensions.

Consider a two-dimensional world with coordinates x0 and x1. A boost with velocity
parameter β along the x1 axis is described by the first two equations in (2.36). We want to
understand the two-dimensional space that emerges if we identify

(x0, x1) ∼ (x ′0, x ′1). (1)

We are identifying spacetime points whose coordinates are related by a boost!

(a) Use the result of Problem 2.2, part (a), to recast (1) as

(x+, x−) ∼
(

e−λx+ , eλx−
)
, where eλ ≡

√
1 + β

1 − β
. (2)

What is the range of λ? What is the orbifold fixed point? Assume now that β > 0, and
thus λ > 0.

(b) Draw a spacetime diagram, indicate the x+ and x− axes, and sketch the family of
curves

x+x− = a2 , (3)

where a > 0 is a real constant that labels the various curves. Indicate which curves
have small a and which have large a. For each value of a, equation (3) describes two
disconnected curves. Show that the identification (2) relates points on each separate
curve.

(c) Use the expression −ds2 = −2dx+dx− for the interval to show that any curve in (3)
is spacelike.

(d) Consider the two curves x+x− = a2 for some fixed a. The identification (2) makes
each one of these curves into a circle. Find the invariant circumference of this circle
by integrating the appropriate root of ds2 between two neighboring identified points.
Give your answer in terms of a and λ. Answer:

√
2 aλ.

Roughly, as time goes from minus infinity to plus infinity, the parameter a goes from
infinity down to zero and then back to infinity. This orbifold represents a universe where
space is a circle. The circle begins large, contracts to zero size, and then expands again. This
orbifold has one pathology: the curves x+x− = −a2 are actually closed timelike circles.
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Problem 2.11 Extra dimension and statistical mechanics.

Write a double sum that represents the statistical mechanics partition function Z(a, R) for
the quantum mechanical system considered in Section 2.10. Note that Z(a, R) factors as
Z(a, R) = Z(a)Z̃(R).

(a) Explicitly calculate Z(a, R) in the very high temperature limit (β = 1
kT → 0). Prove

that this partition function coincides with the partition function of a particle in a two-
dimensional box with sides a and 2π R. This shows that, at high temperatures, the
effects of the extra dimension are visible.

(b) Assume that R � a in such a way that there are temperatures that are large as far as the
box dimension a is concerned, but small as far as the compact dimension is concerned.
Write an inequality involving kT and other constants to express this possibility. Eval-
uate Z(a, R) in this regime, but include the leading correction due to the small extra
dimension.



3
Electromagnetism and gravitation in

various dimensions

As a candidate theory of all interactions, string theory includes Maxwell elec-
trodynamics and its nonlinear cousins, as well as gravitation. We review the
relativistic formulation of four-dimensional electrodynamics and show how it
facilitates the definition of electrodynamics in other dimensions. We give a brief
description of Einstein’s gravity and use the Newtonian limit to discuss the
relation between Planck’s length and the gravitational constant in various dimen-
sions. We study the effect of compactification on the gravitational constant and
explain how large extra dimensions could escape detection.

3.1 Classical electrodynamics

Unlike Newtonian mechanics, classical electrodynamics is a relativistic theory. In fact,
Einstein was led by considerations of electrodynamics to formulate the special theory of
relativity. Electrodynamics has a particularly elegant formulation in which the relativistic
character of the theory is manifest. This relativistic formulation allows a natural exten-
sion of the theory to higher dimensions. Before we discuss the relativistic formulation we
must review Maxwell’s equations. These equations describe the dynamics of electric and
magnetic fields.

Although most undergraduate and graduate courses in electrodynamics nowadays use the
international system of units (SI units), the Heaviside–Lorentz system of units is far more
convenient for discussions that involve relativity and extra dimensions. In this system of
units, Maxwell’s equations take the following form:

∇ × �E = −1

c

∂ �B
∂t

, (3.1)

∇ · �B = 0, (3.2)

∇ · �E = ρ, (3.3)

∇ × �B = 1

c
�j + 1

c

∂ �E
∂t

. (3.4)

The above equations imply that �E and �B are measured with the same units. The first two
equations are the source-free Maxwell equations. The second two involve sources: the
charge density ρ, with units of charge per unit volume, and the current density �j , with
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units of current per unit area. The Lorentz force law, which gives the rate of change of the
relativistic momentum of a charged particle in an electromagnetic field, takes the form

d�p
dt

= q

(
�E + �v

c
× �B

)
. (3.5)

Since the magnetic field �B is divergenceless, it can be written as the curl of a vector, the
well known vector potential �A:

�B = ∇ × �A. (3.6)

In electrostatics the electric field �E has zero curl, and it is therefore written as (minus) the
gradient of a scalar, the well known scalar potential �. In electrodynamics, as equation
(3.1) indicates, the curl of �E is not always zero. Substituting (3.6) into (3.1), we find a
linear combination of �E and of the time derivative of �A that has zero curl:

∇ ×
( �E + 1

c

∂ �A
∂t

)
= 0. (3.7)

The object inside parentheses is set equal to −∇�, and the electric field �E can be written
in terms of the scalar potential and the vector potential:

�E = −1

c

∂ �A
∂t

− ∇�. (3.8)

While the potentials (�, �A) introduced above seem to be just auxiliary quantities used
to represent electric and magnetic fields, we learn in quantum mechanics that, in fact, the
potentials are more fundamental than the �E and �B fields. The Hamiltonian that describes
the motion of a charged particle uses the potentials, not the fields. It is therefore relevant
to examine possible ambiguities in the definition of the potentials. As we now show, the
potentials associated with a set of �E and �B fields are not unique.

If we change �A into �A′ = �A +∇ε, where ε is an arbitrary function of space and time,
the new magnetic field �B ′ is equal to the old one:

�B ′ = ∇ × �A′ = ∇ × A + ∇ × ∇ε = �B, (3.9)

noting that the curl of a gradient is zero. The change in �A would not leave �E unchanged, as
it is clear from (3.8). We can repair this, however, by having � change too. In fact, letting

� −→ �′ = �− 1

c

∂ε

∂t
,

�A −→ �A′ = �A + ∇ε, (3.10)

neither �B nor �E is changed. The changes of the potentials indicated above are called gauge
transformations and ε is the gauge parameter.

Quick calculation 3.1 Verify that �E , as given in (3.8), is invariant under the gauge
transformations (3.10).

Two sets of potentials (�, �A) and (�′, �A′) that are related by gauge transformations
are physically equivalent. It follows that physically equivalent sets of the potentials give
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identical electric and magnetic fields. It can happen, however, that potentials (�, �A) and
(�′, �A′) give the same electric and magnetic fields, but still one cannot find an ε such that
(3.10) holds. In such case, the potentials are not gauge equivalent and must be considered
physically different, even if their �E and �B fields are the same! This surprising situation can
occur in spacetimes with compact spatial dimensions and will feature in our later studies
of D-branes (Section 18.3). It does not happen in Minkowski space.

In the presence of compact spatial dimensions a related subtlety occurs. Given some
�E and �B there may not exist potentials � and �A that satisfy (3.6) and (3.8) and are well
defined throughout the compact part of the space. The gauge transformations come to our
help. It is not strictly necessary to have uniquely defined potentials (�, �A) all over the
compact space. A set of potentials defined on patches that cover fully the compact space is
admissible if in the regions of overlap between any two patches the corresponding poten-
tials are related by gauge transformations. Given our statement that potentials are needed
in quantum mechanics, we must conclude that a configuration of �E and �B fields that does
not arise from admissible potentials cannot be discussed.

By the introduction of potentials, the source-free Maxwell equations (3.1) and (3.2) are
automatically satisfied. Equations (3.3) and (3.4) contain additional information. They are
used to derive equations for � and �A.

3.2 Electromagnetism in three dimensions

What is electromagnetism in three spacetime dimensions? One way to produce a theory
of electromagnetism in three dimensions is to begin with the four-dimensional theory and
eliminate one spatial coordinate. This procedure is called dimensional reduction.

In four spacetime dimensions, both electric and magnetic fields have three spatial com-
ponents: (Ex , Ey, Ez) and (Bx , By, Bz), respectively. It may seem likely that a reduction
to a world without a z coordinate would require dropping the z components from the two
fields. Surprisingly, this does not work! Maxwell’s equations and the Lorentz force law
make it impossible.

In order to construct a consistent three-dimensional theory, we must ensure that the
dynamics does not depend on the z direction, the direction that we want to eliminate. If
there is motion, it must remain restricted to the (x, y) plane. It is thus natural to require that
no quantity should have z-dependence. This does not necessarily mean dropping quantities
with a z index.

The Lorentz force law (3.5) is a useful guide to the construction of the lower-dimensional
theory. Suppose that there is no magnetic field. Then, in order to keep the z component of
momentum equal to zero we must have Ez = 0; the z component of the electric field must
go. The case of the magnetic field is more surprising. Assume that the electric field is zero.
If the velocity of the particle is a vector in the (x, y) plane, a component of the magnetic
field in the plane would generate, via the cross product, a force in the z direction. On the
other hand, a z component of the magnetic field would generate a force in the (x, y) plane!
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We conclude that Bx and By must be set equal to zero, while we can keep Bz . All in all,

Ez = Bx = By = 0. (3.11)

The left-over fields Ex , Ey , and Bz can only depend on x and y. In the three-dimensional
world with coordinates t, x, and y, the z index of Bz is not a vector index. Therefore, in
this reduced world, Bz behaves like a Lorentz scalar (more precisely, it is an object called
a pseudo-scalar). In summary, we have a two-dimensional vector �E and a scalar field Bz .

We can test the consistency of this truncation by taking a look at the x and y components
of (3.1):

∂ Ez

∂y
− ∂ Ey

∂z
= −1

c

∂ Bx

∂t
,

∂ Ex

∂z
− ∂ Ez

∂x
= −1

c

∂ By

∂t
. (3.12)

Since the right-hand sides are set to zero by our truncation, the left-hand sides should
vanish as well. Indeed, they do. Each term on the left-hand sides equals zero, either because
it contains an Ez , or because it contains a z derivative. You may examine the consistency
of the remaining equations in Problem 3.3.

While setting up three-dimensional electrodynamics was not too difficult, it is much harder
to guess what five-dimensional electrodynamics should be. As we will see next, the mani-
festly relativistic formulation of Maxwell’s equations immediately gives the appropriate
generalization to other dimensions.

3.3 Manifestly relativistic electrodynamics

In the relativistic formulation of Maxwell’s equations neither the electric field nor the mag-
netic field becomes part of a four-vector. Rather, a four-vector is obtained by combining
the scalar potential � with the vector potential �A:

Aμ =
(
�, A1, A2, A3

)
. (3.13)

The corresponding object with down indices is

Aμ =
(
−�, A1, A2, A3

)
. (3.14)

From Aμ, we create an object known as the electromagnetic field strength Fμν :

Fμν ≡ ∂μ Aν − ∂ν Aμ. (3.15)

Here ∂μ ≡ ∂
∂xμ . Equation (3.15) implies that Fμν is antisymmetric:

Fμν = −Fνμ. (3.16)
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It follows from this property that all diagonal components of Fμν vanish:

F00 = F11 = F22 = F33 = 0. (3.17)

Let us calculate a few entries in Fμν . Let i denote a spatial index, that is, an index that can
take the values 1, 2, and 3. Making use of (3.15) and (3.8), we find

F0i = ∂ Ai

∂x0
− ∂ A0

∂xi
= 1

c

∂ Ai

∂t
+ ∂�

∂xi
= −Ei . (3.18)

Similarly, we can calculate F12:

F12 = ∂1 A2 − ∂2 A1 = ∂x Ay − ∂y Ax = Bz, (3.19)

since �B = ∇ × �A. Continuing in this manner, we can compute all the entries in the matrix
Fμν :

Fμν =

⎛
⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

⎞
⎟⎟⎠. (3.20)

We see that the electric and magnetic fields �E and �B are encoded in the field strength Fμν .
The gauge transformations (3.10) discussed before can be nicely summarized with index

notation as

Aμ −→ A′μ = Aμ + ∂με. (3.21)

Here Aμ and A′μ are the gauge related potentials and, as before, the gauge parameter ε(x)

is an arbitrary function of the spacetime coordinates.

Quick calculation 3.2 Verify that the gauge transformations (3.10) are correctly summa-
rized by (3.21).

Since gauge transformations leave the �E and �B fields invariant, the field strength Fμν

must be gauge invariant. Indeed, we readily verify that

Fμν −→ F ′
μν ≡ ∂μ A′ν − ∂ν A′μ
= ∂μ(Aν + ∂νε)− ∂ν(Aμ + ∂με)

= Fμν + ∂μ∂νε − ∂ν∂με

= Fμν. (3.22)

In the last step we noted that partial derivatives commute.

Recall that the use of potentials to represent �E and �B automatically solves the source-free
Maxwell equations (3.1) and (3.2). How are these equations written in terms of the field
strength Fμν? They must be written so that they hold when (3.15) holds. Consider the
following combination of field strengths:

Tλμν ≡ ∂λFμν + ∂μFνλ + ∂ν Fλμ. (3.23)
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Tλμν vanishes identically on account of (3.15):

∂λ

(
∂μ Aν − ∂ν Aμ

)+ ∂μ (∂ν Aλ − ∂λ Aν)+ ∂ν

(
∂λ Aμ − ∂μ Aλ

) = 0, (3.24)

using the commutativity of partial derivatives. The vanishing of Tλμν ,

∂λFμν + ∂μFνλ + ∂ν Fλμ = 0, (3.25)

is a set of differential equations for the field strength. These equations are precisely
the source-free Maxwell equations. To make this clear, first note that Tλμν satisfies the
antisymmetry conditions

Tλμν = −Tμλν, Tλμν = −Tλνμ. (3.26)

These two equations follow from (3.23) and the antisymmetry property Fμν = −Fνμ of the
field strength. They state that T changes sign under the transposition of any two adjacent
indices.

Quick calculation 3.3 Verify the equations in (3.26).

Any object, with however many indices, that changes sign under the transposition of every
pair of adjacent indices, will change sign under the transposition of any two indices: to
exchange any two indices you need an odd number of transpositions of adjacent indices
(do you see why?). An object that changes sign under the transposition of any two indices
is said to be totally antisymmetric. Therefore T is totally antisymmetric.

Since T is totally antisymmetric, it vanishes when any two of its indices take the same
value. T is nonvanishing only when each of its three indices takes a different value. In
such case, different orderings of these three fixed values will give T components that can
differ at most by a sign. Since we are setting T to zero these various orderings do not
give new conditions. Because we have four spacetime coordinates, selecting three differ-
ent indices can only be done in four different ways – leaving out a different index each
time. Thus the vanishing of T gives four nontrivial equations. These four equations are the
three components of equation (3.1) and equation (3.2). The vanishing of T012, for example,
gives us

∂0 F12 + ∂1 F20 + ∂2 F01 = 1

c

∂ Bz

∂t
+ ∂ Ey

∂x
− ∂ Ex

∂y
= 0. (3.27)

This is the z component of equation (3.1). The other three choices of indices lead to the
remaining three equations (Problem 3.2).

How can we describe Maxwell equations (3.3) and (3.4) in our present framework? Since
these equations have sources, we must introduce a current four-vector:

jμ =
(

cρ, j1, j2, j3
)

, (3.28)
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where ρ is the charge density and �j = ( j1, j2, j3) is the current density. In addition, we
raise the indices of the field tensor to obtain the field tensor with upper indices:

Fμν = ημαηνβ Fαβ. (3.29)

Quick calculation 3.4 Show that

Fμν = −Fνμ, F0i = −F0i , Fi j = Fi j . (3.30)

Equation (3.29), together with the definition of Fμν , gives

Fμν = ημαηνβ(∂α Aβ − ∂β Aα) = ημα∂α(ηνβ Aβ)− ηνβ∂β(ημα Aα), (3.31)

where the constancy of the metric components was used to move them across the deriva-
tives. It is customary to apply the rules for raising and lowering indices to partial
derivatives, so we write ∂μ ≡ ημα∂α . As a result,

Fμν = ∂μ Aν − ∂ν Aμ. (3.32)

It follows from (3.30) and (3.20) that

Fμν =

⎛
⎜⎜⎝

0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

⎞
⎟⎟⎠ . (3.33)

Using this equation and the current vector (3.28), we can encapsulate Maxwell’s equations
(3.3) and (3.4) as (Problem 3.2)

∂ Fμν

∂xν
= 1

c
jμ. (3.34)

In the absence of sources this equation becomes

∂ν Fμν = 0 −→ ∂ν∂
μ Aν − ∂2 Aμ = 0, (3.35)

where we have written ∂2 = ∂μ∂μ.

Equations (3.15) together with equations (3.34) are equivalent to Maxwell’s equations in
four dimensions. We will take these equations to define Maxwell theory in arbitrary dimen-
sions. In d spatial dimensions the Lorentz vector Aμ has components (�, �A) where �A is a
d-dimensional spatial vector.

In three-dimensional spacetime, for example, the matrix Fμν is a 3-by-3 antisymmetric
matrix, obtained from (3.20) by discarding the last row and the last column:

Fμν =
⎛
⎝ 0 −Ex −Ey

Ex 0 Bz

Ey −Bz 0

⎞
⎠ . (3.36)
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This immediately reproduces the main result of Section 3.2; Bx , By , and Ez are to be set
to zero.

Motivated by (3.33), in arbitrary dimensions we will call F0i the electric field Ei :

Ei ≡ F0i = −F0i . (3.37)

The electric field is a spatial vector. Equation (3.18) implies that, in any number of
dimensions,

�E = −1

c

∂ �A
∂t

− ∇�. (3.38)

The magnetic field is identified with the Fi j components of the field strength. In four-
dimensional spacetime Fi j is a 3-by-3 antisymmetric matrix. Its three independent entries
are the components of the magnetic field vector (see (3.33)). In dimensions other than four,
the magnetic field is no longer a spatial vector. In three spacetime dimensions the magnetic
field is a single-component object. In five spacetime dimensions the magnetic field has as
many entries as a 4-by-4 antisymmetric matrix, six entries. That many components do not
fit into a spatial vector.

Our next goal is the determination of the electric field produced by a point charge in a
spacetime with an arbitrary but fixed number of spatial dimensions. To this end, we must
first learn how to calculate the volumes of higher-dimensional spheres. We turn to this
subject now.

3.4 An aside on spheres in higher dimensions

Since we want to work in various numbers of dimensions we should be precise when
speaking about spheres and their volumes. When we speak loosely we tend to confuse
spheres and balls, at least in the precise sense in which they are defined in mathematics.
When you say that the volume of a sphere of radius R is 4

3π R3, you should really be saying
that this is the volume of the three-ball B3 – the three-dimensional space enclosed by the
two-dimensional two-sphere S2. In three-dimensional space R

3 with coordinates x1, x2,
and x3, we write the three-ball as the region defined by

B3(R) : x2
1 + x2

2 + x2
3 ≤ R2. (3.39)

This region is enclosed by the two-sphere:

S2(R) : x2
1 + x2

2 + x2
3 = R2. (3.40)

The superscripts in B or S denote the dimensionality of the space in question. When we
drop the explicit argument R, we mean that R = 1. Lower-dimensional examples are also
familiar. B2 is a two-dimensional disk – the region enclosed in R

2 by the one-dimensional
unit radius circle S1. In arbitrary dimensions we define balls and spheres as subspaces
of R

d :
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Bd(R) : x2
1 + x2

2 + · · · + x2
d ≤ R2. (3.41)

This is the region enclosed by the sphere Sd−1(R):

Sd−1(R) : x2
1 + x2

2 + · · · + x2
d = R2. (3.42)

One last piece of terminology: to avoid confusion we will always speak of volumes. If a
space is one-dimensional we take volume to mean length. If a space is two-dimensional we
take volume to mean area. All higher-dimensional spaces have just volumes. The volumes
of the one- and two-dimensional spheres are

vol (S1(R)) = 2π R,

vol (S2(R)) = 4π R2. (3.43)

Unless you have worked with other spheres before, you probably do not know what the
volume of S3 is.

Since volume has units of length to the power of the space dimension, the volume of a
sphere of radius R is related to the volume of a sphere of unit radius by

vol (Sd−1(R)) = Rd−1 vol(Sd−1). (3.44)

Since the radius dependence of the volume is easily recovered, it suffices to record the
volumes of unit spheres:

vol (S1) = 2π,

vol (S2) = 4π. (3.45)

Let us now begin our calculation of the volume of the sphere Sd−1. For this purpose
consider R

d with coordinates x1, x2, . . ., xd , and let r be the radial coordinate:

r2 = x2
1 + x2

2 + · · · + x2
d . (3.46)

We will find the desired volume by evaluating in two different ways the following integral:

Id =
∫

Rd
dx1dx2 . . . dxd e−r2

. (3.47)

First we proceed directly. Using (3.46) in the exponential factor, the integral becomes a
product of d Gaussian integrals:

Id =
d∏

i=1

∫ ∞

−∞
dxi e−x2

i = (
√

π)d = πd/2. (3.48)

Now we proceed indirectly. We do the integral by breaking R
d into thin spherical shells.

Since the space of constant r is the sphere Sd−1(r), the volume of a shell lying between r
and r + dr equals the volume of Sd−1(r) times dr . Therefore,

Id =
∫ ∞

0
dr vol(Sd−1(r)) e−r2 = vol (Sd−1)

∫ ∞

0
dr rd−1 e−r2

= 1

2
vol (Sd−1)

∫ ∞

0
dt e−t t

d
2−1, (3.49)
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where use was made of (3.44), and in the final step we changed the variable of integra-
tion to t = r2. The last integral on the right-hand side can be expressed in terms of the
gamma function, a very useful special function. For positive x the gamma function �(x) is
defined by

�(x) =
∫ ∞

0
dt e−t t x−1, x > 0. (3.50)

Unless x > 0 the integral does not converge near t = 0. With this definition, equation
(3.49) becomes

Id = 1

2
vol (Sd−1) �

( d
2

)
. (3.51)

Comparing with the earlier evaluation (3.48), we get our final result:

vol (Sd−1) = 2πd/2

�
( d

2

) . (3.52)

It now remains to calculate the value of �(d/2). Since d is an integer, we must determine
the values of the gamma function for both integer and half-integer arguments. To find
�(1/2) we use the definition (3.50) and let t = u2:

�

(
1

2

)
=
∫ ∞

0
dt e−t t−1/2 = 2

∫ ∞

0
du e−u2 = √

π. (3.53)

Similarly,

�(1) =
∫ ∞

0
dt e−t = 1. (3.54)

For larger arguments the calculation of the gamma function is simplified using a recursion
relation. To obtain this relation, begin with

�(x + 1) =
∫ ∞

0
dt e−t t x , x > 0 , (3.55)

which can be rewritten as

�(x + 1) = −
∫ ∞

0
dt
( d

dt
e−t

)
t x = −

∫ ∞

0
dt
( d

dt
(e−t t x )− xe−t t x−1

)
. (3.56)

The boundary terms vanish for x > 0 and we find that

�(x + 1) = x �(x), x > 0. (3.57)

Using this recursion relation we find, for example,

�

(
3

2

)
= 1

2
· �

(
1

2

)
= 1

2

√
π, �

(
5

2

)
= 3

2
· �

(
3

2

)
= 3

4

√
π. (3.58)

For integer arguments the gamma function is related to the factorial:

�(5) = 4 · �(4) = 4 · 3 · �(3) = 4 · 3 · 2 · �(2) = 4 · 3 · 2 · 1 · �(1) = 4!.
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Therefore, for n ∈ Z and n ≥ 1, we have

�(n) = (n − 1)!, (3.59)

where we recall that 0! = 1. We can now test our formula (3.52) in the familiar cases:

vol (S1) = vol (S2−1) = 2π

�(1)
= 2π,

vol (S2) = vol (S3−1) = 2π3/2

�
(

3
2

) = 4π, (3.60)

in agreement with the known values. For the less familiar S3 we find

vol (S3) = vol (S4−1) = 2π2

�(2)
= 2π2. (3.61)

Quick calculation 3.5 Show that vol (Bd) = πd/2/�
(
1 + d

2

)
.

3.5 Electric fields in higher dimensions

In this section we calculate the electric field due to a point charge in a world with d spatial
dimensions. Here d could be three, in which case the answer is familiar, or less than three,
but we are particularly interested in d > 3. To do this calculation we will use the general
version of Maxwell’s equations appropriate for an arbitrary number of spatial dimensions.
As you may imagine, the electric field of a point charge is radial. Our calculation will give
the radial dependence and the normalization of the electric field. With minor modifications,
this result will also inform us about the gravitational fields of point particles in d spatial
dimensions.

Our computation is based on the zeroth component of equation (3.34):

∂ F0i

∂xi
= ρ. (3.62)

Since F0i = Ei (see (3.37)), this equation is just Gauss’ law:

∇ · �E = ρ. (3.63)

Gauss’ law is valid in all dimensions! Equation (3.63) can be used to determine the electric
field of a point charge. Let us first review how this is done in the familiar setting of three
spatial dimensions.

Consider a point charge q, a two-sphere S2(r) of radius r centered on the charge, and
the three-ball B3(r) whose boundary is the two-sphere. We integrate both sides of equation
(3.63) over the three-ball to find∫

B3
d(vol)∇ · �E =

∫
B3

d(vol) ρ. (3.64)
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We use the divergence theorem on the left-hand side and note that the volume integral on
the right-hand side gives the total charge:∫

S2(r)

�E · d�a = q . (3.65)

Since the magnitude E(r) of �E is constant over the two-sphere, we get

vol(S2(r)) E(r) = q. (3.66)

The volume of the two-sphere is just its area 4πr2, so

E(r) = q

4πr2
. (3.67)

This is the familiar result for the electric field of a point charge in three spatial dimensions.
The electric field magnitude falls off like 1/r2.

For dimensions higher than three, the starting point (3.63) is good, so we must ask if the
divergence theorem also holds. It turns out that it does. We will first state the theorem in d
spatial dimensions, and then we will give some justification for it.

Consider a d-dimensional subspace V d of R
d and let ∂V d denote the boundary of V d .

Moreover, let �E be a vector field in R
d . The divergence theorem states that∫

V d
d(vol)∇ · �E = Flux of �E across ∂V d =

∫
∂V d

�E · d �v. (3.68)

The last right-hand side requires some explanation. At any point on ∂V d , the space ∂V d is
locally approximated by the (d − 1)-dimensional tangent hyperplane. For a small piece of
∂V d around this point, the associated vector d �v is a vector orthogonal to the hyperplane,
pointing out of the volume, and with magnitude equal to the volume of the small piece
under consideration. Note that this explanation is in accord with your experience in R

3,
where d �v corresponds to the area vector element d�a.

Let us justify the divergence theorem for the case of four space dimensions. Following a
strategy used in elementary textbooks, it suffices to prove the divergence theorem for a
small hypercube – the result for general subspaces follows by breaking such spaces into
many small hypercubes. Because it is not easy to imagine a four-dimensional hypercube,
we might as well use a three-dimensional picture with four-dimensional labels (Figure 3.1).
We use Cartesian coordinates x, y, z, w, and consider a cube whose faces lie on hyper-
planes selected by the condition that one of the coordinates is constant. Let one face of
the cube and the face opposite to it lie on hyperplanes of constant x and constant x + dx ,
respectively. The outgoing normal vectors are �ex , for the face at x + dx , and (−�ex ), for the
face at x . The volume of each of these two faces equals dydzdw, where dy, dz, and dw,
together with dx , are the lengths of the edges of the cube. For an arbitrary electric field
�E(x, y, z, w), only the x component contributes to the flux through these two faces. The
contribution is

[ Ex (x + dx, y, z, w)− Ex (x, y, z, w) ] dydzdw � ∂ Ex

∂x
dxdydzdw. (3.69)
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y

x

−ex ex

x  + dx x

z, w

�Fig. 3.1 An attempt at a representation of a four-dimensional hypercube. The two faces of constant
x are shown (shaded) together with their outgoing normal vectors.

Analogous expressions hold for the flux across the three other pairs of faces. The total net
flux from the little cube is just

Flux of �E =
(∂ Ex

∂x
+ ∂ Ey

∂y
+ ∂ Ez

∂z
+ ∂ Ew

∂w

)
dxdydzdw = ∇ · �E d (vol). (3.70)

This result is precisely the divergence theorem (3.68) applied to an infinitesimal hypercube.
This is what we wanted to show.

We can now return to the computation of the electric field due to a point charge in a world
with d spatial dimensions. Consider a point charge q, the sphere Sd−1(r) of radius r cen-
tered on the charge (this is the sphere that surrounds the charge), and the ball Bd(r) whose
boundary is the sphere Sd−1(r). Again, we integrate both sides of equation (3.63) over the
ball Bd(r): ∫

Bd
d(vol)∇ · �E =

∫
Bd

d(vol) ρ. (3.71)

The volume integral on the right-hand side gives the total charge, and the divergence
theorem (3.68) relates the left-hand side to a flux integral:

Flux of �E across Sd−1(r) = q. (3.72)

The flux equals the magnitude of the electric field times the volume of Sd−1(r), so

E(r) vol (Sd−1(r)) = q. (3.73)

Making use of (3.52) we find

E(r) = �
( d

2

)
2πd/2

q

rd−1
. (3.74)
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This is the value of the electric field for a point charge in a world with d spatial dimen-
sions. For d = 3 we recover the inverse-squared dependence of the electric field. In higher
dimensions the electric field falls off faster at large distances. For each additional spatial
dimension we get an additional factor of 1/r in the radial dependence of the electric field.

Quick calculation 3.6 Verify that for d = 3 equation (3.74) coincides with (3.67).

Quick calculation 3.7 The force �F on a test charge q in an electric field �E is �F = q �E .
What are the units of charge in various dimensions?

The electrostatic potential � is also of interest. For time independent fields (3.38) gives

�E = −∇�. (3.75)

This equation, together with Gauss’ law, gives the Poisson equation:

∇2� = −ρ, (3.76)

which can be used to calculate the potential due to a charge distribution. The two equations
above hold in all dimensions using, of course, the appropriate definitions of the gradient
and the Laplacian.

3.6 Gravitation and Planck’s length

Einstein’s theory of general relativity is a theory of gravitation. In this very elegant the-
ory the dynamical variables encode the geometry of spacetime. When gravitational fields
are sufficiently weak and velocities are small, Newtonian gravitation is accurate enough,
and one need not work with the more complex machinery of general relativity. We can
use Newtonian gravity to understand the definition of Planck’s length in various dimen-
sions and its relation to the gravitational constant. These are interesting issues that we will
explain here and in the rest of the present chapter. Nevertheless, when gravitation emerges
in string theory, it does so in the language of Einstein’s theory of general relativity. To be
able to recognize the appearance of gravity among the quantum vibrations of the relativis-
tic string you need a little familiarity with the language of general relativity. Here you will
take a first look at the concepts involved in this remarkable theory.

Most physicists do not expect general relativity to hold at truly small distances nor for
extremely large gravitational fields. This is a realm where string theory, the first seri-
ous candidate for a quantum theory of gravitation, is necessary. General relativity is the
large-distance/weak-gravity limit of string theory. String theory modifies general relativity;
it must do so to make it consistent with quantum mechanics. The conceptual frame-
work which underlies these modifications is not clear yet. It will no doubt emerge as we
understand string theory better in the years to come.

The spacetime of special relativity, Minkowski spacetime, is the arena for physics in the
absence of gravitational fields. The geometrical properties of Minkowski spacetime are
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encoded by the metric formula (2.21), which gives the invariant interval separating two
nearby events:

− ds2 = ημνdxμdxν . (3.77)

Here the Minkowski metric ημν is a constant metric, represented as a matrix with entries
(−1, 1, . . ., 1) along the diagonal. Minkowski space is said to be a flat space. In the
presence of a gravitational field, the metric becomes dynamical. We then write

−ds2 = gμν(x)dxμdxν, (3.78)

where the constant ημν is replaced by the metric gμν(x). If there is a gravitational field,
the metric is in general a nontrivial function of the spacetime coordinates. The metric gμν

is defined to be symmetric

gμν(x) = gνμ(x). (3.79)

It is also customary to define gμν(x) as the inverse of the gμν(x) matrix:

gμα(x) gαν(x) = δμ
ν . (3.80)

For many physical phenomena gravity is very weak, and the metric gμν(x) can be chosen
to be very close to the Minkowski metric ημν . We then write,

gμν(x) = ημν + hμν(x), (3.81)

and we view hμν(x) as a small fluctuation around the Minkowski metric. This expansion
is done, for example, to study gravity waves. Those waves represent small “ripples” on
top of the Minkowski metric. Einstein’s equations for the gravitational field are written in
terms of the spacetime metric gμν(x). These equations imply that matter or energy sources
curve the spacetime manifold. For weak gravitational fields, Einstein’s equations can be
expanded in powers of hμν using (3.81). In the absence of sources, the resulting linearized
equation for hμν is

∂2hμν − ∂α(∂μhνα + ∂νhμα)+ ∂μ∂νh = 0. (3.82)

Here hμν ≡ ημαηνβhαβ and h ≡ ημνhμν = −h00 + h11 + h22 + h33. Equation (3.82) is
the gravitational analog of equation (3.35), which describes Maxwell fields in the absence
of sources. While (3.35) is exact, (3.82) is only valid for weak gravitational fields. It is the
linear approximation to a nonlinear equation that includes additional terms quadratic and
higher order in h.

The analogy with electromagnetism extends to the existence of gauge transformations.
Einstein’s gravity has gauge transformations. They arise because the use of different sys-
tems of coordinates yields equivalent descriptions of gravitational physics. In learning
string theory in this book you will get to appreciate the freedom to choose coordinates
on the surfaces generated by moving strings. In general relativity, an infinitesimal change
of coordinates

xμ′ = xμ + εμ(x), (3.83)
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can be viewed as an infinitesimal change of the metric gμν and, using (3.81), as an
infinitesimal change of the fluctuating field hμν . One can show that the change is given by

δhμν = δ0hμν +O(ε, h) , with δ0hμν ≡ ∂μεν + ∂νεμ. (3.84)

As indicated above, the infinitesimal change δhμν is given by δ0hμν plus corrections, writ-
ten as ε ·O(h), that are linear in ε and linear in the fluctuation h itself. The invariance
of the full nonlinear equation of motion under the gauge transformation δhμν requires the
invariance of the linearized equation of motion (3.82) under δ0hμν . Indeed, when we vary
the hs in (3.82) using δ0hμν we get terms linear in ε but without an h. These terms must
cancel out completely because all other variations will contain at least one field h: this is
clear for the variations of (3.82) using the terms represented by ε ·O(h) and for all varia-
tions of terms quadratic and higher order in h in the complete equation of motion. We will
check the invariance of (3.82) under the transformation δ0hμν in Chapter 10. In Maxwell
theory the gauge parameter has no indices, but in general relativity the gauge parameter
has a vector index.

As we mentioned before, Newtonian gravitation emerges from general relativity in the
approximation of weak gravitational fields and motion with small velocities. For many pur-
poses Newtonian gravity suffices. Starting now, and for the rest of this chapter, we will use
Newtonian gravity to understand the definition of Planck’s length in various dimensions,
and to investigate how gravitational constants behave when some spatial dimensions are
curled up. The results that we will obtain hold also in the full theory of general relativity.

Newton’s law of gravitation in four dimensions states that the force of attraction between
two masses m1 and m2 separated by a distance r is given by

| �F (4)| = G m1m2

r2
, (3.85)

where G denotes the four-dimensional Newton constant. It follows that the units of the
gravitational constant G are

[G] = [Force] L2

M2
= M L

T 2

L2

M2
= L3

MT 2
. (3.86)

The numerical value for the constant G is determined experimentally:

G = 6.674 × 10−11 m3

kg · s2
. (3.87)

Since [c] = L/T and [h̄] = M L2/T , the three fundamental constants G, c, and h̄ can be
written as

G = 6.674 × 10−11 m3

kg · s2
, c = 2.998 × 108 m

s
, h̄ = 1.055 × 10−34 kg · m2

s
.

(3.88)

In the study of gravitation it is sometimes convenient to use a “Planckian” system of
units. Since we have three basic units, those of length, time, and mass, we can find new
units of length, time, and mass such that the three fundamental constants, G, c, and h̄ take
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the numerical value of one in those units. These units are called the Planck length �P, the
Planck time tP, and the Planck mass mP, respectively. In those units

G = 1 · �3
P

mP t2
P

, c = 1 · �P

tP
, h̄ = 1 · mP �2

P

tP
, (3.89)

without additional numerical constants – as opposed to equation (3.88). The above
equations allow us to solve for �P, tP, and mP in terms of G, c, and h̄. One readily finds

�P =
√

Gh̄

c3
= 1.616 × 10−33 cm, (3.90)

tP = �P

c
=
√

Gh̄

c5
= 5.391 × 10−44 s, (3.91)

mP =
√

h̄c

G
= 2.176 × 10−5 g. (3.92)

These numbers represent scales at which relativistic quantum gravity effects can be impor-
tant. Indeed, the Planck length is an extremely small length, and the Planck time is an
incredibly short time – the time it takes light to travel the Planck length! While Einstein’s
gravity can be used down to relatively small distances and back to relatively early times in
the history of the universe, a quantum gravity theory (such as string theory) is needed to
study gravity at distances of the order of the Planck length or to investigate the universe
when it was Planck-time old.

There is an equivalent way to characterize the Planck length: �P is the unique length that
can be constructed using only powers of G, c, and h̄. One thus sets

�P = (G)α (c)β (h̄)γ , (3.93)

and fixes the constants α, β, and γ so that the right-hand side has units of length.

Quick calculation 3.8 Show that this condition fixes uniquely α= γ = 1/2, and β =
− 3/2, thus reproducing the result in (3.90).

It may appear that mP is not a very large mass, but it is, in fact, a spectacularly large mass
from the viewpoint of elementary particle physics. The mass mP is roughly 1019 times
larger than the mass of the proton. If the fundamental theory of nature is based on the basic
constants G, c, and h̄, it is then a great mystery why the masses of the elementary particles
are so much smaller than the “obvious” mass mP that can be built from the basic constants.
This puzzle is usually called the hierarchy problem.

For an additional perspective on the Planck mass, consider the following question: what
should be the mass M of the proton so that the gravitational force between two protons
cancels the electric repulsion force between them? Equating the magnitudes of the electric
and gravitational forces we get

G M2

r2
= e2

4πr2
−→ G M2 = e2

4π
. (3.94)
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It is convenient to divide both sides of the equation by h̄c to find

G M2

h̄c
= e2

4π h̄c
� 1

137
−→ M2

m2
P

� 1

137
, (3.95)

where use was made of (3.92). We thus find M � mP/12, or about one-tenth of the
Planck mass. The dimensionless ratio e2/(4π h̄c) is called the fine structure constant.
It was evaluated above using the Heaviside–Lorentz definition of electric charge where
e = √

4π 4.8 × 10−10 esu (see Problem 2.1(c)).

Quick calculation 3.9 The mass of the electron is me = 0.9109 × 10−27 g, and its energy
equivalent is mec2 = 0.5110 MeV. Show that the energy equivalent of the Planck mass is
mPc2 = 1.221 × 1019 GeV (1 GeV = 109 eV). This energy is called the Planck energy.

3.7 Gravitational potentials

We want to learn what happens with the gravitational constant G when we attempt to
describe gravitation in spacetimes of other dimensionalities. To find out, we will examine
gravitational potentials in Newtonian gravity. In this section we obtain the equation that
relates the gravitational potential to the mass distribution in a spacetime with arbitrary but
fixed number of spatial dimensions. In doing so we will learn how to define the relevant
gravitational constant. This result will be used in the following section to define, in any
dimension, the Planck length in terms of the appropriate gravitational constant.

We introduce a gravity field �g with units of force per unit mass. The definition is similar
to that of an electric field in terms of the force on a test particle: the force on a given test
mass m at a point where the gravity field is �g is given by m �g. We set �g equal to minus the
gradient of a gravitational potential Vg:

�g = −∇Vg. (3.96)

We will take this equation to be true in all dimensions. Equation (3.96) has content: if you
move a particle along a closed loop in a static gravitational field, the net work that you do
against the gravitational field is zero.

Quick calculation 3.10 Prove the above statement.

What are the units for the gravitational potential? Equation (3.96) gives

[ �g ] = [Force]
M

= [Vg]
L

−→ [Vg] = [Energy]
M

. (3.97)

The gravitational potential has units of energy per unit mass in any dimension. The
gravitational potential V (4)

g of a point mass in four dimensions is

V (4)
g = −G M

r
. (3.98)
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We can use the electromagnetic analogy to find the equation satisfied by the gravitational
potential. In electromagnetism, we found an equation for the electrostatic potential which
holds in any dimension. This is equation (3.76):

∇2� = −ρ . (3.99)

The four-dimensional scalar potential for a point charge q is

�(4) = q

4πr
, (3.100)

and it satisfies (3.99) where ρ is the charge density for the point charge. It follows by
analogy that the four-dimensional gravitational potential in (3.98) satisfies

∇2V (4)
g = 4πGρm, (3.101)

where ρm is the matter density. While this equation is correct in four dimensions, a small
modification is needed for other dimensions. Note that the left-hand side has the same units
in any number of dimensions: the units of Vg are always the same, and the Laplacian always
divides by length-squared. The right-hand side must also have the same units in any number
of dimensions. Since ρm is mass density, it has different units in different dimensions, and,
as a consequence, the units of G must change when the dimensions change. We therefore
rewrite the above equation more precisely as

∇2V (D)
g = 4πG(D)ρm, (3.102)

when working in D-dimensional spacetime. The superscripts shown in parentheses denote
the dimensionality of spacetime. In particular, we identify G(4) as the four-dimensional
Newton constant G. In general, we will use D to denote the dimensionality of spacetime,
and d to denote the number of spatial dimensions. Clearly, D = d + 1.

Equation (3.102) defines Newtonian gravitation in an arbitrary number of dimensions.
Just as the electric field of a point charge does, the gravitational field of a point mass falls
off like 1/rd−1 in a world with d spatial dimensions. As a result, the force between two
point masses separated by a distance r falls off like 1/rd−1. For three spatial dimensions,
this is the familiar inverse-squared dependence of the gravitational force. If D = 6 (a world
with two extra dimensions) the gravitational force falls off like 1/r4.

3.8 The Planck length in various dimensions

We define the Planck length in any dimension just as we did in four dimensions: the Planck
length is the unique length built using only powers of the gravitational constant G(D), c,
and h̄. To compute the Planck length we must determine the units of G(D). This is easily
done if we recall that the units of G(D)ρm (the right-hand side of (3.102)) are the same in
all dimensions.

Comparing the cases of five and four dimensions, for example,

[G(5)] M

L4
= [G] M

L3
−→ [G(5)] = L [G]. (3.103)
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The units of G(5) carry one more factor of length than the units of G. We use (3.90) to read
the units of G in terms of units of length and units of c and h̄:

[G] = [c]3 L2

[h̄] . (3.104)

Equation (3.103) then gives

[G(5)] = [c]3 L3

[h̄] . (3.105)

Since the Planck length is constructed uniquely from the gravitational constant, c, and h̄,
we can remove the brackets in the above equation and replace L by the five-dimensional
Planck length �

(5)
P : (

�
(5)
P

)3 = h̄G(5)

c3
. (3.106)

Reintroducing the four-dimensional Planck length:

(
�
(5)
P

)3 =
( h̄G

c3

)G(5)

G
−→ (

�
(5)
P

)3 = (�P)2 G(5)

G
. (3.107)

Since they do not have the same units, the gravitational constants in four and five dimen-
sions cannot be compared directly. Planck lengths, however, can be compared. If the Planck
length is the same in four and in five dimensions, then G(5)/G = �P; the gravitational
constants differ by one factor of the common Planck length.

It is not hard to generalize the above equations to D spacetime dimensions:

Quick calculation 3.11 Show that (3.106) and (3.107) are replaced by

(
�
(D)
P

)D−2 = h̄G(D)

c3
= (�P)2 G(D)

G
. (3.108)

3.9 Gravitational constants and compactification

If string theory is correct, our world is really higher-dimensional. The fundamental grav-
ity theory is then defined in the higher-dimensional world, with some value for the
higher-dimensional Planck length. Since we observe only four dimensions, the additional
dimensions may be curled up to form a compact space with small volume. We can then
ask: what is the effective value of the four-dimensional Planck length? As we shall show
here, the effective four-dimensional Planck length depends on the volume of the extra
dimensions, as well as on the value of the higher-dimensional Planck length.

These observations raise the possibility that the Planck length in the effectively four-
dimensional world – the famous number equal to about 10−33 cm – may not coincide with
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the fundamental Planck length in the original higher-dimensional theory. Is it possible that
the fundamental Planck length is much bigger than the familiar, four-dimensional one? We
will answer this question in the following section. In this section we will work out the
effect of compactification on gravitational constants.

How do we calculate the gravitational constant in four dimensions if we are given the grav-
itational constant in five? First, we recognize the need to curl up one spatial dimension,
otherwise there is no effectively four-dimensional spacetime. As we will see, the size of
the extra dimension enters the relationship between the gravitational constants. To explore
these questions precisely, consider a five-dimensional spacetime where one dimension
forms a small circle of radius R. We are given G(5) and we would like to calculate G(4).

Let (x1, x2, x3) denote three spatial dimensions of infinite extent, and x4 denote a com-
pactified dimension of circumference 2π R (Figure 3.2). We place a uniform ring of total
mass M all around the circle at x1 = x2 = x3 = 0. This is a mass distribution which is
constant along the x4 dimension. We are interested in the gravitational potential V (5)

g that
emerges from such a mass distribution. Alternatively, we could have placed a point mass
at some fixed x4, but this makes the calculations more involved (Problem 3.10). In the
present case the gravitational potential V (5)

g does not depend on x4. The total mass M can
be written as

total mass = M = 2π Rm, (3.109)

where m is the mass per unit length.

What is the mass density in the five-dimensional world? It is only nonzero at x1 = x2 =
x3 = 0. To represent such a mass density we use delta functions. Recall that the delta
function δ(x) can be viewed as a singular function whose value is zero except for x = 0
and such that the integral

∫∞
−∞ dxδ(x) = 1. This integral implies that if x has units of

length, then δ(x) has units of inverse length. Since the five-dimensional mass density is
concentrated at x1 = x2 = x3 = 0, it is reasonable to include in its formula the product
δ(x1)δ(x2)δ(x3) of three delta functions. We claim that

ρ(5) = m δ(x1)δ(x2)δ(x3). (3.110)

x 
1

 = x 
2

 = x 
3

 = 0 x 
1, x 

2, x 
3

x 
4

M

�Fig. 3.2 A world with four space dimensions, one of which, x4, is compactified into a circle of
radius R. A ring of total mass M wraps around this compact dimension.
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We first check the units. The mass density ρ(5) must have units of M/L4. This works out
since m has units of mass per unit length, and the three delta functions supply an additional
factor of L−3. The ansatz in (3.110) could still be off by a constant dimensionless factor,
a factor of two, for example. As a final check, we integrate ρ(5) over all space. The result
should be the total mass:∫ ∞

−∞
dx1dx2dx3

∫ 2π R

0
dx4ρ(5)

= m
∫ ∞

−∞
dx1δ(x1)

∫ ∞

−∞
dx2δ(x2)

∫ ∞

−∞
dx3δ(x3)

∫ 2π R

0
dx4

= m 2π R. (3.111)

This is indeed the total mass on account of (3.109). For the effectively four-dimensional
observer the mass is point-like, and it is located at x1 = x2 = x3 = 0. So this observer
writes

ρ(4) = Mδ(x1)δ(x2)δ(x3). (3.112)

Note the relation

ρ(5) = 1

2π R
ρ(4). (3.113)

Let us now use this information in the equations for the gravitational potential. Using
the five-dimensional version of (3.102) and (3.113), we find

∇2 V (5)
g (x1, x2, x3) = 4πG(5)ρ(5) = 4π

G(5)

2π R
ρ(4). (3.114)

As we have noted before, V (5)
g is independent of x4 so the Laplacian above is actually the

four-dimensional one. Since the effective four-dimensional gravitational potential is V (5)
g ,

the above equation takes the form of the gravitational equation in four dimensions, where
the constant in between the 4π and the ρ(4) is the four-dimensional gravitational constant.
We have therefore shown that

G = G(5)

2π R
−→ G(5)

G
= 2π R ≡ �C , (3.115)

where �C is the length of the extra compact dimension. This is what we were seeking: a
relationship between the strength of the gravitational constants in terms of the size of the
extra dimension.

The generalization of (3.115) to the case where there is more than one extra dimension is
straightforward. One finds that

G(D)

G
= (�C )D−4, (3.116)

where �C is the common length of each of the extra dimensions. When the various dimen-
sions are curled up into circles of different lengths, the above right-hand side must be
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replaced by the product of the various lengths. This product is, in fact, the volume VC of
the extra dimensions, so that

G(D)

G
= VC . (3.117)

3.10 Large extra dimensions

We are now done with all the groundwork. In Section 3.8 we found the relation between
the Planck length and the gravitational constant in any dimension. In Section 3.9 we
determined how gravitational constants are related upon compactification. We are ready
to find out how the fundamental Planck length in a higher-dimensional theory with
compactification is related to the Planck length in the effectively four-dimensional theory.

To begin with, consider a five-dimensional world with Planck length �
(5)
P and a single

spatial coordinate curled up into a circle of circumference �C . How are these lengths related
to �P? From (3.107) and (3.115) we find that

(�
(5)
P )3 = (�P)2 G(5)

G
= (�P)2 �C . (3.118)

Solving for �C , we get

�C = (�
(5)
P )3

(�P)2
. (3.119)

This relation enables us to explore the possibility that the world is actually five-dimensional
with a fundamental Planck length �

(5)
P that is much larger than 10−33 cm. Of course, we

must have �P ∼ 10−33 cm. After all, this is the four-dimensional Planck length, whose
value is given in (3.90).

Present-day accelerators explore physics down to distances of the order of 10−16 cm. If
this distance, or a somewhat smaller one, is the fundamental length scale, we may choose
�
(5)
P ∼ 10−18 cm. What would �C have to be? With �

(5)
P ∼ 10−18 cm and �P ∼ 10−33 cm,

equation (3.119) gives �C ∼ 1012 cm ∼ 107 km. This is more than twenty times the dis-
tance from the earth to the moon. Such a large extra dimension would have been detected
a long time ago.

Having failed to produce a realistic scenario in five dimensions, let us try in six spacetime
dimensions. For arbitrary D, equations (3.108) and (3.116) give(

�
(D)
P

)D−2 = (�P)2 G(D)

G
= (�P)2(�C )D−4. (3.120)

Solving for �C we find

�C = �
(D)
P

(�
(D)
P

�P

) 2
D−4

. (3.121)
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For D = 6 and �
(6)
P ∼ 10−18 cm this formula gives

�C = (�
(6)
P )2

�P
∼ 10−3 cm. (3.122)

This is a lot more interesting! A convenient unit here is the micron μm = 10−6 m. One-
tenth of a millimeter is 100 μm. We found �C ∼ 10 μm. Could there be extra dimensions
ten microns long? You might think that this is still too big, since even microscopes probe
smaller distances. Moreover, as we indicated before, accelerators probe distances of the
order of 10−16 cm. Surprisingly, it is possible that “large extra dimensions” exist and that
we have not observed them yet.

The existence of additional dimensions may be confirmed by testing the force law which
gives the gravitational attraction between two masses. For distances much larger than the
compactification scale �C the world is effectively four-dimensional, so the dependence of
the force between two masses on their separation must follow accurately Newton’s inverse-
squared law. On the other hand, for distances smaller than �C , the world is effectively
higher-dimensional, and the force law will change. A force between two masses that goes
like 1/r4, where r is the separation, is consistent with the existence of two compact extra
dimensions.

It turns out to be very difficult to test gravity at small distances; the force of gravity is
extremely weak and spurious electrical forces must be cancelled very precisely. Motivated
mainly by the possible existence of large extra dimensions, physicists set out to test the
inverse-squared law at distances smaller than one millimeter. The tabletop experiments use
a torsion pendulum detector or, alternatively, a micromachined cantilever with a test mass
at the free end. As of 2007, experiments have found no departure from the inverse-squared
law down to distances of about fifty microns. This means that extra dimensions, if they
exist, must be smaller than this distance. Compact dimensions the size of ten microns, as
we found in (3.122), are still consistent with experiment.

You might ask: what about forces other than gravity? Electromagnetism has been tested
to much smaller distances, and we know that the electric force obeys an inverse-squared
law very accurately. Rutherford scattering of alpha particles off nuclei, for example,
confirms that the inverse-squared law holds down to 10−11 cm. Since the separation
dependence of the electric force would change at distances smaller than the size of the
extra dimensions, this seems to rule out large extra dimensions. The possibility of
large extra dimensions, however, survives in string theory, where our spatial world could
be a three-dimensional hyperplane transverse to the extra dimensions. This hyperplane is
called a D3-brane. A D3-brane is a D-brane with three spatial dimensions.

Open strings have the remarkable property that their endpoints must remain attached to
the D-branes. In many phenomenological models built in string theory, it is the fluctuations
of open strings that give rise to the familiar leptons, quarks, and gauge fields, including the
Maxwell gauge field. It follows that these fields are bound to the D3-brane and do not feel
the extra dimensions. If the Maxwell field lives on the D-brane, the electric field lines of a
charge remain on the D-brane and do not go off into the extra dimensions. The force law is
not changed at any distance scale. Closed strings are not bound by D-branes, and therefore
gravity, which arises from closed strings, is affected by the extra dimensions.
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Although the Planck length �P is an important length scale in four dimensions, if there
are large extra dimensions, the truly fundamental Planck length would be much bigger than
the effective four-dimensional one. The possibility of large extra dimensions is slightly
unnatural – why should the extra dimensions be much larger than the fundamental length
scale? This is not a new problem, however, but rather the problem of a large hierarchy in
another guise. We noted earlier that particle physics faces a puzzling hierarchy between
the Planck mass and the masses of elementary particles. In the large-extra-dimensions
scenario, the hierarchy is postulated to arise from extra dimensions that are much larger
than the fundamental length scale. At any rate, the truly exciting fact is that present
experimental constraints do not rule out large extra dimensions. The discovery of extra
dimensions would be revolutionary.

It is possible, of course, that extra dimensions are much larger than �P ∼ 10−33 cm but
are still quite small. If spacetime is ten dimensional, setting D = 10 and �

(10)
P ∼ 10−18 cm

in (3.121) gives �C ∼ 10−13 cm, a distance far too small to be probed with tabletop grav-
itational experiments. Extra dimensions this size or smaller must be searched for using
particle accelerators.

Problems

Problem 3.1 Lorentz covariance for motion in electromagnetic fields.†

The Lorentz force equation (3.5) can be written relativistically as

dpμ

ds
= q

c
Fμν

dxν

ds
, (1)

where pμ is the four-momentum. Check explicitly that this equation reproduces (3.5) when
μ is a spatial index. What does (1) give when μ = 0? Does it make sense? Is (1) a gauge
invariant equation?

Problem 3.2 Maxwell equations in four dimensions.

(a) Show explicitly that the source-free Maxwell equations emerge from Tμλν = 0.
(b) Show explicitly that the Maxwell equations with sources emerge from (3.34).

Problem 3.3 Electromagnetism in three dimensions.

(a) Find the reduced Maxwell equations in three dimensions by starting with Maxwell’s
equations and the force law in four dimensions, using the ansatz (3.11), and assuming
that no field can depend on the z direction.

(b) Repeat the analysis of three-dimensional electromagnetism starting with the Lorentz
covariant formulation. Take Aμ = (�, A1, A2), examine Fμν , the Maxwell equations
(3.34), and the relativistic form of the force law derived in Problem 3.1.

Problem 3.4 Electric fields and potentials of point charges.

(a) Show that for time-independent fields, the Maxwell equation T0i j = 0 implies that
∂i E j − ∂ j Ei = 0. Explain why this condition is satisfied by the ansatz �E = −∇�.
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(b) Show that with d spatial dimensions, the potential � due to a point charge q is given by

�(r) = �
( d

2 − 1
)

4πd/2

q

rd−2
.

Problem 3.5 Calculating the divergence in higher dimensions.

Let �f = f (r) r̂ be a vector function in R
d . Here r̂ is a unit radial vector, and r is the radial

distance to the origin. Derive a formula for ∇ · �f by applying the divergence theorem to
a spherical shell of radius r and width dr . Check that for d = 3 your answer reduces to
∇ · �f = f ′(r)+ 2

r f (r).

Problem 3.6 Analytic continuation for gamma functions.†

Consider the definition of the gamma function for complex arguments z whose real part is
positive:

�(z) =
∫ ∞

0
dt e−t t z−1, �(z) > 0.

Use this equation to show that for �(z) > 0

�(z) =
∫ 1

0
dt t z−1

(
e−t −

N∑
n=0

(−t)n

n!
)
+

N∑
n=0

(−1)n

n!
1

z + n
+
∫ ∞

1
dt e−t t z−1.

Explain why the above right-hand side is well defined for �(z) > −N − 1. It follows that
this right-hand side provides the analytic continuation of �(z) for �(z) > −N − 1. Con-
clude that the gamma function has poles at 0,−1,−2, . . ., and give the value of the residue
at z = −n (with n a positive integer).

Problem 3.7 Simple quantum gravity effects are small.†

(a) What would be the “gravitational” Bohr radius for a hydrogen atom if the attraction
binding the electron to the proton was gravitational? The standard Bohr radius is a0 =

h̄2

me2 � 5.29 × 10−9 cm.
(b) In “units” where G, c, and h̄ are set equal to one, the temperature of a black hole is

given by kT = 1
8π M . Insert back the factors of G, c, and h̄ into this formula. Evaluate

the temperature of a black hole of a million solar masses. What is the mass of a black
hole whose temperature is room temperature?

Problem 3.8 Vacuum energy and an associated length scale.

Observations indicate that the expansion of the universe is currently accelerating possibly
due to a vacuum energy density. The mass density associated with this energy is approxi-
mately ρvac = 7.7 × 10−27 kg/m3. Some physicists try to understand the acceleration of
the universe by introducing modifications to gravity. It is then useful to know what length
scales could be important. If one assumes that the only relevant parameters are ρvac, h̄, and
c, one can construct a length parameter �vac by multiplying powers:

�vac = ρα
vac h̄β cγ .
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�Fig. 3.3 Problem 3.10: a point mass M in a five-dimensional spacetime with one compact dimension.

What must be the values of α, β, and γ in the above equation? What is the numerical value
of �vac? Express your answer in μm, where 1 μm = 10−6 m.

Problem 3.9 Planetary motion in four and higher dimensions.

Consider the motion of planets in planar circular orbits around heavy stars in our four-
dimensional spacetime and in spacetimes with additional spatial dimensions. We wish to
study the stability of these orbits under perturbations that keep them planar. Such a per-
turbation would arise, for example, if a meteorite moving on the plane of the orbit hits the
planet and changes its angular momentum.

Show that while planetary circular orbits in our four-dimensional world are stable under
such perturbations, they are not so in five or higher dimensions. [Hint: you may find it
useful to use the effective potential for motion in a central force field.]

Problem 3.10 Gravitational field of a point mass in a compactified five-dimensional
world.

Consider a five-dimensional spacetime with space coordinates (x, y, z, w) not yet com-
pactified. A point mass M is located at the origin (x, y, z, w) = (0, 0, 0, 0).

(a) Find the gravitational potential V (5)
g (r). Write your answer in terms of M , G(5),

and r = (x2 + y2 + z2 + w2)1/2. [Hint: use ∇2V (5)
g = 4πG(5)ρm and the divergence

theorem.]

Now let w become a circle with radius a while keeping the mass fixed, as shown in
Figure 3.3.

(b) Write an exact expression for the gravitational potential V (5)
g (x, y, z, 0). This potential

is a function of R ≡ (x2 + y2 + z2)1/2 and can be written as an infinite sum.
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(c) Show that for R � a the gravitational potential takes the form of a four-dimensional
gravitational potential, with Newton’s constant G(4) given in terms of G(5) as in
(3.115). [Hint: turn the infinite sum into an integral.]

These results confirm both the relation between the four- and five-dimensional New-
ton constants in a compactification and the emergence of a four-dimensional potential at
distances large compared to the size of the compact dimension.

Problem 3.11 Exact answer for the gravitational potential.

The infinite sum in Problem 3.10 can be evaluated exactly using the identity

∞∑
n=−∞

1

1 + (πnx)2
= 1

x
coth

( 1

x

)
.

(a) Find an exact closed-form expression for the gravitational potential V (5)
g (x, y, z, 0) in

the compactified theory.
(b) Expand this answer to calculate the leading correction to the gravitational potential in

the limit when R � a. For what value of R/a is the correction of order 1%?
(c) Use the exact answer in (a) to expand the potential when R � a. Give the first two

terms in the expansion. Do you recognize the leading term?



4 Nonrelativistic strings

A full appreciation for the subtleties of relativistic strings requires an under-
standing of the basic physics of nonrelativistic strings. These strings have mass
and tension. They can vibrate both transversely and longitudinally. We study
the equations of motion for nonrelativistic strings and develop the Lagrangian
approach to their dynamics.

4.1 Equations of motion for transverse oscillations

We will begin our study of strings with a look at the transverse fluctuations of a stretched
string. The direction along the string is called the longitudinal direction, and the directions
orthogonal to the string are called the transverse directions. We consider, for notational
simplicity, the case when there is only one transverse direction – the generalization to
additional transverse directions is straightforward.

Working in the (x, y) plane, let the classical nonrelativistic string have its endpoints
fixed at (0, 0), and (a, 0). In the static configuration the string is stretched along the x axis
between these two points. In a transverse oscillation, the x-coordinate of any point on the
string does not change in time. The transverse displacement of a point is given by its y
coordinate. The x direction is longitudinal, and the y direction is transverse. To describe
the classical mechanics of a homogeneous string, we need two pieces of information: the
tension T0 and the mass per unit length μ0. The total mass of the string is then M = μ0a.

Let us look briefly at the units. Tension has units of force, so

[T0] = [Force] = [Energy]
L

. (4.1)

If you stretch a string an infinitesimal amount dx , its tension remains approximately con-
stant through the stretching, and the change in energy equals the work done T0dx . The
total mass of the string does not change. If we were considering relativistic strings, how-
ever, a static string with more energy would have a larger rest mass. Using (4.1), noting
that energy has units of mass times velocity squared, and that μ0 has units of mass per unit
length, we have

[T0] = M

L
[v]2 = [μ0][v]2. (4.2)

For a nonrelativistic string, both T0 and μ0 are adjustable parameters, and the velocity on
the right-hand side above will turn out to be the velocity of transverse waves. The above
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y + dy

y

T0

T0

x + dxx

dx
dy

�Fig. 4.1 A short piece of a classical nonrelativistic string vibrating transversely. With different slopes
at the two endpoints there is a net vertical force.

equation suggests that the string tension T0 and the linear mass density μ0 in a relativistic
string might be related by T0 = μ0c2, since c is the canonical velocity in relativity. We will
see in Chapter 6 that this is indeed the correct relation for a relativistic string.

Returning to our classical nonrelativistic string, let us figure out the equation of motion.
Consider a small portion of the static string that extends from x to x + dx , with y = 0. This
piece is shown in transverse oscillation in Figure 4.1. At time t , the transverse displacement
of the string is y(t, x) at x and y(t, x + dx) at x + dx . We will assume that the oscillations
are small, and by this we will mean that at all times∣∣∣ ∂y

∂x

∣∣∣� 1, (4.3)

at any point on the string. This guarantees that the transverse displacement of the string is
small compared to the length of the string. The length of the string changes little, and we
can assume that the tension T0 is unchanged.

The slope of the string is a bit different at the points x and x + dx . This change of
slope means that the string tension changes direction and the portion of string under con-
sideration feels a net force. For transverse oscillations we need only calculate the net
vertical force; the net horizontal force is negligible (Problem 4.1). The vertical force at
(x + dx, y + dy) is given accurately by T0 times ∂y/∂x evaluated at x + dx and is point-
ing up; similarly, the vertical force at (x, y) is T0 times ∂y/∂x evaluated at x and is pointing
down. Therefore the net vertical force d Fv is

d Fv = T0
∂y

∂x

∣∣∣
x+dx

− T0
∂y

∂x

∣∣∣
x
� T0

∂2 y

∂x2
dx . (4.4)

The mass dm of this piece of string, originally stretched from x to x + dx , is given by
the mass density μ0 times dx . By Newton’s law, the net vertical force equals mass times
vertical acceleration. So we can simply write

T0
∂2 y

∂x2
dx = (μ0dx)

∂2 y

∂t2
. (4.5)

We cancel dx on each side and rearrange terms to get
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∂2 y

∂x2
− μ0

T0

∂2 y

∂t2
= 0 . (4.6)

This is just a wave equation! Recall that for the wave equation

∂2 y

∂x2
− 1

v2
0

∂2 y

∂t2
= 0, (4.7)

the parameter v0 is the velocity of the waves. Thus for the transverse waves on our stretched
string, the velocity v0 of the waves is

v0 =
√

T0/μ0. (4.8)

The higher the tension or the lighter the string, the faster the waves move.

4.2 Boundary conditions and initial conditions

Since equation (4.6) is a partial differential equation involving space and time derivatives,
in order to fix solutions we must in general apply both boundary conditions and initial con-
ditions. Boundary conditions (B.C.) constrain the solution at the boundary of the system,
and initial conditions constrain the solution at a given starting time. The most common
types of boundary conditions are Dirichlet and Neumann boundary conditions.

For our string, Dirichlet boundary conditions specify the positions of the string end-
points. For example, if we attach each end of the string to a wall (Figure 4.2, left), we are
imposing the Dirichlet boundary conditions

y(t, x = 0) = y(t, x = a) = 0, Dirichlet boundary conditions. (4.9)

Alternatively, if we attach a massless loop to each end of the string and the loops are
allowed to slide along two frictionless poles, we are imposing Neumann boundary con-
ditions. For our string, Neumann boundary conditions specify the values of the derivative
∂y/∂x at the endpoints. Since the loops are massless and the poles are frictionless, the
derivative ∂y/∂x must vanish at the poles x = 0, a (Figure 4.2, right). If this were not
the case, then the slope of the string at a pole would be nonzero, and a component of the
string tension would accelerate the rings in the y direction. Since each ring is massless,

y y

x = 0 x = a x = 0

x = a 

�Fig. 4.2 Left: string with Dirichlet boundary conditions at the endpoints. Right: string with
Neumann boundary conditions at the endpoints.
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their acceleration would be infinite. This is not possible, so, in effect, we are imposing the
Neumann boundary conditions

∂y

∂x
(t, x = 0) = ∂y

∂x
(t, x = a) = 0, Neumann boundary conditions. (4.10)

These Neumann boundary conditions apply to strings whose endpoints are free to move
along the y direction.

Let us see how we can solve the wave equation for a particular set of initial conditions. The
general solution of equation (4.6) is of the form

y(t, x) = h+(x − v0t)+ h−(x + v0t), (4.11)

where h+ and h− are arbitrary functions of a single variable. This solution represents a
superposition of two waves, h+ moving to the right and h− moving to the left. Suppose
that the initial values of y and ∂y/∂t are known at time t = 0. Using equation (4.11) we
see that this information yields the equations

y(0, x) = h+(x)+ h−(x), (4.12)

∂y

∂t
(0, x) = −v0h′+(x)+ v0h′−(x), (4.13)

where the left-hand sides are known functions, and the primes denote derivatives with
respect to arguments. Using (4.12) we can solve for h− in terms of h+. Substituting into
(4.13), we get a first-order ordinary differential equation for h+. Once we have solved for
h+ (using appropriate boundary conditions), we can use (4.12) again, this time to find the
explicit form of h−. With h+ and h− known, the full solution of the equations of motion is
given by (4.11).

4.3 Frequencies of transverse oscillation

Suppose that we have a string where each point is oscillating in the y direction sinusoidally
and in phase. This means that y(t, x) is of the form

y(t, x) = y(x) sin(ωt + φ), (4.14)

where ω is the angular frequency of oscillation and φ is the constant common phase. Our
aim is to find the allowed frequencies of oscillation. Substituting (4.14) into (4.6) and
cancelling the common time dependence, we find

d2 y(x)

dx2
+ ω2 μ0

T0
y(x) = 0. (4.15)

This is an ordinary second-order differential equation for the profile y(x) of the oscilla-
tions. The allowed frequencies are selected by this equation, together with the boundary
conditions. Since ω,μ0, and T0 are constants, the differential equation is solved in terms of
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trigonometric functions. With Dirichlet boundary conditions (4.9) we have the nontrivial
solutions

yn(x) = An sin
(nπx

a

)
, n = 1, 2, . . ., (4.16)

where An is an arbitrary constant. The value n = 0 is not included above because it repre-
sents a motionless string. Plugging yn(x) into (4.15), we find the allowed frequencies ωn :

ωn =
√

T0

μ0

(nπ

a

)
, n = 1, 2, . . .. (4.17)

These are the frequencies of oscillation for a Dirichlet string. The strings on a violin are
Dirichlet strings. To tune a violin to the correct frequency one must adjust the string ten-
sion. The higher the tension is, the higher the pitch, as predicted by (4.17). For the case of
Neumann boundary conditions (4.10), we obtain the spatial solutions

yn(x) = An cos
(nπx

a

)
, n = 0, 1, 2, . . .. (4.18)

This time the n = 0 solution is a little less trivial: the string does not oscillate, but it is
rigidly translated to y(t, x) = A0. The oscillation frequencies, found by plugging (4.18)
into (4.15), are the same as those in (4.17). Therefore, the oscillation frequencies are the
same in the Neumann and Dirichlet problems. The Neumann case admits one extra solution
not included in our oscillatory ansatz (4.14): the string can translate with constant veloc-
ity. Indeed, y(t, x) = at + b, with a and b arbitrary constants, satisfies both the boundary
conditions and the original wave equation (4.7).

4.4 More general oscillating strings

Let us discuss briefly some problems that are closely related to the ones considered thus
far. For example, we can take the mass density of the string to be a function μ(x) of
position. The form (4.6) of the wave equation does not change since it is derived from
local considerations: the examination of a little piece of string that can be chosen to be
sufficiently small so that the mass density is approximately constant. We therefore get

∂2 y

∂x2
− μ(x)

T0

∂2 y

∂t2
= 0. (4.19)

For normal oscillations, we use the ansatz in (4.14) and find

d2 y

dx2
+ μ(x)

T0
ω2 y(x) = 0. (4.20)

This equation is no longer simple to solve, and it can only be studied in detail once the
function μ(x) is specified. In Problems 4.3 and 4.7 you will consider some specific mass
distributions, and you will explore a variational approach that gives an upper bound for the
lowest oscillation frequency.
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So far we have only considered strings that oscillate transversally. Strings also admit
longitudinal oscillations, although the relativistic string does not. Imagine a string stretched
along the x axis, and consider the infinitesimal segment which at equilibrium extends from
x to x + dx . Suppose now that at time t the ends of this infinitesimal segment are longi-
tudinally displaced from their equilibrium positions by distances η(t, x) and η(t, x + dx),
respectively. If these two quantities are not the same, the piece of string is being com-
pressed or stretched. An equation of motion can be obtained for this system, much as we
did for transverse motion. It is not possible, however, to assume that the tension is constant
throughout the string. For transverse oscillations the net force acting on a little piece of
string arose from the different angles at which the same tension was applied on opposite
ends of the piece. If the string always lies along the x axis then a net force can act on a seg-
ment only if the tension is different on its two ends. Therefore the waves on a longitudinally
oscillating string are accompanied by tension waves (Problem 4.2).

4.5 A brief review of Lagrangian mechanics

The Lagrangian L of a system is defined by

L = T − V , (4.21)

where T is the kinetic energy of the system and V is the potential energy of the system.
For a point particle of mass m moving along the x axis under the influence of a time-
independent potential V (x), the nonrelativistic Lagrangian takes the form

L(t) = 1

2
m ( ẋ(t))2 − V (x(t)) , ẋ(t) ≡ dx(t)

dt
. (4.22)

We must emphasize that the above Lagrangian is implicitly a function of time, but it has
no explicit time dependence. All the time dependence arises from the time dependence of
the position x(t). The action S is defined as

S =
∫
P

L(t)dt, (4.23)

where P is a path x(t) between an initial position xi at an initial time ti , and a final position
x f at a final time t f > ti . One such path is shown in Figure 4.3.

The action is a functional. Whereas a function of a single variable takes one number – the
argument – as input and gives another number as output, a functional takes a function as
the input, and gives a number as output. Since a function is usually defined by its values
at infinitely many points, we can think of a functional as a function of infinitely many
variables. In our present application, the input for the action functional is the function x(t)
which determines the path P . We can emphasize the argument of S by using the notation
S[x]. Here [x] represents the full function x(t). It is potentially confusing to write S[x(t)],
since it suggests that S is ultimately a function of t , which it is not.
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t

�

xi

xf

ti tf

x (t )

�Fig. 4.3 A path P representing a possible one-dimensional motion x(t) of a particle during the time
interval [ti, tf].

xi

xf

ti tt tf

x (t ) + δx (t )
δx (t )

x (t )

�Fig. 4.4 A path x(t) and its variation x(t) + δx(t). This variation δx(t) vanishes at t = ti and at t = tf.

More explicitly, for any path x(t), the action is given by

S[x] =
∫ t f

ti

{
1

2
m (ẋ(t))2 − V (x(t))

}
dt. (4.24)

It is very important to emphasize that the action S can be calculated for any path x(t)
and not only for paths that represent physically realized motion. It is because S can be
calculated for all paths that it is a very powerful tool to find the paths that can be physically
realized.

Hamilton’s principle states that the path P which a system actually takes is one for which
the action S is stationary. More precisely, if this path P is varied infinitesimally, the action
does not change to first order in the variation. In terms of the function x(t) which specifies
the path, the perturbed path takes the form x(t)+ δx(t), as shown in Figure 4.4. For any
time t , the variation δx(t) is the vertical distance between the original path and the varied
path. As in the figure, we consider variations where the initial and final positions xi = x(ti )
and x f = x(t f ) are unchanged:

δx(ti ) = δx(t f ) = 0. (4.25)
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We now calculate the action S[x + δx] for the perturbed path x(t)+ δx(t):

S[x + δx] =
∫ t f

ti

{
m

2

( d

dt
(x(t)+ δx(t))

)2 − V (x(t)+ δx(t))

}
dt

= S[x] +
∫ t f

ti

{
mẋ(t)

d

dt
δx(t)− V ′(x(t)) δx(t)

}
dt +O((δx)2). (4.26)

In passing to the last right-hand side we expanded V in a Taylor series about x(t). The
terms of order (δx)2 and higher are unnecessary to determine whether or not the action is
stationary. We have thus left them undetermined and indicated them by O((δx)2). We can
write the new action as S + δS, where δS is linear in δx . From the equation above we see
that δS is given by

δS =
∫ t f

ti

{
mẋ(t)

d

dt
δx(t)− V ′(x(t)) δx(t)

}
dt. (4.27)

To find the equations of motion, the variation δS must be rewritten in the form δS =∫
dt δx(t){. . .}. In particular, no derivatives must be acting on δx . This can be achieved

using integration by parts:

δS =
∫ t f

ti

{
d

dt

(
mẋ(t)δx(t)

)− mẍ(t)δx(t)− V ′(x(t)) δx(t)

}
dt

= mẋ(t f )δx(t f )− mẋ(ti )δx(ti )+
∫ t f

ti
δx(t)

(−mẍ(t)− V ′(x(t))
)

dt. (4.28)

Making use of (4.25), the variation reduces to

δS =
∫ t f

ti
δx(t)

(−mẍ(t)− V ′(x(t))
)

dt. (4.29)

The action is stationary if δS vanishes for every variation δx(t). For this to happen, the
factor multiplying δx(t) in the integrand must vanish:

mẍ(t) = −V ′(x(t)). (4.30)

This is Newton’s second law applied to the motion of a particle in a potential V (x). We
have recovered the expected equation of motion by requiring that the action be stationary
under variations.

Suppose that we have determined the path that the particle takes while going from xi to x f .
As we have seen, the action is then stationary under variations that vanish at the initial and
final times. Is the action also stationary under variations that change the initial position at ti
or the final position at t f ? In general, the answer is no. This can be seen from equation (4.5).
The integral term vanishes by assumption, but if δx(t f ) 	= 0, the first term on the right-
hand side would not vanish unless mẋ(t f ), the final momentum of the particle, happens to
vanish. The situation is analogous for δx(ti ) 	= 0.

Hamilton’s principle states that the action is stationary about the classical solution. The
classical solution does not always define a minimum of the action. It is possible to construct
a simple example in which the classical solution is a saddle point of the action functional:
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the action increases for some variations and decreases for others. See Problem 4.6 for the
details.

4.6 The nonrelativistic string Lagrangian

Let us return now to our string with constant mass density μ0, constant tension T0, and ends
located at x = 0 and x = a. The kinetic energy is simply the sum of the kinetic energies of
all the infinitesimal segments that comprise the string. So it can be written as

T =
∫ a

0

1

2
(μ0dx)

(
∂y

∂t

)2

. (4.31)

The potential energy arises from the work which must be done to stretch the segments.
Consider an infinitesimal portion of string which extends from (x, 0) to (x + dx, 0) when
the string is in equilibrium. If the string element is momentarily stretched from (x, y)

to (x + dx, y + dy), as in Figure 4.1, then the change in length �l of the infinitesimal
segment is given by

�l =
√

(dx)2 + (dy)2 − dx = dx
(√

1 +
( ∂y

∂x

)2 − 1
)
� dx

1

2

(
∂y

∂x

)2

, (4.32)

where we have used the small oscillation approximation (4.3) to discard higher-order terms
in the expansion of the square root. Since the work done in stretching each infinitesimal
segment is T0�l, the total potential energy V is

V =
∫ a

0

1

2
T0

(
∂y

∂x

)2

dx . (4.33)

The Lagrangian for the string is given by T − V :

L(t) =
∫ a

0

[1

2
μ0

(∂y

∂t

)2 − 1

2
T0

( ∂y

∂x

)2]
dx ≡

∫ a

0
L dx , (4.34)

where L is referred to as the Lagrangian density :

L
(∂y

∂t
,
∂y

∂x

)
= 1

2
μ0

(
∂y

∂t

)2

− 1

2
T0

( ∂y

∂x

)2
. (4.35)

The action for our string is therefore

S =
∫ t f

ti
L(t)dt =

∫ t f

ti
dt
∫ a

0
dx

[
1

2
μ0

(∂y

∂t

)2 − 1

2
T0

( ∂y

∂x

)2
]

. (4.36)

In this action the “path” is the function y(t, x), defined over the region of (t, x) space
shown shaded in Figure 4.5.
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boundary
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boundary
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x

�Fig. 4.5 The string motion is defined by y(t, x) over the domain t ∈ [ti, tf], x ∈ [0, a]. Boundary
conditions apply at x = 0 and x = a for all t ∈ [ti, tf]. Initial and final conditions apply for
t = ti and t = tf, respectively, for all x ∈ [0, a].

To find the equations of motion, we must examine the variation of the action as we vary:
y(t, x) → y(t, x)+ δy(t, x). Performing the variation as before, we get

δS =
∫ t f

ti
dt
∫ a

0
dx

[
μ0

∂y

∂t

∂(δy)

∂t
− T0

∂y

∂x

∂(δy)

∂x

]
. (4.37)

Quick calculation 4.1 Prove equation (4.37).

We must have no derivatives acting on the variations, so we rewrite each of the two terms
above as a full derivative minus a term in which the derivative does not act on the variation:

δS =
∫ t f

ti
dt
∫ a

0
dx

[
∂

∂t

(
μ0

∂y

∂t
δy

)
− μ0

∂2 y

∂t2
δy + ∂

∂x

(
−T0

∂y

∂x
δy

)
+ T0

∂2 y

∂x2
δy

]
.

(4.38)
The time derivative reduces to evaluations at t f and ti , while the space derivative gives
evaluations at the string endpoints:

δS =
∫ a

0

[
μ0

∂y

∂t
δy

]t=t f

t=ti

dx +
∫ t f

ti

[
−T0

∂y

∂x
δy

]x=a

x=0
dt

−
∫ t f

ti
dt
∫ a

0
dx

(
μ0

∂2 y

∂t2
− T0

∂2 y

∂x2

)
δy. (4.39)

Our final expression for δS contains three terms. Each one must vanish independently.
The third term, for example, is determined by the motion of the string for x ∈ (0, a) and
t ∈ (ti , t f ). In this domain δy(t, x) is not restricted by boundary conditions nor by initial
or final conditions, so we set to zero the coefficient of δy and recover our original equation
(4.6). The first term in (4.39) is determined by the configuration of the string at times ti
and t f . If we specify these initial and final configurations, we are in effect setting δy(ti , x)

and δy(t f , x) to zero. This causes the first term to vanish. We encountered an analogous
situation in our study of the free particle.
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The second term in (4.39) is new. Written out explicitly, it is∫ t f

ti

[
−T0

∂y

∂x
(t, a) δy(t, a)+ T0

∂y

∂x
(t, 0) δy(t, 0)

]
dt, (4.40)

and it concerns the motion of the string endpoints y(t, 0) and y(t, a). We need a boundary
condition for each of the two terms above. Let x∗ denote the x coordinate of an endpoint; x∗
can be equal to zero or equal to a. Selecting an endpoint means fixing the value of x∗. We
can make each term in (4.40) vanish by specifying either Dirichlet or Neumann boundary
conditions. Consider an endpoint x∗ and the associated term in (4.40). If we impose a
Dirichlet boundary condition the position of the chosen endpoint is fixed throughout time,
and we require that the variation δy(t, x∗) vanishes. This will cause the chosen term to
vanish. If, on the other hand, we assume that the endpoint is free to move, then the variation
δy(t, x∗) is unconstrained. The term will vanish if we impose the condition

∂y

∂x
(t, x∗) = 0, Neumann boundary condition. (4.41)

Dirichlet boundary conditions can be written in a form where the similarity to Neumann
boundary conditions is more apparent. If a string endpoint is fixed, the time derivative of
the endpoint coordinate must vanish

∂y

∂t
(t, x∗) = 0, Dirichlet boundary condition. (4.42)

The similarity with (4.41) is quite striking. The only change is that spatial derivatives were
turned into time derivatives. If we write Dirichlet boundary conditions in this form, we
must still specify the values of the coordinates at the fixed endpoints. In order to appreciate
further the physical import of boundary conditions, we consider the momentum py carried
by the string. There is no other component to the momentum, because we have assumed
that the motion is restricted to the y direction. This momentum is simply the sum of the
momenta of each infinitesimal segment along the string:

py =
∫ a

0
μ0

∂y

∂t
dx . (4.43)

Let us see if this momentum is conserved:

dpy(t)

dt
=
∫ a

0
μ0

∂2 y

∂t2
dx =

∫ a

0
T0

∂2 y

∂x2
dx = T0

[
∂y

∂x

]x=a

x=0
, (4.44)

where we used the wave equation (4.6). We see that momentum is conserved when
Neumann boundary conditions (4.41) apply at both endpoints. For Dirichlet boundary
conditions momentum is not generally conserved! Indeed, when the endpoints of a string
are attached to a wall, the wall is constantly exerting a force on the string. In the lowest
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normal mode of a Dirichlet string, for example, the net momentum constantly oscillates
between the +y and −y directions.

Why is this important for string theory? For a long time string theorists did not take seri-
ously the possibility of Dirichlet boundary conditions. It seemed unphysical that the string
momentum could fail to be conserved. Moreover, what could the endpoints of open strings
be attached to? The answer is that they are attached to D-branes – a new kind of dynamical
extended object. If a string is attached to a D-brane then momentum can be conserved – the
momentum lost by the string is absorbed by the D-brane. A detailed analysis of the spatial
boundary term induced by variation is crucial to recognize the possibility of D-branes in
string theory.

We conclude this chapter with a more general derivation of the equation of motion for the
string. For this, we use (4.35) to write the action as

S =
∫ t f

ti
dt
∫ a

0
dx L

(∂y

∂t
,
∂y

∂x

)
. (4.45)

We also define the quantities

P t ≡ ∂L
∂ ẏ

, P x ≡ ∂L
∂y′

, (4.46)

with y′ = ∂y/∂x . These are simply the derivatives of L with respect to its first and second
arguments, respectively. Explicitly, they are

P t = μ0
∂y

∂t
, P x = −T0

∂y

∂x
. (4.47)

When we vary the motion by δy, the variation of the action is given by

δS =
∫ t f

ti
dt
∫ a

0
dx
[∂L
∂ ẏ

δ ẏ + ∂L
∂y′

δy′
]
=
∫ t f

ti
dt
∫ a

0
dx
[
P t δ ẏ + P x δy′

]
. (4.48)

Using the standard manipulations we find

δS =
∫ a

0

[
P tδy

]t=t f

t=ti
dx +

∫ t f

ti

[
P x δy

]x=a

x=0
dt

−
∫ t f

ti
dt
∫ a

0
dx
(∂P t

∂t
+ ∂P x

∂x

)
δy. (4.49)

Quick calculation 4.2 Derive equation (4.49).

Quick calculation 4.3 Match in detail equations (4.49) and (4.39).

The variation in (4.49) gives the equation of motion

∂P t

∂t
+ ∂P x

∂x
= 0. (4.50)

Using (4.47) we readily see that this is the wave equation (4.6).
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Note that P t , as given in (4.47), coincides with the momentum density in equation
(4.43). This is not an accident. In Lagrangian mechanics, the derivative of the Lagrangian
with respect to a velocity is the conjugate momentum. For the string, ẏ plays the role of a
velocity, so P t , the derivative of the Lagrangian density with respect to ẏ, is a momentum
density.

In addition, note that for string endpoints that are free to move, the vanishing of δS
requires P x = 0. As we can see from (4.47), this is a Neumann boundary condition. Fur-
thermore, P t vanishes at the string endpoints for a Dirichlet boundary condition (4.42). A
more detailed analysis of these facts will be given in Chapter 8, where P t and P x will be
shown to have an interesting two-dimensional interpretation.

Problems

Problem 4.1 Consistency of small transverse oscillations.

Reconsider the analysis of transverse oscillations in Section 4.1. Calculate the horizontal
force d Fh on the little piece of string shown in Figure 4.1. Show that for small oscilla-
tions this force is much smaller than the vertical force d Fv responsible for the transverse
oscillations.

Problem 4.2 Longitudinal waves on strings.

Consider a string with uniform mass density μ0 stretched between x = 0 and x = a. Let
the equilibrium tension be T0. Longitudinal waves are possible if the tension of the string
varies as it stretches or compresses. For a piece of this string with equilibrium length L , a
small change �L of its length is accompanied by a small change �T of the tension where

1

τ0
≡ 1

L

�L

�T
.

Here τ0 is a tension coefficient with units of tension. Find the equation governing the small
longitudinal oscillations of this string. Give the velocity of the waves.

Problem 4.3 A configuration with two joined strings.

A string with tension T0 is stretched from x = 0 to x = 2a. The part of the string
x ∈ (0, a) has constant mass density μ1, and the part of the string x ∈ (a, 2a) has con-
stant mass density μ2. Consider the differential equation (4.20) that determines the normal
oscillations.

(a) What boundary conditions should be imposed on y(x) and dy
dx (x) at x = a?

(b) Write the conditions that determine the possible frequencies of oscillation.
(c) Calculate the lowest frequency of oscillation of this string when μ1 = μ0 and

μ2 = 2μ0.
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Problem 4.4 Evolving an initial open string configuration.

A string with tension T0, mass density μ0, and wave velocity v0 = √
T0/μ0, is stretched

from (x, y) = (0, 0) to (x, y) = (a, 0). The string endpoints are fixed, and the string can
vibrate in the y direction.

(a) Write y(t, x) as in (4.11), and prove that the above Dirichlet boundary conditions
imply

h+(u) = −h−(−u) and h+(u) = h+(u + 2a). (1)

Here u ∈ (−∞,∞) is a dummy variable that stands for the argument of the func-
tions h±.

Now consider an initial value problem for this string. At t = 0 the transverse displacement
is identically zero, and the velocity is

∂y

∂t
(0, x) = v0

x

a

(
1 − x

a

)
, x ∈ (0, a). (2)

(b) Calculate h+(u) for u ∈ (−a, a). Does this define h+(u) for all u?
(c) Calculate y(t, x) for x and v0t in the domain D defined by the two conditions

D = {(x, v0t)
∣∣0 ≤ x ± v0t < a}.

Exhibit the domain D in a plane with axes x and v0t .
(d) At t = 0 the midpoint x = a/2 has the largest velocity of all points in the string. Show

that the velocity of the midpoint reaches the value of zero at time t0 = a/(2v0) and
that y(t0, a/2) = a/12. This is the maximum vertical displacement of the string.

Problem 4.5 Closed string motion.

We can describe a nonrelativistic closed string fairly accurately by having the string
wrapped around a cylinder of large circumference 2π R on which it is kept taut by the
string tension T0. We assume that the string can move on the surface of the cylinder with-
out experiencing any friction. Let x be a coordinate along the circumference of the cylinder:
x ∼ x + 2π R and let y be a coordinate perpendicular to x , thus running parallel to the axis
of the cylinder. As expected, the general solution for transverse motion is given by

y(x, t) = h+(x − v0t)+ h−(x + v0t),

where h+(u) and h−(v) are arbitrary functions of single variables u and v with
−∞ < u, v < ∞. The string has mass per unit length μ0, and v0 = √

T0/μ0.

(a) State the periodicity condition that must be satisfied by y(x, t) on account of the iden-
tification that applies to the x coordinate. Show that the derivatives h′+(u) and h′−(v)

are, respectively, periodic functions of u and v.
(b) Show that one can write

h+(u) = αu + f (u) , h−(v) = β v + g(v) ,
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where f and g are periodic functions and α and β are constants. Give the relation
between α and β that follows from (a).

(c) Calculate the total momentum carried by the string in the y direction. Is it conserved?

Problem 4.6 Stationary action: minima and saddles.

A particle perfoming harmonic motion along the x axis can be used to show that classical
solutions are not always minima of the action functional. The action for this particle is

S[x] =
∫ t f

0
L dt =

∫ t f

0
dt

1

2
m2(ẋ2 − ω̄2x2) ,

where m is the mass of the particle, ω̄ is the frequency of oscillation, and the motion hap-
pens for t ∈ [0, t f ]. Consider a classical solution x̄(t) and a variation δx(t) that vanishes
at t = 0 and t = t f .

(a) Show that the variation of the action is exactly given by

�S[δx] ≡ S[x̄ + δx] − S[x̄] = 1

2
m2

∫ t f

0
dt
((dδx

dt

)2 − ω̄2δx2
)

.

It is noteworthy that �S only depends on δx ; x̄ drops out from the answer.
(b) A complete set of variations that vanish at t = 0 and t = t f takes the form

δn x = sin ωnt , with ωn = πn

t f
and n = 1, 2, . . .,∞ .

The general variation δx that vanishes at t = 0 and t = t f is a linear superposition of
variations δn x with arbitrary coefficients bn . Calculate �S[δn x] (your answer should
vanish for ωn = ω̄). Prove that

�S
[ ∞∑

n=1

bnδn x
]
=

∞∑
n=1

�S
[
bnδn x

]
.

(c) Show that for t f < π
ω̄

one gets �S[δn x] > 0 for all n ≥ 1. Explain why this guarantees
that the classical solution is a minimum of the action. Show that for π

ω̄
< t f < 2π

ω̄
all

variations δn x lead to �S > 0, except for δ1x , which leads to �S < 0. In this case
the classical solution is a saddle point: there are variations that increase the action and
variations that decrease the action. As t f increases, the number of variations δn x that
decrease the action increases.

Problem 4.7 Variational problem for strings.

Consider a string stretched from x = 0 to x = a, with a tension T0 and a position-
dependent mass density μ(x). The string is fixed at the endpoints and can vibrate in the y
direction. Equation (4.20) determines the oscillation frequencies ωi and associated profiles
ψi (x) for this string.

(a) Set up a variational procedure that gives an upper bound on the lowest frequency of
oscillation ω0. (This can be done roughly as in quantum mechanics, where the ground
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state energy E0 of a system with Hamiltonian H satisfies E0 ≤ (ψ, Hψ)/(ψ,ψ).) As
a useful first step consider the inner product

(ψi , ψ j ) ≡
∫ a

0
μ(x)ψi (x)ψ j (x)dx

and show that it vanishes when ωi 	= ω j . Explain why your variational procedure
works.

(b) Consider the case μ(x) = μ0
x
a . Use your variational principle to find a simple bound

on the lowest oscillation frequency. Compare with the answer ω2
0 � (18.956)

T0
μ0a2

obtained by a direct numerical solution of the eigenvalue problem.

Problem 4.8 Deriving Euler–Lagrange equations.†

(a) Consider an action for a dynamical variable q(t):

S =
∫

dt L(q(t), q̇(t); t). (1)

Calculate the variation δS of the action under a variation δq(t) of the coordinate. Use
the condition δS = 0 to find the equation of motion for the coordinate q(t) (the Euler–
Lagrange equation).

(b) Consider an action for a dynamical field variable φ(t, �x). As indicated, the field is
a function of space and time, and is briefly written as the spacetime function φ(x).
The action is obtained by integrating the Lagrangian density L over spacetime. The
Lagrangian density is a function of the field and the spacetime derivatives of the field:

S =
∫

d Dx L(φ(x), ∂μφ(x)). (2)

Here d Dx = dt dx1. . . dxd , and ∂μφ = ∂φ/∂xμ. Calculate the variation δS of the
action under a variation δφ(x) of the field. Use the condition δS = 0 to find the
equation of motion for the field φ(x) (the Euler–Lagrange equation).



5 The relativistic point particle

To formulate the dynamics of a system we can write either the equations of
motion or, alternatively, an action. In the case of the relativistic point particle it
is rather easy to write the equations of motion. But the action is so physical and
geometrical that it is worth pursuing in its own right. More importantly, while it
is difficult to guess the equations of motion for the relativistic string, the action
is a natural generalization of the relativistic particle action that we will study in
this chapter. We conclude with a discussion of the charged relativistic particle.

5.1 Action for a relativistic point particle

In this section we learn how to formulate the relativistic theory that describes a free point
particle of rest mass m > 0. A free particle is a particle that is not subject to any force. Our
analysis begins with some preliminary remarks about units and nonrelativistic particles.

For any dynamical system, the action S is obtained by integrating the Lagrangian over
time. Since the Lagrangian has units of energy, the action has units of energy times time:

[S] = M
L2

T 2
T = M L2

T
. (5.1)

It is worth noting that the action has the same units as h̄. Indeed, a form of the quantum
mechanical uncertainty principle states that the product of energy and time uncertainties is
of order h̄.

The action Snr for a free nonrelativistic particle is given by the time integral of the kinetic
energy:

Snr =
∫

Lnr dt =
∫

1

2
mv2(t) dt, v2 ≡ �v · �v, �v = d �x

dt
, v = |�v|. (5.2)

The equation of motion which follows by Hamilton’s principle is

d �v
dt

= 0. (5.3)

The free particle moves with constant velocity. Since even a free relativistic particle must
move with constant velocity, how do we know that the action Snr is not correct in relativity?
Perhaps the simplest answer is that this action allows the particle to move with any constant
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velocity, even one that exceeds the velocity of light. The velocity of light does not even
appear in this action. Snr cannot be the action for a relativistic point particle.

We now construct a relativistic action S for the free point particle. We will do this by
making an educated guess and then showing that it works properly. Since we are interested
in relativistic physics it is convenient to represent the motion of the particle in spacetime.
The path traced out by the particle in spacetime is called the world-line of the particle.
Even a static particle traces a line in spacetime since time always flows.

A physically consistent action must yield Lorentz invariant equations of motion. Let us
elaborate on this point. Suppose that a particular Lorentz observer tells you that a particle
appears to be moving in accordance to its equations of motion, plainly, that the particle
is performing physical motion. Then, you should expect that any other Lorentz observer
will tell you that the particle is doing physical motion. It would be inconsistent for one
observer to state that a certain motion is allowed and for another observer to state that the
same motion is forbidden. If the equations of motion hold in a fixed Lorentz frame, they
must hold in all Lorentz frames. This is what Lorentz invariance of the equations of motion
means.

We are going to write an action, and we are going to take our time to find the equations of
motion. Is there any way to impose a constraint on the action that will result in the Lorentz
invariance of the equations of motion? Yes, there is. We require the action to be a Lorentz
scalar: for any particle world-line, all Lorentz observers must compute the same value for
the action. Since the action has no spacetime indices, this is a reasonable requirement. If the
action is a Lorentz scalar, the equations of motion will be Lorentz invariant. The reason is
simple and neat. Suppose one Lorentz observer states that, for a given world-line, the action
is stationary against all variations of the world-line. Since all Lorentz observers agree on
the value of the action for any world-line, they will all agree that the action is stationary
about the world-line in question. By Hamilton’s principle, the world-line that makes the
action stationary satisfies the equations of motion, and therefore all Lorentz observers will
agree that the equations of motion are satisfied for the world-line in question.

Lorentz invariance imposes strong constraints on the possible forms of the action. In
fact, there are valid grounds to worry that Lorentz invariance is too strong a constraint
on the action. The nonrelativistic action in (5.2), for example, is not invariant under a
Galilean boost �v → �v + �v0 with constant �v0. Such a boost is a symmetry of the theory,
since the equation of motion (5.3) is invariant. Similarly, it could happen that the equations
of motion for the relativistic point particle are Lorentz invariant but that the action is not.
Fortunately, this complication does not occur in this case; we will find a satisfactory fully
Lorentz invariant action.

Quick calculation 5.1 Calculate explicitly the variation of the action Snr under a boost.

We know that the action is a functional – it takes as input a set of functions that describe
a world-line and it outputs a number S. Imagine a particle whose spacetime trajectory
starts at the origin and ends at (ct f , �x f ). There are many possible world-lines between
the starting and ending points, as shown in Figure 5.1 (which uses one spatial dimension



91 5.1 Action for a relativistic point particle
�

ct

xf x

ctf

�

�Fig. 5.1 A spacetime diagram with a series of world-lines connecting the origin to the spacetime
point (ctf, xf).

for ease of representation). We would like that, for any world-line, all Lorentz observers
compute the same value for the action. Let P denote one world-line. What quantity related
to P do all Lorentz observers agree on? The elapsed proper time! All Lorentz observers
agree on the amount of time that elapses on a clock carried by the moving particle. So let us
take the action of the world-line P to be proportional to the proper time associated with it.

To formulate this idea quantitatively, we recall that

− ds2 = −c2dt2 + (dx1)2 + (dx2)2 + (dx3)2, (5.4)

and that the infinitesimal proper time is equal to ds/c (recall that ds2 = (ds)2 since inter-
vals are timelike). The integral of (ds/c) over the path P gives the proper time elapsed on
P . Since proper time has units of time, to get the units of action we need an additional mul-
tiplicative factor with units of energy or units of mass times velocity-squared. This factor
should be Lorentz invariant, to preserve the Lorentz invariance of our partial guess (ds/c).
For the mass we can use m, the rest mass of the particle, and for the velocity we can use c,
the fundamental velocity in relativity. We cannot use the particle velocity because it is not
a Lorentz invariant. The factor is then mc2, which is, in fact, the rest energy of the particle.
Therefore, our guess for the action is the integral of mc2 (ds/c) = mc ds. Of course, there
is still the possibility that a dimensionless numerical factor is missing. It turns out that
there should be a minus sign, but the unit coefficient is correct. We therefore claim that the
correct action is

S = −mc
∫
P

ds. (5.5)

The action is equal to minus the rest energy times the proper time. This action is so simple
looking that it may be baffling. It probably looks nothing like the actions you have seen
before. We can make its content more familiar by choosing a particular Lorentz observer
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and expressing the action as the integral of a Lagrangian over time. With the help of (5.4)
we relate ds to dt by

ds = c dt

√
1 − v2

c2
. (5.6)

This allows us to write the action in (5.5) as an integral over time:

S = −mc2
∫ t f

ti
dt

√
1 − v2

c2
, (5.7)

where ti and t f are the values of time at the initial and final points of the world-line P ,
respectively. From this version of the action, we see that the relativistic Lagrangian for the
point particle is

L = −mc2

√
1 − v2

c2
. (5.8)

The Lagrangian is equal to minus the rest energy times a relativistic factor. This Lagrangian
makes no sense when v > c since it ceases to be real. The constraint of maximal velocity
is therefore implemented. This could have been anticipated: proper time is only defined
for motion where the velocity does not exceed the velocity of light. The paths shown in
Figure 5.1 all represent motion where the velocity of the particle never exceeds the velocity
of light. Only for such paths is the action defined. At any point in any of those paths, the
tangent vector to the path is a timelike vector.

To show that this Lagrangian gives the familiar physics in the limit of small velocities,
we expand the square root assuming v � c. Keeping just the first term in the expansion
gives

L � −mc2
(

1 − 1

2

v2

c2

)
= −mc2 + 1

2
mv2. (5.9)

Constant terms in a Lagrangian do not affect the equations of motion, so the term (−mc2)

can be ignored for this purpose. The leading significant term coincides with the nonrela-
tivistic Lagrangian in (5.2), showing that the familiar nonrelativistic physics emerges. This
also confirms that we normalized the relativistic Lagrangian correctly.

The canonical momentum is the derivative of the Lagrangian with respect to the velocity.
Using (5.8) we find

�p = ∂L

∂ �v = −mc2
(
− �v

c2

) 1√
1 − v2/c2

= m�v√
1 − v2/c2

. (5.10)

This is just the relativistic momentum of the point particle. What about the Hamiltonian?
It is given by
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H = �p · �v − L = mv2√
1 − v2/c2

+ mc2
√

1 − v2/c2 = mc2√
1 − v2/c2

, (5.11)

where the result was left as a function of the velocity of the particle, rather than as a
function of its momentum. As expected, the answer coincides with the relativistic energy
(2.68) of the point particle.

We have therefore recovered the familiar physics of a relativistic particle from the rather
remarkable action (5.5). This action is very elegant: it is briefly written in terms of the
geometrical quantity ds, it has a clear physical interpretation as total proper time, and it
manifestly guarantees the Lorentz invariance of the physics it describes.

5.2 Reparameterization invariance

In this section we explore an important property of the point particle action (5.5). This
property is called reparameterization invariance. To evaluate the integral in the action, an
observer may find it useful to parameterize the particle world-line. Reparameterization
invariance of the action means that the value of the action is independent of the parame-
terization chosen to calculate it. This should be so, since the action (5.5) is in fact defined
independently of any parameterization: the integration can be done by breaking P into
small pieces and adding the values of mc ds for each piece. No parameterization is needed
to do this. In practice, however, world-lines are described as parameterized lines, and the
parameterization is used to compute the action.

We parameterize the world-line P of a point particle using a parameter τ (Figure 5.2). This
parameter must be strictly increasing as the world-line goes from the initial point xμ

i to the
final point xμ

f , but is otherwise arbitrary. As τ ranges in the interval [τi , τ f ] it describes the
motion of the particle. To have a parameterization of the world-line means that we have
expressions for the coordinates xμ as functions of τ :

xμ = xμ(τ). (5.12)

τf

τi

τ x 
0

x 
1 (x2,...)

x 
μ(τf 

)

x 
μ(τi)

�Fig. 5.2 A world-line fully parameterized by τ . All spacetime coordinates x μ are functions of τ .



94 The relativistic point particle
�

We also require

xμ
i = xμ(τi ), xμ

f = xμ(τ f ). (5.13)

Note that even the time coordinate x0 is parameterized. Normally, we use time as a param-
eter and describe position as a function of time. This is what we did in Section 5.1. But
if we want to treat space and time coordinates on the same footing, we must parameterize
both in terms of an additional parameter τ .

We now reexpress the integrand ds using the parameterized world-line. To this end, we
use ds2 = −ημνdxμdxν to write

ds2 = −ημν

dxμ

dτ

dxν

dτ
(dτ)2. (5.14)

For any motion where the velocity does not exceed the velocity of light ds2 = (ds)2, and
therefore the action (5.5) takes the form

S = −mc
∫ τ f

τi

√
−ημν

dxμ

dτ

dxν

dτ
dτ. (5.15)

This is the explicit form of the action when the path has been parameterized by τ .
We have already seen that the value of the action is the same for all Lorentz observers.

We have now fixed an observer, who has calculated the action using some parameter τ .
Does the value of the action depend on the choice of parameter? It does not. The observer
can reparameterize the world-line, and the value of the action will be the same. Thus S is
reparameterization invariant. To see this, suppose we change the parameter from τ to τ ′.
Then, by the chain rule,

dxμ

dτ
= dxμ

dτ ′
dτ ′

dτ
. (5.16)

Substituting back into (5.15), we get

S = −mc
∫ τ f

τi

√
−ημν

dxμ

dτ ′
dxν

dτ ′
dτ ′

dτ
dτ = −mc

∫ τ ′f

τ ′i

√
−ημν

dxμ

dτ ′
dxν

dτ ′
dτ ′, (5.17)

which has the same form as (5.15), thus establishing the reparameterization invariance.
Because the verification of this property is quite simple, we say that the action (5.15) is
manifestly reparameterization invariant.

5.3 Equations of motion

We now move on to the equations of motion. For this we must calculate the variation δS
of the action (5.5) when the world-line of the particle is varied by a small amount δxμ(τ).
Here τ is an arbitrary parameter along the path. The variation is simply given by

δS = −mc
∫

δ(ds). (5.18)
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The variation of ds can be found from the simpler variation of ds2 = (ds)2. Varying both
sides of (5.14) we find

2 ds δ(ds) = −2ημν δ
(dxμ

dτ

) dxν

dτ
(dτ)2. (5.19)

The factor of two on the right-hand side arises because, by symmetry, the variations of dxμ

dτ

and dxν

dτ
give the same result. Since the variation of a velocity is equal to the time derivative

of the variation of the coordinate,

δ
(dxμ

dτ

)
= d(δxμ)

dτ
. (5.20)

Using this result and simplifying (5.19) a bit, we get

δ(ds) = −ημν

d(δxμ)

dτ

dxν

ds
dτ = − d(δxμ)

dτ

dxμ

ds
dτ, (5.21)

where ημν was used to lower the index of dxν . We can now go ahead and vary the action
using (5.18):

δS = mc
∫ τ f

τi

d(δxμ)

dτ

dxμ

ds
dτ. (5.22)

Here we introduced explicit limits to the integration: τi and τ f denote the values of the
parameter at the initial and final points of the world-line, respectively. We recognize that

mc
dxμ

ds
= muμ = pμ, (5.23)

and, as a result, the variation of the action takes the form

δS =
∫ τ f

τi

d(δxμ)

dτ
pμ dτ. (5.24)

To get an equation of motion we need to have δxμ multiplying an object under the integral –
the equation of motion is then simply the vanishing of that object. Since there are still
derivatives acting on δxμ, we rewrite the integrand as a total derivative plus additional
terms where δxμ appears multiplicatively:

δS =
∫ τ f

τi

dτ
d

dτ

(
δxμ pμ

)
−
∫ τ f

τi

dτ δxμ(τ)
dpμ

dτ
. (5.25)

The first integral gives δxμ pμ evaluated at the boundaries of the world-line. This term
vanishes because we fix the coordinates on the boundaries. Since the second term must
vanish for arbitrary δxμ(τ), we obtain the equation of motion

dpμ

dτ
= 0. (5.26)

It is clear that dpμ/dτ also vanishes. The equation of motion states that the momentum
pμ (or pμ) of the point particle is constant along its world-line. This is a parameterization-
independent statement. It implies, of course, that the momentum is constant in time. If a
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function is constant over a line, its derivative with respect to any parameter used to describe
the line will vanish. Indeed, the parameter τ in (5.26) is arbitrary. We obtained this equation
by varying the relativistic action for the point particle using fully relativistic notation.

Quick calculation 5.2 Show that equation (5.26) implies that

dpμ

dτ ′
= 0 (5.27)

holds for an arbitrary parameter τ ′(τ ). What should be true about dτ ′/dτ for τ ′ to be a
good parameter when τ is one?

If we parameterize the world-line with the proper time s, equation (5.26) gives

dpμ

ds
= 0. (5.28)

Using (5.23) to write the momentum as a derivative of the position with respect to proper
time, we find

d2xμ

ds2
= 0. (5.29)

This is an equivalent version of the equation of motion. The constancy of dxμ/ds means
that on a path marked by equal intervals of proper time, the change in xμ between any
successive pair of marks is the same. Equation (5.29) does not hold when s is replaced
by an arbitrary parameter τ . This is reasonable: an arbitrary parameter means arbitrar-
ily spaced marks, so the change in xμ between any successive pair of new marks need
not be the same. It is actually possible to write a slightly more complicated version
of (5.29) that uses an arbitrary parameter and is manifestly reparameterization invariant
(Problem 5.2).

Our goal in this section has been achieved: we have shown how to derive the physically
expected equation of motion (5.29) (or (5.26)), starting from the Lorentz invariant action
(5.5). As we explained earlier, the resulting equation of motion is guaranteed to be Lorentz
invariant. Let us check this explicitly.

Under a Lorentz transformation, the coordinates xμ transform as indicated in equation
(2.38): x ′μ = Lμ

ν xν , where the constants Lμ
ν can be viewed as the entries of an invertible

matrix L . Since ds is the same in all Lorentz frames, the equation of motion in primed
coordinates is (5.29), with xμ replaced by x ′μ:

0 = d2x ′μ

ds2
= d2

ds2
(Lμ

ν xν) = Lμ
ν

d2xν

ds2
. (5.30)

Since the matrix L is invertible, the above equation implies equation (5.29). Namely, if the
equation of motion holds in the primed coordinates, it holds in the unprimed coordinates
as well. This is the Lorentz invariance of the equations of motion.
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5.4 Relativistic particle with electric charge

The point particle we have considered so far is free and it moves with constant four-velocity
or four-momentum. If a point particle is electrically charged and there are nontrivial elec-
tromagnetic fields, the particle will experience forces and its four-momentum will not be
constant. You know, in fact, how the momentum of such a particle varies in time. Its time
derivative is governed by the Lorentz force equation (3.5), which was written in relativistic
notation in Problem 3.1:

dpμ

ds
= q

c
Fμν

dxν

ds
. (5.31)

This is a relatively intricate equation which involves the field strength and the four-velocity
of the particle. Since ds appears on both sides of the equation, the equation in fact holds
for a general parameter τ :

dpμ

dτ
= q

c
Fμν

dxν

dτ
. (5.32)

In the spirit of our previous analysis we try to write an action that gives this equation upon
variation. The action turns out to be remarkably simple.

Since the Maxwell field couples to the point particle along its world-line P , we should
add to the action (5.5) an integral over P representing the interaction of the particle with
the electromagnetic field. The integral must be Lorentz invariant, and the form of (5.32)
suggests that it involves the four-velocity of the particle. Since the four-velocity has one
spacetime index, to obtain a Lorentz scalar we must multiply it against another object with
one index. The natural candidate is the gauge potential Aμ. We claim that the interaction
term in the action is

q

c

∫
P

dτ Aμ(x(τ ))
dxμ

dτ
(τ ). (5.33)

Here q is the electric charge, and the integral is over the world-line P , parameterized
with the arbitrary parameter τ . At each τ , the vector (dxμ/dτ) is dot multiplied against
the gauge potential Aμ, evaluated at the position x(τ ) of the particle. The integrand can be
written more briefly as Aμdxμ, by cancelling the factors of dτ . In this form, the interaction
term is manifestly independent of parameterization. The world-line of the particle is a one-
dimensional space, and the natural field that can couple to a particle in a Lorentz invariant
way is a field with one index. This will have an interesting generalization when we consider
the motion of strings. Since strings are one-dimensional, they trace out two-dimensional
world-sheets in spacetime. We will see that they couple naturally to fields with two Lorentz
indices!

The full action for the electrically charged point particle is obtained by adding the term
in (5.33) to (5.5):
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S = −mc
∫
P

ds + q

c

∫
P

Aμ(x)dxμ. (5.34)

This Lorentz invariant action is simple and elegant. The equation of motion (5.32) arises by
setting to zero the variation of S under a change δxμ of the particle world-line. I do not want
to take away from you the satisfaction of deriving this important result. I have therefore left
to Problem 5.5 the task of varying the action (5.34) and deriving the equation of motion.

Problems

Problem 5.1 Point particle equation of motion and reparameterizations.

If the path of a point particle is parameterized by proper time, the equation of motion is
(5.29). Consider now a new parameter τ = f (s). Find the most general function f for
which (5.29) implies

d2xμ

dτ 2
= 0.

Problem 5.2 Particle equation of motion with arbitrary parameterization.

Vary the point particle action (5.15) to find a manifestly reparameterization invariant form
of the free particle equation of motion.

Problem 5.3 Current of a charged point particle.

Consider a point particle with charge q whose motion in a D = d + 1-dimensional space-
time is described by functions xμ(τ) = {x0(τ ), �x(τ )}, where τ is a parameter. The moving
particle generates an electromagnetic current jμ = (cρ, �j).
(a) Use delta functions to write expressions for the current components j0(�x, t) and

j i (�x, t).
(b) Show that your answers in (a) arise from the integral representation

jμ(t, �x) = qc
∫

dτ δD(x − x(τ ))
dxμ(τ)

dτ
.

Here δD(x) ≡ δ(x0)δ(x1) . . . δ(xd).

Problem 5.4 Hamiltonian for a nonrelativistic charged particle.†

The action for a nonrelativistic particle of mass m and charge q coupled to an electromag-
netic field is obtained by replacing the first term in (5.34) by the nonrelativistic action for
a free point particle:

S =
∫

1

2
mv2 dt + q

c

∫
Aμ(x)

dxμ

dt
dt.

We have also chosen to use time to parameterize the second integral.
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(a) Rewrite the action S in terms of the potentials (�, �A) and the ordinary velocity �v. What
is the Lagrangian?

(b) Calculate the canonical momentum �p conjugate to the position of the particle and show
that it is given by �p = m�v + q

c
�A.

(c) Show that the Hamiltonian for the charged particle is

H = 1

2m

(
�p − q

c
�A
)2 + q �.

Problem 5.5 Equations of motion for a charged point particle.

Consider the variation of the action (5.34) under a variation δxμ(x) of the particle trajec-
tory. The variation of the first term in the action was obtained in Section 5.3. Vary the
second term (written more explicitly in (5.33)) and show that the equation of motion is
(5.32). Begin your calculation by explaining why

δAμ(x(τ )) = ∂ Aμ

∂xν
(x(τ )) δxν(τ ).

Problem 5.6 Electromagnetic field dynamics with a charged particle.†

The action for the dynamics of both a charged point particle and the electromagnetic field
is given by

S′ = −mc
∫
P

ds + q

c

∫
P

Aμ(x)dxμ − 1

4c

∫
d Dx Fμν Fμν.

Here d Dx = dx0dx1 . . . dxd . Note that the action S′ is a hybrid; the last term is an integral
over spacetime, and the first two terms are integrals over the particle world-line. While
included for completeness, the first term will play no role here. Obtain the equation of
motion for the electromagnetic field in the presence of the charged particle by calculating
the variation of S′ under a variation δAμ of the gauge potential. The answer should be
equation (3.34), where the current is the one calculated in Problem 5.3. [Hint: to vary
Aμ(x) in the world-line action it is useful to rewrite this term as a full spacetime integral
with the help of delta functions.]

Problem 5.7 Point particle action in curved space.

In Section 3.6 we considered the invariant interval ds2 = −gμν(x)dxμdxν in a curved
space with metric gμν(x). The motion of a point particle of mass m on curved space is
studied using the action

S = −mc
∫

ds.

Show that the equation of motion obtained by variation of the world-line is

d

ds

[
gμρ

dxμ

ds

]
= 1

2

∂gμν

∂xρ

dxμ

ds

dxν

ds
.

This is called the geodesic equation. When the metric is constant we recover the equation
of motion of a free point particle.



6 Relativistic strings

We now begin our study of the classical relativistic string – a string that is, in
many ways, much more elegant than the nonrelativistic one considered before.
Inspired by the point particle case, we focus our attention on the surface traced
out by the string in spacetime. We use the proper area of this surface as the
action; this is the Nambu–Goto action. We study the reparameterization property
of this action, identify the string tension, and find the equations of motion. For
open strings, we focus on the motion of the endpoints and introduce the concept
of D-branes. Finally, we see that the only physical motion is transverse to the
string.

6.1 Area functional for spatial surfaces

The action for a relativistic string must be a functional of the string trajectory. Just as a
particle traces out a line in spacetime, a string traces out a surface. The line traced out
by the particle in spacetime is called the world-line. The two-dimensional surface traced
out by a string in spacetime will be called the world-sheet. A closed string, for example,
will trace out a tube, while an open string will trace out a strip. These two-dimensional
world-sheets are shown in the spacetime diagram of Figure 6.1. The lines of constant x0 in
these surfaces are the strings. These are the objects an observer sees at the fixed time x0.
They are open curves for the surface describing the open string evolution (left), and they
are closed curves for the surface describing the closed string evolution (right).

In Chapter 5 we learned that the point particle action is proportional to the proper time
elapsed on the point particle world-line. The proper time, multiplied by c, is the Lorentz
invariant “proper length” of the world-line. For strings we will define the Lorentz invariant
“proper area” of a world-sheet. The relativistic string action will be proportional to this
proper area, and is called the Nambu–Goto action.

Area functionals are useful in other applications: a soap film held between two rings, for
example, automatically constructs the surface of minimal area which joins one ring to the
other (Figure 6.2). The string world-sheet and the soap bubble between two rings are very
different types of surfaces. At any given instant of time a Lorentz observer will see the full
two-dimensional surface of the soap film, but he or she can only see one string from the
two-dimensional world-sheet. Imagine that the soap film is static in some Lorentz frame.
In this case, time is not relevant to the description of the film, and we think of the film as
a spatial surface, namely, a surface that extends along two spatial dimensions. The surface
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�Fig. 6.1 The world-sheets traced out by an open string (left) and by a closed string (right).
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�Fig. 6.2 A spatial surface stretching between two rings. If the surface were a soap film, it would be
a minimal area surface.

exists in its entirety at any instant of time. We will first study these familiar surfaces, and
then we will apply our experience to the case of surfaces in spacetime.

A line in space can be parameterized using only one parameter. A surface in space is
two-dimensional, so it requires two parameters ξ1 and ξ2. Given a parameterized surface,
we can draw on that surface the lines of constant ξ1 and the lines of constant ξ2. These lines
cover the surface with a grid. We call target space the world where the two-dimensional
surface lives. In the case of a soap bubble in three dimensions, the target space is the three-
dimensional space x1, x2, and x3. The parameterized surface is described by the collection
of functions
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�Fig. 6.3 Left: the parameter space, with a little rectangle selected. Right: the target space surface
with the image of the little rectangle, a parallelogram whose sides are the vectors d �v1 and
d �v2 (shown magnified at the end of the wiggly arrow).

�x (ξ1, ξ2) =
(

x1(ξ1, ξ2) , x2(ξ1, ξ2) , x3(ξ1, ξ2)
)

. (6.1)

The parameter space is defined by the ranges of the parameters ξ1 and ξ2. It may be a
square, for example, if we use parameters ξ1, ξ2 ∈ [0, π ]. The physical surface is the image
of the parameter space under the map �x(ξ1, ξ2); it is a surface in target space. Alternatively,
we can view the parameters ξ1 and ξ2 as coordinates on the physical surface, at least
locally. The map inverse to �x takes the surface to the parameter space. Locally this map
is one-to-one and it assigns to each point on the surface two coordinates: the values of the
parameters ξ1 and ξ2.

We want to calculate the area of a small element of the target space surface. Let us start
by looking at an infinitesimal rectangle on the parameter space. Denote the sides of the
rectangle by dξ1 and dξ2. We want to find d A, the area of the image of this little rectangle
in the target space. As shown in Figure 6.3, this is the area of the actual piece of surface
that corresponds to the infinitesimal rectangle on parameter space.

Of course, there is no reason why that infinitesimal area element in target space should
be a rectangle. In general, it is a parallelogram. Let us call the sides of this parallelogram
d �v1 and d �v2. They are the images under the map �x of the vectors (dξ1, 0) and (0, dξ2),
respectively. We can write them as

d �v1 = ∂ �x
∂ξ1

dξ1 , d �v2 = ∂ �x
∂ξ2

dξ2 . (6.2)

This makes sense: ∂ �x/∂ξ1, for example, represents the rate of variation of the space
coordinates with respect to ξ1. Multiplying this rate by the length dξ1 of the horizontal
side of the tiny parameter-space rectangle, gives us the vector d �v1 that represents this side
in the target space. Now let us calculate the area d A. Using the formula for the area of a
parallelogram,
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d A = |d �v1||d �v2|| sin θ | = |d �v1||d �v2|
√

1 − cos2 θ

=
√
|d �v1|2|d �v2|2 − |d �v1|2|d �v2|2 cos2 θ, (6.3)

where θ is the angle between the vectors d �v1 and d �v2. In terms of spatial dot products,
we have

d A =
√

(d �v1 · d �v1)(d �v2 · d �v2)− (d �v1 · d �v2)2 . (6.4)

Finally, using (6.2),

d A = dξ1dξ2

√( ∂ �x
∂ξ1

· ∂ �x
∂ξ1

)( ∂ �x
∂ξ2

· ∂ �x
∂ξ2

)
−
( ∂ �x
∂ξ1

· ∂ �x
∂ξ2

)2
. (6.5)

This is the general expression for the area element of a parameterized spatial surface. The
full area functional A is given by

A =
∫

dξ1dξ2

√( ∂ �x
∂ξ1

· ∂ �x
∂ξ1

)( ∂ �x
∂ξ2

· ∂ �x
∂ξ2

)
−
( ∂ �x
∂ξ1

· ∂ �x
∂ξ2

)2
. (6.6)

The integral extends over the relevant ranges of the parameters ξ1 and ξ2. The solution of
a minimal area problem for a spatial surface is the function �x (ξ1, ξ2) that minimizes the
functional A.

6.2 Reparameterization invariance of the area

As we have seen, the parameterization of a surface allows us to write the area element in
an explicit form. The area of the surface, or even more, the area of any piece of the surface,
should be independent of the parameterization chosen to calculate it. This is what we mean
when we say that the area must be reparameterization invariant.

Because we will soon equate the relativistic string action to some notion of proper area,
it, too, will be reparameterization invariant. This means that we will be free to choose the
most useful parameterization without changing the underlying physics. A good choice of
parameterization will enable us to solve the equations of motion of the relativistic string in
an elegant way.

Reparameterization invariance is thus an important concept so it should be understood
thoroughly. To this end we will try to make it manifest in our formulae. The aim of the
following analysis is to show how this can be done.

Let us begin by asking: is the area functional A in (6.6) reparameterization invariant? We
would certainly hope it is. In fact, at first glance it appears to be manifestly reparameteri-
zation invariant. After all, if one reparameterizes the surface with ξ̃1(ξ1) and ξ̃2(ξ2), then
all of the derivatives introduced by the chain rule cancel appropriately.

Quick calculation 6.1 Verify the above statement. That is, show that (6.6), written fully
with tilde parameters (ξ̃1, ξ̃2), equals (6.6) when ξ̃1 = ξ̃1(ξ1) and ξ̃2 = ξ̃2(ξ2).
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The above reparameterization, however, is not completely general for it fails to mix the ξ1

and ξ2 coordinates. Suppose, instead, that we make a reparameterization ξ̃1(ξ1, ξ2) and
ξ̃2(ξ1, ξ2). This time we can verify, using a somewhat laborious computation, that (6.6) is
invariant under such a reparameterization. But the invariance is no longer intuitively clear.
To make the reparameterization invariance of (6.6) manifest we will have to rewrite the
area functional in a different way.

We begin by observing how the measure of integration transforms. The change-of-
variable theorem from calculus tells us that

dξ1dξ2 =
∣∣∣det

( ∂ξ i

∂ξ̃ j

)∣∣∣d ξ̃1d ξ̃2 = | det M | d ξ̃1d ξ̃2 , (6.7)

where M = [Mi j ] is the matrix defined by Mi j = ∂ξ i/∂ξ̃ j . Similarly,

d ξ̃1d ξ̃2 =
∣∣∣det

( ∂ξ̃ i

∂ξ j

)∣∣∣ dξ1dξ2 = | det M̃ | dξ1dξ2 , (6.8)

where M̃ = [M̃i j ] is the matrix defined by M̃i j = ∂ξ̃ i/∂ξ j . Combining equations (6.7)
and (6.8), we see that

|det M || det M̃| = 1 . (6.9)

Let us now consider a target space surface S described by the mapping functions �x(ξ1, ξ2).
Given a vector d �x tangent to the surface, let ds denote its length. Then we can write

ds2 ≡ (ds)2 = d �x · d �x . (6.10)

For surfaces in space, as we are considering now, it is not customary to include a minus
sign in front of ds2 (compare with (2.21)). The vector d �x can be expressed in terms of
partial derivatives and the differentials dξ1, dξ2:

d �x = ∂ �x
∂ξ1

dξ1 + ∂ �x
∂ξ2

dξ2 = ∂ �x
∂ξ i

dξ i . (6.11)

The repeated index i is summed over its possible values 1 and 2. Back in (6.10),

ds2 =
( ∂ �x
∂ξ i

dξ i
)
·
( ∂ �x
∂ξ j

dξ j
)
= ∂ �x

∂ξ i
· ∂ �x
∂ξ j

dξ i dξ j . (6.12)

This can be neatly summarized as

ds2 = gi j (ξ) dξ i dξ j , (6.13)

where gi j (ξ) is defined as

gi j (ξ) ≡ ∂ �x
∂ξ i

· ∂ �x
∂ξ j

. (6.14)

The quantity gi j (ξ) is known as the induced metric on S. It is called a metric because (6.13)
takes, up to a sign, the form of equation (3.78), where we introduced the general concept of
a metric. It is a metric on S because, with ξ i playing the role of coordinates on S, equation
(6.13) determines distances on S. It is said to be induced because it uses the metric on the
ambient space in which S lives to determine distances on S. Indeed, the dot product which
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appears in (6.14) is to be performed in the space where S lives and therefore presupposes
that a metric exists on that space. We only have two parameters ξ1 and ξ2, so the full matrix
gi j takes the form:

gi j =

⎛
⎜⎜⎜⎝

∂ �x
∂ξ1

· ∂ �x
∂ξ1

∂ �x
∂ξ1

· ∂ �x
∂ξ2

∂ �x
∂ξ2

· ∂ �x
∂ξ1

∂ �x
∂ξ2

· ∂ �x
∂ξ2

⎞
⎟⎟⎟⎠ . (6.15)

Now we see something truly nice! The determinant of gi j is precisely the quantity which
appears under the square root in (6.6). Letting

g ≡ det(gi j ) , (6.16)

we can write

A =
∫

dξ1dξ2√g . (6.17)

This is an elegant formula for the area in terms of the determinant of the induced metric.
Instead of trying to understand the reparameterization invariance of (6.6), we now focus on
the equivalent but simpler expression (6.17).

We are now in position to understand the invariance of the area in terms of the trans-
formation properties of the metric gi j . The key to this lies in equation (6.13). The
length-squared ds2 is a geometrical property of the vector d �x that must not depend upon
the particular parameterization used to calculate it. For another set of parameters ξ̃ and
metric g̃(ξ̃ ), the following equality must therefore hold:

gi j (ξ) dξ i dξ j = g̃pq(ξ̃ ) d ξ̃ pd ξ̃q . (6.18)

Making use of the chain rule to express the differentials d ξ̃ in terms of differentials dξ ,

gi j (ξ) dξ i dξ j = g̃pq(ξ̃ )
∂ξ̃ p

∂ξ i

∂ξ̃q

∂ξ j
dξ i dξ j . (6.19)

Since this result holds for any choice of differentials dξ , we find a relation between the
metric in ξ and ξ̃ coordinates:

gi j (ξ) = g̃pq(ξ̃ )
∂ξ̃ p

∂ξ i

∂ξ̃q

∂ξ j
. (6.20)

Making use of the definition of M̃ below (6.8), we rewrite the above equation as

gi j (ξ) = g̃pq M̃ pi M̃q j = (M̃T)i p g̃pq M̃q j . (6.21)

In matrix notation, the right-hand side is the product of three matrices. Taking the
determinant and using the notation in (6.16) gives

g = (det M̃T) g̃ (det M̃) = g̃(det M̃)2 . (6.22)
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Taking a square root
√

g = √
g̃ | det M̃| , (6.23)

we obtain the transformation property for the square root of the determinant of the metric.
We are finally ready to appreciate the reparameterization invariance of (6.17). Making

use of (6.7), (6.23), and (6.9) we have∫
dξ1dξ2√g =

∫
d ξ̃1d ξ̃2| det M |√g̃ | det M̃ | =

∫
d ξ̃1d ξ̃2

√
g̃ , (6.24)

which proves the reparameterization invariance of the area functional. To the trained
eye the area formula in (6.17) is manifestly reparameterization invariant. That is, once
you know how metrics transform, the invariance is reasonably simple to establish. No
cumbersome calculation is necessary.

Quick calculation 6.2 Consider the equation ∂ξ i/∂ξ j = δi
j and use the chain rule to show

the matrix property

M M̃ = 1 . (6.25)

Show that M̃ M = 1 holds as well. Finally, note that det M det M̃ = 1, a result stronger
than the one we proved in (6.9).

6.3 Area functional for spacetime surfaces

Let us now move to our case of interest, the case of surfaces in spacetime. These surfaces
are obtained by representing in spacetime the history of strings, in the same way as a
spacetime world-line is obtained by representing the history of a particle. For the case of
strings, we obtain a two-dimensional surface called the world-sheet of the string. Spacetime
surfaces, such as string world-sheets, are not all that different from the spatial surfaces we
considered in the previous section. They are two-dimensional and require two parameters.
Instead of calling the parameters ξ1 and ξ2, we give them special names: τ and σ .

Given our usual spacetime coordinates xμ = (x0, x1, . . ., xd), the surface is described
by the mapping functions

xμ(τ, σ ) , (6.26)

which take some region of the (τ, σ ) parameter space into spacetime. Following a standard
convention in string theory, we change the notation slightly. We will denote the above
mapping functions with the capitalized symbols

Xμ(τ, σ ) . (6.27)

We are not changing the meaning of the functions. Given a fixed point (τ, σ ) in the
parameter space, this point is mapped to a point with spacetime coordinates

(X0(τ, σ ), X1(τ, σ ), . . ., Xd(τ, σ )). (6.28)
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�Fig. 6.4 Left: the parameter space (τ , σ), with a little square selected. Right: the surface in target
spacetime with the image of the little square, a parallelogram whose sides are the vectors
dv μ

1 and dv μ
2 .

Why do we capitalize the X? Suppose we used the same symbol to denote spacetime coor-
dinates and mapping functions. Then we could still distinguish between them by writing
xμ or xμ(τ, σ ), but we would not have the luxury of dropping the (τ, σ ) arguments. On the
other hand, with Xμ we can drop the (τ, σ ) arguments and still know that we are talking
about the mapping functions of the string. We will call Xμ the string coordinates.

As before, the parameters τ and σ can be viewed as coordinates on the world-sheet,
at least locally. The map inverse to Xμ takes the world-sheet to the parameter space, and
locally it assigns to each point on the surface two coordinates: the values of the parameters
τ and σ . Introducing some potential for confusion, physicists also use the term world-
sheet to denote the two-dimensional parameter space whose image under Xμ gives us
the . . . world-sheet! Unless explicitly stated, we will reserve the use of the term world-
sheet for the spacetime surface. In Figure 6.4 we consider an open string: to the left, you
see the parameter space surface and, to the right, you see the spacetime surface. In this
parameter space, σ ranges over a finite interval, while τ may extend from minus infinity
to plus infinity. The parameter τ is roughly related to time on the strings – much more
on this later – and the parameter σ is roughly related to positions along the strings. The
world-lines of the string endpoints have constant σ , so they are parameterized by τ . As τ

flows, time must flow. Thus, at least at the endpoints

∂ X0

∂τ

∣∣∣
endpoint

	= 0 . (6.29)

We will assume that this also holds for other values of σ .

To find the area element we proceed as in the case of the spatial surface, this time using
relativistic notation. The situation is illustrated in Figure 6.4. A little rectangle of sides
dτ and dσ in parameter-space becomes a quadrilateral area element in spacetime. This
quadrilateral is spanned by the vectors dv

μ
1 and dv

μ
2 . Furthermore,

dv
μ
1 = ∂ Xμ

∂τ
dτ , dv

μ
2 = ∂ Xμ

∂σ
dσ, (6.30)
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which are analogous to our earlier spatial formulae (6.2). We can now use the analog of
(6.4) as a candidate for the area element d A:

d A
?=
√

(dv1 · dv1)(dv2 · dv2)− (dv1 · dv2)2 , (6.31)

where the dot is the relativistic dot product. Using this dot product guarantees that the area
element is Lorentz invariant: it is a proper area element. We wrote a question mark on top
of the equal sign because there is one problem. Even though this is not obvious to us yet,
the sign of the object under the square root is negative. To be able to take the square root we
must exchange the two terms under the square root. This change of sign has no effect on
the Lorentz invariance. Doing this, and using (6.30), we find that the proper area is given as

A =
∫

dτdσ

√(∂ Xμ

∂τ

∂ Xμ

∂σ

)2 −
(∂ Xμ

∂τ

∂ Xμ

∂τ

)(∂ Xν

∂σ

∂ Xν

∂σ

)
. (6.32)

Using the relativistic dot product notation,

A =
∫

dτdσ

√(∂ X

∂τ
· ∂ X

∂σ

)2 −
(∂ X

∂τ

)2(∂ X

∂σ

)2
. (6.33)

To understand why the above sign is correct we must convince ourselves that the expression
under the square root is greater than or equal to zero at any point on the world-sheet of a
string.

What characterizes locally the spacetime surface traced by a string? The answer is quite
interesting. Consider a point on the world-sheet and the set of all vectors tangent to the
surface at that point. These vectors form a two-dimensional vector space. We claim that
in this vector space there is a basis made by two vectors, one of which is spacelike and
one of which is timelike. This implies that at each point on the world-sheet there are both
timelike and spacelike tangent directions. There is a small caveat: on each fixed-time string
there can be a finite set of exceptional points where the tangents to the world-sheet do not
include a timelike vector. At those points, as we will see, the string moves with the speed
of light.

The string we are trying to define cannot have finite size pieces moving with the speed
of light. In such case, a string would contain a continuous set of points, not just a finite
set, where the tangents to the world-sheet do not include timelike vectors. Imagine, for
example, a straight piece of string along the x axis moving with the speed of light in the
y direction. At any point on this string all vectors tangent to the world-sheet are spacelike,
except for null vectors in one particular direction. To see this consider Figure 6.5 where we
show this string at various closely separated times. Tangent vectors at P are well approx-
imated by vectors that joint the event P to a nearby event P ′ on the world-sheet. Since P
and P ′ are points on the same string at different times, the spatial part of the tangent vector
appears in the figure as the arrow joining P to P ′. Consider all arrows joining P to points
on a semicircle around P . Any world-sheet tangent direction at P is represented by one
of these arrows. The world-sheet tangent vector associated with P Q is clearly spacelike,
since P and Q occur at the same time. The typical tangent, that associated with the arrow
P R is still spacelike: in the elapsed time P can get to R̄ moving at the speed of light, but to
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�Fig. 6.5 A string along the x direction moving with the velocity of light along the y direction. This is
not allowed motion. All tangent vectors to the world-sheet at any point P on the string are
either spacelike or null.

get to R it must move faster than light. All tangent directions are spacelike, except for that
associated with P S, which is null. This shows that there is no timelike tangent at P . Since
P is a generic point along the original piece of string, nowhere on this piece of string is
there a timelike vector tangent to the world-sheet.

At any point on a world-sheet a spacelike direction exists and is easy to visualize: if you
take a photograph of the string at some time, every tangent vector along the length of the
string points in a spacelike direction. Indeed, in your frame, the events defining the string
are simultaneous but spatially separated.

To appreciate the need for a timelike vector at regular points on the world-sheet, consider
first the world-line of a point particle. The tangent vector to the world-line is timelike. At
each point on the world-line this tangent vector can be used to describe an instantaneous
Lorentz observer who sees the particle at rest. A spacelike tangent vector to the world-line
is unphysical: it describes a particle moving faster than the speed of light. Strings are a little
more subtle since there is no way to tell how individual points on them move. As we shall
make abundantly clear, the string is not made of constituents whose position we can keep
track of (exception: one can keep track of the endpoints of an open string). Still, a timelike
tangent to the world-sheet at a given point of a string allows us to describe an instantaneous
Lorentz observer who sees the point at rest. If there is a timelike tangent at a point, there
are many, by continuity. Each of these timelike tangents defines a different instantaneous
Lorentz observer who sees the point at rest. This is consistent with our inability to track
unambiguously the motion of points on a string. If we watch a string at two closely sepa-
rated times we cannot tell which point went where, but for each point p on the final string
we must be able to find some point p′ on the initial string that could reach p moving with
speed less than or at most equal to c.

The existence of both timelike directions and spacelike directions at any regular point
on the world-sheet is our criterion for physical motion. It guarantees that equation (6.33)
makes sense.

Claim: At any point P on the world-sheet where there is both a timelike direction and a
spacelike direction, the quantity under the square root in (6.33) is positive:(∂ X

∂τ
· ∂ X

∂σ

)2 −
(∂ X

∂σ

)2(∂ X

∂τ

)2
> 0 . (6.34)
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Proof: Consider the set of tangent vectors vμ(λ) at P obtained as:

vμ(λ) = ∂ Xμ

∂τ
+ λ

∂ Xμ

∂σ
, (6.35)

where λ ∈ (−∞,∞) is a parameter. Since ∂ Xμ/∂τ and ∂ Xμ/∂σ are linearly independent
tangent vectors, when we vary λ we get, up to constant scalings, all tangent vectors at P ,
including ∂ Xμ/∂σ , which is obtained in the limit λ →∞ (Figure 6.6). Constant scalings
of a vector do not matter to decide if a vector is timelike or spacelike. To determine if vμ(λ)

is timelike or spacelike, we consider its square:

v2(λ) = vμ(λ)vμ(λ) = λ2
(∂ X

∂σ

)2 + 2λ
(∂ X

∂τ
· ∂ X

∂σ

)
+
(∂ X

∂τ

)2
. (6.36)

The dot products appearing on the final right-hand side are just numbers, so we have a
quadratic polynomial in λ. To have both timelike and spacelike tangent vectors at P , v2(λ)

must take both negative and positive values as we vary λ. In other words, the equation
v2(λ) = 0 must have two real roots. For this to happen, the discriminant of the quadratic
equation v2(λ) = 0 must be positive. From (6.36) we see that this requires(∂ X

∂τ
· ∂ X

∂σ

)2 −
(∂ X

∂σ

)2(∂ X

∂τ

)2
> 0 , (6.37)

which is precisely the condition (6.34) we set out to prove!

Since we always have spacelike tangents, the plot of v2(λ) in Figure 6.6 must include
a region where v2(λ) > 0. Consider a point P on the world-sheet where all tangent direc-
tions are spacelike with the exception of one that is null. Then v2(λ) > 0, except for one
value of λ where v2 vanishes. The equation v2(λ) = 0 must have a single root and the
associated discriminant is zero. It follows that the quantity under the square root in the
action (6.33) is zero at P . Any possible motion of the string at P must be associated with
a world-sheet tangent at P . Since motion along spacelike directions is unphysical, only
the null vector provides an acceptable answer: the string is moving with the speed of light
at P .

∂X μ

∂τ ∂X μ

∂τ

∂X μ

∂σ

∂X μ

∂σ
v 

2(λ)

+

λ

P

λ

�Fig. 6.6 Left: a set of tangent vectors v(λ) at a point P on the world-sheet. Right: a plot of v2(λ) as
a function of λ. The vector v(λ) may be spacelike or timelike depending on the value of λ.
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6.4 The Nambu–Goto string action

Now that we are sure that the proper area functional in (6.33) is correctly defined, we can
introduce the action for the relativistic string. This action is proportional to the proper area
of the world-sheet. To have the units of action we must multiply the area functional by
some suitable constants.

The area functional in (6.33) has units of length-squared, as it must be. This is because
Xμ has units of length, and each term under the square root has four X . The units of τ

and σ cancel out. Each term in the square root has two σ derivatives and two τ derivatives.
Their units cancel against the units of the differentials. Nevertheless, we will take σ to have
units of length and τ to have units of time. We do this anticipating a relation between τ

and time and between σ and positions on strings. To summarize:

[τ ] = T , [σ ] = L , [Xμ] = L , [A] = L2 . (6.38)

Since S must have units of M L2/T and A has units of L2, we must multiply the proper
area by a quantity with units of M/T . The string tension T0 has units of force, and force
divided by velocity has the desired units of M/T . We can therefore multiply the proper
area by T0/c to get a quantity with the units of action. Making use of (6.33) we set the
string action equal to

S = − T0

c

∫ τ f

τi

dτ

∫ σ1

0
dσ

√
(Ẋ · X ′)2 − (Ẋ)2(X ′)2 . (6.39)

Here σ1 > 0 is some constant, and we have introduced some notation for derivatives:

Ẋμ ≡ ∂ Xμ

∂τ
, Xμ′ ≡ ∂ Xμ

∂σ
. (6.40)

Of course, we have not yet confirmed that the symbol T0 in the string action has the precise
interpretation of tension, but we will do so in Section 6.7. We will also confirm there
that the overall negative sign which multiplies the action is correct. The action S is the
Nambu–Goto action for the relativistic string.

It is crucial that this action be reparameterization invariant. We can proceed just as we
did with spatial surfaces to write the Nambu–Goto action in a manifestly reparameteriza-
tion invariant way. In this case we have

− ds2 = d Xμd Xμ = ημν d Xμd Xν = ημν

∂ Xμ

∂ξα

∂ Xν

∂ξβ
dξαdξβ . (6.41)

Here ημν is the target-space Minkowski metric. The indices α and β run over two values,
1 and 2, and we have taken ξ1 = τ , ξ2 = σ . Just as we did for spatial surfaces, we define
an induced metric γαβ on the world-sheet:

γαβ ≡ ημν

∂ Xμ

∂ξα

∂ Xν

∂ξβ
= ∂ X

∂ξα
· ∂ X

∂ξβ
. (6.42)
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More explicitly, the 2-by-2 matrix γαβ is

γαβ =
[

(Ẋ)2 Ẋ · X ′

Ẋ · X ′ (X ′)2

]
. (6.43)

With the help of this metric we can write the Nambu–Goto action in the manifestly
reparameterization invariant form

S = −T0

c

∫
dτdσ

√−γ , γ = det(γαβ) . (6.44)

The analysis in Section 6.2 of reparameterization invariance for spatial surfaces holds,
without change, in the present case. Not only is the action (6.44) manifestly reparameteri-
zation invariant, it is also more compact than (6.39). In this form, one can readily generalize
the Nambu–Goto action to describe the dynamics of objects that have more dimensions
than strings. An action of this kind is useful as a first approximation to the dynamics of
D-branes.

6.5 Equations of motion, boundary conditions, and D-branes

In this section we will obtain the equations of motion that follow by variation of the string
action. In doing so we will also have an opportunity to discuss the various boundary con-
ditions that can be imposed on the ends of open strings. Dirichlet boundary conditions will
be interpreted to arise owing to the existence of D-branes.

Let us begin by writing the Nambu–Goto action (6.39) as the double integral of a
Lagrangian density L:

S =
∫ τ f

τi

dτ L =
∫ τ f

τi

dτ

∫ σ1

0
dσ L (Ẋμ, Xμ′) , (6.45)

where L is given by

L (Ẋμ, Xμ′) = −T0

c

√
(Ẋ · X ′)2 − (Ẋ)2(X ′)2 . (6.46)

We can obtain the equations of motion for the relativistic string by setting the variation of
the action (6.45) equal to zero. The variation is simply

δS =
∫ τ f

τi

dτ

∫ σ1

0
dσ

[
∂L

∂ Ẋμ

∂ (δXμ)

∂τ
+ ∂L

∂ Xμ′
∂ (δXμ)

∂σ

]
, (6.47)
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where we have used

δ Ẋμ = δ
(∂ Xμ

∂τ

)
= ∂(δXμ)

∂τ
, (6.48)

and an analogous equation for δXμ′.
The quantities ∂L/∂ Ẋμ and ∂L/∂ X ′μ will appear frequently throughout the remainder

of our discussion, so it is useful to introduce new symbols for them. This is just what we
did when we studied the nonrelativistic string in Section 4.6. This time we find

Pτ
μ ≡

∂L
∂ Ẋμ

= −T0

c

(Ẋ · X ′)X ′
μ − (X ′)2 Ẋμ√

(Ẋ · X ′)2 − (Ẋ)2(X ′)2
, (6.49)

Pσ
μ ≡ ∂L

∂ Xμ′ = −T0

c

(Ẋ · X ′)Ẋμ − (Ẋ)2 X ′
μ√

(Ẋ · X ′)2 − (Ẋ)2(X ′)2
. (6.50)

Quick calculation 6.3 Verify equations (6.49) and (6.50).

Using this notation, the variation δS in (6.47) becomes

δS =
∫ τ f

τi

dτ

∫ σ1

0
dσ

[
∂

∂τ
(δXμPτ

μ)+ ∂

∂σ

(
δXμPσ

μ

)− δXμ
( ∂Pτ

μ

∂τ
+ ∂Pσ

μ

∂σ

)]
. (6.51)

The first term on the right-hand side, being a full derivative in τ , will contribute terms
proportional to δXμ(τ f , σ ) and δXμ(τi , σ ). Since the flow of τ implies the flow of time,
we can imagine specifying the initial and final states of the string, and we restrict our-
selves to variations for which δXμ(τ f , σ ) = δXμ(τi , σ ) = 0. We will always assume such
variations, so we can forget about these terms. The variation then becomes

δS =
∫ τ f

τi

dτ
[
δXμ Pσ

μ

]σ1

0
−
∫ τ f

τi

dτ

∫ σ1

0
dσ δXμ

(
∂Pτ

μ

∂τ
+ ∂Pσ

μ

∂σ

)
. (6.52)

Since the second term on the right-hand side must vanish for all variations δXμ of the
motion, we set

∂Pτ
μ

∂τ
+ ∂Pσ

μ

∂σ
= 0 . (6.53)

This is the equation of motion for the relativistic string, open or closed. A quick glance
at definitions (6.49) and (6.50) shows that this equation is incredibly complicated. The
key to its solution will lie in the reparameterization invariance of the Nambu–Goto action.
Choosing a clever parameterization will simplify our work enormously.

The first term on the right-hand side of (6.52) has to do with the string endpoints. It is,
in fact, a collection of terms that includes two terms for each value of the index μ. More
explicitly, the list is



114 Relativistic strings
� ∫ τ f

τi

dτ
(
δX0(τ, σ1)Pσ

0 (τ, σ1)− δX0(τ, 0)Pσ
0 (τ, 0)

+ δX1(τ, σ1)Pσ
1 (τ, σ1)− δX1(τ, 0)Pσ

1 (τ, 0)
...

...
...

...

+ δXd(τ, σ1)Pσ
d (τ, σ1)− δXd(τ, 0)Pσ

d (τ, 0)
)

. (6.54)

We need a boundary condition for each term in the above list. This is a total of 2D =
2(d + 1) boundary conditions.

Let us focus on a single term, that is, we fix μ and select one endpoint. Let σ∗ denote the
σ coordinate of an endpoint; σ∗ can be equal to zero or equal to σ1. Selecting an endpoint
means fixing the value of σ∗. As before, there are two natural boundary conditions that
one can impose at an endpoint. The first is a Dirichlet boundary condition, in which the
endpoint of the string remains fixed throughout the motion:

Dirichlet boundary condition:
∂ Xμ

∂τ
(τ, σ∗) = 0 , μ 	= 0 . (6.55)

Since time varies as τ varies (see (6.29)), the value μ = 0 must be excluded. Dirichlet
boundary conditions are only possible for space directions. Given that constancy in τ

means constancy in time, equation (6.55) implies that the μ coordinate of the selected
string endpoint is fixed in time. Alternatively, rather than requiring that the τ derivative
vanishes, we could simply specify a constant value for Xμ(τ, σ∗). If the string endpoint
is fixed, the variations are set to vanish there: δXμ(τ , σ∗) = 0. This guarantees that the
relevant term in (6.5) vanishes.

The second possible boundary condition is a free endpoint condition:

free endpoint condition: Pσ
μ(τ, σ∗) = 0 . (6.56)

This condition, as needed, also results in the vanishing of the relevant term in (6.5). This is
called a free endpoint condition because it does not impose any constraint on the variation
δXμ(τ, σ∗) of the string coordinate at the endpoint. The endpoint is free to do whatever is
needed to get the variation of the action to vanish. The free endpoint boundary condition
must apply for μ = 0:

Pσ
0 (τ, σ1) = Pσ

0 (τ, 0) = 0 . (6.57)

For the nonrelativistic string, the free endpoint boundary condition implies the vanishing
of P x , which imposes a Neumann boundary condition on the string coordinate (see (4.47)).
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�Fig. 6.7 A D2-brane stretched over the (x1, x2) plane. The endpoints of the open string can move
freely on the plane, but must remain attached to it. The coordinate x 3 of the endpoints
must vanish at all times. This is a Dirichlet boundary condition for the string coordinate X 3.

We will eventually understand (6.56) in terms of a Neumann boundary condition. Similarly,
the Dirichlet boundary (6.55) will be shown to imply the vanishing of Pτ

μ at the string
endpoints.

The boundary conditions (6.55) and (6.56) can be imposed in many possible ways. For
each spatial direction, and at each endpoint, we can choose either a Dirichlet or a free-
endpoint boundary condition. Since closed strings have no endpoints, they do not require
boundary conditions.

Let us elaborate on the case of Dirichlet boundary conditions. It is clear from the study
of nonrelativistic strings that Dirichlet boundary conditions arise if string endpoints are
attached to some physical objects. Consider, for example, Figure 4.2. On the left, the string
is attached to two points. On the right, the string is free to slide up and down at the end-
points; the string endpoints are forced to stay on one-dimensional lines and horizontal
motion of the endpoints is forbidden. The objects on which open string endpoints must lie
are characterized by their dimensionality, more precisely, by the number of spatial dimen-
sions that they have. They are called D-branes, where the letter D stands for Dirichlet. The
objects which fix the string endpoints on the left side of Figure 4.2 are zero-dimensional.
They are called D0-branes. The lines which constrain the string endpoints on the right side
of the figure are one dimensional. They are called D1-branes.

A Dp-brane is an object with p spatial dimensions. Since the string endpoints must lie on
the Dp-brane, a set of Dirichlet boundary conditions is specified. A flat D2-brane in a three-
dimensional space, for example, is specified by one condition, say x3 = 0 (Figure 6.7).
This means that the D2-brane extends over the (x1, x2) plane. The Dirichlet boundary
condition applies to the string coordinate X3, which must vanish at the string endpoints.
Since the motion of open string endpoints is free along the directions of the brane, the string
coordinates X1 and X2 satisfy free boundary conditions. When the open string endpoints
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have free boundary conditions along all spatial directions, we still have a D-brane, but this
time it is a space-filling D-brane. The D-brane extends all over space, and since open string
endpoints can be anywhere on the D-brane, open string endpoints are completely free.

For (quantum) relativistic strings the consistency of Dirichlet boundary conditions
allows one to discover the properties of D-branes. D-branes are physical objects that exist
in a theory of strings and are not introduced by hand. D-branes need not have infinite extent
nor are they necessarily hyperplanes. They have calculable energy densities and a host of
remarkable properties. We will study D-branes in detail beginning in Chapter 15.

6.6 The static gauge

To make progress in understanding the action for the relativistic string, we must param-
eterize the world-sheet in a useful way. We are allowed to choose the parameterization
freely because of the reparameterization invariance of the string action. Reparameterization
invariance in string theory is analogous to gauge invariance in electrodynamics. Maxwell’s
equations possess a symmetry under gauge transformations that allows us to use different
potentials Aμ to represent the same electromagnetic fields �E and �B. A suitable choice of
gauge helps to uncover the physics. Similarly, we may use many different grids on the
world-sheet to describe the same physical motion of the string. A suitable choice of grid
can make this task much easier. A good choice of parameterization was useful even for
the relativistic point particle – its equation of motion is simplest when the trajectory is
parameterized by proper time.

In this section, we will discuss only a partial parameterization on the world-sheet. We will
fix the lines of constant τ by relating τ to the time coordinate X0 = ct in some chosen
Lorentz frame.

Consider the constant time hyperplane t = t0 in the target space (Figure 6.8). This plane
will intersect the world-sheet along a curve – the string at time t0 according to observers
in our chosen Lorentz frame. We declare this curve to be a curve of constant τ ; in fact, we
declare it to be the curve τ = t0. Extending this definition to all times t , we declare that for
any point Q on the world-sheet

τ(Q) = t (Q). (6.58)

This choice of τ parameterization is called the static gauge because lines of constant τ are
“static strings” in the chosen Lorentz frame.

We will not try to make a sophisticated choice of σ at this time. For an open string, we
will choose one edge of the world-sheet to be the curve σ = 0 and the other edge to be the
curve σ = σ1:

σ ∈ [0, σ1] , for an open string. (6.59)

We draw lines of constant σ on the surface quite arbitrarily, provided, of course, that con-
stant σ lines vary smoothly, do not intersect, and are consistent with the two curves which
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�Fig. 6.8 Left: the parameter space strip for an open string. The vertical segment AB is the line
τ = t0. Right: the open string world-sheet in target space. The string at time t = t0
is the intersection of the world-sheet with the hyperplane t = t0. In the static gauge, the
string at time t = t0 is the image of the τ = t0 segment AB.

are the boundary of the world-sheet (Figure 6.8). Drawing lines of constant σ is equiva-
lent to giving an explicit σ parameterization to all the strings. For closed strings the same
ideas apply, but there is a significant proviso: there must be an identification in the (τ, σ )

parameter space. The σ direction must be made into a circle, making the (τ, σ ) parameter
space into a cylinder. This is needed because the closed string world-sheet is topologically
a cylinder. Letting σc denote the circumference of the σ circle, the identification is

(τ, σ ) ∼ (τ, σ + σc) . (6.60)

Points that are identified by this relation on the parameter space map to the same point on
the closed string world-sheet. The closed strings can be parameterized using any σ interval
of length σc, for example

σ ∈ [0, σc] , for a closed string. (6.61)

Let us now explore some implications of our choice of τ . We can write (6.58) as

X0(τ, σ ) ≡ c t (τ, σ ) = c τ , (6.62)

or simply

τ = t . (6.63)

We can thus describe the collection of string coordinates Xμ as

Xμ(τ, σ ) = Xμ(t, σ ) = {c t, �X(t, σ )} , (6.64)

letting the vector �X represent the spatial string coordinates. We then find

∂ Xμ

∂σ
=
(∂ X0

∂σ
,
∂ �X
∂σ

)
=
(

0,
∂ �X
∂σ

)
,

∂ Xμ

∂τ
=
(∂ X0

∂t
,
∂ �X
∂t

)
=
(

c ,
∂ �X
∂t

)
. (6.65)

As you can see, this parameterization separates the time and space components quite neatly.
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Now that we have made a choice of τ coordinates, we can do a simple test to confirm that
we got the right sign under the radical in the Nambu–Goto action (6.39). Imagine a little
piece of string with no velocity. Because it is not moving, ∂ �X/∂t = 0, and using (6.65),
the square root in (6.39) becomes √

0 −
(∂ �X

∂σ

)2
(−c2). (6.66)

The quantity under the square root is positive, just as we expected. If some day you forget
the sign under the radical in the string action, this is a good way to check it quickly.

6.7 Tension and energy of a stretched string

Let us now do our first calculation with the Nambu–Goto action – our first calculation in
string theory! We are going to analyze a stretched relativistic string. The endpoints of the
string are fixed at x1 = 0, and at x1 = a > 0, with vanishing values for the coordinates
of the additional spatial dimensions. We therefore denote the spatial coordinates of the
endpoints as (0, �0) and (a, �0). The inclusion of the common (d − 1)-dimensional vector �0
tells us that the string is only stretched along the first spatial coordinate.

We evaluate the string action for this stretched string using the static gauge X0 = cτ .
Because this is a static string stretched from x1 = 0 to x1 = a, we can write

X1(t, σ ) = f (σ ) , X2 = X3 = · · · = Xd = 0 , (6.67)

where

f (0) = 0 , f (σ1) = a , (6.68)

and the function f (σ ) is strictly increasing and continuous on the interval σ ∈ [0, σ1]. The
setup is illustrated in Figure 6.9. The function f must be strictly increasing to ensure that
each point along the string is assigned a unique σ coordinate.

x 
2

x 
1

x 
3,..., x d

0 0a

σ1

a

X 
1(σ) = f (σ)

f (σ)

σ

�Fig. 6.9 A string of length a stretched along the x1 axis. The string is parameterized as
X1(t, σ) = f(σ ).
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It now follows that

Ẋμ = ( c, 0, �0 ), X ′μ = ( 0, f ′, �0 ), (6.69)

with f ′ = d f/dσ > 0. Therefore

(Ẋ)2 = −c2 , (X ′)2 = ( f ′)2 , Ẋ · X ′ = 0. (6.70)

We can now evaluate the action (6.39):

S = −T0

c

∫ t f

ti
dt
∫ σ1

0
dσ

√
0 − (−c2)( f ′)2 = −T0

∫ t f

ti
dt
∫ σ1

0
dσ

d f

dσ
. (6.71)

The σ integrand is a total derivative, so

S = −T0

∫ t f

ti
dt ( f (σ1)− f (0)) =

∫ t f

ti
dt (−T0a) , (6.72)

where we used (6.68). Note that the value of the action does not depend on the function f
used to parameterize the string. This is an explicit confirmation of the reparameterization
invariance of the string action.

We would like to interpret our result. For this, recall that the action is the time integral
of the Lagrangian L . When the kinetic energy vanishes, L = −V , where V is the potential
energy. Since our string is static, there is no kinetic energy, so

S =
∫ t f

ti
dt (−V ). (6.73)

Comparing this with (6.72) we conclude that

V = T0 a . (6.74)

The potential energy of our stretched string is just T0a. What does this mean? If the tension
of a static string is T0, regardless of its length, then T0a is the amount of energy that you
must spend to create a string of length a. Imagine that you start with an infinitesimal string
and you start pulling it. As you do work you are giving energy to the string, in fact, you are
creating rest energy, or rest mass. The rest mass μ0 per unit length is

μ0c2 = V

a
= T0 −→ μ0 = T0

c2
. (6.75)

The mass (or rest energy) arises only because the string has a tension. Because of this,
the relativistic string is sometimes referred to as a massless string. The above calculation
supports the identification of T0 as the string tension. It also confirms that the minus sign
in front of the action (6.39) is necessary – otherwise the potential energy of the stretched
string would have come out negative.

There is one point that we have glossed over. We assumed in our analysis that the config-
uration (6.67) satisfies the string equations of motion. If it does not, then the configuration
cannot be physically realized. Let us check that the equations of motion are satisfied.
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First note that on account of (6.69) neither Ẋμ nor Xμ′ has τ dependence. Therefore
neither Pτ nor Pσ has τ dependence (see (6.49) and (6.50)). This being the case, the
equation of motion (6.53) reduces to

∂Pσ
μ

∂σ
= 0 . (6.76)

This requires that Pσ
μ be σ -independent. We look again at (6.50) and use (6.70) to find

Pσ
μ = −T0

c

c2 X ′
μ√

c2( f ′)2
= −T0

X ′
μ

f ′
. (6.77)

This is nonvanishing only for μ = 1, in which case X ′
1 = f ′, so Pσ is indeed σ -

independent. Thus the equation of motion is satisfied. Even the boundary conditions are
satisfied. As we discussed in Section 6.5, there is no condition to check for string coordi-
nates that satisfy Dirichlet boundary conditions at the endpoints. In our problem this means
that there are no extra conditions to be checked for any of the spatial coordinates. For the
zeroth coordinate, equation (6.57) requires the free boundary condition Pσ

0 = 0. This holds
on account of (6.77).

6.8 Action in terms of transverse velocity

We have chosen a partial parameterization of the world-sheet by imposing the condition
X0 = ct = cτ . With this choice, a line of constant τ on the world-sheet corresponds to the
string, as seen by our chosen Lorentz observer, at the particular time t = τ .

Can we define some sort of string velocity? Since the components of �X(t, σ ) are the
string spatial coordinates, the derivative ∂ �X/∂t seems to be the closest thing we have to a
velocity. This velocity, however, depends upon the choice of σ . Its direction, for example,
goes along the lines of constant σ . Since σ can be chosen quite arbitrarily, keeping σ

constant in taking the derivative is clearly not very physically significant!
Fixing physically the σ parameterization of a string is subtle because the string is an

object with no substructure. When comparing a string at two nearby times, it is not possible
to say that a point moved from one location to the next. To speak of points on the string we
need a σ parameterization, and reparameterization invariance makes it clear to us that this
parameterization is not unique. This suggests that longitudinal motion on the string is not
physically meaningful.

There is a reparameterization invariant velocity that can be defined on the string. This is,
however, a transverse velocity. We consider the string motion in space, and imagine that
each point on the string moves transversely to the string (Figure 6.10). Consider a string at
some fixed time t and pick a point p on it. Draw the hyperplane orthogonal to the string at
p. At time t + dt , with dt infinitesimal, the string has moved, but it will still intersect the
plane, this time at a point p′. The transverse velocity is what we get if we presume that the
point p moved to p′. No string parameterization is needed to define this velocity.
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t + dtt

p
p ′

�Fig. 6.10 A string at time t and the plane orthogonal to the string at p. At time t + dt the string
intersects the plane at p′. To define the transverse velocity we assume that p moved to p′.

When speaking of evolving strings there are two surfaces we can discuss. One is the
world-sheet, the surface in spacetime which represents the history of the string. The other
is a surface in space. This spatial surface is put together by combining the strings that
we observe at all times. This is the surface that would be generated if the string were
to leave a wake as it moved. The transverse velocity �v⊥ at any point on the string is a
vector orthogonal to the string and tangent to the string spatial surface. Since �v⊥ is a string
reparameterization invariant notion of velocity, we expect it to enter naturally into the
evaluation of the string action.

In order to define the transverse velocity �v⊥, it is useful to have a unit vector tangent to
the string. To this end, we now introduce a parameter s which is more physical than our
nearly arbitrary σ : s measures length along the string. Let us work with the string at a fixed
time, and define s(σ ) to be the length of the string in the interval [0, σ ]. Thus, for example,
s(0) = 0, and s(σ1) is the length of an entire open string. Since ds is the length of the
infinitesimal vector d �X which arises from an interval dσ along the string, we have:

ds = |d �X | =
∣∣∣∂ �X
∂σ

∣∣∣ |dσ | . (6.78)

Now consider the quantity ∂ �X/∂s, which is the rate of change of �X with respect to the
length of the string. First note that it is a unit vector:

∂ �X
∂s

· ∂ �X
∂s

= ∂ �X
∂σ

· ∂ �X
∂σ

(dσ

ds

)2 =
∣∣∣∂ �X
∂σ

∣∣∣2(dσ

ds

)2 = 1 . (6.79)

The derivative ∂ �X/∂σ is taken with t held fixed, so it lies along a line of constant t . Since
the lines of constant t are precisely the strings, it is tangent to the string. In addition

∂ �X
∂s

= ∂ �X
∂σ

dσ

ds
, (6.80)

and thus ∂ �X/∂s is also tangent to the string. Because it has unit length,

∂ �X
∂s

is a unit vector tangent to the string . (6.81)



122 Relativistic strings
�

v⊥

t

t + dt

∂X
∂t

∂X
∂s

σ

σ + dσ

�Fig. 6.11 A small piece of the world-sheet showing the vector ∂ �X/∂t, the transverse velocity �v⊥, and
the unit vector ∂ �X/∂s.

We define �v⊥ to be the component of the velocity ∂ �X/∂t , in the direction perpendicular
to the string (see Figure 6.11). For any vector �u, its component perpendicular to a unit
vector �n is �u − (�u · �n)�n. Therefore, using our unit vector ∂ �X/∂s along the string, we have

�v⊥ = ∂ �X
∂t

−
(∂ �X

∂t
· ∂ �X

∂s

)∂ �X
∂s

. (6.82)

For future use, we calculate v2⊥. A small computation gives

v2⊥ =
(∂ �X

∂t

)2 −
(∂ �X

∂t
· ∂ �X

∂s

)2
. (6.83)

Our goal now is to write the string action in terms of �v⊥ and other quantities, if necessary.
Using the static gauge τ = t , and equations (6.65), we find

(Ẋ)2 = −c2 +
(∂ �X

∂t

)2
, (X ′)2 =

(∂ �X
∂σ

)2
, Ẋ · X ′ = ∂ �X

∂t
· ∂ �X

∂σ
. (6.84)

With these relations we simplify the argument of the square root in the string action:

(Ẋ · X ′)2 − (Ẋ)2(X ′)2 =
(∂ �X

∂t
· ∂ �X

∂σ

)2 +
[
c2 −

(∂ �X
∂t

)2](∂ �X
∂σ

)2

=
( ds

dσ

)2[(∂ �X
∂t

· ∂ �X
∂s

)2 + c2 −
(∂ �X

∂t

)2]
. (6.85)

The terms on the right-hand side above can be neatly expressed in terms of v2⊥. Making
use of (6.83),

(Ẋ · X ′)2 − (Ẋ)2(X ′)2 =
( ds

dσ

)2 (
c2 − v2⊥

)
, (6.86)
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or, alternatively,

√
(Ẋ · X ′)2 − (Ẋ)2(X ′)2 = c

ds

dσ

√
1 − v2⊥

c2
. (6.87)

This simple expression for the string Lagrangian density shows that �v⊥ is a natural dynami-
cal variable. Moreover, the longitudinal component of the velocity is completely irrelevant.
Now we can write the string action as

S = −T0

∫
dt
∫ σ1

0
dσ
( ds

dσ

)√
1 − v2⊥

c2
. (6.88)

Here ds/dσ = |∂ �X/∂σ |. We did not cancel the dσ because it is typically useful to have
an integral over a fixed parameter range. While the range of σ is constant, the total length
of a string is time dependent. We introduced s as the function of σ that gives length along
the string at a fixed time. This definition, used at different times, endows s with a time
dependence that can be relevant if we compare strings at different times.

The associated Lagrangian is given by

L = −T0

∫
ds

√
1 − v2⊥

c2
. (6.89)

This formula was written as an integral over the length parameter in order to give an
interpretation. For each infinitesimal piece of string, T0ds is its rest energy. As a result, the
Lagrangian is an integral over the string of (minus) the rest energy times a local relativis-
tic factor. In this form, we recognize (6.89) as the natural generalization of the relativistic
particle Lagrangian (5.8).

The action (6.88) is valid both for open strings and for closed strings. Although relatively
simple, it still leads to rather complicated equations of motion in all but the most symmet-
rical situations. In order to obtain simple equations of motion, we will have to be clever
in our choice of σ . For open strings, in addition, we must understand how the endpoints
move.

We conclude this section by simplifying our expressions (6.49) and (6.50) for Pτμ and
Pσμ in the static gauge. Let us begin with Pσμ. Its denominator is given in (6.87) and its
numerator is simplified using relations (6.84). We find

Pσμ = −T0

c

(
∂ �X
∂σ

· ∂ �X
∂t

)
Ẋμ −

(
− c2 +

(
∂ �X
∂t

)2 )
Xμ′

c
ds

dσ

√
1 − v2⊥

c2

. (6.90)
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Bringing the ds/dσ from the denominator up to the numerator, we can turn derivatives
with respect to σ into derivatives with respect to s:

Pσμ = −T0

c2

(
∂ �X
∂s

· ∂ �X
∂t

)
Ẋμ +

(
c2 −

(
∂ �X
∂t

)2 )
∂ Xμ

∂s√
1 − v2⊥

c2

. (6.91)

The μ = 0 component of this quantity simplifies considerably. Since Ẋ0 = c and
∂ X0/∂s = c ∂t/∂s = 0, we find

Pσ0 = −T0

c

(
∂ �X
∂s

· ∂ �X
∂t

)
√

1 − v2⊥
c2

. (6.92)

A rather similar calculation for Pτμ gives

Pτμ = T0

c2

ds

dσ

Ẋμ −
(

∂ �X
∂s

· ∂ �X
∂t

)
∂ Xμ

∂s√
1 − v2⊥

c2

. (6.93)

Quick calculation 6.4 Prove (6.93).

It follows from (6.93) that Pτ0 and �Pτ are given by

Pτ0 = T0

c

ds

dσ

1√
1 − v2⊥

c2

, �Pτ = T0

c2

ds

dσ

�v⊥√
1 − v2⊥

c2

. (6.94)

6.9 Motion of open string endpoints

We will now analyze the motion of the endpoints of an open relativistic string. We consider
endpoints that are free to move in all directions. Given our discussion in Section 6.5, this
means that we have a space-filling D-brane. Free endpoints are specified by the boundary
conditions (6.56), which require the vanishing of Pσ

μ at the endpoints. We will discover
two important properties of the free motion of open string endpoints.

• The endpoints move with the speed of light.
• The endpoints move transversely to the string.

On the interior of the string the notion of a velocity was ambiguous. For the string end-
points, however, the velocity is well defined – there is no ambiguity defining the velocity of
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points! Therefore, our statements about endpoint motion have content. In the second state-
ment, motion transverse to the string means that the velocity of an endpoint is orthogonal
to the tangent to the string at the endpoint.

To prove the above properties we first recall that Pσ0 must vanish at the endpoints. Using
(6.92) and noting that the square root in the denominator cannot be infinite, we deduce that
the numerator must vanish:

∂ �X
∂s

· ∂ �X
∂t

= 0 at the endpoints . (6.95)

Since ∂ �X/∂s is a unit vector tangent to the string, and ∂ �X/∂t is the endpoint veloc-
ity, this equation proves that the endpoints move transversely to the string – one of our
two claims. In agreement with this interpretation, using (6.95) in (6.82) we see that at
the endpoints �v⊥ = ∂ �X/∂t ≡ �v. Equation (6.95) actually allows for vanishing endpoint
velocity, in which case the transversality property would be trivially satisfied. But this
cannot happen; the endpoints move with the speed of light, as we now show.

Using (6.95), we simplify the expression (6.91) for Pσμ at the endpoints:

Pσμ = −T0

√
1 − v2

c2

∂ Xμ

∂s
at the endpoints. (6.96)

For the space coordinates, μ = 1, . . ., d, equation (6.96) gives

�Pσ = −T0

√
1 − v2

c2

∂ �X
∂s

= 0 at the endpoints. (6.97)

Since ∂ �X/∂s is a unit vector, we conclude that

v2 = c2. (6.98)

Free open string endpoints move with the speed of light.
This conclusion implies that the denominator in (6.92) actually vanishes at the endpoints.

Equation (6.95) must still hold, otherwise Pσ0 would diverge, rather than vanish at the
endpoints. In fact, as we approach the string endpoints, the numerator in (6.92) must vanish
faster than the denominator to ensure that the ratio goes to zero.

Problems

Problem 6.1 The induced metric on a two-dimensional surface.

A two-dimensional surface in flat three-dimensional space is described by the height func-
tion z = h(x, y), so that points on the surface take the form (x, y, h(x, y)). This surface is
naturally parameterized by x and y. Recall (6.14), which gives the metric gi j (ξ) induced
on a surface parameterized by (ξ1, ξ2).

(a) Calculate the components of the metric gi j in terms of h and its derivatives. Write a
formula for gi j of the form gi j = δi j + · · ·.
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(b) Write the fully simplified appropriate form of the area integral (A = ∫
dξ1dξ2√g).

Problem 6.2 Metric on S2 from stereographic parameterization.

Consider a unit sphere S2 in R
3 centered at the origin: x2 + y2 + z2 = 1. Denote a point

on the sphere by �x = (x, y, z). In the stereographic parameterization of the sphere we use
parameters ξ1 and ξ2 and points on the sphere are (see (6.1)):

�x (ξ1, ξ2) =
(

x(ξ1, ξ2) , y(ξ1, ξ2) , z(ξ1, ξ2)
)

.

Given parameters (ξ1, ξ2), the corresponding point on the sphere is that which lies on the
line that goes through the north pole N = (0, 0, 1) and the point (ξ1, ξ2, 0). Note that the
north pole itself is not attained for any finite values of the parameters.

(a) Draw a sketch for the above construction. What are the required ranges for ξ1 and ξ2

if we wish to parameterize the full sphere (except for the north pole)?
(b) Calculate the functions x(ξ1, ξ2), y(ξ1, ξ2), and z(ξ1, ξ2).
(c) Calculate the four components of the induced metric gi j (ξ). This is the metric on the

sphere, described using the ξ parameters. The algebra is a bit messy, but the result is
quite simple (use a symbolic manipulator!).

(d) Check your result by computing the area of the sphere using (6.17).

Problem 6.3 Schwarz inequality in R
1,1.

Consider a two-dimensional vector space V with a constant metric such that there is a
timelike vector t ′ (t ′2 = t ′ · t ′ < 0) and a spacelike vector s′ (s′2 = s′ · s′ > 0).

(a) Show that you can construct vectors t and s such that t · t = −1, s · s = 1, and t · s =
0. [Hint: choose t to be in the direction of t ′.] The vectors t and s provide a canonical
basis for V , which is now identified as the space R

1,1.
(b) Consider now two arbitrary vectors v1 and v2 in V . Use the basis in (a) to prove that

(v1 · v2)
2 ≥ v2

1 v2
2 ,

where the equality only holds if and only if the vectors v1 and v2 are parallel. This
result gives some additional perspective on our proof of (6.34).

Problem 6.4 Stretched string and a nonrelativistic limit.

Examine the action (6.88) for a relativistic string with endpoints attached at (0, �0) and
(a, �0), as in Section 6.7. Consider the nonrelativistic approximation where |�v⊥| � c and
the oscillations are small (see (4.3)). You may denote by �y the collection of transverse
coordinates X2, . . ., Xd and write �y(t, x), where x is the coordinate corresponding to X1.
Explain why the following relations hold:

ds2 = dx2 + d �y · d �y , �v⊥ � ∂ �y
∂t

.

Show that the action reduces, up to an additive constant, to the action for a nonrelativistic
string performing small transverse oscillations. What are the tension and the linear mass
density of the resulting string? What is the additive constant?
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Problem 6.5 Alternative derivation of the nonrelativistic limit.

Consider the same setup and nonrelativistic approximation discussed in Problem 6.4. This
time, however, start your analysis with the Nambu–Goto action (6.39) and work in the static
gauge. Moreover, parameterize the strings using X1 = x = aσ/σ1. This parameterization
is allowed for small oscillations. In fact, it is allowed for any motion in which X1 is an
increasing function along the string.

Problem 6.6 Planar motion for open string with attached endpoints.

Consider the motion of a relativistic open string on the (x, y) plane. The string end-
points are attached to (x, y) = (0, 0) and (x, y) = (a, 0), where a > 0. We want to study
motions that can be described using the function y(t, x) which gives the vertical displace-
ment of the string for x ∈ [0, a]. Show that the Lagrangian (6.89) can be written in the
form:

L = −T0

∫ a

0
dx

√
1 + y′2 − ẏ2

c2
.

Here y′ = ∂y/∂x and ẏ = ∂y/∂t .

Problem 6.7 Time evolution of a closed circular string.

At t = 0, a closed string forms a circle of radius R on the (x, y) plane and has zero velocity.
The time development of this string can be studied using the action (6.88). The string will
remain circular, but its radius will be a time-dependent function R(t). Give the Lagrangian
L as a function of R(t) and its time derivative. Calculate the radius and velocity as func-
tions of time. Sketch the spacetime surface traced by the string in a three-dimensional plot
with x, y, and ct axes. [Hint: calculate the Hamiltonian associated with L and use energy
conservation.]

Problem 6.8 Covariant analysis of open string endpoint motion.

Use the explicit form of Pσ
μ to calculate Pσ

μPσμ, and use the result of this calculation to
prove that free open string endpoints move with the speed of light.

Problem 6.9 Hamiltonian density for relativistic strings.†

Consider the string Lagrangian density L in the static gauge and written in terms of ∂σ
�X

and ∂t �X . Show that the canonical momentum density �P(t, σ ) is given by

�P(t, σ ) ≡ ∂L
∂(∂t �X)

= T0

c2

�v⊥√
1 − v2⊥

c2

ds

dσ
.

Calculate the Hamiltonian density H, again in terms of �v⊥ and ds
dσ

. Write the total Hamil-
tonian as H = ∫

dσH = ∫
ds(. . . ) and show that your answer is consistent with the

interpretation that the energy of the string arises as the energy of transverse motion of
a string whose rest mass arises solely from the tension.
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Problem 6.10 Circular string in de Sitter space.

The Nambu–Goto action on a curved spacetime with metric gμν(x) can be written as in
(6.39) with the convention that all dot products use the metric gμν :

Ẋ · X ′ = gμν(X)Ẋμ Xν ′ , (Ẋ)2 = gμν(X)Ẋμ Ẋν , (X ′)2 = gμν(X)X ′μ X ′ν .

Consider strings in an expanding four-dimensional de Sitter spacetime, for which the
metric gμν can be taken to be diagonal, with values

g00 = −1 , g11 = g22 = g33 = e2Ht .

The Hubble constant H has units of one over time so that Ht is dimensionless.

(a) Assume X0 ≡ ct = cτ and write Xμ = {X0, �X}. Write the Nambu–Goto action in
terms of t and σ derivatives of �X .

(b) Consider now a circular string on the (x1, x2) plane, namely

X1(t, σ ) = r(t) cos σ , X2(t, σ ) = r(t) sin σ , σ ∈ [0, 2π ] ,
where r(t) is a radius function to be determined. Use this ansatz to simplify the string
action and perform the integration over σ . Write your result as

S =
∫

dt L(ṙ(t), r(t); t) ,

and determine L(ṙ(t), r(t); t), which is explicitly time dependent. Because of the e2Ht

factors in the metric, the physically measured radius of the string is actually R(t) =
eHt r(t). Write the Lagrangian in terms of R and Ṙ.

(c) Consider strings with constant R and use the Lagrangian to give the potential V (R) for
such strings. Plot this potential and verify that it is well-defined only if R ≤ c/H . Find
a critical point of the potential and the corresponding value of R. Is this static string in
stable equilibrium?

(d) Use the Lagrangian for R and Ṙ to calculate the corresponding Hamiltonian, expressed
as a function of R and Ṙ. Simplify your answer. Is this Hamiltonian function conserved
for physical motion?

Problem 6.11 Open strings ending on D-branes of various dimensions.

Consider a world with d spatial dimensions. A Dp-brane is an extended object with p
spatial dimensions: a p-dimensional hyperplane inside the d-dimensional space. We will
examine properties of strings ending on a Dp-brane, where 0 ≤ p < d. The case p = d,
where the D-brane is space filling was discussed in Section 6.9.

For a Dp-brane, let xi , with i = 1, . . ., p, correspond to directions on the Dp-brane, and
xa with a = p + 1, . . ., d, correspond to directions orthogonal to the Dp-brane. The Dp-
brane position is specified by xa = 0, for a = p + 1, . . ., d. Open string endpoints must
lie on the Dp-brane. Focusing on the σ = 0 endpoint, we thus have

Xa(t, σ = 0) = 0 , a = p + 1, . . ., d .
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The motion of the endpoint along the D-brane directions xi is free. We work in the static
gauge.

(a) State the conditions satisfied by Pσ
0 , Pσ

i , and Pσ
a at the endpoint (no condition is a

possibility!).

Prove the following.

(b) All boundary conditions are automatically satisfied if the string ends on a D0-brane.
(c) For a string ending on a D1-brane, the tangent to the string at the endpoint is orthogonal

to the D1-brane, and the endpoint velocity is unconstrained.
(d) For a string ending on a Dp-brane, with p ≥ 2, there are two possibilities:

(i) the string is orthogonal to the Dp-brane at the endpoint, and the endpoint velocity
is unconstrained, or,

(ii) the string is not orthogonal to the Dp-brane at the endpoint, and the endpoint
moves with the speed of light transversely to the string.



7
String parameterization and classical

motion

We construct lines of constant σ that are perpendicular to the lines of constant
τ and use the energy density carried by the string to fix the σ parameterization
completely. The resulting system of string equations of motion includes wave
equations and two nonlinear constraints. We find the general solution which
describes the motion of open strings with free endpoints. We examine the free
evolution of closed strings and find that cusps that appear and later disappear
are generic. We discuss cosmic strings and the gravitational lensing they can
produce.

7.1 Choosing a σ parameterization

We have already learned a few facts about the motion of relativistic strings. In particular,
we learned that free open string endpoints move with the speed of light transversally to the
string. This result was obtained using the static gauge X0 ≡ ct = cτ , which partially fixed
the parameterization of the world-sheet. Once we have chosen this gauge, the string motion
is defined by the functions �X(t, σ ). As we vary t and σ , �X(t, σ ) describes the string spatial
surface – the surface in space consisting of the strings at all times. In this chapter, the string
spatial surface will simply be called the string surface. We will also use the static gauge
throughout. The statement that the open string endpoints move transversely to the string
implies that the vectors tangent to the boundary of the string surface are orthogonal to the
strings. Our goal is to find a useful σ parameterization of the string surface. If we know
this parameterization, we also know the σ parameterization of the world-sheet and, in fact,
the complete parameterization of the world-sheet.

We will now show how to use a particular σ parameterization of a single string to construct
a useful σ parameterization of all strings, and thus of the entire string surface. Suppose that
the t = 0 string is given some σ parameterization with σ ∈ [0, σ1] (see Figure 7.1). Now,
consider the string at t = ε, with ε infinitesimal. On the string surface we can draw short
segments perpendicular to the t = 0 string. Let these segments intersect the t = ε string.
Consider a point σ0 on the t = 0 string, and the short perpendicular above it. We declare
the intersection of this perpendicular with the t = ε string to also have σ = σ0. We do this
all over the t = 0 string, obtaining a parameterization of the t = ε string. We then repeat
this procedure, using the t = ε string to parameterize the t = 2ε string. We continue in this
way, working in the limit of very small ε. The result is a set of lines of constant σ that are
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t = 0 

t = ε

σ0

�Fig. 7.1 Using the parameterization of the t = 0 string to construct the parameterization of the
t = ε string. On the string surface, the lines of constant σ are chosen to be orthogonal to
the lines of constant t.

everywhere orthogonal to the strings (that is, orthogonal to the lines of constant t). This
construction can be done both for open and for closed strings. For closed strings the σ

range [0, σc] of the t = 0 string becomes the range of all other strings. For open strings the
σ range [0, σ1] of the t = 0 string also becomes the range of all other strings. This happens
because the boundaries of the string surface are orthogonal to the strings, and, as a result,
the boundaries are lines of constant σ .

In summary, the σ parameterization of a given string can be used to construct lines of
constant σ that are always perpendicular to the lines of constant t . In this parameterization
of the string surface, the tangent ∂ �X/∂σ to the strings and the tangent ∂ �X/∂t to the lines
of constant σ are perpendicular to each other at any point:

∂ �X
∂σ

· ∂ �X
∂t

= 0. (7.1)

Since the velocity ∂ �X/∂t is perpendicular to the string, it coincides with �v⊥ (see (6.82)):

�v⊥ = ∂ �X
∂t

at all points, (7.2)
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and not only at the endpoints, where it happens independently of parameterization. Recall-

ing that s is the length parameter along the string, equation (7.1) implies that ∂ �X
∂s · ∂ �X

∂t = 0,
which allows us to simplify our earlier results for Pτμ and Pσμ. We find that (6.93)
becomes

Pτμ = T0

c2

ds
dσ√

1 − v2⊥
c2

∂ Xμ

∂t
. (7.3)

Similarly, (6.91) becomes

Pσμ = −T0

√
1 − v2⊥

c2

∂ Xμ

∂s
. (7.4)

Equation (7.4) holds at the open string endpoints regardless of σ -parameterization (see
(6.96)); with the present parameterization it holds all over the string.

7.2 Physical interpretation of the string equation of motion

Having used the σ parameterization to simplify some of our previous expressions, we now
look into the string equations of motion (6.53). With t = τ we have

∂Pτμ

∂t
= −∂Pσμ

∂σ
. (7.5)

Let us first consider the μ = 0 component of this equation. It follows from (7.4) that
Pσ0 = 0. Furthermore, equation (7.3) gives

Pτ0 = T0

c

ds
dσ√

1 − v2⊥
c2

. (7.6)

Back into the equation of motion (7.5), we obtain

∂Pτ0

∂t
= ∂

∂t

⎛
⎜⎜⎝ T0

ds
dσ

c

√
1 − v2⊥

c2

⎞
⎟⎟⎠ = 0. (7.7)

To understand this result physically, consider a little piece of string associated with a dσ

that is a small fixed number. The motion of this particular piece of string is well defined
now that we have fixed the lines of constant σ . Since ds denotes the length of the dσ piece
of string, ds can depend on time. If we multiply equation (7.7) by the constant dσ , we
conclude that

T0 ds√
1 − v2⊥

c2

, (7.8)
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is constant in time. Expression (7.8) has units of energy, which suggests that it may be the
relativistic energy associated with this piece of the string. Indeed, this is in agreement with
our findings in Section 6.7 where we saw that the rest energy of a static stretched string is
given by its length times the tension T0. The rest energy in the above expression is T0ds,
and the relativistic factor in the denominator makes (7.8) the total energy. Equation (7.7)
therefore states that the energy in each piece dσ of the string is conserved. This is a very
interesting fact. It implies, for example, that the energy in the range [0, σ0] of an open
string is constant in time for any fixed σ0.

The above interpretation is also confirmed by a calculation of the energy E of a
relativistic string (Problem 6.9). You found that the Hamiltonian is

H =
∫

T0 ds√
1 − v2⊥

c2

, (7.9)

which shows that (7.8) is the energy in a piece of string.

Now we turn to the space components of the string equation of motion. The space
components �Pτ of Pτμ can be read from (7.3):

�Pτ = T0

c2

ds
dσ√

1 − v2⊥
c2

�v⊥, (7.10)

and similarly, from (7.4),

�Pσ = −T0

√
1 − v2⊥

c2

∂ �X
∂s

. (7.11)

Now we can substitute these expressions back into (7.5) to find that

∂

∂σ

[
T0

√
1 − v2⊥

c2

∂ �X
∂s

]
= ∂

∂t

[T0

c2

ds
dσ√

1 − v2⊥
c2

�v⊥
]

(7.12)

= T0

c2

ds
dσ√

1 − v2⊥
c2

∂ �v⊥
∂t

,

where the final step used equation (7.7). It is possible to interpret this equation loosely
in terms of an “effective” nonrelativistic string. Recall that the equations of motion for a
classical nonrelativistic string are

μ0
∂2 �y
∂t2

= T0
∂2 �y
∂x2

= ∂

∂x

[
T0

∂ �y
∂x

]
, (7.13)

where x is a length parameter along the direction defined by the static stretched string, and
�y is the transverse displacement. How do we recast (7.12) to resemble (7.13)? We use the
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ds/dσ factor on the right-hand side to transform the σ -derivative on the left-hand side into
an s-derivative:

T0

c2

1√
1 − v2⊥

c2

∂ �v⊥
∂t

= ∂

∂s

⎡
⎣T0

√
1 − v2⊥

c2

(∂ �X
∂s

)⎤⎦ . (7.14)

For small oscillations the length parameter s along the vibrating string is roughly equal to
the parameter x along the direction of the static string. We can then compare this equa-
tion with (7.13) and conclude that the relativistic string has a velocity-dependent effective
tension Teff and a velocity-dependent effective mass density μeff given by

Teff = T0

√
1 − v2⊥

c2
, μeff = T0

c2

1√
1 − v2⊥

c2

. (7.15)

Since free open string endpoints move with v⊥ = c, the effective tension of the string goes
to zero at the endpoints. One could say that the endpoints have to move at the speed of light
in order to make the tension vanish at the endpoints. This is the only way that the relativistic
string can have a tension and still make sense with free open ends. The effective mass
density diverges at the endpoints. This is not a problem; the same divergence is present for
the energy density which appears as the integrand in (7.9). Despite the singular behavior at
the endpoints, the integral turns out to be finite, as required by consistency since, after all,
we are describing strings with finite energy.

7.3 Wave equation and constraints

Equation (7.14) is still fairly complicated. It may seem that, having fixed the lines of con-
stant σ , we have run out of reparameterizations that can help us simplify the equations of
motion. This is not the case, however. We showed how to construct the lines of constant
σ if we have one parameterized string. We must now try to parameterize this first string in
the best possible way!

Here is the physical way to do so: we will parameterize the string so that each string seg-
ment of equal parameter length σ carries the same amount of energy. We will parameterize
the string using the energy! This parameterization will yield simple equations of motion. To
see this, we first rewrite (7.14) suggestively by changing s-derivatives into σ -derivatives:

1

c2

∂2 �X
∂t2

=

√
1 − v2⊥

c2

ds
dσ

∂

∂σ

⎡
⎢⎢⎣
√

1 − v2⊥
c2

ds
dσ

∂ �X
∂σ

⎤
⎥⎥⎦ . (7.16)
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Let A(σ ) denote the ratio that appears prominently in the above equation:

A(σ ) =
ds
dσ√

1 − v2⊥
c2

. (7.17)

We already showed in (7.7) that A(σ ) is independent of time. We will now choose σ in
such a way that A = 1. If we do so, the equation of motion (7.16) becomes the familiar
wave equation:

1

c2

∂2 �X
∂t2

= ∂2 �X
∂σ 2

. (7.18)

This is a great simplification. To find a σ that leads to A = 1 we assign σ = 0 to one
endpoint of the open string and work our way along the string assigning to each piece ds
of string the interval dσ given by

dσ = ds√
1 − v2⊥

c2

= 1

T0
d E . (7.19)

The first equality implies A = 1, and the second equality follows from the identification of
(7.8) with the energy d E carried by the little piece of string. In this parameterization the
energy density d E/dσ is a constant equal to the tension. Equation (7.19) can be integrated
from the σ = 0 endpoint up to a point Q, giving

σ(Q) = E(Q)

T0
. (7.20)

The coordinate σ(Q) assigned to Q equals the energy E(Q) carried by the portion of the
string stretching from the selected endpoint up to Q, divided by the tension. It also follows
from the above equation that

σ ∈ [0, σ1 ], σ1 = E

T0
, (7.21)

where E is the total energy of the string.
Our choice of σ , done for all strings, is consistent with the orthogonality condition (7.1).

In fact, the lines of constant σ have not been changed, only the values of σ assigned to them
have. Our constant σ lines still ensure that the energy in the [0, σ ] portion of the strings is
constant and such lines are orthogonal to the strings.

The parameterization condition (7.19) is actually equivalent to a differential constraint
on the coordinates �X . We first rewrite the first equality in (7.19) as( ds

dσ

)2 + 1

c2
v2⊥ = 1. (7.22)

Recalling that ∂ �X/∂s is a unit vector, and making use of (7.2), we find(∂ �X
∂σ

)2 + 1

c2

(∂ �X
∂t

)2 = 1. (7.23)
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Finally, let us examine the boundary conditions. From (7.11) we have

�Pσ = −T0

√
1 − v2⊥

c2

dσ

ds

∂ �X
∂σ

= −T0
∂ �X
∂σ

. (7.24)

Therefore, the free endpoint boundary condition is very simple:

∂ �X
∂σ

= 0 at the endpoints. (7.25)

With the chosen parameterization, the free endpoint boundary condition, first introduced
in (6.56), is simply a Neumann boundary condition.

All in all we have four equations to solve in order to find the motion of a relativistic string:
(7.18), (7.1), (7.23), and (7.25). We collect them here:

wave equation : ∂2 �X
∂σ 2

− 1

c2

∂2 �X
∂t2

= 0, (7.26)

parameterization condition : ∂ �X
∂t

· ∂ �X
∂σ

= 0 , (7.27)

parameterization condition :
(∂ �X

∂σ

)2 + 1

c2

(∂ �X
∂t

)2 = 1, (7.28)

boundary condition : ∂ �X
∂σ

∣∣∣
σ=0

= ∂ �X
∂σ

∣∣∣
σ=σ1

= 0. (7.29)

For a string with energy E , the above equations require σ1 = E/T0. For the record, we
also include (7.19), written as

1

T0

d E

dσ
=

ds
dσ√

1 − v2⊥
c2

= 1. (7.30)

Finally, from equations (7.3) and (7.4) we get

Pτμ = T0

c2

∂ Xμ

∂t
, (7.31)

Pσμ = −T0
∂ Xμ

∂σ
. (7.32)

7.4 General motion of an open string

In this section our goal is to describe the general motion of open strings with free boundary
conditions. We will therefore examine in detail how to solve equations (7.26)–(7.29).
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Let us first consider the wave equation for �X . This equation is readily solved in terms of
arbitrary vector functions of (ct ± σ). We thus write

�X(t, σ ) = 1

2

( �F(ct + σ)+ �G(ct − σ)
)
. (7.33)

The boundary condition at the σ = 0 endpoint demands that

∂ �X
∂σ

∣∣∣
σ=0

= 0 −→ �F ′(ct)− �G ′(ct) = 0, (7.34)

where prime denotes derivative with respect to the argument. Since ct takes all possible
values, the above equation holds for all values of the argument. Calling u the argument, we
write

d �F(u)

du
= d �G(u)

du
−→ �G(u) = �F(u)+ �a0, (7.35)

where �a0 is a constant vector. Back in (7.33) we now have

�X(t, σ ) = 1

2

( �F(ct + σ)+ �F(ct − σ)+ �a0

)
. (7.36)

We can absorb the constant vector �a0 into the definition of �F (call �F(u)+ �a0/2 the new
�F), and therefore our solution so far takes the form

�X(t, σ ) = 1

2

( �F(ct + σ)+ �F(ct − σ)
)
. (7.37)

Consider now the boundary condition at σ = σ1:

∂ �X
∂σ

∣∣∣
σ=σ1

= 0 −→ �F ′(ct + σ1)− �F ′(ct − σ1) = 0. (7.38)

Letting u = ct − σ1, the above condition becomes

d �F
du

(u + 2σ1) = d �F
du

(u). (7.39)

This equation tells us that the derivative of �F is periodic with period 2σ1. Integrating, we
find that the function �F is quasi-periodic: after a period 2σ1 it changes by a fixed constant.
We write this as

�F(u + 2σ1) = �F(u)+ 2σ1
�v0

c
, (7.40)

where �v0 is a vector constant of integration with units of velocity, and the constants have
been added for convenience. This concludes our analysis of the boundary conditions.

We now examine what restrictions the parameterization conditions (7.27) and (7.28)
impose on the function �F . A standard trick is to add and subtract the first equation to
the second, as in (∂ �X

∂σ

)2 ± 2
∂ �X
∂σ

· 1

c

∂ �X
∂t

+ 1

c2

(∂ �X
∂t

)2 = 1, (7.41)

which can then be written more briefly as
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(
∂ �X
∂σ

± 1

c

∂ �X
∂t

)2

= 1. (7.42)

Note that this is equivalent to the two constraints (7.27) and (7.28). Using (7.37) we can
evaluate the derivatives that enter into the constraints:

∂ �X
∂σ

= 1

2

( �F ′(ct + σ)− �F ′(ct − σ)
)
,

(7.43)1

c

∂ �X
∂t

= 1

2

( �F ′(ct + σ)+ �F ′(ct − σ)
)
.

As a result,

∂ �X
∂σ

± 1

c

∂ �X
∂t

= ± �F ′(ct ± σ). (7.44)

It follows that the constraints (7.42) require �F ′ · �F ′ = 1 for all arguments of �F . In other
words, the vector �F ′(u) is a unit vector:

∣∣∣d �F(u)

du

∣∣∣2 = 1. (7.45)

This is good progress: the constraints give a simple condition for �F(u). Since �F is a vector
function of the parameter u, we can visualize �F(u) as a parameterized curve in space.
Equation (7.45) has a simple interpretation:

u is a length parameter along the curve �F(u). (7.46)

This is explained as follows. Consider two nearby points �F(u + du) and �F(u) on the curve.
Their vector separation d �F = �F(u + du)− �F(u) has length |d �F |. Equation (7.45) implies
that |d �F | = |du|, showing that the parameter change |du| is the distance between the two
nearby points.

We can now summarize our analysis of the equations of motion. The general solution which
describes the motion of an open string with free endpoints is given by

�X(t, σ ) = 1

2

( �F(ct + σ)+ �F(ct − σ)
)
, σ ∈ [0, σ1], (7.47)

where σ1 = E/T0, E is the energy of the string, and �F satisfies the conditions
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�Fig. 7.2 The vector function �F(u) changes by a constant vector (2σ1�v0/c) when u → u + 2σ1. The
parameterized curve �F(u) encodes the full motion of an open string with free endpoints.

∣∣∣d �F(u)

du

∣∣∣2 = 1 and �F(u + 2σ1) = �F(u)+ 2σ1
�v0

c
. (7.48)

The problem has been reduced to that of finding a vector function �F which satisfies
equations (7.48). The second of these equations tells us that it suffices to find �F(u) for
u ∈ [0, 2σ1]. This determines �F(u) for all u, and thus it determines �X(t, σ ) completely.
The interpretation of �v0 will be given below. An illustration of �F is shown in Figure 7.2.

We can give a physical interpretation to �F(u). It follows from (7.47) that the motion of the
σ = 0 endpoint of the open string is described by

�X(t, 0) = �F(ct). (7.49)

Therefore, we see that:

�F(u) is the position of the σ = 0 endpoint at time u/c. (7.50)

Additionally, we can give a physical interpretation to the constant velocity �v0. From the
second equation in (7.48) we have

�F(2σ1) = �F(0)+ 2σ1
�v0

c
, (7.51)

and expressing the �F in terms of the position of the σ = 0 endpoint, we find

�X
(

t = 2σ1

c
, 0
)
= �X(t = 0, 0)+

(2σ1

c

)
�v0. (7.52)
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y

x
�/2�/2

�Fig. 7.3 An open string of length 
 rotating in the (x, y) plane with angular velocity ω.

This shows that �v0 is the average velocity of the σ = 0 endpoint during the time interval
[0, 2σ1/c].
Quick calculation 7.1 Show that �v0 is, in fact, the average velocity of any point σ on the
string calculated over any time interval of duration 2σ1/c.

Quick calculation 7.2 Show that the velocity of any point on the string is a periodic

function of time with period 2σ1/c, namely, �̇X (t, σ ) = �̇X (t + 2σ1
c , σ ).

Since �F can be reconstructed by looking only at the σ = 0 endpoint, we may ask: how long
do we need to observe this endpoint in order to determine the full motion, past and future,
of an open string with energy E? Since the motion is determined if we know �F(u) from
u = 0 to u = 2σ1, we must observe �X(t, 0) from t = 0 to t = 2σ1/c. Since σ1 = E/T0,
we need to observe the endpoint for a time interval �t = 2E/cT0. This is twice the time
that light takes to travel a length E/T0, the length of a static string of energy E .

We now use the above construction to describe the motion of a straight open string with
energy E which rotates rigidly about its fixed midpoint in the (x, y) plane (Figure 7.3).
Our first goal is to produce the function �F(u). This function is easily constructed because
we know all about the motion of the endpoints. Assuming that the string is of length � and
rotates with angular frequency ω, we describe the motion of the σ = 0 endpoint by

�X(t, 0) = �

2

(
cos ωt, sin ωt

)
, (7.53)

where we use vector notation with two components, since the motion is restricted to the
(x, y) plane. Given that �F(ct) = �X(t, 0) we have
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�F(u) = �

2

(
cos

ωu

c
, sin

ωu

c

)
. (7.54)

The function �F is periodic, suggesting that the vector �v0 in (7.48) must vanish. More
precisely, �v0 vanishes because it is the average velocity during the period in which the
velocity repeats, the velocity repeats after precisely one full turn, and the average velocity
of any point during one full turn is zero. With �v0 = 0 equation (7.48) imposes the condition
�F(u + 2σ1) = �F(u). Using (7.54), this gives

ω

c
(2σ1) = 2πm −→ ω

c
= π

σ1
m, (7.55)

where m is an integer. It is simple to see that we must choose m = 1. For this we just
calculate �X(0, σ ), which gives the string at time equal to zero:

�X(0, σ ) = 1

2

( �F(σ )+ �F(−σ)
) = �

2

(
cos

πmσ

σ1
, 0
)
. (7.56)

For m = 1, the string is recovered when σ ∈ [0, σ1]. For arbitrary m, the function �X(0, σ )

traces out the string m times when σ ∈ [0, σ1]. Choosing m = 1, we find

ω

c
= π

σ1
= πT0

E
. (7.57)

This gives the angular frequency of the motion in terms of the energy. The first condition
in (7.48) determines the length �. Indeed,

d �F
du

= ω�

2c

(
− sin

ωu

c
, cos

ωu

c

)
, (7.58)

and, as a result, ∣∣∣d �F
du

∣∣∣2 = (ω�

2c

)2 = 1 −→ � = 2c

ω
= 2σ1

π
= 2

π

E

T0
. (7.59)

This length is smaller, by a factor of 2/π , than the length of a static string with energy E .
This is sensible since this string has kinetic energy. Alternatively,

E = π

2
T0�, (7.60)

which states that the energy of a rotating string is a factor of π/2 bigger than the energy of
a static string with the same length. Note also that ω(�/2) = c, telling us that the endpoints
move with the speed of light. In this solution the energy is proportional to the length of the
string. Perhaps surprisingly, as the energy of the string increases, the angular velocity ω

decreases. This happens because the string endpoints have to move at the speed of light, so
as the length of the string grows the angular velocity has to decrease.

Having determined ω and �, we really know the motion of the string. It is of inter-
est, however, to write the complete expression for the motion of the parameterized string
�X(t, σ ). In terms of σ1, the vector �F in (7.54) is now given by

�F(u) = σ1

π

(
cos

πu

σ1
, sin

πu

σ1

)
. (7.61)
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Finally, using (7.47) we obtain

�X(t, σ ) = σ1

2π

(
cos

π(ct + σ)

σ1
+ cos

π(ct − σ)

σ1
, sin

π(ct + σ)

σ1
+ sin

π(ct − σ)

σ1

)
,

(7.62)

and after simplification,

�X(t, σ ) = σ1

π
cos

πσ

σ1

(
cos

πct

σ1
, sin

πct

σ1

)
. (7.63)

The parameterized string is of interest because the energy density is a constant function of
the parameter σ . In Problem 7.2 you will calculate the energy E(s) per unit length on the
string as a function of the distance s to the center:

E(s) = T0√
1 − 4s2

�2

. (7.64)

At the center of the string the energy density E(0) coincides with T0. This had to be so,
because the string does not move at the center. The energy density diverges at the string
endpoints s = ±�/2. The total energy, however, is finite.

7.5 Motion of closed strings and cusps

Let us now consider the general motion of a free closed string. Just like for open strings,
both the wave equation (7.26) and the parameterization constraints (7.27) and (7.28) apply.
The wave equation is solved by the expression

�X(t, σ ) = 1

2

( �F(u)+ �G(v)
)
, (7.65)

where we have introduced variables u and v defined by

u ≡ ct + σ,

v ≡ ct − σ.
(7.66)

Taking derivatives of �X we immediately find

1

c

∂ �X
∂t

= 1

2

( �F ′(u)+ �G ′(v)
)
, (7.67)

∂ �X
∂σ

= 1

2

( �F ′(u)− �G ′(v)
)
, (7.68)

where primes denote derivatives with respect to argument. We can now form the linear
combinations

∂ �X
∂σ

+ 1

c

∂ �X
∂t

= �F ′(u) and
∂ �X
∂σ

− 1

c

∂ �X
∂t

= − �G ′(v). (7.69)
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z

�Fig. 7.4 The tips of the unit vectors �F′(u) and �G′(v) define two closed parameterized curves that,
in this case, intersect for u =u0 and v =v0.

The parameterization constraints, summarized in (7.42), then give∣∣ �F ′(u)
∣∣2 = ∣∣ �G ′(v)

∣∣2 = 1, for all u, v. (7.70)

For closed strings we do not have boundary conditions but rather a periodicity condi-
tion. Since dσ = d E/T0 on account of (7.30), the closed string parameter σ has the
identification

σ ∼ σ + σ1, where σ1 = E/T0, (7.71)

and E is the energy of the string. As σ increases by σ1 we are back to the same point on
the closed string and therefore

�X(t, σ + σ1) = �X(t, σ ) (7.72)

is the periodicity condition. Making use of (7.65), this condition gives

�F(u + σ1)+ �G(v − σ1) = �F(u)+ �G(v), (7.73)

or, equivalently,

�F(u + σ1)− �F(u) = �G(v)− �G(v − σ1). (7.74)

The functions �F(u) and �G(v) need not be periodic with period σ1, but they must change by
the same vector when their arguments are increased by σ1. Since u and v are independent
variables, partial derivatives of (7.74) with respect to u and v give

�F ′(u + σ1) = �F ′(u) and �G ′(v + σ1) = �G ′(v). (7.75)

Equations (7.70) and (7.75) imply that �F ′(u) and �G ′(v) are periodic unit vectors; they can
be described as two independent parameterized closed curves on the surface of a unit two-
sphere (Figure 7.4). A closed string motion is fully specified, up to a constant translation,
by these two parameterized curves. Indeed, the curves fix �F ′(u) and �G ′(v) and, by inte-
gration, �F(u) and �G(v) up to integration constants, resulting in �X(t, σ ) fixed up to the
addition of a constant vector.
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An interesting situation arises quite generically. As shown in Figure 7.4, the two param-
eterized curves �F ′(u) and �G ′(v) may intersect for some values u0 and v0 of the parameters
u and v:

�F ′(u0) = �G ′(v0). (7.76)

Let t0 and σ0 be the values of t and σ defined by u0 and v0 through (7.66). It now follows
from (7.67) that

1

c

∂ �X
∂t

(t0, σ0) = 1

2

( �F ′(u0)+ �G ′(v0)
) = �F ′(u0). (7.77)

Since �F ′ is a unit vector we learn that at t = t0 the point σ = σ0 on the string reaches the
speed of light! Moreover, the motion of the point is in the direction of �F ′(u0). Additional
information follows from (7.68):

∂ �X
∂σ

(t0, σ0) = 1

2

( �F ′(u0)− �G ′(v0)
) = �0. (7.78)

This means that the parameterization of the t = t0 string becomes singular at σ = σ0. To
examine the shape of the string near σ = σ0 we fix t = t0 and use a Taylor expansion
around σ = σ0:

�X(t0, σ ) = �X(t0, σ0)+ (σ − σ0)
∂ �X
∂σ

(t0, σ0)+ 1

2
(σ − σ0)

2 ∂2 �X
∂σ 2

(t0, σ0)

+ 1

3! (σ − σ0)
3 ∂3 �X
∂σ 3

(t0, σ0)+ · · ·.
(7.79)

Using (7.78) and the definitions

�X0 = �X(t0, σ0), �T ≡ ∂2 �X
∂σ 2

(t0, σ0), �R ≡ ∂3 �X
∂σ 3

(t0, σ0), (7.80)

we find that the expansion (7.79) loses the term linear in σ − σ0 and becomes

�X(t0, σ ) = �X0 + 1

2
(σ − σ0)

2 �T + 1

3! (σ − σ0)
3 �R + · · ·. (7.81)

For generic situations �T and �R are nonvanishing and nonparallel. It then follows that for
σ = σ0 we have a cusp. A cusp on a string is a point where the two outgoing string direc-
tions form zero angle. Equivalently, at a cusp the oriented tangent to the string reverses
direction. Equation (7.81) describes a cusp at �X0: as σ grows from values right below σ0

to values right above σ0 the string approaches �X0 along �T and recedes from �X0 along �T .
Indeed, near �X0, σ − σ0 is very small and the term that contains �T dominates the expan-
sion (7.81). As we move away from �X0 the cusp opens up due to the term that contains
�R. If we choose a coordinate system in which the tip of the cusp is at the origin, �T points

along the positive y axis, and �R lies on the (x, y) plane, the cusp traces the curve y ∼ x2/3,
as you will show in Problem 7.7.

If a cusp occurs for (u0, v0) it will also occur for (u0 + mσ1, v0 + nσ1), with m and n
arbitrary integers. As a result, as time goes by, cusps will appear and disappear periodically
at various points on the string. Given any two parameterized paths �F ′(u) and �G ′(v) on the
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two-sphere, there may be several different intersection points. Each will give rise to a set
of cusps.

7.6 Cosmic strings

Our analysis of the classical motion of relativistic strings may be applied to the study of
cosmic strings. It is conceivable that physics in the early universe results in strings that
are not microscopic but rather expand with the universe to become very large. The motion
of cosmic size strings can be study in the classical approximation. As of 2007 no cosmic
string has been detected. The discovery of a cosmic string would be a remarkable event. As
it turns out, cosmic strings may arise from phenomena unrelated to string theory so, even
if discovered, much work will be needed to tell if a cosmic string is a string theory string.

The most direct way to detect a cosmic string is through gravitational lensing. To under-
stand this we begin by discussing the gravitational effects of a straight, infinitely long
relativistic string. Suppose you place a massive particle some distance away from such a
string. Since the string has rest energy one may imagine that the particle would experi-
ence gravitational attraction. This is not the case; the particle would experience exactly
zero force. This is a result in general relativity and would not hold in Newtonian gravita-
tion where only the effective mass density μ0 of the string contributes to the gravitational
attraction. In general relativity the tension of the string gives an additional contribution,
in fact, a gravitational repulsion. The total attractive force is proportional to (μ0 − T0

c2 ), a
combination that precisely vanishes for relativistic strings.

Although a string does not exert gravitational attraction it affects the geometry of the
planes orthogonal to the string. Suppose you go around the string keeping your distance
r to the string constant. The circumference C of the traced circle would be less than the
expected value of 2πr . More precisely, for any radial distance r ,

C
r
= 2π −�, (7.82)

where the constant � is called the deficit angle. The two-dimensional spaces orthogonal
to the string are in fact cones with deficit angle �. The string runs along the apexes of the
cones. Indeed cones are spaces in which circular loops at constant distance from the apex
satisfy (7.82). This can be made manifest in the construction of a cone starting from the
plane. If we represent the plane using the complex variable z = x + iy (as we did when
studying orbifolds in Section 2.8) the cone arises by cutting out the region 0 ≤ arg(z) ≤ �

and identifying the resulting boundaries via z ∼ ei�z. This is shown in Figure 7.5, where
we also show a circle with constant distance to the apex z = 0. In our discussion of lensing
we will assume, for simplicity, that the observer O and the light source S lie on the same
cone, namely, they share the same value of the coordinate along the string.

The deficit angle � produced by the relativistic string depends on the tension of the
string and the value of Newton’s constant G. A calculation in general relativity shows that

� = 8πGT0

c4
= 8πGμ0

c2
. (7.83)
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�Fig. 7.5 Left: the complex z plane with the set of points whose argument is greater than zero and
less than � removed. Right: the familiar picture of a cone obtained by identifying the lines
AM and AM′ on the left.

The angle �, as we will see soon, is closely related to lensing angles, whose typical values
are measured in arc seconds. Noting that 1′′ = 4.85 × 10−6 rad, we can write

� = 5.18′′ ×
(Gμ0/c2

10−6

)
. (7.84)

Quick calculation 7.3 Use the values of G and c to show that

� = 3.85′′ ×
( μ0

1021kg/m

)
. (7.85)

Six kilometers of a string with � = 3.85′′ would pack a mass equal to that of Earth.

Further insight into the value of � can be obtained by writing (7.83) as a manifestly
unit-less ratio of the Planck mass mP and a string mass ms , defined as the unique mass that
can be written using only powers of μ0, c, and h̄.

Quick calculation 7.4 Show that

ms =
√

h̄μ0

c
. (7.86)

Recalling that mP = √
h̄c/G we find

ms

mP
=
√

Gμ0

c2
, (7.87)

and, as a result,

� = 8π
(ms

mP

)2
. (7.88)

A small � arises for ms small compared to mP.
To discuss lensing we first review some properties of geodesics. A curve that joins two

fixed points is a geodesic if its length is stationary under arbitrary infinitesimal defor-
mations that vanish at the fixed points; the length does not change to first order in such
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deformations of the curve. In the plane there is just one geodesic between any two points:
the straight line that joins them. This geodesic is also the shortest path between the two
points. On more complicated spaces geodesics need not be unique nor have minimum
length. There are infinitely many geodesics joining the north pole and the south pole of a
two-sphere, each one a half-circle of constant longitude. For two generic points on the two-
sphere you get two geodesics, a short one and a long one. Indeed, the two points determine
a great circle, and the geodesics are the two complementary arcs bounded by the points.
The short geodesic is the shortest path between the two points. The long geodesic is only a
path of stationary length, a saddle point for the length function: some deformations make it
longer and others make it shorter. In fact, the long geodesic can be continuously deformed
into the short geodesic. On a cylinder any two points can be joined by an infinite number
of geodesics. The geodesics are characterized by the number of times they wrap around
the cylinder while getting from one point to the other.

Quick calculation 7.5 Sketch and find the length of the five shortest geodesics that join
the points (0, 0) and (1, 0) on the cylinder (x, y) ∼ (x, y + 1).

On a cone there is an intricate pattern of geodesics. Consider two points P and Q and the
geodesics from P to Q. The number of geodesics depends on the deficit angle � of the
cone at the apex A and the angle φ between P and Q, defined as the positive angle that by
clockwise rotation takes AP to AQ. The angle φ must necessarily be smaller than the total
angle α at the apex:

φ ≤ α ≡ 2π −�. (7.89)

For a complete calculation of the geodesics see Problem 7.8. Here we restrict ourselves
to the case � � 1, relevant to possible astrophysical situations. Assume that the observer
O is a distance dO from the string and that the light source S is a distance dS from the
string. Lensing occurs if the source S is roughly opposite to O across the string. In this
case there are two geodesics that join S and O , one to each side of the string. Light uses
both geodesics to reach O , who detects two identical images of the source S. Two identical
images is a signature of lensing by strings and occurs because cones have no curvature
away from the apex. Lensing by compact objects can produce more than two images and,
since the relevant geometry is curved, the images are distorted and can be quite different.

To visualize the geodesics we represent the cone by placing the source on the two radial
lines that are to be identified across an angle � (Figure 7.6). The source appears as the
points S and S′, and the two geodesics that join the source and the observer are the straight
lines SO and S′O . The angle δφ between SO and S′O at O is the lensing angle – the angle
between the images seen by the observer. From the figure we see that

δφ = α + β. (7.90)

Moreover, since � is the sum of exterior angles for the triangles S AO and S′AO , it equals

� = α + β + α′ + β ′. (7.91)
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�Fig. 7.6 A source S and an obserber O at distances dS and dO, respectively, from the apex A of a cone
with deficit angle �. For simplicity, the cut is along the source, which appears as points S
and S ′ to be identified. Rays SO and S ′O from the source reach the observer in directions
separated by the lensing angle δφ = α + β.

Since each angle that appears on the above right-hand side is positive and � � 1, each one
of them is small: α, α′, β, β ′ � 1. The law of sines then gives

sin α

dS
= sin α′

dO
,

sin β

dS
= sin β ′

dO
→ α

dS
= α′

dO
,

β

dS
= β ′

dO
, (7.92)

using the small angle approximation. Solving for α′ and β ′ and substituting back in (7.91),
we have

� = α + β + dO

dS
(α + β) = δφ

(
1 + dO

dS

)
, (7.93)

where we also used (7.90). We finally get

δφ = �(
1 + dO

dS

) . (7.94)

We see that the lensing angle δφ is bounded above by �. It approaches this upper bound as
dS →∞. Figure 7.6 also makes clear that lensing occurs only if O lies within the sector
M AM ′. If O lies outside this sector, there is just one geodesic and O sees a single image.

In the past few years images of galaxies that were candidates for string lensing were later
shown, in higher resolution, to be the images of two similar but different galaxies. Since
cosmic strings possibly move with relativistic speeds, it may be that lenses exist only for
limited periods of time, making their detection challenging.

It may be possible to infer the existence of cosmic strings indirectly. Cosmic strings can
give contributions to temperature anisotropies in the cosmic microwave background. The
lack of observed evidence to this effect suggests the bound

Gμ0

c2
< 3 × 10−7. (7.95)
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Equation (7.84) shows that for strings obeying this bound, lensing angles will be smaller
than a couple of arc-seconds. Additionally, the motion of cosmic strings produces gravita-
tional waves. In fact, the cusps we studied in the previous section are efficient generators of
gravity waves. It seems possible that such waves could be observed by gravitational wave
detectors even for strings of Gμ0/c2 ∼ 10−13. While it remains a long shot, cosmic strings
may furnish the first experimental evidence for string theory.

Problems

Problem 7.1 Short proofs concerning open strings with completely free endpoints.

Prove the following four statements that refer to open strings with free endpoints.

(a) If one endpoint of an open string happens to lie at all times on a hyperplane, the full
open string lies at all times on the same hyperplane.

(b) If one endpoint of an open string happens to lie at all times within a distance R from a
point P0, the full open string lies at all times within a distance R from P0.

(c) If one endpoint of an open string happens to lie at all times within a convex subspace,
the full open string lies at all times within that convex subspace. [This is the general
version of the results proven in (a) and (b).]

(d) Show that the length � of an open string parameterized with energy (Section 7.3) is
given by

� =
∫ σ1

0

√
1 − v2⊥

c2
dσ.

Problem 7.2 Exploring further the rigidly rotating string.

Let s ∈ (−�/2, �/2) be a length parameter on the rigidly rotating string studied in Sec-
tion 7.4, with s = 0 chosen to be the fixed center of the string. Let E(s) denote the energy
per unit length as a function of s.

(a) Show that E(s) = T0/
√

1 − (4s2/�2). Plot E(s) as a function of s. Note that E(s) has
integrable singularities at the string endpoints, and confirm that the total energy is
π
2 �T0.

(b) For what points on the string is the local energy density equal to the average energy
density?

(c) Calculate the energy Ê(s) carried by the string on the interval [−s, s]. What is the
value of s/(�/2) for this energy to be half of the total energy of the string? 90% of the
energy?

Problem 7.3 Time evolution of an initially static closed relativistic string.

The time development of closed strings in the static gauge is governed by equations (7.26),
(7.27), and (7.28).
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�Fig. 7.7 Problem 7.4: Kasey’s relativistic jumping rope.

(a) Assume that ∂ �X
∂t (0, σ ) = 0, and write the general solution for �X(t, σ ) in terms of a

vector function �F(u) of a single variable. What do the parameterization conditions
require on �F?

(b) On a closed string the parameter σ lives on the circle σ ∼ σ + σ1. What condition
would you impose on �X(t, σ ) to implement this feature? What are the implications
for �F?

(c) Consider a closed string which at t = 0 is static and traces a closed curve γ of length �.
Calculate the smallest time tP > 0 that must elapse for the closed string to trace the
curve γ again. Is �X(tP, σ ) equal to �X(0, σ )?

(d) List the steps you would take with a computer (that can do integrals and invert func-
tions) to produce the time evolution of an initially static closed string of arbitrary
shape lying on the (x, y) plane. Assume that the initial string is given to you as the
parameterized closed curve (x(λ), y(λ)), with some parameter λ ∈ [0, λ0].

Problem 7.4 Kasey’s relativistic jumping rope.

Consider a relativistic open string with fixed endpoints:

�X(t, 0) = �x1, �X(t, σ1) = �x2. (1)

The boundary condition at σ = 0 is satisfied by the following solution to the wave
equation:

�X(t, σ ) = �x1 + 1

2

( �F(ct + σ)− �F(ct − σ)
)
. (2)

Here �F is a vector function of a single variable.

(a) Use (2) and the boundary condition at σ = σ1 to find a condition on �F(u).
(b) Write down the constraint on �F(u) that arises from the parameterization conditions

(7.42).
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As an application, consider Kasey’s attempts to use a relativistic open string as a jumping
rope. For this purpose, she holds the open string (in three spatial dimensions) with her right
hand at the origin �x1 = (0, 0, 0) and with her left hand at the point z = L0 on the z axis, or
�x2 = (0, 0, L0) (Figure 7.7). As she starts jumping we observe that the tangent vector �X ′
to the string at the origin rotates with constant angular velocity around the z axis forming
an angle γ with it.

(c) Use the above information to write an expression for �F ′(u).
(d) Find σ1 in terms of the length L0 and the angle γ .
(e) Calculate �X(t, σ ) for the motion of Kasey’s relativistic jumping rope.
(f) How is the energy distributed in the string as a function of z?

Problem 7.5 Planar motion for an open string with fixed endpoints.

Consider the motion of a relativistic open string on the (x, y) plane. The string end-
points are attached to (x, y)= (0, 0) and (x, y)= (a, 0), where a > 0. As opposed to
the relativistic jumping rope, the string now remains in the (x, y) plane. The motion is
described by

�X(t, σ ) = 1

2

( �F(ct + σ)− �F(ct − σ)
)
, (1)

where �F(u) is a vector function of a single variable which satisfies∣∣∣d �F
du

∣∣∣2 = 1 and �F(u + 2σ1) = �F(u)+ (2a , 0). (2)

Consider an ansatz of the form

�F ′(u) ≡ d �F
du

=
(

cos
[
γ cos

πu

σ1

]
, sin

[
γ cos

πu

σ1

] )
. (3)

(a) Is this ansatz consistent with the conditions in (2)?
(b) Calculate �X ′(0, σ ). Letting �X(0, σ ) ≡ (x(σ ), y(σ )), give dy/dσ and plot it as a func-

tion of σ ∈ [0, σ1], assuming, for convenience, that 0 < γ < π/2. Use this to make a
rough sketch of the string position y(σ ) as a function of σ at t = 0.

(c) Calculate �X ′(t, 0) and use it to describe the motion of the string near the origin. What
is the interpretation of γ ?

(d) Use the second condition in (2) to find an integral relation between a, σ1 and γ .
Assume that γ is small, and find an approximate explicit relation between these three
variables keeping terms of order γ 2.

(e) Show that a/σ1 = J0(γ ), where J0 is the Bessel function of order zero. [Hint: look up
integral representations of Bessel functions.]

Problem 7.6 Planar motion (continued) and the formation of cusps.

We investigate further the solution obtained in Problem 7.5, where it was shown that
a/σ1 = J0(γ ). Here a is the distance between the fixed endpoints of the open string, and
σ1 is the length parameter of the string: it equals the length of the string at any time when
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the string has zero velocity (why?). The relation between a and the angular variable γ

is unusual since J0 is not a periodic function. This means that the open string motions
corresponding to γ and 2π + γ are not the same.

(a) Show that the instantaneous slope of the string is described by

�X ′(t, σ ) = cos
(

γ sin
πct

σ1
sin

πσ

σ1

)
(cos β, sin β) ,

where

β = γ cos
πct

σ1
cos

πσ

σ1
.

Show that at ct = σ1/2 the string is horizontal.
(b) Prove that the instantaneous (transverse) velocity of the string satisfies∣∣∣1

c

∂ �X
∂t

∣∣∣ = ∣∣∣ sin
(

γ sin
πct

σ1
sin

πσ

σ1

)∣∣∣.
Note that at t = 0 the string has zero velocity. Conclude that whenever γ < π/2 no
point on the string ever reaches the speed of light. Moreover, show that for γ = π/2
the string midpoint σ = σ1/2 acquires the speed of light when the string is horizontal.

(c) A tractable case is obtained for γ = √
2(π/2) (� 127.3◦). Show that at ct = σ1/4 one

point on the string reaches the speed of light. Examine the string at the slightly later
time ct = σ1/3, show that there are two points that have the speed of light, and find
the corresponding values of σ . Analyze �X ′ as a function of σ to show that the string
has a cusp at each of these points.

(d) Use your favorite mathematical software package to generate the picture of the string
considered in (c) at various times (you will use numerical integration). Assume that
a = 1 and verify that σ1 � 10.155. Show the string for ct = 0, σ1/4, and σ1/3.

Problem 7.7 Cusps in the evolution of closed strings.

In this problem we derive a few properties of the cusps that appear generically in the
evolution of free closed strings. For this we examine in more detail equation (7.81).

(a) Use the Taylor expansions of �F(u) and �G(v) around u0 and v0 to prove that

�T = 1

4

( �F ′′(u0)+ �G ′′(v0)
)
, �R = 1

12

( �F ′′′(u0)− �G ′′′(v0)
)
, (1)

where primes denote derivatives with respect to the argument. Assume that the inter-
section of the paths on the two-sphere indicated in equation (7.76) is regular: the paths
are not parallel at the intersection and neither �F ′′(u0) nor �G ′′(v0) vanishes. Explain
why �T is non-zero and orthogonal to �F ′(u0). In general �R does not vanish, but it may
under special conditions.

(b) Equation (7.81) shows that the cusp opens up along the direction of the vector �T and,
locally, is contained in the plane spanned by �T and �R. Fix the origin of the coordinate
system at �X0, align the positive y axis along �T , and position the x axis so that �R lies
on the (x, y) plane. Demonstrate that near the cusp y ∼ x2/3. In what plane does the
velocity of the cusp lie?
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�Fig. 7.8 Problem 7.8: a cone, shown shaded, with total internal angle α at the apex and two points
P and Q separated by an angle φ.

(c) Consider the functions �F(u) and �G(v) given by

�F(u) = σ1

2π

(
sin

2πu

σ1
,− cos

2πu

σ1
, 0
)
, �G(v) = σ1

4π

(
sin

4πv

σ1
, 0,− cos

4πv

σ1

)
.

(2)

Verify that conditions (7.70) and (7.74) are satisfied. For the cusp at t = σ = 0 give its
direction, the plane it lies on, and its velocity. Draw a sketch.

(d) Show that the motion of the closed string has period σ1/(4c). (Remember, as you
found in Problem 7.3, that the string returns to its original position in less time than
the function �F(ct + σ) takes to repeat itself.) How many cusps are formed during a
period?

Problem 7.8 Counting geodesics on a cone.

Let � < 2π be the deficit angle of a cone and α = 2π −� the angle at the apex A.
Consider two points P and Q on the cone separated by an angle φ > 0: the ray from the
apex through Q is obtained from the ray from the apex through P by a clockwise rotation
through an angle φ. The number N of geodesics joining the points P and Q is given by

N =
[π − φ

α

]
+
[π + φ

α

]
+ 1, (1)

where [x] denotes the largest integer less than or equal to x . A convenient depiction of the
conical region and copies of it is shown in Figure 7.8.

(a) Convince yourself of the validity of (1) by counting the geodesics from P to Q and
from P to the images of Q developing in the clockwise direction, as well as those from
P to the images of Q developing in the counterclockwise direction.

(b) Verify that N is invariant under φ → α − φ and explain why it should be so.
(c) � < π is the case relevant for gravitational lensing. What are the possible values of N

as a function of φ?



8 World-sheet currents

For physical insight, physicists often turn to ideas of symmetry and invariance.
Symmetry properties of dynamical systems and conserved quantities are closely
related. We will learn that in string theory there are currents that flow on the two-
dimensional world-sheet traced out by the string in spacetime. The conserved
charges associated with these currents are key quantities that characterize the
free motion of strings. We give a simple physical interpretation of the objects
Pτ and Pσ which we encountered earlier.

8.1 Electric charge conservation

We begin our study by reviewing the physics and the mathematics of charge conservation
in the context of Maxwell theory. This classic example will help us to develop a more
general understanding of the concept of conserved currents.

In electromagnetism, the conserved current is the four-vector jα = (cρ, �j ), where ρ

is the electric charge density and �j is the current density. Why do we say that jα is a
conserved current? By definition, jα is a conserved current because it satisfies the equation

∂α jα = 0 . (8.1)

Any four-vector which satisfies this equation is called a conserved current. The term “con-
served current” is a little misleading, but it is a convention. More precisely, we should say
that we have a conserved charge, because it is really the charge associated with the current
that is conserved. Let us see how this conservation arises.

When we separate the space and time indices in (8.1) we get

∂0 j0 + ∂i j i = ∂ j0

∂x0
+∇ · �j = 0 . (8.2)

Why is this equation a statement of charge conservation? In electromagnetism, the total
electric charge Q(t) in a fixed volume V is just the integral of the charge density ρ over
the volume:

Q(t) =
∫

V
ρ(t, �x) d3x =

∫
V

j0(t, �x)

c
d3x . (8.3)
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Up to a constant, the charge is the integral over space of the first component of the current.
Its time derivative is given by

d Q

dt
=
∫

V

∂ j0

∂x0
d3x . (8.4)

Using equation (8.2), we can write

d Q

dt
= −

∫
V
∇ · �j d3x . (8.5)

Letting S denote the boundary of V , the divergence theorem gives

d Q

dt
= −

∫
S

�j · d�a. (8.6)

This equation encodes the physical statement of charge conservation: the charge inside a
volume V can only change if there is a flux of current across the surface S which bounds
the volume. In many cases, we take V to be so large that the current �j vanishes on the
surface S. In these cases,

d Q

dt
= 0. (8.7)

The charge Q is then time independent and is said to be “conserved.” It is also well estab-
lished that electric charge is a Lorentz invariant: all inertial observers measuring charge
obtain the same number. Not all conserved quantities are Lorentz invariant. Energy, for
example, is conserved, but energy is not Lorentz invariant. These facts are examined in
more detail in Problems 8.1 and 8.2.

8.2 Conserved charges from Lagrangian symmetries

One of the most useful properties of Lagrangians is that they can be used to deduce the exis-
tence of conserved quantities. Conserved quantities can help us to understand the dynamics
of a system. In this section we begin our work in the context of Lagrangian mechanics,
learning how to construct the conserved quantity associated with a symmetry. We then turn
to Lagrangian densities, and show how to construct the conserved current associated with
a symmetry.

Let L(q(t), q̇(t); t) be a Lagrangian that depends on a coordinate q(t), the velocity q̇(t),
and may even have explicit time dependence. Consider, moreover, a variation of the
coordinate q(t):

q(t) → q(t)+ δq(t), (8.8)

where δq(t) is some specific infinitesimal variation. If q(t) represents the path of a particle,
for example, the variation above is an instruction on how to change the path: the position
at time t is changed by δq(t). Suppose that we have a rule that tells us how to vary any
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path q(t). This means that given any q(t), we know how to construct the corresponding
variation δq(t). Such a rule can be written in the form

δq(t) = ε h
(
q(t); t

)
, (8.9)

where ε is an infinitesimal constant and h is some function.
As a result of the change (8.8) of the path, there is an induced change in the velocity q̇(t):

q̇(t) → q̇(t)+ d(δq(t))

dt
. (8.10)

In order to determine how L(q(t), q̇(t); t) changes as a result of the variation (8.8), we
must also vary the velocity q̇(t) according to (8.10). We will generally speak of the varia-
tion of q(t) leaving it implicit that the velocity q̇(t) is also varied accordingly. Because δq
is infinitesimal, the variation of the Lagrangian consists only of terms which are linear in
δq. If those terms vanish, the Lagrangian is said to be invariant. Moreover, the transforma-
tion in (8.8) is then said to be a symmetry transformation. A rule that tells us how to vary
any path in such a way that the Lagrangian is not changed is a symmetry transformation.
The rule is specified by the function h in (8.9).

We now state our claim: if the Lagrangian L is invariant under the variation (8.8), then
the quantity Q, defined by

ε Q ≡ ∂L

∂ q̇
δq , (8.11)

is conserved in time for physical motion. That is, for any motion q(t) which satisfies the
equations of motion, the “charge” Q is a constant:

d Q

dt
= 0. (8.12)

Note that the ε on the left-hand side of (8.11) cancels with the ε that appears in δq
(see (8.9)).

To prove the conservation of Q, consider the Euler–Lagrange equations that follow from
the variation of the action S = ∫

dt L (you may have derived them in Problem 4.8). These
equations are:

d

dt

(∂L

∂ q̇

)
− ∂L

∂q
= 0. (8.13)

Since the Lagrangian does not change under the coordinate and velocity variations (8.8)
and (8.10), we must have

∂L

∂q
δq + ∂L

∂ q̇

d

dt
(δq) = 0. (8.14)
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Using (8.13) to eliminate ∂L
∂q we obtain

d

dt

(∂L

∂ q̇

)
δq + ∂L

∂q̇

d

dt
(δq) = d

dt

(∂L

∂q̇
δq
)
= 0, (8.15)

proving that (8.12) holds for Q defined as in (8.11).

Let us apply this new perspective on conservation to a Lagrangian L(q̇(t)) that depends
only on the velocity. How can we vary q(t) leaving the Lagrangian unchanged? One way
is to apply q(t) → q(t)+ ε, where ε is any constant. In this variation, δq(t) = ε, and the
function h of (8.9) is just equal to one. This is a uniform space translation: at any time t
the position of the particle is changed by the same amount ε. Correspondingly, the velocity
does not change: q̇(t) → q̇(t)+ dε/dt = q̇(t). Since the Lagrangian only depends on the
velocity, it does not change, and we have a symmetry. Making use of (8.11), we find

εQ = ∂L

∂q̇
δq = ∂L

∂q̇
ε −→ Q = ∂L

∂ q̇
= p. (8.16)

We recognize Q as the momentum associated with the coordinate q. This quantity is con-
served because the position q does not appear in the Lagrangian. Note that the conservation
equation d Q/dt = 0 coincides with the Euler–Lagrange equation (8.13). This example
illustrates a familiar result in Lagrangian mechanics: if the Lagrangian of a system does
not contain a given coordinate, the momentum conjugate to that coordinate is conserved.
For a free nonrelativistic particle, for example, L = 1

2 m(q̇)2. In this case Q = mq̇.

Now let us consider Lagrangian densities with symmetries. While symmetries of a
Lagrangian guarantee the existence of conserved charges, symmetries of a Lagrangian
density guarantee the existence of conserved currents. We write the action as the integral
of the Lagrangian density over the full set of coordinates ξα of some relevant “world”:

S =
∫

dξ0dξ1 . . . dξ k L(φa, ∂αφa). (8.17)

Here k denotes the number of space dimensions of the world. The world could be the
full Minkowski spacetime, some subspace thereof, or, for example, the two-dimensional
parameter space of the string world-sheet. The fields φa(ξ) are functions of the coordi-
nates, and

∂αφa = ∂φa

∂ξα
(8.18)

are derivatives of the fields with respect to the coordinates. Each value of the index a
corresponds to a field. Consider now the infinitesimal variation

φa(ξ) → φa(ξ)+ δφa(ξ), (8.19)

and the associated variation for the field derivatives ∂αφa . The infinitesimal variations are
conveniently written as the rule

δφa = εi ha
i (φ), (8.20)
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that enables us to vary any arbitrary field configuration. Here, εi are a set of infinitesimal
constants, and, for brevity, we omitted all indices in the arguments of ha

i . We have included
an index in εi because the variation may involve several parameters. A spacetime transla-
tion, for example, involves as many parameters as there are spacetime dimensions. Since
the index i is repeated in (8.20), it is summed over. You must distinguish clearly the various
types of indices we are working with:

α index to label world coordinates ξα, or vector components,

i index to label parameters in the symmetry transformation,

a index to label fields in the Lagrangian. (8.21)

If L is invariant under (8.19) and the associated variations of the field derivatives, then
the quantities jαi defined by

εi jαi ≡ ∂L
∂(∂αφa)

δφa, (8.22)

are conserved currents:

∂α jαi = 0. (8.23)

We will prove this shortly. Equation (8.23) holds for any field configuration that satisfies
the Lagrangian equations of motion. In (8.22) the repeated field index a is summed over.
If the index i is present in (8.20), then we have several currents indexed by i , one for
each parameter of the variation. The components of the currents, as many as the number of
dimensions in the world, are indexed by α. It is important not to confuse the very different
roles that these two kinds of indices play:

jαi : i labels the various currents,

α labels the components of the currents. (8.24)

We showed in Section 8.1 that a conserved current gives rise to a conserved charge. The
charge is the integral over space of the zeroth component of the current. It follows that the
currents jαi give rise to the conserved charges

Qi =
∫

dξ1dξ2 . . . dξ k j0
i . (8.25)

We have as many conserved charges as there are parameters in the symmetry trans-
formation.

Quick calculation 8.1 Verify that (8.23) implies that

d Qi

dξ0
= 0, (8.26)

when the currents jαi vanish sufficiently rapidly at spatial infinity.
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To prove (8.23), we write both the Euler–Lagrange equations associated with the action
(8.17) (see Problem 4.8) and the statement of invariance:

∂α

( ∂L
∂(∂αφa)

)
− ∂L

∂φa
= 0, (8.27)

∂L
∂φa

δφa + ∂L
∂(∂αφa)

∂α(δφa) = 0 . (8.28)

Using the first equation to eliminate ∂L
∂φa from the second, we get

∂α

( ∂L
∂(∂αφa)

)
δφa + ∂L

∂(∂αφa)
∂α(δφa) = ∂α

( ∂L
∂(∂αφa)

δφa
)
= 0 , (8.29)

which demonstrates that (8.23) holds for currents defined as in (8.22).
We will use (8.22) to construct conserved currents which live on the string world-sheet.

Actually, conserved charges and conserved currents exist under conditions less stringent
than those stated in this section. A transformation can be considered a symmetry if the
Lagrangian, or the Lagrangian density, if appropriate, is changed by a total derivative.
These ideas are explored in Problem 8.9 and Problem 8.10.

8.3 Conserved currents on the world-sheet

To each string we would like to assign a relativistic momentum pμ which is conserved
if the string is moving freely. Even though the momentum pμ carries an index, it is not
a current, but rather a charge. In fact, since each component of pμ should be separately
conserved, this is a case where we have a set of conserved charges.

In the notation of the previous section, Qi denote the various charges, so we see that
the μ index in pμ is playing the role of the i index in Qi ; it labels the various charges.
What then is the α index in jαi ? We will see that this index labels the coordinates on the
world-sheet. The currents live on the world-sheet!

In the string action (6.39), the Lagrangian density is integrated over the world-sheet coor-
dinates τ and σ , and not over the spacetime coordinates xμ. In this example, the world of
(8.17) is two-dimensional, and the index α in (8.21) takes two values. As a result, the con-
served currents live on the world-sheet: they have two components, and they are functions
of the world-sheet coordinates. More explicitly,

S =
∫

dξ0dξ1L (∂0 Xμ, ∂1 Xμ), with (ξ0, ξ1) = (τ, σ ), (8.30)

and ∂α = ∂/∂ξα . Comparing with (8.17), we see that the field variables φa are simply the
string coordinates Xμ. Note that the string action only depends on derivatives of the string
coordinates.
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To find conserved currents, we need a field variation δXμ that does not change the
Lagrangian density. One such variation is given by

δXμ(τ, σ ) = εμ, (8.31)

where εμ is a constant – that is, it does not depend on τ or σ . This transformation is a con-
stant spacetime translation: each point on the world-sheet is displaced by the same vector
εμ. The Lagrangian density is invariant because it only depends on derivatives ∂α Xμ, and
their variations vanish: δ(∂α Xμ) = ∂α(δXμ) = ∂αεμ = 0. The role of the various indices
in (8.21) is now clear: α is a world-sheet index, i is a spacetime index, and so is a.

Now let us construct the conserved current. Using (8.22), and letting i and a indices run
over the values of μ, we have

εμ jαμ = ∂L
∂(∂α Xμ)

δXμ = ∂L
∂(∂α Xμ)

εμ . (8.32)

Cancelling the common εμ factor on the two sides of this equation, we find an expression
for the currents:

jαμ = ∂L
∂(∂α Xμ)

−→ ( j0
μ, j1

μ ) =
( ∂L

∂ Ẋμ
,

∂L
∂ Xμ′

)
. (8.33)

We have seen such derivatives of L before; they appeared in equations (6.49) and (6.50).
We can in fact identify

jαμ = Pα
μ −→ ( j0

μ, j1
μ ) = (Pτ

μ, Pσ
μ ). (8.34)

This is really interesting: the τ and σ superscripts in Pμ label the components of a world-
sheet current. The equation for current conservation is

∂αPα
μ = ∂Pτ

μ

∂τ
+ ∂Pσ

μ

∂σ
= 0. (8.35)

This is simply the equation of motion (6.53) for the relativistic string.

Since the currents Pα
μ are indexed by μ, the conserved charges are also indexed by μ.

Following (8.25), to get the charges we integrate the zeroth components Pτ
μ of the currents

over space. In the present case, this means integrating over σ :

pμ(τ) =
∫ σ1

0
Pτ

μ(τ, σ ) dσ. (8.36)

This integral is done with τ held constant. We have called the conserved charges pμ

because they give the spacetime momentum carried by the string. Indeed, we have seen
that these charges arise from spacetime translational invariance. Since (8.36) gives the
total spacetime momentum as an integral over a string parameterized by σ , we learn that
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Pτ
μ is the σ density of spacetime momentum carried by the string. (8.37)

Pτ
μ is the derivative of the Lagrangian density with respect to the velocity Ẋμ, so it has

the interpretation of a canonical momentum density, in agreement with (8.37). A similar
identification was obtained for nonrelativistic strings: the quantity P t , which we defined in
(4.46), has the interpretation of momentum density on account of (4.43).

To check conservation, we differentiate (8.36) with respect to τ and use the equation of
motion (8.35):

dpμ

dτ
=
∫ σ1

0

∂Pτ
μ

∂τ
dσ = −

∫ σ1

0

∂Pσ
μ

∂σ
dσ = −Pσ

μ

∣∣∣σ1

0
. (8.38)

For a closed string, the coordinates σ = 0 and σ = σ1 represent the same point on the
world-sheet, so the right-hand side vanishes. For an open string with free endpoints, the
boundary condition (6.56) states that Pσ

μ vanishes at the endpoints, so, again, the right-hand
side vanishes. In both of these cases, pμ is conserved:

dpμ

dτ
= 0. (8.39)

There is more to this equation than our previous statement (8.12) of charge conservation.
The derivative in (8.39) is with respect to τ and not with respect to t . So we may ask: is
pμ conserved in world-sheet time or in Minkowski time? We will discuss this question at
length in the following section. The short answer is: in both.

For open strings with Dirichlet boundary conditions along some space directions, the
momentum carried by the string along those directions may fail to be conserved. Indeed,
the boundary condition (6.55) does not guarantee that the right-hand side of (8.38) van-
ishes. We already noted this possible nonconservation for nonrelativistic strings (Section
4.6). In open string theory, Dirichlet boundary conditions appear when we have D-branes
that are not space filling. The momentum of the string can then fail to be conserved, but
the total momentum of the string and the D-brane is conserved.

8.4 The complete momentum current

Equation (8.39) is very intriguing. It is a conservation law on the world-sheet rather than
in spacetime. We could not have expected otherwise – the currents, after all, live on the
world-sheet: their indices are world-sheet indices, and their arguments are world-sheet
coordinates. As seen in spacetime, the currents vanish everywhere except on the surface
traced out by the string.

If we trust the reparameterization invariance of the physics, we can easily obtain a stan-
dard spacetime conservation law by choosing the static gauge t = τ . The integral in (8.36)
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is then an integral over the strings, the lines of constant time as seen by the chosen Lorentz
observer. The conservation law (8.39) becomes

dpμ

dt
= 0 . (8.40)

The Lorentz observer confirms that momentum is conserved in time.

Equation (8.39), together with (8.36), tells us that for any fixed world-sheet parameteriza-
tion, we can compute a unique quantity pμ using any line of constant τ . This quantity must
coincide with the time-independent momentum pμ obtained using the static gauge, as we
now explain.

Consider a moving string, a fixed Lorentz observer, and a particular choice of parame-
terization on the world-sheet. In this parameterization, over some region of the world-sheet
the lines of constant τ are lines of constant t . As a result, over this region we have the static
gauge. Over the rest of the world-sheet the parameterization changes smoothly: the lines
of constant τ are no longer lines of constant time. On the static gauge region the integral
(8.36) gives us the time-independent momentum carried by the strings. Because of (8.39),
on the rest of the world-sheet the integral (8.36) must still give the same value for pμ, even
though the lines of constant τ are not strings.

This argument suggests that any curve on the world-sheet can be used to calculate the
conserved momentum pμ. Equation (8.36), however, only tells us how to calculate the
momentum if the curve is a curve of constant τ . We now show how to generalize (8.36) to
be able to compute the momentum pμ using an (almost) arbitrary curve on the world-sheet
together with an arbitrary parameterization of the world-sheet. When we deal with open
strings, the curve must stretch from one boundary to the other. When we deal with closed
strings, the curve must be a closed noncontractible curve.

Reconsider equation (8.36), which integrates the τ -component of the two-dimensional cur-
rent (Pτ

μ, Pσ
μ) over a curve of constant τ . The quantity that this integral computes is

actually the flux of the current across the curve. Since the σ -component Pσ
μ of the cur-

rent is tangent to the curve of constant τ , it does not contribute to the flux. More generally,
consider an infinitesimal segment (dτ, dσ) along an oriented closed curve � that encloses
a simply connected region R of the world-sheet (Figure 8.1). Since (dτ, dσ) is parallel
to the oriented tangent, the outgoing normal to the segment is (dσ,−dτ). It is reasonable
to define the outgoing flux of the current across the segment as the scalar product of the
current vector and the outgoing normal vector:

Infinitesimal flux = (Pτ
μ, Pσ

μ) · (dσ,−dτ) = Pτ
μ dσ − Pσ

μ dτ. (8.41)

We now show that the flux, so defined, vanishes when computed across a contractible
closed curve � on the world-sheet. This is a reasonable result because a contractible curve
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α

σ1
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τ τ

(d σ, −d τ)

(d τ, d σ)
R

σ1

σ

−

β

γ γ

�Fig. 8.1 Left: the total momentum flux out of a simply connected region R of the world-sheet is
zero. Right: a simply connected region whose boundary includes an arbitrary curve γ and a
string γ̄ .

surrounds a domain R, and we do not expect a domain to be a momentum source or sink.
The outgoing flux across � is written as

pμ(�) =
∮

�

(
Pτ

μ dσ − Pσ
μ dτ

)
. (8.42)

By the two-dimensional version of the divergence theorem, the flux of the current Pα
μ out

of R is equal to the integral of the divergence of Pα
μ over R:

pμ(�) =
∫
R

(
∂Pτ

μ

∂τ
+ ∂Pσ

μ

∂σ

)
dτdσ = 0, (8.43)

since Pα
μ is a conserved current. This is what we wanted to show.

Quick calculation 8.2 Consider R
2 with coordinates (x, y) and a simply connected region

M surrounded by a boundary � with counterclockwise orientation. The divergence theorem
for a vector (Ax , Ay) reads∮

�

(Ax dy − Aydx) =
∫∫

M

(∂ Ax

∂x
+ ∂ Ay

∂y

)
dxdy. (8.44)

Verify that this equation holds for a tiny rectangle with corners (x0, y0), (x0 + dx, y0),
(x0 + dx, y0 + dy), and (x0, y0 + dy). This suffices to prove (8.44) by breaking M into
a collection of tiny rectangles. We used (8.44), for an R

2 with coordinates (τ, σ ) and a
vector (Pτ

μ, Pσ
μ), to pass from (8.42) to (8.43).

We now generalize (8.36) as follows. For an arbitrary curve γ that starts on the σ = 0
boundary of the world-sheet and ends on the σ = σ1 boundary, we define

pμ(γ ) =
∫

γ

(
Pτ

μ dσ − Pσ
μ dτ

)
. (8.45)

If γ is a curve of constant τ , then dτ = 0 all along γ , and pμ(γ ) reduces to (8.36). We
now prove that pμ(γ ), as defined in all generality by (8.45), actually coincides with pμ, as
defined in (8.36). Consider a curve γ that stretches from one side of the world-sheet to the
other, and a curve γ̄ of constant τ , as shown to the right of Figure 8.1. Let α and β denote
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γ

γ−

τ0 τ

R

�Fig. 8.2 A closed string world-sheet with an arbitrary nontrivial closed curve γ and a closed curve γ̄

at constant τ . The region between the curves is R.

oriented paths along the world-sheet boundary such that the closed curve � surrounding
the shaded region is given by

� = γ̄ − β − γ + α. (8.46)

The curve � is oriented counterclockwise and it is contractible. As a result, the flux pμ(�)

vanishes:

pμ(�) =
∫

�

(
Pτ

μ dσ − Pσ
μ dτ

) = (∫
γ̄

−
∫

γ

+
∫

α

−
∫

β

) (
Pτ

μ dσ − Pσ
μ dτ

) = 0. (8.47)

Since α and β are curves where dσ vanishes, only Pσ
μ dτ contributes to the integrals.

But Pσ
μ vanishes at the string endpoints (for free endpoints), so these integrals vanish

identically. Only the integrals over γ and γ̄ survive, so we have∫
γ

(
Pτ

μ dσ − Pσ
μ dτ

) = ∫
γ̄

(
Pτ

μ dσ − Pσ
μ dτ

) = ∫
γ̄

Pτ
μ dσ = pμ, (8.48)

where we noted that dτ = 0 on γ̄ and used (8.36). This proves that pμ(γ ) = pμ for any
contour γ which connects the σ = 0 and σ = σ1 boundaries of the world-sheet. We can
thus rewrite (8.45) as

pμ =
∫

γ

(
Pτ

μ dσ − Pσ
μ dτ

)
. (8.49)

Conservation is now the statement that the integral above is independent of the chosen
curve γ , as long as the endpoints of γ lie on the boundary components of the world-sheet.

The arguments are similar in the case of closed strings. We consider an arbitrary nontriv-
ial closed curve γ winding once around the world-sheet, and another similarly nontrivial
closed curve γ̄ of constant τ , for some arbitrary, but fixed, parameterization. The two
curves form the boundary of an annular region R (Figure 8.2). A completely analogous
argument shows that both contours give the same result for pμ. Therefore, we can calcu-
late the momentum of the closed string using any closed curve that winds once around the
world-sheet.

How does an arbitrary Lorentz observer use equation (8.49)? The observer looks at a string
at some time t , and asks for its momentum. This requires the use of (8.49), with a curve γ
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which corresponds to the string in question. With an arbitrary parameterization γ need not
be a constant τ curve. At some later time t ′, the observer asks again for the momentum. At
this time, the string corresponds to a curve γ ′, generically different from γ . By the curve
independence of (8.49), the observer concludes that the momentum did not change. The
momentum was conserved in time.

We conclude this section by making contact with familiar results. Using a constant τ

string γ to evaluate (8.49) we have

p0 =
∫

γ

Pτ0 dσ, �p =
∫

γ

�Pτ dσ. (8.50)

The values of the momentum densities in static gauge can be read from (6.94). We thus
find that the energy and the spatial momentum of the string are given by:

p0 ≡ E

c
= 1

c

∫
γ

T0ds√
1 − v2⊥

c2

, �p =
∫

γ

T0ds

c2

�v⊥√
1 − v2⊥

c2

. (8.51)

The above equation for the energy of the string coincides with (7.9). The expression for
the momentum is reasonable: the momentum carried by a little piece of string is given by
its rest mass T0ds/c2 times its velocity, times its relativistic factor γ .

8.5 Lorentz symmetry and associated currents

By construction, the action of the relativistic string is Lorentz invariant. It is written in
terms of Lorentz vectors that are contracted to build Lorentz scalars. Concretely, this means
that Lorentz transformations of the coordinates Xμ leave the action invariant. In this section
we will construct the conserved charges associated with Lorentz symmetry.

These charges will be particularly useful when we study quantum string theory in
Chapter 12. Whenever we quantize a classical system, there is the possibility that cru-
cial symmetries of the classical theory will be lost. If Lorentz invariance were lost upon
quantization, quantum string theory would be very problematic, to say the least. We will
have to make sure that the quantum theory is Lorentz invariant. To calculate the conserved
charges, we first need the infinitesimal form of the general Lorentz transformations. We
recall (Section 2.2) that Lorentz transformations are linear transformations of the coor-
dinates Xμ that leave the quadratic form ημν Xμ Xν invariant. Every infinitesimal linear
transformation is of the form Xμ → Xμ + δXμ, where

δXμ = εμν Xν . (8.52)

Here εμν is a matrix of infinitesimal constants. Lorentz invariance imposes conditions on
the constants εμν . We require δ(ημν Xμ Xν) = 0, and therefore

2ημν(δXμ)Xν = 2ημν(ε
μρ Xρ) Xν = 2 εμρ Xρ Xμ = 0. (8.53)

Imagine decomposing the matrix ε into its antisymmetric part and its symmetric part. The
antisymmetric part would not contribute to εμρ Xρ Xμ. The vanishing of εμρ Xρ Xμ, for
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all values of Xμ, implies that the symmetric part of ε is zero. It follows that the general
solution is represented by an antisymmetric εμν :

εμν = −ενμ. (8.54)

Infinitesimal Lorentz transformations are thus very simple: they are transformations of
the form δXμ = εμν Xν , with εμν antisymmetric. This result applies for any number of
spacetime dimensions since Lorentz transformations always leave ημν Xμ Xν invariant.

Quick calculation 8.3 Consider a fixed 2-by-2 matrix Aab (a, b = 1, 2) that satisfies
Aabvavb = 0 for all values of v1 and v2. Write out the four terms on the left-hand side of
the vanishing condition, and confirm explicitly that the matrix Aab must be antisymmetric.

Quick calculation 8.4 Repeat the above exercise for a 4-by-4 matrix εμν (μ, ν =
0, 1, 2, 3) that satisfies εμνvμvν = 0 for all values of v0, v1, v2, and v3.

Quick calculation 8.5 Show that (8.54) implies εμν = −ενμ.

Quick calculation 8.6 Examine the boost in (2.36) for very small β. Write x ′μ = xμ +
εμνxν and calculate the entries of the matrix εμν . Show that ε10 = −ε01 = β, and that all
other entries are zero. This confirms that εμν is antisymmetric for an infinitesimal boost.

Let us now show explicitly that the string Lagrangian density is invariant under Lorentz
transformations. All terms that appear in this density are of the form

ημν

∂ Xμ

∂ξα

∂ Xν

∂ξβ
, (8.55)

where ξα and ξβ are either τ or σ . We claim that any such term is Lorentz invariant. Indeed,

δ
(
ημν

∂ Xμ

∂ξα

∂ Xν

∂ξβ

)
= ημν

(∂δXμ

∂ξα

∂ Xν

∂ξβ
+ ∂ Xμ

∂ξα

∂δXν

∂ξβ

)
= ημν

(
εμρ ∂ Xρ

∂ξα

∂ Xν

∂ξβ
+ ενρ ∂ Xμ

∂ξα

∂ Xρ

∂ξβ

)
= ενρ

∂ Xρ

∂ξα

∂ Xν

∂ξβ
+ εμρ

∂ Xμ

∂ξα

∂ Xρ

∂ξβ
, (8.56)

where we used η to lower the first index on the ε constants. Letting μ → ρ and ρ → ν in
the second term we get

δ
(
ημν

∂ Xμ

∂ξα

∂ Xν

∂ξβ

)
= (ενρ + ερν)

∂ Xρ

∂ξα

∂ Xν

∂ξβ
= 0, (8.57)

because of the antisymmetry of ε. This explicitly proves the Lorentz invariance of the string
action.

We can now use equation (8.22) to write the currents. It follows from (8.52) that the role
of the small parameter εi is played by εμν . We therefore have

εμν jαμν =
∂L

∂(∂α Xμ)
δXμ = Pα

μ εμν Xν . (8.58)
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The current jαμν , since it is multiplied by the antisymmetric matrix εμν , can be defined to
be antisymmetric – any symmetric part would drop out of the left-hand side. Using the
antisymmetry of εμν , the right-hand side is written as

εμν jαμν = (− 1
2εμν)

(
XμPα

ν − XνPα
μ

)
. (8.59)

The currents can be read directly from this equation because the factor multiplying εμν

on the right-hand side is explicitly antisymmetric. Since the overall normalization of the
currents is for us to choose, we define the currents Mα

μν by

Mα
μν = Xμ Pα

ν − Xν Pα
μ. (8.60)

By construction,

Mα
μν = −Mα

νμ. (8.61)

The equation of current conservation is

∂Mτ
μν

∂τ
+ ∂Mσ

μν

∂σ
= 0, (8.62)

and the charges, in analogy with (8.49), are given by

Mμν =
∫

γ

(
Mτ

μνdσ −Mσ
μνdτ

)
. (8.63)

The charges, just like the currents, are antisymmetric:

Mμν = −Mνμ. (8.64)

The conservation of Mμν is a result of the contour independence of the definition (8.63).
For closed strings, contour independence is guaranteed by the argument given earlier in the
case of momentum charges. For free open strings, one point must be addressed to ensure
contour independence. The Mμν integrals must receive no contributions from lines on the
boundary of the world-sheet. This, in turn, requires the vanishing of Mσ

μν on the boundary.
This condition is satisfied because Mσ

μν involves Pσ multiplicatively, and Pσ vanishes on
the world-sheet boundary. As explained for the case of the momentum charges, a Lorentz
observer measuring Mμν using strings at different times will conclude that d Mμν/dt = 0.

We can also compute the Lorentz charges Mμν using constant τ lines. In that case,

Mμν =
∫

Mτ
μν(τ, σ ) dσ =

∫
(XμPτ

ν − XνPτ
μ) dσ. (8.65)
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Since the Mμν are antisymmetric, we have six conserved charges in four dimensions. Let-
ting i and j denote space indices, M0i are the three charges associated with the three basic
boosts, and Mi j are the three charges associated with the three basic rotations. Given that
�Pτ is the momentum density, the normalization chosen in (8.60) ensures that Mτ

i j is pre-
cisely the angular momentum density. As a consequence, the components Mi j measure
the string angular momentum �L via the usual relations Li = 1

2εi jk M jk . Here εi jk is the
totally antisymmetric symbol which satisfies ε123 = 1. More explicitly, we have L1 = M23,
L2 = M31, and L3 = M12.

The charges associated with the boosts are:

M0i =
∫

dσ
(
ct Pτ i − XiPτ0) = ct pi −

∫
dσ XiPτ0. (8.66)

Multiplying by c/E , where E is the conserved energy of the string,

cM0i

E
= t

c2 pi

E
− 1

E

∫
dσ Xi cPτ0. (8.67)

Since cPτ0 is the energy density along the string, the last term on the above right-hand side
can be identified with the time-dependent position Xi

cm(t) of the center of mass (energy)
of the string. We thus obtain,

Xi
cm(t) = −cM0i

E
+ t

c2 pi

E
. (8.68)

The quantity c2 pi/E has the interpretation of center of mass velocity because it coincides
with the velocity of a point particle with momentum pi and energy E . Equation (8.68)
describes the motion of the center of mass. The conserved charges M0i , together with E ,
determine the t = 0 position of the center of mass.

8.6 The slope parameter α′

The string tension T0 is the only dimensionful parameter in the string action. In this section
we will motivate the definition of an alternative parameter: the slope parameter α′. These
two parameters are related, we can use one or the other. The parameter α′ has an interesting
physical interpretation, used since the early days of string theory. If we consider a rigidly
rotating open string, α′ is the proportionality constant that relates the angular momentum
J of the string, measured in units of h̄, to the square of its energy E . More explicitly,

J

h̄
= α′E2. (8.69)

Since the left-hand side has no units, the units of α′ are those of inverse energy-squared:

[α′] = 1

[E]2 . (8.70)



169 8.6 The slope parameter α′
�

The appearance of h̄ in (8.69) is just a convention. The constant α′ was introduced in the
quantum theory of strings, and its relation to the string tension involves h̄. For our present
purposes, however, the important fact is just the proportionality between J and E2. This
relation does not involve h̄ when we use the string tension T0.

To verify the proportionality implied in equation (8.69), we consider a straight open string
of energy E which rotates rigidly on the (x, y) plane. This is precisely the problem exam-
ined in Section 7.4. The only nonvanishing component of angular momentum is M12, and
its magnitude is denoted by J = |M12|. Equation (8.65) tells us that

M12 =
∫ σ1

0
(X1Pτ

2 − X2Pτ
1 ) dσ. (8.71)

To evaluate this integral we need formulae for the position and momenta of the rotating
string. We recall equation (7.63),

�X(t, σ ) = σ1

π
cos

πσ

σ1

(
cos

πct

σ1
, sin

πct

σ1

)
, (8.72)

which records the components (X1, X2) of the rotating string. Using equation (7.31),
we find

�Pτ = T0

c2

∂ �X
∂t

= T0

c
cos

πσ

σ1

(
− sin

πct

σ1
, cos

πct

σ1

)
, (8.73)

where the right-hand side gives the components (Pτ
1 ,Pτ

2 ). The integral in (8.71) is thus
given by

M12 = σ1

π

T0

c

∫ σ1

0
cos2 πσ

σ1
dσ = σ 2

1 T0

2πc
. (8.74)

The time dependence disappeared, as expected for a conserved charge. Since J = |M12|
and σ1 = E/T0, we have found that

J = 1

2πT0c
E2. (8.75)

As anticipated, the angular momentum is proportional to the square of the energy of the
string. Comparing with equation (8.69) we deduce that

α′ = 1

2πT0 h̄c
and T0 = 1

2πα′ h̄c
. (8.76)

These equations relate the slope parameter α′ to the string tension T0.

Quick calculation 8.7 To appreciate how unusual the relation J ∼ E2 is, consider a one-
dimensional straight bar of fixed length and fixed (uniform) mass that is rotating around
its midpoint. Show that the nonrelativistic energy and the angular momentum are related
by J ∼ √

E .
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One may have anticipated the relationship J ∼ E2 by the following admittedly rough argu-
ment. We know that for rigid rotations J = Iω, where I is the moment of inertia. For an
object of mass M and length scale L , we have I ∼ M L2. So, J ∼ M L2ω. For a rotating
relativistic string M ∼ E , L ∼ E , and ω ∼ 1/E (see (7.57)). As a result J ∼ E2.

The name slope parameter arises because α′ is the slope of the lines of J/h̄, when plotted
as a function of energy-squared. In fact, Regge trajectories are approximate lines that arise
when plotting angular momentum as a function of energy-squared for hadronic excitations.
In the early 1970s, when string theory was investigated as a theory of strong interactions,
the slope parameter α′ was the experimentally measured quantity that entered into the
string action. The action (6.39), which we wrote in terms of T0, takes the form

S = − 1

2πα′ h̄c2

∫ τ f

τi

dτ

∫ σ1

0
dσ

√
(Ẋ · X ′)2 − (Ẋ)2(X ′)2 . (8.77)

It turns out that most of the modern work on string theory uses the slope parameter α′
as opposed to the string tension T0. In Section 3.6 we used h̄, c, and Newton’s constant G
to calculate a characteristic length �P called the Planck length. In string theory, we can use
h̄, c, and the dimensionful parameter α′ to construct a characteristic length �s called the
string length.

Quick calculation 8.8 Show that

�s = h̄c
√

α′. (8.78)

Up to factors of h̄ and c, the string length �s is the square root of α′. This connection
to a fundamental length scale provides an alternative physical interpretation for the slope
parameter α′.

Problems

Problem 8.1 Lorentz invariants and their densities.

We want to understand how Lorentz invariance of electric charge implies that charge den-
sity is the zeroth component of a Lorentz vector.

Consider two Lorentz frames S and S′ with S′ boosted along the +x direction of S with
velocity v. In frame S we have a cubic box of volume L3 with edges, all of length L ,
aligned with the axes of the coordinate system. The box is at rest and is filled by a material,
also at rest, that has uniform charge density ρ0. In this frame the current density vanishes
�j = �0. Note that S′ sees the box Lorentz contracted along the x direction.

(a) Use the Lorentz invariance of charge to calculate the charge density and current density
(cρ′, �j ′) that describe the material in the box according to frame S′. Verify that the
values (cρ0, �0) and (cρ′, �j ′) behave as four-vectors jμ ≡ (cρ0, �0) and j ′μ ≡ (cρ′, �j ′),
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in the sense that the quantities (cρ′, �j ′) are obtained from the rest frame values (cρ0, �0)

by a Lorentz boost.
(b) Write a formula for the current jμ in terms of ρ0 and the four-velocity of the box, and

check that your result works both for frames S and S′.

Problem 8.2 Lorentz invariance of electric charge.

The explicit test of Lorentz invariance of electric charge is quite subtle, so this is a chal-
lenging problem! We consider, as usual, a frame S and a frame S′ moving along the
+x direction of S with velocity v. In frame S the total charge is given by integration over
all of space at a fixed time t = 0:

Q ≡
∫

d3x ρ(t=0, �x),

and in the primed frame S′ it is given by an integral over all of space at t ′ = 0:

Q′ ≡
∫

d3x ′ ρ′(t ′=0, �x ′).

We want to prove that Q′ = Q. The complication is that S and S′ do not agree on what is
equal time. We will assume that jα = (cρ, �j) is a four-vector and it is conserved: ∂α jα = 0.
Moreover, charge densities and currents are taken to vanish at infinity for all times.

(a) Write explicitly the transformations that relate (t, �x) to (t ′, �x ′) and (cρ, �j) to (cρ′, �j ′).
Think of ρ and �j as functions of arguments (t, x, y, z). Prove that

Q′ =
∫

d3x ′ γ
[
ρ

(
γ

vx ′

c2
, γ x ′, y′, z′

)
− v

c2
j x
(

γ
vx ′

c2
, γ x ′, y′, z′

)]
.

To make Q′ look more like the expression for Q, change integration variables using
x = γ x ′, y = y′, and z = z′. Write the resulting expression for Q′. Confirm that for
v = 0 you get Q′ = Q.

(b) The strategy is to show that Q′ is independent of the velocity v. In that case, the
equality of Q′ and Q for v = 0 implies the equality of Q′ and Q for all velocities.
Show that the derivative of Q′ with respect to the velocity can be written as

d Q′

dv
= 1

c2

∫
d3x

[
x

(
∂ρ

∂t
− v

c2

∂ j x

∂t

)
− j x

]∣∣∣∣
t= vx

c2 ,x,y,z
. (1)

(c) Use the conservation equation ∂α jα = 0 to show that the integrand in (1) is a total
derivative. It then follows from our conditions at infinity that d Q′

dv
= 0, completing the

proof that Q′ = Q. You may find the following equation useful:( ∂

∂x
j x
(vx

c2
, x, y, z

))
y,z

=
[

v

c2

∂ j x

∂t
+ ∂ j x

∂x

]∣∣∣∣
t= vx

c2 ,x,y,z
, (2)

where the subscripts y, z on the left-hand side indicate that the partial derivative is
taken with these variables (and not t) held fixed. Equation (2) is just a statement about
derivatives and should be clear if you understand the notation.
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Problem 8.3 Angular momentum as a conserved charge.

Consider a Lagrangian L that depends only on the magnitude of the velocity �̇q(t) of a
particle which moves in ordinary three-dimensional space.

(a) Write an infinitesimal variation δ�q(t) that represents a small rotation of the vector �q(t).
Explain why it leaves the Lagrangian invariant.

(b) Construct the conserved charge associated with this symmetry transformation. Verify
that this conserved quantity is the (vector) angular momentum.

Problem 8.4 A generalization for charges and a special case for currents.

(a) Generalize equations (8.9) and (8.11) to the case in which there are various symmetry
parameters εi and a set of coordinates qa . Verify that your charges are conserved.

(b) Consider the setup of (8.17) for a “world” with no spatial dimensions. What are the
possible values of the index α? What do equations (8.22), (8.23), and (8.25) give?
Compare with your results in part (a).

Problem 8.5 Lorentz charges for the relativistic point particle.†

Consider the point particle action (5.15): S = −mc
∫

dτ
√−ημν ẋμ ẋν , where ẋμ(τ) =

dxμ(τ)/dτ . This action can be treated as a mechanics action where xμ is a coordinate
and τ plays the role of time, or as a field action where xμ is a field in a world with no
spatial dimensions and with ξ0 = τ .

(a) Show that xμ(τ) → xμ(τ)+ εμ, with εμ constant, is a symmetry. Find the con-
served charges associated with this symmetry and verify explicitly their conservation.
Compare with the momenta pμ(τ) defined canonically from the Lagrangian.

(b) Write the infinitesimal Lorentz transformations of xμ(τ), and explain why the action
is invariant under such transformations.

(c) Find an expression for the Lorentz charges in terms of xμ(τ) and pμ(τ). Make sure
that your Lorentz charges coincide with angular momentum charges for the appropriate
values of the indices. Verify explicitly their conservation.

Problem 8.6 Simple estimates regarding α′, T0, and �s .

(a) In hadronic physics α′ � 0.95 GeV−2. Calculate the hadronic string tension in tons
and the string length in centimeters.

(b) Assume that the string length is �s � 10−30 cm. Calculate α′ in GeV−2 and the string
tension in tons.

Problem 8.7 Angular momentum of a rotating string.

Equation (8.51) tells us that the momentum d �p carried by a small piece of string is
given by

d �p = T0ds

c2

�v⊥√
1 − v2⊥

c2
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Use this result to calculate by direct integration the angular momentum J carried by a
rotating open string. Make sure that your result coincides with (8.75).

Problem 8.8 Angular momentum of Kasey’s jumping rope.

Consider the relativistic jumping rope solution of Problem 7.4. Calculate the magnitude
Jz of the z-component of angular momentum (measured with respect to the origin) as a
function of the separation L0 and the angle γ . Show that Jz/h̄ = (sin2 γ )α′E2, where E is
the energy of the string.

Problem 8.9 Generalizing the construction of conserved charges.

We reconsider the setup that led to the conserved charge Q defined in (8.11). Assume
now that the transformation (8.8) does not leave the Lagrangian L invariant, but rather the
change is a total time derivative:

δL = d

dt
(ε �), (1)

where � is some calculable function of coordinates, velocities, and possibly of time. Show
that there is a modified conserved charge which takes the form

ε Q = ∂L

∂ q̇
δq − ε �. (2)

Since it leads to a conserved charge, a transformation that changes L by a total derivative
is said to be a symmetry transformation.

As an application consider a Lagrangian L(q(t), q̇(t)) that has no explicit time
dependence. A transformation of the form

q(t) −→ q(t + ε) � q(t)+ εq̇(t), (3)

represents the effect of a constant infinitesimal time translation. Show that the transforma-
tion (3) is a symmetry in the sense of (1). Calculate � and construct the conserved charge
Q. Is the result familiar?

Problem 8.10 Generalizing the construction of conserved currents.

Assume that the transformation (8.19) does not leave the Lagrangian density L invariant,
but rather the change is a total derivative:

δL = ∂

∂ξα
(εi �α

i ), (1)

where the �α
i are a set of calculable functions of fields, field derivatives, and possibly

coordinates. Show that there is a conserved current which takes the form

εi jαi = ∂L
∂(∂αφa)

δφa − εi �α
i . (2)

Since it leads to a conserved current, a transformation that changes L by a total derivative
is said to be a symmetry transformation.
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As an application consider a Lagrangian density L(φa, ∂αφa) that has no explicit
dependence on the world coordinates ξα . The transformation

φa(ξβ) −→ φa(ξβ + εβ) � φa + εβ∂βφa, (3)

where εβ is an infinitesimal constant vector, represents the effect of a constant translation.
Show that (3) is a symmetry in the sense of (1), with

�α
β = δα

βL. (4)

Show that the conserved currents jαβ take the form

jαβ =
∂L

∂(∂αφa)
∂βφa − δα

βL. (5)

Is j0
0 familiar? The quantities jαβ actually define the energy-momentum tensor T α

β .



9 L ight-cone relativistic strings

A class of gauges is introduced that fix the parameterization of the world-sheet,
lead to a pair of constraints, and give equations of motion that are wave equa-
tions. One of these gauges, the light-cone gauge, sets X+ proportional to τ and
allows for a complete and explicit solution to the equations of motion. In this
gauge, the dynamics of the string is determined by the motion along the trans-
verse directions and the values of two zero modes. We encounter the classical
Virasoro modes as the oscillation modes of the X− coordinate, and we learn
how to calculate the mass of an arbitrary string configuration.

9.1 A class of choices for τ

Our first encounter with classical string dynamics was simplified by our use of the static
gauge. In this gauge the world-sheet time τ is identified with the spacetime time coordinate
X0 by

X0(τ, σ ) = cτ. (9.1)

We are now going to consider more general gauges. Among the class of gauges that we
will examine, one of them, the light-cone gauge, will turn out to be particularly useful.
Using this gauge we will solve the equations of motion of the string in a complete and
explicit fashion. Our solution in the static gauge was not fully explicit; the motion was
characterized by a constrained vector function (see (7.48)).

The gauges we will focus on are those for which τ is set equal to a linear combination of
the string coordinates. This condition can be written as

nμ Xμ(τ, σ ) = λτ. (9.2)

If we choose nμ = (1, 0, . . ., 0) and λ = c, this equation becomes (9.1). To understand the
meaning of (9.2), we introduce the related equation

nμ xμ = λτ, (9.3)

where we write xμ, as opposed to Xμ, to emphasize that we are dealing with the general
spacetime coordinates. Consider now the two equations above with the same fixed value
of τ . If xμ

1 and xμ
2 are two points which satisfy (9.3), then nμ(xμ

1 − xμ
2 ) = 0. This shows
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n 
μ

A

B

x    

0

x1

x2, x3, ... 

nμx 
μ = λτ

string
at τ

�Fig. 9.1 The gauge condition n · X = λτ fixes the strings to be the curves at the intersection of the
world-sheet with the hyperplanes orthogonal to the vector nμ.

that any vector that joins points in the space (9.3) is orthogonal to the vector nμ. The set of
all points which satisfy (9.3) forms a hyperplane normal to nμ.

We can now make clear the meaning of equation (9.2). The points Xμ that satisfy
nμ Xμ = λτ are points that lie both on the world-sheet and on the hyperplane (9.3). Equa-
tion (9.2) states that all these points must be assigned the same value τ of the world-sheet
time. If we define a string to be the set of points Xμ(τ, σ ) with constant τ , in the gauge
(9.2), strings lie on hyperplanes of the form (9.3). The string with world-sheet time τ is the
intersection of the world-sheet with the hyperplane n · x = λτ , as illustrated in Figure 9.1.

We want strings to be spacelike objects. More precisely, the interval �Xμ between any
two points on a string should be spacelike, perhaps null in some limit, but certainly never
timelike. We will now see that in the gauge (9.2), a timelike nμ guarantees that the string
is spacelike. In this gauge any interval �Xμ along the string satisfies n ·�X = 0. Since
this condition is Lorentz invariant, it can be analyzed in a Lorentz frame where the only
nonzero component of nμ is the time component. In this frame �Xμ cannot have a time
component. It is therefore a spacelike vector.

If nμ is a null vector ((1, 1, 0, . . ., 0), for example), one can show that n ·�X = 0
implies that �Xμ is generally spacelike and occassionally null (Problem 9.1). We will
allow nμ to be null in (9.2). This choice can be viewed as the limit of a sequence of choices
all of which involve a timelike nμ.

The gauges defined by (9.2) are not Lorentz covariant gauges for any choice of nμ.
Choosing nμ selects a particular linear combination of spacetime coordinates to be set
equal to τ . There is no linear combination of coordinates that is left invariant by arbitrary
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Lorentz transformations. Therefore, the gauge condition takes different forms in different
Lorentz frames – the gauge is not Lorentz covariant.

At this point, it is convenient to streamline the way that we deal with units. While we have
been using the convention that τ and σ have units of time and length, respectively, starting
now τ and σ will be dimensionless. We proved in Chapter 8 that for open strings with
free endpoints, there is a well defined conserved momentum pμ. We will use this Lorentz
vector to rewrite our gauge condition (9.2) as follows:

n · X (τ, σ ) = λ̃ (n · p) τ. (9.4)

Since n · p is a constant, the net effect is that we have traded λ for another constant λ̃.
When open strings are attached to D-branes not all components of the string momentum
are conserved. Since we want our analysis to hold even in this case, we will assume that
the vector nμ is chosen in such a way that n · p is conserved. This condition is weaker
than the condition of momentum conservation. We will assume that n · Pσ = 0 at the
open string endpoints since this condition naturally guarantees the conservation of n · p
(consider equation (8.38) dotted with nμ).

By involving the vector nμ explicitly on both sides of equation (9.4), the scale of nμ

has been made irrelevant. Only the direction of nμ matters. Bearing in mind that n · X has
units of length, n · p has units of momentum, and τ is dimensionless, imagine dividing
both sides of this equation by the unit of time. We then see that λ̃ has units of velocity
divided by force. The canonical choice for velocity is c, and the canonical choice for force
is the string tension T0. It is therefore natural to set

λ̃ ∼ c

T0
= 2πα′h̄c2, (9.5)

where we used (8.76) to relate the string tension to α′. Before fixing λ̃ precisely, let us
further simplify our treatment of units.

At stake is our ability to track the units of different physical quantities. We can simplify
this matter by deciding to track just one unit, instead of the three units of length, time, and
mass. By convention, we do this by setting two of the fundamental constants equal to one:

h̄ = c = 1, (9.6)

as if these constants had no units! This has two consequences. First, any h̄ or c in our
formulae disappears without leaving a trace. This is not a serious problem, if we know the
full units of an expression where h̄ and c have been set equal to one, we can reconstruct
the dependence on h̄ and c unambiguously. Second, the units become dependent, and we
are left with just one independent unit. Since [c] = L/T , the condition c = 1 implies that

L = T . (9.7)

At this stage [h̄] = M L2/T becomes [h̄] = M L . With h̄ = 1 we get

M = 1/L . (9.8)
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Thus we can write all units in terms of mass or length (nobody uses time!). We will say
that we are working with natural units when we set h̄ = c = 1 and track just one unit.

Back to (9.5), the units of α′ have now become

[α′] = 1

[T0] =
L

M
= L2. (9.9)

While the complete units of α′ are those of inverse energy-squared, we see that in natural
units, α′ has units of length-squared. This is in agreement with our result in (8.78). In
natural units the string length is

�s =
√

α′. (9.10)

For reference, in natural units the Nambu–Goto action (8.77) takes the form

S = − 1

2πα′

∫ τ f

τi

dτ

∫ σ1

0
dσ

√
(Ẋ · X ′)2 − (Ẋ)2(X ′)2 . (9.11)

In natural units equation (9.5) sets λ̃ proportional to α′. For open strings we choose λ̃ =
2α′, and equation (9.4) becomes

n · X (τ, σ ) = 2α′(n · p) τ (open strings). (9.12)

This is the final form of the gauge condition which fixes the τ parameterization of the
world-sheet.

When we use natural units, length scales can be expressed in terms of mass or energy
scales. Given a length � we can construct a unique mass m using only �, h̄, and c. This
unique mass is m = h̄/(�c), or equivalently, mc2 = h̄c/�. For quick estimates we use h̄c �
200 MeV × 10−15 m.

Quick calculation 9.1 Show that the energy equivalent of the length 10−18 cm of a large
extra dimension is roughly 20 TeV (1 TeV= 1012 eV).

9.2 The associated σ parameterization

Having fixed the τ parameterization, let us determine the appropriate σ parameterization.
In the static gauge the σ parameterization was fixed by the condition of constant energy
density Pτ0 over the strings (the curves of constant τ ). Indeed, in setting A(σ ) in (7.17)
equal to one by a suitable choice of σ , we made Pτ0 in (7.6) constant. Since the static
gauge uses nμ = (1, 0, . . ., 0), we were actually demanding the constancy of nμPτμ.
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The proper generalization to situations where nμ is arbitrary is to demand the con-
stancy of nμ Pτμ = n · Pτ over the strings. Additionally, we require a parameterization
range σ ∈ [0, π ] for all open strings. To show that we can satisfy these conditions we
examine how Pτμ(τ, σ ) transforms under σ reparameterizations. Looking at (6.93) we
note that the rightmost fraction is invariant under σ reparameterizations, and only the
derivative ds

dσ
transforms. It follows that given two parameterizations σ and σ̃ of a string

we have

Pτμ(τ, σ ) = dσ̃

dσ
Pτμ(τ, σ̃ ) → n · Pτ (τ, σ ) = dσ̃

dσ
n · Pτ (τ, σ̃ ). (9.13)

If we are handed a string with σ̃ parameterization in which n · Pτ (τ, σ̃ ) depends on σ̃ ,
we can choose a σ parameter so that n · Pτ (τ, σ ) does not depend on σ . This is sim-
ply done by adjusting the value of dσ̃

dσ
so that the final right-hand side above is set equal

to a number that can only depend on τ . We then do a further reparameterization that
scales σ by a constant factor b: σ → bσ . This preserves the σ -independence of n · Pτ

but allows us to have σ ∈ [0, π ], by adjusting b suitably. In this final parameterization
we have

n · Pτ (τ, σ ) = a(τ ), (9.14)

where a(τ ) is some function of τ . In fact a(τ ) cannot depend on τ , and its value is already
fixed by the conditions we have imposed. Integration of (9.14) over the string σ ∈ [0, π ]
gives ∫ π

0
dσ n · Pτ (τ, σ ) = n · p = πa(τ ) → a(τ ) = n · p

π
. (9.15)

Since n · p is conserved, a(τ ) does not depend on τ . Back in (9.14) we have learned that

n · Pτ = n · p

π
is an open string world-sheet constant. (9.16)

In this parameterization the momentum density n · Pτ is constant so the σ value assigned
to a point is proportional to the amount of n · p momentum carried by the portion of string
from the endpoint σ = 0 to the point.

Let us now examine the equation of motion ∂τPτ
μ + ∂σPσ

μ = 0. Dotting this equation with
nμ we arrive at the condition

∂

∂τ
(n · Pτ )+ ∂

∂σ
(n · Pσ ) = 0. (9.17)

The first term vanishes on account of (9.16), and we are left with

∂

∂σ
(n · Pσ ) = 0. (9.18)

This means that n · Pσ is independent of σ .
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We now explain that for open strings, n · Pσ = 0. Because of equation (9.18), it suffices
to show that n · Pσ vanishes at some point on each string. As noted below equation (9.4),
we assume n · Pσ = 0 at the string endpoints since it guarantees the conservation of n · p.
Thus, at least for open strings,

n · Pσ = 0. (9.19)

Closed strings are dealt with in a similar way. We also parameterize them making the
momentum density n · Pτ constant and, again, we conclude that n · Pτ is a world-sheet
constant. For closed strings we want a range σ ∈ [0, 2π ], so (9.16) is changed into

n · Pτ = n · p

2π
(closed strings). (9.20)

Given this change, it will be convenient to write the τ parameterization of closed strings
without the factor of two present in (9.12):

n · X (τ, σ ) = α′(n · p) τ (closed strings). (9.21)

While equation (9.18) also holds for closed strings, we cannot prove that n · Pσ = 0;
there is no special point on a closed string where n · Pσ is known to vanish. We note, in
addition, a related subtlety: it is not clear how to select the point σ = 0 at each value of
τ . The two problems can be solved at once. Viewing the closed string world-sheet as a
collection of closed strings (the curves of constant τ ), we will select σ = 0 on one string
arbitrarily. We will then select σ = 0 on all other strings by requiring n · Pσ = 0.

To show how this is done, we begin by using (6.50) to compute n · Pσ :

n · Pσ = − 1

2πα′
(Ẋ · X ′)∂τ (n · X)− (Ẋ)2∂σ (n · X)√

(Ẋ · X ′)2 − (Ẋ)2(X ′)2
. (9.22)

From (9.21) we see that ∂σ (n · X) = 0, and therefore n · Pσ is

n · Pσ = − 1

2πα′
(Ẋ · X ′) ∂τ (n · X)√

(Ẋ · X ′)2 − (Ẋ)2(X ′)2
. (9.23)

It suffices to prove that we can make n · Pσ vanish at one point on each string. Since
∂τ (n · X) is a constant, we must show that Ẋ · X ′ = 0 at some point on each string.

Pick an arbitrary point P on a given string, and declare it to be a point for which σ = 0
(Figure 9.2). We claim that there is (up to scaling) a unique vector vμ tangent to the world-
sheet at P and orthogonal to the spacelike vector Xμ′ tangent to the string. This is not
difficult to see. The world-sheet has a timelike tangent vector tμ at P . Since Xμ′ and tμ

are not parallel, they generate the tangent space to the world-sheet at P . If tμ Xμ′ = 0, then
tμ is the desired vector vμ. If tμ Xμ′ 	= 0, we can define

vμ = tμ + bXμ′, (9.24)

and solve for the constant b such that vμ Xμ′ = 0:

t · X ′ + bX ′ · X ′ = 0 −→ vμ = tμ − t · X ′

X ′ · X ′ Xμ′. (9.25)
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P

σ = 0, X 
μ(P ) 

 X 
μ′

 x 
0

line σ = 0

v 
μ

�Fig. 9.2 Fixing the σ = 0 line on the closed string world-sheet, after declaring P to be a point with
σ = 0.

Quick calculation 9.2 Show that the vector vμ in (9.25) is timelike.

The point σ = 0 on neighboring strings is declared to be given by Xμ(P)+ ε vμ, for
infinitesimal ε. The vector vμ is therefore tangent to the desired σ = 0 line at P . The full
σ = 0 line is constructed by requiring that at each point its tangent be orthogonal to Xμ′.
Since the tangent to the σ = 0 line is proportional to Ẋμ, we guarantee that Ẋ · X ′ = 0
along the σ = 0 line. Thus we can ensure that Ẋ · X ′, and consequently n · Pσ , vanishes
at one point on each string. As a result, we have n · Pσ = 0 everywhere. Equation (9.19)
can therefore be used both for open and for closed strings:

n · Pσ = 0 (open and closed strings). (9.26)

We have now concluded the description of the parameterizations of open and closed strings.
The defining equations, in both cases, are summarized by

n · X (τ, σ ) = βα′(n · p) τ,

n · p = 2π

β
n · Pτ , (9.27)

where

β =
{

2 for open strings,

1 for closed strings.
(9.28)
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Although we were able to define the σ = 0 line on the closed string world-sheet consis-
tently, our construction has an obvious ambiguity. We had to choose one arbitrary point on
one string. Any other point on that one string could have been used as σ = 0. This means
that the parameterization of the closed string world-sheet can be shifted rigidly along the σ

direction. There is no way to avoid this ambiguity. The gauge conditions do not fix uniquely
the parameterization of the closed string world-sheet. This will have implications for the
theory of closed strings.

9.3 Constraints and wave equations

Let us now explore the constraints on X ′ and Ẋ that are implied by our chosen parameter-
ization. The vanishing of n · Pσ , together with (9.23) and the recognition that ∂τ (n · X) is
a nonvanishing constant, leads to

Ẋ · X ′ = 0. (9.29)

In the static gauge, X0′ = 0, and (9.29) reduces to �̇X · �X ′ = 0, which we obtained before
in (7.1). Equation (9.29) is a constraint that follows from our parameterization.

We now use (9.29) to simplify the expression (6.49) for Pτ :

Pτμ = 1

2πα′
X ′2 Ẋμ√
−Ẋ2 X ′2

. (9.30)

With the help of this result, the second equation in (9.27) gives

n · p = 1

βα′
X ′2(n · Ẋ)√
−Ẋ2 X ′2

. (9.31)

Since n · Ẋ = βα′(n · p) (see (9.27)), the factors of β cancel, and we find

1 = X ′2√
−Ẋ2 X ′2

−→ Ẋ2 + X ′2 = 0, (9.32)

where we used X ′2 	= 0. Aside from the units that are now different, this is consistent with
the earlier result (7.23), which we obtained using the static gauge and involves only spatial
components. Equations (9.29) and (9.32) are the constraint equations that follow from our
choice of parameterization. Together they read

Ẋ · X ′ = 0, Ẋ2 + X ′2 = 0. (9.33)

These two conditions are conveniently packaged together as

(Ẋ ± X ′)2 = 0. (9.34)
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Note that the constraints take this form for any value of β in (9.27). Our choices of β for
open and closed strings give convenient σ ranges, but other choices are possible.

Given the above constraints, the momentum densities Pτμ and Pσμ simplify considerably.
To use the constraints to simplify (9.30), we must take the positive square root in the
denominator. Since X ′2 > 0, using (9.32) gives√

−Ẋ2 X ′2 =
√

X ′2 X ′2 = X ′2. (9.35)

Back in (9.30) we therefore have

Pτμ = 1

2πα′
Ẋμ. (9.36)

The momentum density Pσμ, recorded in (6.50), simplifies down to

Pσμ = 1

2πα′
Ẋ2 Xμ′√
−Ẋ2 X ′2

= 1

2πα′
Ẋ2 Xμ′

X ′2 , (9.37)

and, using (9.32),

Pσμ = − 1

2πα′
Xμ′. (9.38)

The momentum densities are simple derivatives of the coordinates. Using these expressions
in the field equation ∂τPτμ + ∂σPσμ = 0, we find

Ẍμ − Xμ′′ = 0. (9.39)

With our parameterization, the equations of motion are just wave equations! Notice that
the minus sign on the right-hand side of (9.38) was necessary in order to get a wave equa-
tion. For open strings with free endpoints, the wave equations are supplemented by the
requirement that the Pσμ, and therefore the Xμ′, vanish at the endpoints.

9.4 Wave equation and mode expansions

We will now explicitly solve the wave equation (9.39) in full generality for the case of open
strings. In doing so we will introduce some of the basic notation that is used in string theory.
We will assume that we have a space-filling D-brane. As a result, all string coordinates Xμ

satisfy free boundary conditions at the endpoints. We know that the most general Xμ(τ, σ )

that solves the wave equation (9.39) is
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Xμ(τ, σ ) = 1

2

(
f μ(τ + σ)+ gμ(τ − σ)

)
, (9.40)

where f μ and gμ are arbitrary functions of a single argument. Bearing in mind (9.38), the
free endpoint boundary conditions Pσμ = 0 imply the Neumann boundary conditions

∂ Xμ

∂σ
= 0, at σ = 0, π. (9.41)

The boundary condition at σ = 0 gives us

∂ Xμ

∂σ
(τ, 0) = 1

2

(
f μ′(τ )− gμ′(τ )

)
= 0. (9.42)

Since the derivatives of f μ and gμ coincide, f μ and gμ can differ only by a constant
cμ. After replacing gμ = f μ + cμ in (9.40), the constant cμ can be reabsorbed into the
definition of f μ. The result is

Xμ(τ, σ ) = 1

2

(
f μ(τ + σ)+ f μ(τ − σ)

)
. (9.43)

Now let us consider the boundary condition at σ = π :

∂ Xμ

∂σ
(τ, π) = 1

2

(
f μ′(τ + π)− f μ′(τ − π)

)
= 0. (9.44)

Since this equation must hold for all τ , we learn that f μ′ is periodic with period 2π . Since
2π is a natural period, our decision to parameterize the open string with σ ∈ [0, π ] has
paid off.

We now write the general Fourier series for the periodic function f μ′(u):

f μ′(u) = f μ
1 +

∞∑
n=1

(
aμ

n cos nu + bμ
n sin nu

)
. (9.45)

Integrating this equation we get the expansion of f μ(u):

f μ(u) = f μ
0 + f μ

1 u +
∞∑

n=1

(
Aμ

n cos nu + Bμ
n sin nu

)
, (9.46)

where we have absorbed the constants arising from integration into new coefficients. We
substitute this expression for f (u) back into (9.43) and simplify to get

Xμ(τ, σ ) = f μ
0 + f μ

1 τ +
∞∑

n=1

(
Aμ

n cos nτ + Bμ
n sin nτ

)
cos nσ. (9.47)

We want to replace the coefficients in equation (9.47) by new coefficients that have
a simple physical interpretation. Our first step is introducing constants aμ

n through the
relations

Aμ
n cos nτ + Bμ

n sin nτ = − i

2

(
(Bμ

n + i Aμ
n )einτ − (Bμ

n − i Aμ
n )e−inτ

)
≡ −i

√
2α′√
n

(
aμ∗

n einτ − aμ
n e−inτ

)
. (9.48)
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Here ∗ denotes complex conjugation. The purpose of the
√

2α′ factor is to make the con-
stants aμ

n dimensionless. These constants, and their complex conjugates, will turn into
annihilation and creation operators when we consider the quantum theory. Equation (9.48)
introduces the notation that string theorists conventionally use.

In equation (9.47) the constant f μ
1 has a simple physical interpretation. Using (9.36),

the momentum density is given by

Pτμ = 1

2πα′
Ẋμ = 1

2πα′
f μ
1 + · · ·, (9.49)

where the dots denote terms with cos nσ dependence (n 	= 0). To find the total momentum
pμ, we integrate Pτμ over σ ∈ [ 0, π ]. Happily, the terms represented by the dots do not
contribute as the integral of cos nσ vanishes. We get

pμ =
∫ π

0
Pτμdσ = 1

2πα′
π f μ

1 −→ f μ
1 = 2α′pμ. (9.50)

This identifies f μ
1 as a quantity proportional to the spacetime momentum carried by the

string. Declaring f μ
0 = xμ

0 , and collecting all the above information, equation (9.47) now
takes the conventional form

Xμ(τ, σ ) = xμ
0 + 2α′ pμτ − i

√
2α′

∞∑
n=1

(
aμ∗

n einτ − aμ
n e−inτ

)cos nσ√
n

. (9.51)

The terms on the right-hand side clearly correspond to the zero mode, to the momentum,
and to the oscillations of the string. If all the coefficients aμ

n of the oscillations vanish, the
equation represents the motion of a point particle.

Quick calculation 9.3 Verify explicitly that Xμ(τ, σ ) is real.

Let us now introduce some notation that will allow us to write simple expressions for the
τ and σ derivatives of Xμ(τ, σ ). We start by defining

α
μ
0 = √

2α′pμ. (9.52)

Furthermore, we define

αμ
n = aμ

n

√
n, α

μ
−n = aμ∗

n

√
n, n ≥ 1. (9.53)

It is important to note that

α
μ
−n = (αμ

n )∗. (9.54)
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Moreover, while the aμ
n are only defined when n is a positive integer, the α

μ
n are defined

for any integer n, including zero. Using these new names, we can rewrite Xμ as

Xμ(τ, σ ) = xμ
0 +√

2α′ αμ
0 τ − i

√
2α′

∞∑
n=1

1

n

(
α

μ
−neinτ − αμ

n e−inτ
)

cos nσ. (9.55)

It is convenient to sum over all integers except zero:

Xμ(τ, σ ) = xμ
0 +√

2α′ αμ
0 τ + i

√
2α′

∑
n 	=0

1

n
αμ

n e−inτ cos nσ. (9.56)

This completes the solution of the wave equations with Neumann boundary conditions.
In the above equation, a solution is defined once we specify the constants xμ

0 and α
μ
n

for n ≥ 0.
It is convenient to record here the τ and σ derivatives of Xμ. From (9.56) we see that

Ẋμ = √
2α′

∑
n∈Z

αμ
n cos nσe−inτ , (9.57)

Xμ′ = −i
√

2α′
∑
n∈Z

αμ
n sin nσe−inτ , (9.58)

where Z denotes the set of all integers (positive, negative, and zero). Finally, two linear
combinations of the above derivatives are particularly nice:

Ẋμ ± Xμ′ = √
2α′

∑
n∈Z

αμ
n e−in(τ±σ). (9.59)

We have found solutions of the wave equations that satisfy the relevant boundary con-
ditions, but we must also ensure that the constraints (9.33) are satisfied. If we specify
arbitrarily all constants α

μ
n , the constraints will not be satisfied. We will use the light-cone

gauge to find a solution that satisfies the wave equations as well as the constraints.

9.5 Light-cone solution of equations of motion

The light-cone solution of the equations of motion involves using light-cone coordinates
to represent the motion of strings, and imposing a set of conditions that defines the light-
cone gauge. We have seen in Chapter 2 that using light-cone coordinates means using x+
and x− instead of x0 and x1 – this is just a change of coordinates. Imposing a light-cone
gauge condition is a more substantial step. The gauges we have examined in this chapter
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represent very specific choices of world-sheet coordinates. One of these choices is the
light-cone gauge.

Selecting the light-cone gauge means imposing the conditions (9.27) with a vector nμ that
gives n · X = X+. Taking

nμ =
( 1√

2
,

1√
2
, 0, . . ., 0

)
, (9.60)

we indeed find

n · X = X0 + X1

√
2

= X+, n · p = p0 + p1

√
2

= p+. (9.61)

Using these relations in (9.27) we have

X+(τ, σ ) = βα′p+ τ, p+ = 2π

β
Pτ+, (9.62)

where β = 2 for open strings and β = 1 for closed strings. The second equation tells us
that the density of p+ is constant along the string.

The strategy behind the light-cone gauge is to use the especially simple form of X+ to
show that there is no dynamics in X− (up to a zero mode) and that all the dynamics is in
the transverse coordinates X2, X3, . . ., Xd . These transverse coordinates will be denoted
by X I , where the transverse index I runs from 2 up to d:

X I = (X2, X3, . . ., Xd). (9.63)

In order to proceed we look at the constraint equations (9.34). Using the definition (2.59)
of the relativistic dot product in light-cone coordinates, we can write these constraints as

− 2(Ẋ+ ± X+′)(Ẋ− ± X−′)+ (Ẋ I ± X I ′)2 = 0, (9.64)

where (aI )2 = aI aI and, as usual, repeated indices imply summation. Since X+′ = 0 and
Ẋ+ = βα′ p+, we in fact have

Ẋ− ± X−′ = 1

βα′
1

2p+
(Ẋ I ± X I ′)2. (9.65)

In writing the above we have assumed that p+ 	= 0. While p+ certainly satisfies p+ ≥ 0,
it can happen that p+ is equal to zero. For this, the momentum p1 must cancel the energy,
and this can only occur if we have a massless particle traveling exactly in the negative
x1 direction. Since the vanishing of p+ is thus not a common occurrence, we will take
p+ to be always positive. If we come across a situation where p+ is zero, the light-cone
formalism will not apply.

Note the crucial role played by both the choice of light-cone coordinates and the choice
of light-cone gauge in allowing us to solve for the derivatives of X−. Light-cone coordi-
nates were useful because the off-diagonal metric in the (+,−) sector allowed us to solve
for the derivatives of X− without having to take a square root! We just had to divide by
Ẋ+. Here the light-cone gauge was useful, since it made Ẋ+ equal to a constant.
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Equations (9.65) determine both Ẋ− and X−′ in terms of the X I , and therefore they
determine X− up to a single integration constant. All that is needed is the value of X− at
some point P on the world-sheet and then we can integrate the relation

d X− = ∂ X−

∂τ
dτ + ∂ X−

∂σ
dσ, (9.66)

to find the value of X− at any other point Q. On an open string world-sheet we can choose
any path from P to Q to perform the integration and the result for X−(Q) will not depend
on the path, as discussed in Problem 9.2. On a closed string world-sheet there is a further
consistency condition. Imagine a contour of integration that starts at P and ends at P after
going around the world-sheet. It is not guaranteed that the integration of d X− on this
contour gives zero, a result necessary for X− to be well-defined. If we choose the contour
to be at constant τ , we must require∫ 2π

0
dσ

∂ X−

∂σ
= 0. (9.67)

This is a nontrivial constraint; see Problem 9.5.
Our analysis indicates that the full evolution of the string is determined by the following

set of objects:

X I (τ, σ ), p+, x−0 , (9.68)

where x−0 is the constant of integration needed for X−.

Let us focus on the case of open strings (β = 2). We consider the explicit solution for
the transverse coordinates X I and calculate the associated X−. Making use of the general
solution in (9.56) we have

X I (τ, σ ) = x I
0 +

√
2α′ α I

0τ + i
√

2α′
∑
n 	=0

1

n
α I

n e−inτ cos nσ. (9.69)

Moreover, for the X+ coordinate the gauge condition gives

X+(τ, σ ) = 2α′ p+ τ = √
2α′ α+0 τ. (9.70)

As we can see, the position zero mode and the oscillations of the X+ coordinate have been
set to equal to zero:

x+0 = 0, α+n = α+−n = 0, n = 1, 2, . . .,∞. (9.71)

What about X−? Being a linear combination of X0 and X1, the coordinate X− satisfies the
same wave equation and the same boundary conditions as all the other coordinates. We can
therefore use the same expansion as in (9.56) to write

X−(τ, σ ) = x−0 +√
2α′ α−0 τ + i

√
2α′

∑
n 	=0

1

n
α−n e−inτ cos nσ. (9.72)
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Using equation (9.59) with μ = − and μ = I , we find

Ẋ− ± X−′ = √
2α′

∑
n∈Z

α−n e−in(τ±σ), (9.73)

Ẋ I ± X I ′ = √
2α′

∑
n∈Z

α I
n e−in(τ±σ). (9.74)

We use these equations and (9.65) to solve for the minus oscillators:

√
2α′

∑
n∈Z

α−n e−in(τ±σ) = 1

2p+
∑

p,q∈Z

α I
pα

I
q e−i(p+q)(τ±σ)

= 1

2p+
∑

n,p∈Z

α I
pα

I
n−pe−in(τ±σ)

= 1

2p+
∑
n∈Z

(∑
p∈Z

α I
pα

I
n−p

)
e−in(τ±σ). (9.75)

It follows that we can identify α−n consistently as

√
2α′ α−n = 1

2p+
∑
p∈Z

α I
n−pα

I
p. (9.76)

This represents a complete solution! We now have explicit expressions for the minus
oscillators α−n in terms of the transverse oscillators. On the right-hand side the spacetime
indices are only to be summed over the labels of the transverse coordinates.

The general solution which represents an allowed motion is fixed by specifying arbitrary
values for p+, x−0 , x I

0 , and for all the constants α I
n . This clearly determines X I (τ, σ ) in

(9.69), and X+(τ, σ ) in (9.70). Using (9.76) we can calculate the constants α−n , which
together with x−0 determine X−(τ, σ ) in (9.72). The full solution is thus constructed.

The quadratic combination of oscillators on the right-hand side of (9.76) is remarkably
useful, so it has been given a name. It is the transverse Virasoro mode L⊥n :

√
2α′ α−n = 1

p+
L⊥n , L⊥n ≡ 1

2

∑
p∈Z

α I
n−pα

I
p. (9.77)

In particular, for n = 0 we use (9.52) and find

√
2α′ α−0 = 2α′ p− = 1

p+
L⊥0 −→ 2p+ p− = 1

α′
L⊥0 . (9.78)

Using the value of α−n given in (9.77), equations (9.73) and (9.65) are written as
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Ẋ− ± X−′ = 1

p+
∑
n∈Z

L⊥n e−in(τ±σ) = 1

4α′ p+
(Ẋ I ± X I ′)2. (9.79)

Quick calculation 9.4 Show that

X−(τ, σ ) = x−0 + 1

p+
L⊥0 τ + i

p+
∑
n 	=0

1

n
L⊥n e−inτ cos nσ. (9.80)

This equation explicitly demonstrates the claim that the Virasoro modes are the expansion
modes of the coordinate X−(τ, σ ).

It is instructive to compute the mass of a string which is performing an arbitrary motion.
The mass can be calculated using the relativistic equation

M2 = −p2 = 2p+ p− − pIpI . (9.81)

Since the mass is a constant of the motion, we anticipate that it depends on the constant
coefficients aI

n introduced to define a classical solution. To evaluate the mass we start with
(9.78), substitute the value of L⊥0 from (9.77), and use the definitions in (9.52) and (9.53):

2p+ p− = 1

α′
L⊥0 = 1

α′
(1

2
α I

0α I
0 +

∞∑
n=1

α I∗
n α I

n

)
= pIpI + 1

α′
∞∑

n=1

n aI∗
n aI

n . (9.82)

Replacing this result on the right-hand side of (9.81) we finally find

M2 = 1

α′
∞∑

n=1

n aI∗
n aI

n . (9.83)

This is a very interesting result. The mass-squared is written as a sum of terms each of
which is of the form a∗a = |a|2 ≥ 0. So, we find that M2 ≥ 0. This shows that the classical
string mass M = √

M2 is a real number (conventionally taken to be positive). Such a result
is actually hard to obtain without using the light-cone gauge. We also see that we can
adjust the coefficients aI

n to obtain classical string solutions with arbitrary values of the
mass. If all the coefficients aI

n vanish, the result is a massless object M2 = 0. Indeed, when
all aI

n vanish the string collapses to a moving point: equation (9.69) gives X I (τ, σ ) =
x I

0 +
√

2α′ α I
0τ , and the σ dependence disappears.

Quick calculation 9.5 Calculate X−(τ, σ ) when all aI
n vanish. Note that the σ dependence

of X− disappears.

The classical result (9.83) for M2 does not survive quantization. First, M2 will become
quantized, and string states will not exhibit a continuous spectrum of masses. This is good
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because we do not observe in nature particle states that take continuous values of the mass.
Even more, equation (9.83) does not give enough massless states. The few massless states
that are obtained do not behave at all like the massless states of Maxwell theory. For closed
strings, the few massless states that are obtained by a similar analysis do not behave at
all like the massless states of gravitation. Quantum mechanics will add an extra constant
to the formula for M2, both for open and for closed strings. These additive constants will
enable us to find states that correspond to those of physical theories. String theory has a
chance to describe gauge fields and gravity because quantization changes (9.83) and the
corresponding formula for closed strings.

Problems

Problem 9.1 Vectors orthogonal to null vectors are null or spacelike.

Let nμ be a nonzero null vector (nμnμ = 0) in D-dimensional Minkowski space. In
addition, let bμ be a vector that satisfies nμbμ = 0. Prove the following.

(a) The vector bμ is either spacelike or null.
(b) If bμ is null, then bμ = λnμ for some constant λ.
(c) The set of vectors bμ that satisfies nμbμ = 0 is a vector space V of dimension (D − 1).

The subset of null vectors bμ is a vector subspace of V of dimension one.

This result shows that for gauges (9.2) with nμ null and for D > 2, strings are almost
always spacelike objects. Moreover, the hyperplane orthogonal to nμ contains nμ. This is
readily confirmed in two dimensions:

(d) Let D = 2 and consider a spacetime diagram such as the one in Figure 2.2. What is
the null vector nμ such that n · X = X+? Confirm that nμ points along the lines of
constant X+.

Problem 9.2 Consistency checks on the solution for X−.

(a) Use (9.65) to find ∂τ X− and ∂σ X−. Show that the consistency condition ∂σ (∂τ X−) =
∂τ (∂σ X−) holds if the transverse coordinates X I satisfy the wave equation. Prove that
this condition guarantees that X−, determined by integration of (9.66), is independent
of the chosen path.

(b) Show that X−, as calculated in (9.65), satisfies the wave equation if the transverse
coordinates X I satisfy the wave equation.

(c) Assume that at the open string endpoints some of the transverse light-cone coordinates
X I satisfy Neumann boundary conditions and some satisfy Dirichlet boundary condi-
tions. Prove that X−, as calculated in (9.65), will always satisfy Neumann boundary
conditions.

Problem 9.3 Rotating open string in the light-cone gauge.

Consider string motion defined by x−0 = x I
0 = 0, and the vanishing of all coefficients α I

n
with the exception of
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α
(2)
1 = α

(2)∗
−1 = a, α

(3)
1 = α

(3)∗
−1 = ia. (1)

Here a is a dimensionless real constant. We want to construct a solution that represents an
open string that is rotating on the (x2, x3) plane.

(a) What is the mass (or energy) of this string?
(b) Construct the explicit functions X2(τ, σ ) and X3(τ, σ ). What is the length of the string

in terms of a and α′?
(c) Calculate the L⊥n modes for all n. Use your result to construct X−(τ, σ ). Your answer

should be σ -independent!
(d) Determine the value of p+ using the condition that for this string X1(τ, σ ) = 0. Find

the relation between t and τ .
(e) Confirm that in your solution the energy of the string and its angular frequency of

rotation are related to its length as in (7.59).

Problem 9.4 Generating consistent open string motion: How does an open string collapse?

Consider string motion defined by x−0 = x I
0 = 0, and the vanishing of all coefficients α I

n
with the exception of

α
(2)
1 = α

(2)∗
−1 = a.

Here a is a dimensionless real constant. We want to construct a solution that represents an
open string oscillating on the (x1, x2) plane and having zero momentum in this plane.

(a) Show that the string motion is described by

1√
2α′

1

a
X0(τ, σ ) = √

2
(
τ + 1

4
sin 2τ cos 2σ

)
,

1√
2α′

1

a
X1(τ, σ ) = − 1

2
√

2
sin 2τ cos 2σ,

1√
2α′

1

a
X2(τ, σ ) = 2 sin τ cos σ.

(b) Confirm that τ flows as t flows. In the chosen Lorentz frame, strings are lines on the
world-sheet that lie at constant time X0. Find the values of τ for which constant τ lines
are strings. Describe those strings.

(c) At τ = 0 the string has zero length. Study in detail the motion for τ � 1. Calculate
τ = τ(t, σ ) and use this result to find X1(t, σ ) and X2(t, σ ). Prove that as the string
expands from zero size, it lies on the portion cos θ ≥ −1/3 of a circle centered at the
origin, whose radius grows at the speed of light (θ is measured with respect to the
positive x1 axis). Note that the endpoints move transversely to the string.

(d) Use your favorite software package to do a parametric plot of the string world-sheet as
a surface in three dimensions. Use X1, X2, and X0 as x, y, and z axes, respectively,
and parameters τ and σ . For further help visualizing the motion of the string, plot the
string on the (x1, x2) plane at various values of the time X0. This requires solving
(numerically) for τ as a function of X0 and σ .
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Problem 9.5 A closed string in the light-cone gauge.

Consider a closed string for which

X (2)(τ, σ ) = √
2α′

(
a sin(τ − σ)+ b cos(τ − σ)+ ā sin(τ + σ)+ b̄ cos(τ + σ)

)
,

and all other transverse coordinates X I (τ, σ ) vanish. In the above, a, b, ā, and b̄ are real
constants. Note that a and b are the coefficients of waves that propagate towards increasing
σ while ā and b̄ are the coefficients of waves that propagate towards decreasing σ . As usual
for closed strings, we set X+(τ, σ ) = α′ p+τ and use σ ∈ [0, 2π ].
(a) As it turns out, it is not possible to generate a solution of the equations of motion for

completely arbitrary values of the constants a, b, ā, and b̄. Examine the calculation of
X−(τ, σ ) and derive the constraint that the constants must satisfy.

(b) Your constraint must allow a = b = ā = b̄ = r . Use these values to calculate
X−(τ, σ ) and to determine the mass of this string.



10 L ight-cone fields and particles

We study the classical equations of motion for scalar fields, Maxwell fields, and
gravitational fields. We use the light-cone gauge to find plane-wave solutions to
their equations of motion and the number of degrees of freedom that character-
ize them. We explain how the quantization of such classical field configurations
gives rise to particle states – scalar particles, photons, and gravitons. In doing
so we prepare the ground for the later identification of such states among the
quantum states of relativistic strings.

10.1 Introduction

In our investigation of classical string motion we had a great deal of freedom in choosing
the coordinates on the world-sheet. This freedom was a direct consequence of the reparam-
eterization invariance of the action, and we exploited it to simplify the equations of motion
tremendously. Reparameterization invariance is an example of a gauge invariance, and a
choice of parameterization is an example of a choice of gauge. We saw that the light-cone
gauge – a particular parameterization in which τ is related to the light-cone time X+ and σ

is chosen so that the p+-density is constant – was useful to obtain a complete and explicit
solution of the equations of motion.

Classical field theories sometimes have gauge invariances. Classical electrodynamics, for
example, is described in terms of gauge potentials Aμ. The gauge invariance of this
description is often used to great advantage. The classical theory of a scalar field is sim-
pler than classical electromagnetism. This theory is not studied at the undergraduate level,
however, because elementary scalar particles – the kind of particles associated with the
quantum theory of scalar fields – have not been detected yet. On the other hand, photons –
the particles associated with the quantum theory of the electromagnetic field – are found
everywhere! Scalar particles may play an important role in the Standard Model of particle
physics, where they can help trigger symmetry breaking. Thus physicists may detect scalar
particles some time in the future. The field theory of a single scalar field has no gauge
invariance. We will study it because it is the simplest field theory and because scalar parti-
cles arise in string theory. The most famous scalar particle in string theory is the tachyon.
Also important is the dilaton, a massless scalar particle.

Einstein’s classical field theory of gravitation is more complicated than classical elec-
tromagnetism. In gravity, as we explained in Section 3.6, the dynamical variable is the
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two-index metric field gμν(x). Gravitation has a very large gauge invariance. The gauge
transformations involve reparameterizations of spacetime.

We will consider scalar fields, electromagnetic fields, and gravitational fields. The light-
cone gauge will allow us to simplify dramatically the (linearized) equations of motion, find
their plane-wave solutions, and count the number of degrees of freedom that characterize
the solutions. We will also briefly consider how the quantization of plane-wave solutions
gives rise to particle states. These are the quantum states associated with the field theories.
We quantize the relativistic string in Chapter 12. There we relate the quantum states of the
string to the particle states of the field theories that we study in the present chapter. We use
the light-cone gauge here because we will quantize the relativistic string in the light-cone
gauge.

10.2 An action for scalar fields

A scalar field is simply a single real function of spacetime. It is written as φ(t, �x) or, more
briefly, as φ(x). The term scalar means scalar under Lorentz transformations: all Lorentz
observers will agree on the value of the scalar field at any fixed point in spacetime. Scalar
fields have no Lorentz indices.

Let us now motivate the simplest kind of action principle that can be used to define the
dynamics of a scalar field. Consider first the kinetic energy. In mechanics, the kinetic
energy of a particle is proportional to its velocity squared. For a scalar field, the kinetic
energy density T is declared to be proportional to the square of the rate of change of the
field with time:

T = 1

2
(∂0φ)2 . (10.1)

We speak of densities because, at any fixed time, T is a function of position. The total
kinetic energy will be the integral of the density T over space.

Now consider the potential energy density. There is one class of term that is natural.
Suppose the equilibrium value of the field is φ = 0. For a simple harmonic oscillator with
equilibrium position x = 0, the potential energy goes like V ∼ x2. If we want the field
to prefer its equilibrium state, then this must be encoded in the potential. The simplest
potential which does this is quadratic:

V = 1

2
m2φ2 . (10.2)

It is interesting to note that the constant m introduced here has the units of mass. Indeed,
since the expressions on the right-hand side of the two equations above must have the same
units ([T ] = [V ]), and both have two factors of φ, we require [m] = [∂0] = L−1 = M .

We could now attempt to form a Lagrangian density by combining the two energies above
and setting

L ?= T − V = 1

2
(∂0φ)2 − 1

2
m2φ2 . (10.3)
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This Lagrangian density, however, is not Lorentz invariant. The second term on the right-
hand side is a scalar, but the first term is not, for it treats time as special. We are missing
a contribution representing the energy cost when the scalar field varies in space. This is
eminently reasonable in special relativity: if it costs energy to have the field vary in time,
it must also cost energy to have the field vary in space. The extra contribution is therefore
associated with spatial derivatives of the scalar field, and can be written as

V ′ = 1

2

∑
i

(∂iφ)2 = 1

2
(∇φ)2 , (10.4)

where ∂i are derivatives with respect to spatial coordinates. We have written this term as
a new contribution V ′ to the potential energy, rather than as a contribution to the kinetic
energy. There are several reasons for this. First, it is needed for Lorentz invariance. The
two options lead to contributions of opposite signs in the Lagrangian, and only one sign
is consistent with Lorentz invariance. Second, kinetic energy is always associated with
time derivatives. Third, the calculation of the total energy vindicates the correctness of the
choice. Indeed, with this additional term the Lagrangian density becomes

L = T − V ′ − V = 1

2
∂0φ ∂0φ − 1

2
∂iφ ∂iφ − 1

2
m2φ2 , (10.5)

where the repeated spatial index i denotes summation. The relative sign between the first
two terms on the right-hand side allows us to rewrite them as a single term which uses the
Minkowski metric ημν :

L = −1

2
ημν∂μφ ∂νφ − 1

2
m2φ2 . (10.6)

Since all the indices are matched, the Lagrangian density is Lorentz invariant. The
associated action is

S =
∫

d Dx
(
−1

2
ημν ∂μφ∂νφ − 1

2
m2φ2

)
, (10.7)

where d Dx = dx0dx1 . . . dxd , and D = d + 1, is the number of spacetime dimensions.
This is the action for a free scalar field with mass m. A field is said to be free when its
equations of motion are linear. If each term in the action is quadratic in the field, as is the
case in (10.7), the equations of motion will be linear in the field. A field that is not free is
said to be interacting, in which case the action contains terms of order three or higher in
the field.

To find the energy density in this field we calculate the Hamiltonian density H. The
momentum � conjugate to the field is given by

� ≡ ∂L
∂(∂0φ)

= ∂0φ , (10.8)

where we used (10.5) to evaluate the derivative. The Hamiltonian density is then con-
structed as

H = �∂0φ − L. (10.9)
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Quick calculation 10.1 Show that the Hamiltonian density takes the form

H = 1

2
�2 + 1

2
(∇φ)2 + 1

2
m2φ2. (10.10)

The three terms in H are identified as T , V ′, and V , respectively. This is what we expected
physically for the energy density. The total energy E is given by the Hamiltonian H , which
in turn, is the spatial integral of the Hamiltonian density H:

E = H =
∫

dd x
(1

2
∂0φ ∂0φ + 1

2
(∇φ)2 + 1

2
m2φ2

)
. (10.11)

To find the equations of motion from the action (10.7), we consider a variation δφ of
the field and set the variation of the action equal to zero. After discarding a total derivative
we find

δS =
∫

d Dx
(
−ημν∂μ(δφ)∂νφ − m2φδφ

)
=
∫

d Dx δφ
(
ημν∂μ∂νφ − m2φ

)
= 0 .

(10.12)

The equation of motion for φ is therefore

ημν∂μ∂νφ − m2φ = 0 . (10.13)

If we define ∂2 ≡ ημν∂μ∂ν , then we have

(∂2 − m2) φ = 0 . (10.14)

Separating out time and space derivatives, this equation is recognized as the Klein–Gordon
equation:

− ∂2φ

∂t2
+∇2φ − m2φ = 0 . (10.15)

We will now study some classical solutions of this equation.

10.3 Classical plane-wave solutions

We can find plane-wave solutions to the classical scalar field equation (10.15). Consider,
for example, the expression

φ(t, �x) = a e−i Et+i �p·�x , (10.16)

where a and E are constants and �p is an arbitrary vector. The field equation (10.15) fixes
the possible values of E in terms of �p and m:

E2 − �p 2 − m2 = 0 −→ E = ±E p , E p ≡
√
�p 2 + m2 . (10.17)
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The square root is chosen to be positive, so E p > 0. There is a small problem with the
solution in (10.16). While φ is a real field, the solution (10.16) is not real. To make it real,
we just add to it its complex conjugate:

φ(t, �x) = a e−i E pt+i �p·�x + a∗ ei E pt−i �p·�x . (10.18)

This solution depends on the complex number a. A general solution to the equation of
motion (10.15) is obtained by superimposing solutions, such as those above, for all values
of �p. Since �p can be varied continuously, the general superposition is actually an integral.
The classical field does not have a simple quantum mechanical interpretation. If the two
terms above were to be thought of as wavefunctions, the first would represent the wavefunc-
tion of a particle with momentum �p and positive energy E p. The second would represent
the wavefunction of a particle with momentum (− �p) and negative energy (−E p). This is
not acceptable. To do quantum mechanics with a classical field one must quantize the field.
The result is particle states with positive energy, as we will discuss briefly in the following
section.

An analysis of the classical field equation (in a practical way that applies elsewhere) uses
the Fourier transformation of the scalar field φ(x):

φ(x) =
∫

d D p

(2π)D
eip·x φ(p) . (10.19)

Here φ(p) is the Fourier transform of φ(x). We will always show the argument of φ so
no confusion should arise between the spacetime field and the momentum-space field.
Note that we are performing the Fourier transform over all spacetime coordinates, time
included: p · x = −p0x0 + �p · �x . The reality of φ(x) means that φ(x) = (φ(x))∗. Using
equation (10.19), this condition yields∫

d D p

(2π)D
eip·x φ(p) =

∫
d D p

(2π)D
e−i p·x (φ(p))∗ . (10.20)

We let p →−p on the left-hand side of this equation. This change of integration variable
does not affect the integration

∫
d D p, and results in∫

d D p

(2π)D
e−i p·x (φ(−p)− (φ(p))∗

)
= 0 , (10.21)

where we collected all terms on the left-hand side. This left-hand side is a function of x that
must vanish identically. It is also the Fourier transform of the momentum-space function
in parentheses. This function must therefore vanish:

(φ(p))∗ = φ(−p) . (10.22)

This is the reality condition in momentum space.
Substituting (10.19) into (10.14) and letting ∂2 act on eip·x we find∫

d D p

(2π)D
(−p2 − m2) φ(p) eipx = 0 . (10.23)
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–(Ep , p)

p 
2 p 

1

p 
0

 = E

m

→

(Ep , p)
→

�Fig. 10.1 The mass-shell hyperboloid E2 − p2 = m2 (only two spatial directions shown). The equation
of motion sets the mass m scalar field φ(p) equal to zero away from the hyperboloid. On
the hyperboloid the field is arbitrary up to a reality condition that relates the field values
at antipodal points.

Since this must hold for all values of x , this equation requires

(p2 + m2) φ(p) = 0 for all p . (10.24)

This is a simple equation: (p2 + m2) is just a number multiplying φ(p) and the product
must vanish. Solving this equation means specifying the values of φ(p) for all values of p.
Since either factor may vanish we must consider two cases.

(i) p2 + m2 	= 0. In this case the scalar field vanishes: φ(p) = 0.

(ii) p2 + m2 = 0. In this case the scalar field φ(p) is arbitrary.

In momentum space the hypersurface p2 + m2 = 0 is called the mass-shell. With pμ =
(E, �p ), the mass-shell is the locus of points in momentum space where E2 = �p2 + m2,
the hyperboloid sketched in Figure 10.1. The mass-shell is therefore the set of points
(±E p, �p), for all values of �p. We have learned that φ(p) vanishes off the mass-shell and
is arbitrary (up to the reality condition) on the mass-shell.

We now introduce the idea of classical degrees of freedom. For a point pμ on the mass-
shell, the solution is determined by specifying the complex number φ(p). This number
determines as well the solution at the point (−pμ), also belonging to the mass-shell:
φ(−p) = (φ(p))∗. So, a complex number fixes the values of the field for two points on
the mass-shell. We need, on average, one real number for each point on the mass-shell. We
will say that a field satisfying equation (10.24) represents one degree of freedom per point
on the mass-shell.

We conclude this section by writing the scalar field equation of motion in light-cone
coordinates. Let �xT denote a vector whose components are the transverse coordinates x I :

�xT = (x2, x3, . . ., xd) . (10.25)
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In this notation, the collection of spacetime coordinates becomes (x+, x−, �xT ). Equation
(10.14) expanded in light-cone coordinates is(

−2
∂

∂x+
∂

∂x−
+ ∂

∂x I

∂

∂x I
− m2

)
φ(x+, x−, �xT ) = 0 . (10.26)

To simplify this equation, we Fourier transform the spatial dependence of the field, chang-
ing x− into p+ and x I into pI . Letting �pT denote the vector whose components are the
transverse momenta pI

�pT = (p2, p3, . . ., pd) , (10.27)

the Fourier transform is written as

φ(x+, x−, �xT ) =
∫

dp+

2π

∫
d D−2 �pT

(2π)D−2
e−i x− p++i �xT · �pT φ(x+, p+, �pT ) . (10.28)

We now substitute this form of the scalar field into (10.26) to get(
−2

∂

∂x+
(−i p+)− pI pI − m2

)
φ(x+, p+, �pT ) = 0 , (10.29)

and dividing by 2p+ we find(
i

∂

∂x+
− 1

2p+
(pI pI + m2)

)
φ(x+, p+, �pT ) = 0 . (10.30)

This is the equation we were after. As opposed to the original Lorentz covariant equation
of motion, which has second-order derivatives with respect to time, the light-cone equation
is a first-order differential equation in light-cone time. Equation (10.30) has the formal
structure of a Schrödinger equation, which is also first order in time. This fact will prove
useful when we study how the quantum point particle is related to the scalar field.

Another version of equation (10.30) will be needed in our later work. Using a new time
parameter τ related to x+ as x+ = p+τ/m2 we obtain(

i
∂

∂τ
− 1

2m2
(pI pI + m2)

)
φ(τ, p+, �pT ) = 0 . (10.31)

Quick calculation 10.2 Consider the mass-shell condition p2 + m2 = 0 in light-cone
coordinates. Show that

p− = 1

2p+
(pI pI + m2) . (10.32)

10.4 Quantum scalar fields and particle states

Quantum field theory is a natural language to describe the quantum behavior of elementary
particles and their interactions. Quantum field theory is quantum mechanics applied to clas-
sical fields. In quantum mechanics, classical dynamical variables turn into operators. The
position and momentum of a classical particle, for example, turn into position and momen-
tum operators. If our dynamical variables are classical fields, the quantum operators will
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be field operators. Thus, in quantum field theory, the fields are operators. The state space
in a quantum field theory is typically described using a set of particle states. Quantum field
theory also has energy and momentum operators. When they act on a particle state, these
operators give the energy and momentum of the particles described by the state.

In this section, we examine briefly how the features just described arise concretely.
Inspired by the plane-wave solution (10.18), which describes a superposition of complex
waves with momenta �p and − �p (with �p 	= 0), we consider a classical field configuration
φp(t, �x) of the form

φp(t, �x) = 1√
V

1√
2E p

(
a(t) ei �p·�x + a∗(t) e−i �p·�x) . (10.33)

There have been two changes. First, the time dependence has been made more general by
introducing the function a(t) and its complex conjugate a∗(t). The function a(t) is the
dynamical variable that determines the field configuration. Second, we have placed a nor-
malization factor

√
V , where V is assumed to be the volume of space. The normalization

factor also includes a square root of the energy E p defined in equation (10.17).
We can imagine space as a box with sides L1, L2, . . ., Ld , in which case V =

L1L2 . . . Ld . When we put a field on a box we usually require it to be periodic. The field
φp is periodic if each component pi of �p satisfies

pi Li = 2πni , i = 1, 2, . . ., d . (10.34)

Here the ni are integers. Each component of the momentum is quantized.
We now try to do quantum mechanics with the field configuration (10.33). To this end,

we evaluate the scalar field action (10.7) for φ = φp(t, �x):

S =
∫

dt
∫

dd x
( 1

2
(∂0φp)

2 − 1

2
(∇φp)

2 − 1

2
m2φ2

p

)
. (10.35)

The evaluation involves squaring the field, squaring its time derivative, and squaring its
gradient. In squaring any of these, we obtain from the cross multiplication two types of
terms: those with spatial dependence exp(±2i �p · �x) and those without spatial dependence.
We claim that the spatial integral

∫
dd x of the terms with spatial dependence is zero, so

these terms cannot contribute. Indeed, the quantization conditions in (10.34) imply that∫ L1

0
dx1 . . .

∫ Ld

0
dxd exp(±2i �p · �x) = 0 . (10.36)

For the terms without spatial dependence, the spatial integral gives a factor of the volume
V , which cancels with the product of

√
V factors we introduced in (10.33). The result is

S =
∫

dt
( 1

2E p
ȧ∗(t)ȧ(t)− 1

2
E p a∗(t)a(t)

)
. (10.37)

Quick calculation 10.3 Verify that equation (10.37) is correct.

Similarly, we use equation (10.11) to evaluate the field energy H :

H = 1

2E p
ȧ∗(t)ȧ(t)+ 1

2
E p a∗(t)a(t) . (10.38)
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Quick calculation 10.4 Verify that equation (10.38) is correct.

The action (10.37) describes the dynamics of two simple harmonic oscillators. Since a(t)
is a complex dynamical variable we can write

a(t) = q1(t)+ i q2(t), (10.39)

where q1(t) and q2(t) are real coordinates. In terms of q1(t) and q2(t), the action becomes

S =
∫

dt L =
2∑

i=1

∫
dt
( 1

2E p
q̇2

i (t)− 1

2
E p q2

i (t)
)

. (10.40)

We see here that q1(t) and q2(t) are indeed the coordinates of identical simple harmonic
oscillators. Their canonical momenta are

pi (t) = ∂L

∂q̇i
= q̇i (t)

E p
−→ p1(t)+ i p2(t) = 1

E p
ȧ(t) . (10.41)

The equations of motion that follow from the variation of the action (10.40) are

q̈i (t) = −E2
p qi (t) , i = 1, 2. (10.42)

It is actually convenient to work with the complex combination a(t). Using (10.39) the
equations of motion become the single complex equation

ä(t) = −E2
p a(t) . (10.43)

Equation (10.43) is readily solved in terms of exponentials. Since it is a second-order
equation, there are two solutions:

a(t) = ap e−i E pt + a∗−p ei E pt . (10.44)

There is no reality condition since a(t) is complex. In writing the above solution we
introduced two independent complex constants ap and a∗−p. Substituting this solution into
(10.38), we find

H = E p

(
a∗pap + a∗−pa−p

)
. (10.45)

Note that the time dependence disappeared; the energy is conserved.
In classical scalar field theory there is an integral expression that gives the spacetime

momentum �P carried by the field. In the present case, this field momentum is conserved,
and a formula can be obtained from the analysis of Problem 8.10. We will not discuss this
here, but the answer is

�P = −
∫

dd x(∂0φ)∇φ . (10.46)

In Problem 10.1 you are asked to evaluate �P for the field configuration (10.33), when a(t)
is given by (10.44). The result that you will find is

�P = �p
(

a∗pap − a∗−pa−p

)
. (10.47)
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The system at hand consists of two harmonic oscillators. The expression for H suggests
that in the quantum theory ap and a−p become annihilation operators, while a∗p and a∗−p
become the creation operators a†

p and a†
−p, respectively. We will verify the correctness of

this assumption shortly. These oscillators are required to satisfy the standard commutation
relations:

[ ap , a†
p ] = 1 , [ a−p , a†

−p ] = 1 . (10.48)

Any commutator which involves an operator with subscript p and an operator with sub-
script (−p) is declared to vanish. The variable a(t) in (10.44) now becomes an operator.
We record its form, together with that for its Hermitian conjugate a†(t), as well as those
for their time derivatives:

a(t) = ap e−i E pt + a†
−p ei E pt ,

a†(t) = a†
p e i E pt + a−p e−i E pt ,

ȧ(t) = −i E p
(
ap e−i E pt − a†

−p ei E pt),
ȧ†(t) = i E p

(
a†

p e i E pt − a−p e−i E pt). (10.49)

It takes a short computation to verify that the only nonvanishing commutators among
a(t), a†(t), ȧ(t), and ȧ†(t) are[

a(t) , ȧ†(t)
]
=
[

a†(t) , ȧ(t)
]
= 2i E p . (10.50)

We can now show that these commutation relations imply the commutation relations that
we would naturally impose between the coordinates and their corresponding conjugate
momenta:

[ q1(t), p1(t) ] = [ q2(t), p2(t) ] = i . (10.51)

To do this, we can use equations (10.39) and (10.41) to solve for the coordinates and the
momenta:

q1(t) = 1

2
(a(t)+ a†(t)) , p1(t) = 1

2E p
(ȧ(t)+ ȧ†(t)) , (10.52)

q2(t) = 1

2i
(a(t)− a†(t)) , p2(t) = 1

2i E p
(ȧ(t)− ȧ†(t)) . (10.53)

We can now check that, for example,

[ q1(t), p1(t) ] = 1

4E p

[
a(t)+ a†(t) , ȧ(t)+ ȧ†(t)

]
= 1

4E p
(2i E p + 2i E p) = i ,

(10.54)
as expected. The other commutators can be checked similarly, thus confirming that the
postulated commutation relations (10.48) are correct.

Quick calculation 10.5 Check that [ q2(t), p2(t) ] = i and that [ q1(t), p2(t) ] = 0.

At the quantum level, the Hamiltonian (10.45) becomes the operator

H = E p

(
a†

pap + a†
−pa−p

)
, (10.55)
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describing a pair of simple harmonic oscillators, each of which has frequency E p. The
momentum (10.46) becomes the operator

�P = �p
(

a†
pap − a†

−pa−p

)
. (10.56)

Note that the oscillators with subscripts (−p) contribute with a negative sign to the
momentum. This equation will help our interpretation below.

The first two equations in (10.49) can be used back in (10.33) to obtain the operator
version of the field configuration:

φp(t, �x) = 1√
V

1√
2E p

(
ap e−i E pt+i �p·�x + a†

p ei E pt−i �p·�x)

+ 1√
V

1√
2E p

(
a−p e−i E pt−i �p·�x + a†

−p ei E pt+i �p·�x) .

(10.57)

We see that φp is in fact a spacetime dependent operator, or a field operator. The second
line in (10.57) is obtained from the first line by the replacement �p →−�p, which does not
affect E p. In full generality, the quantum field φ(x) includes contributions from all values
of the spatial momentum �p:

φ(t, �x) = 1√
V

∑
�p

1√
2E p

(
ap e−i E pt+i �p·�x + a†

p ei E pt−i �p·�x). (10.58)

The commutation relations for the oscillators are the natural generalization of those in
(10.48):

[ap , a†
k ] = δp,k , [ap , ak ] = [a†

p , a†
k ] = 0. (10.59)

All subscripts here are spatial vectors, written without the arrows to avoid cluttering the
equations. The Kronecker delta δp,k is zero unless �p = �k, in which case it equals one. Once
we consider contributions from all values of the momenta, the previous expression for the
Hamiltonian in (10.55) and that for the momentum operator in (10.56) must be changed.
One can show that

H =
∑
�p

E p a†
pap , (10.60)

�P =
∑
�p
�p a†

pap . (10.61)

We will not derive these expressions, but they should seem quite plausible.

The state space of this quantum system is built in the same way as the state space of the
simple harmonic oscillator. We assume the existence of a vacuum state |�〉, which acts just
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as the simple harmonic oscillator ground state |0〉 in that it is annihilated by the annihilation
operators ap: ap|�〉 = 0 for all �p. It follows that H |�〉 = 0, which makes the vacuum a
zero-energy state. This vacuum state is interpreted as a state in which there are no particles.
On the other hand, the state

a†
p |�〉 (10.62)

is interpreted as a state with precisely one particle. We claim that it is a particle with
momentum �p. To verify this, we act on the state with the momentum operator (10.61) and
use (10.59) to find

�Pa†
p |�〉 =

∑
�k
�ka†

k [ak , a†
p] |�〉 = �p a†

p |�〉 . (10.63)

The energy of the state is similarly computed by acting on the state with the Hamilto-
nian H :

Ha†
p |�〉 =

∑
�k

Ek a†
k [ak , a†

p] |�〉 = E p a†
p |�〉 . (10.64)

The state a†
p|�〉 has positive energy. While the quantum field operator has both positive and

negative energy components, the states that represent the particles have positive energy.
The states a†

p |�〉 are the one-particle states.
The state space contains multiparticle states as well. These are states built by acting on

the vacuum with a collection of creation operators:

a†
p1

a†
p2

. . . a†
pk
|�〉 . (10.65)

This state, with k creation operators acting on the vacuum, represents a state with k par-
ticles. The particles have momenta �p1, �p2, . . ., �pk and energies E p1 , E p2 , . . ., E pk . The
various momenta �pi need not be all different.

Quick calculation 10.6 Show that the eigenvalues of �P and H acting on (10.65) are∑k
n=1 �pn and

∑k
n=1 E pn , respectively.

Quick calculation 10.7 Convince yourself that N =∑
�p a†

pap is a number operator:
acting on a state it gives us the number of particles contained in the state.

Our analysis of classical solutions in the previous section led to the conclusion that there
is one degree of freedom per point on the mass-shell. At the quantum level, we focus
on the one-particle states. Consequently, we restrict ourselves to the physical part of the
mass-shell, the part where the energy is positive (p0 = E > 0). We have a single one-
particle state for each point on the physical mass-shell. This state is labeled by its spatial
momentum �p.

To describe the particle states in light-cone coordinates, the changes are minimal. The
physical part of the mass-shell is parameterized by the transverse momenta �pT and the
light-cone momenta p+ for which p+ > 0. The value of the light-cone energy p− is then
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fixed. Thus, instead of labeling the oscillators with �p, we simply label them with p+ and
�pT . The one-particle states are written as

One-particle states of a scalar field: a†
p+, pT

|�〉. (10.66)

The momentum operator given in (10.61) has a natural light-cone version. The various
components of the operator take the form

p̂+ =
∑

p+,pT

p+ a†
p+, pT

ap+, pT ,

p̂ I =
∑

p+,pT

pI a†
p+, pT

ap+, pT , (10.67)

p̂− =
∑

p+,pT

1

2p+
(

pI pI + m2
)

a†
p+, pT

ap+, pT .

In the last equation, the factor which multiplies the oscillators is the value of p− determined
from the mass-shell condition (10.32). This last equation is analogous to (10.60), where E p

is the energy determined from the mass-shell condition.

10.5 Maxwell fields and photon states

We now turn to an analysis of Maxwell fields and their corresponding quantum states. As
opposed to the case of the scalar field, where there is no gauge invariance, electromagnetic
fields have a gauge invariance that will make our analysis more subtle and interesting. In
order to study the field equations in a convenient way, we will impose the gauge condition
that defines the light-cone gauge. We will then be able to describe the quantum states of
the Maxwell field.

The field equations for electromagnetism are written in terms of the electromagnetic
vector potential Aμ(x). As we reviewed in Section 3.3, the field strength Fμν = ∂μ Aν −
∂ν Aμ is invariant under the gauge transformation

δAμ = ∂με , (10.68)

where ε is the gauge parameter. The field equations take the form

∂ν Fμν = 0 −→ ∂ν(∂
μ Aν − ∂ν Aμ) = 0 , (10.69)

and can be written as

∂2 Aμ − ∂μ(∂ · A) = 0 . (10.70)

Compare this equation with equation (10.14) for the scalar field. There is no indication
of a mass term for the Maxwell field – such a term would be recognized as one without
spacetime derivatives. We will confirm below that the Maxwell field is, indeed, massless.
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We Fourier transform all the components of the vector potential in order to determine
the equation of motion in momentum space:

Aμ(x) =
∫

d D p

(2π)D
eipx Aμ(p) , (10.71)

where reality of Aμ(x) implies Aμ(−p) = (Aμ(p))∗. Substituting (10.71) into (10.70) we
obtain the equation:

p2 Aμ − pμ(p · A) = 0 . (10.72)

The gauge transformation (10.68) can also be Fourier transformed. In momentum space,
the gauge transformation relates δAμ(p) to the Fourier transform ε(p) of the gauge
parameter:

δAμ(p) = i pμ ε(p) . (10.73)

Since the gauge parameter ε(x) is real, we have ε(−p) = ε∗(p). The gauge transformation
(10.73) is consistent with the reality of δAμ(x). Indeed,

(δAμ(p))∗ = −i pμ(ε(p))∗ = i(−pμ)ε(−p) = δAμ(−p) . (10.74)

Note the role of the factor of i in getting the signs to work out.

Being done with preliminaries, we can analyze (10.72) subject to the gauge transformations
(10.73). At this point, it is more convenient to work with the light-cone components of the
gauge field:

A+(p) , A−(p) , AI (p) . (10.75)

The gauge transformations (10.73) then read

δA+ = i p+ε , δA− = i p−ε , δAI = i pI ε . (10.76)

We now impose a gauge condition. As we have emphasized before, when working with the
light-cone formalism we always assume p+ 	= 0. The above gauge transformations now
make it clear that we can set A+ to zero by choosing ε correctly. Indeed, if we apply a
gauge transformation

A+ → A′+ = A+ + i p+ε , (10.77)

then the + component of the new gauge field A′ vanishes if we choose ε = i A+/p+. In
other words, we can always make the + component of the Maxwell field zero by applying
a gauge transformation. This will be our defining condition for the light-cone gauge in
Maxwell theory:

light-cone gauge condition : A+(p) = 0. (10.78)

Setting A+ to zero determines the gauge parameter ε, and no additional gauge transfor-
mations are possible: if A+ = 0, any further gauge transformation will make it nonzero.
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There is one minor exception: any parameter of the form ε(p) = ε(p−, pI )δ(p+) will
keep A+ = 0 because p+ε(p) = 0. The similarities with light-cone gauge string theory
are noteworthy. In light-cone gauge open string theory all world-sheet reparameteriza-
tion invariances are fixed. Moreover, while not equal to zero, X+ is very simple: the
corresponding zero mode and oscillators vanish.

The gauge condition (10.78) simplifies the equation of motion (10.72) considerably. Taking
μ = + we find

p+(p · A) = 0 −→ p · A = 0 . (10.79)

This equation can be expanded out using light-cone indices:

− p+A− − p−A+ + pI AI = 0 . (10.80)

Since A+ = 0, this equation determines A− in terms of the transverse AI :

A− = 1

p+
(pI AI ) . (10.81)

This is reminiscent of our light-cone analysis of the string, where X− was solved for in
terms of the transverse coordinates (and a zero mode). Using (10.79) back in (10.72), all
that remains from the field equation is

p2 Aμ(p) = 0 . (10.82)

For μ = + this equation is trivially satisfied, since A+ = 0. For μ = I we get a set of
nontrivial conditions:

p2 AI (p) = 0 . (10.83)

For μ = −, we get p2 A−(p) = 0. This is automatically satisfied on account of (10.81) and
(10.83).

For each value of I , equation (10.83) takes the form of the equation of motion for a
massless scalar. Thus, AI (p) = 0 when p2 	= 0. This makes A− = 0, and since A+ is zero,
the full gauge field vanishes. For p2 = 0, the AI (p) are unconstrained, and the A−(p) are
determined as a function of the AI (see (10.81)). The degrees of freedom of the Maxwell
field are thus carried by the (D − 2) transverse fields AI (p), for p2 = 0. We say that we
have (D − 2) degrees of freedom per point on the mass-shell.

It is actually possible to show that there are no degrees of freedom for p2 	= 0, without
having to make a choice of gauge. Although not every field is zero, every field is gauge
equivalent to the zero field when p2 	= 0. If a field differs from the zero field by only a
gauge transformation, we say that the field is pure gauge. Recall that fields Aμ and A′μ are
gauge equivalent if Aμ = A′μ + ∂μχ , for some scalar function χ . Taking A′μ = 0, we learn
that Aμ = ∂μχ is gauge equivalent to the zero field, and is therefore pure gauge. The term
pure gauge is suitable: Aμ takes the form of a gauge transformation. In momentum space,
a pure gauge is a field that can be written as

pure gauge: Aμ(p) = i pμχ(p) , (10.84)
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for some choice of χ . Rewrite now the equation of motion (10.72) as

p2 Aμ = pμ(p · A) . (10.85)

Since p2 	= 0, we can write

Aμ = i pμ

(−i p · A

p2

)
. (10.86)

Comparing with (10.84), we see that Aμ is pure gauge. This means that there are no degrees
of freedom in the Maxwell field when p2 	= 0. For all intents and purposes, there is no field.

Let us now discuss briefly photon states. Each of the independent classical fields AI can
be expanded as we did for the scalar field in (10.58). To do so, we introduce – as you
can infer by analogy – oscillators aI

p and aI †
p , where the subscripts p represent the values

of p+ and �pT . We thus get (D − 2) species of oscillators. Introducing a vacuum |�〉, the
one-photon states would be written as

aI †
p+, pT

|�〉 . (10.87)

Here the label I is a polarization label. The photon state (10.87) is said to be polarized in
the I th direction. Since we have (D − 2) possible polarizations, we have (D − 2) linearly
independent one-photon states for each point on the physical sector of the mass-shell.
A general one-photon state with momentum (p+, �pT ) is a linear superposition of the above
states:

one-photon states:
D−1∑
I=2

ξI a I †
p+, pT

|�〉. (10.88)

Here the transverse vector ξI is called the polarization vector.
In four-dimensional spacetime, Maxwell theory gives rise to D − 2 = 2 single-photon

states for any fixed spatial momentum. This is indeed familiar to you, at least classically.
An electromagnetic plane wave which propagates in a fixed direction and has some fixed
wavelength (i.e., fixed momentum), can be written as a superposition of two plane waves
that represent independent polarization states.

10.6 Gravitational fields and graviton states

Gravitation emerges in string theory in the language of Einstein’s theory of general relativ-
ity. We discussed this language briefly in Section 3.6. The dynamical field variable is the
spacetime metric gμν(x), which in the approximation of weak gravitational fields can be
taken to be of the form gμν(x) = ημν + hμν(x). Both gμν and hμν are symmetric under the
exchange of their indices. The field equations for gμν – Einstein’s equations – can be used
to derive a linearized equation of motion for the fluctuations hμν . This equation was given



210 Light-cone fields and particles
�

in (3.82). Defining hμν(p) to be the Fourier transform of hμν(x), the momentum-space
version of this equation is

Sμν(p) ≡ p2hμν − pα(pμhνα + pνhμα)+ pμ pνh = 0 . (10.89)

If we were considering Einstein’s equations in the presence of sources, the right-hand
side of this equation would include terms which represent the energy-momentum ten-
sor of the sources. In the above equation h = ημνhμν = hμ

μ, and indices on hμν can be
raised or lowered using the Minkowski metric ημν and its inverse ημν . Since every term in
(10.89) contains two derivatives, this suggests that the fluctuations hμν are associated with
massless excitations.

As we will see shortly, the equation of motion (10.89) is invariant under the gauge
transformations discussed in Section 3.6:

δ0hμν(p) = i pμεν(p)+ i pνεμ(p) . (10.90)

The infinitesimal gauge parameter εμ(p) is a vector. In gravitation, the gauge invariance
is reparameterization invariance: the choice of coordinate system used to parameterize
spacetime does not affect the physics.

Let us verify that (10.89) is invariant under the gauge transformation (10.90). First we
compute δ0h and find that

δ0h = ημνδ0hμν = iημν(pμεν + pνεμ) = 2i p · ε . (10.91)

The resulting variation in Sμν is therefore given by

δ0Sμν = i p2(pμεν + pνεμ)− i pα pμ(pνεα + pαεν)

− i pα pν(pμεα + pαεμ)+ 2i pμ pν p · ε. (10.92)

But we can rewrite

δ0Sμν = i p2(pμεν + pνεμ)− i pμ pν(p · ε)− i p2 pμεν

− i pμ pν(p · ε)− i p2 pνεμ + 2i pμ pν p · ε. (10.93)

It is readily seen that all the terms in (10.93) cancel, so δ0Sμν = 0. The equation of motion
exhibits the claimed gauge invariance.

Since the metric hμν is symmetric and has two indices, each running over (+,−, I ), we
have the following objects to consider:

(hI J , h+I , h−I , h+−, h++, h−−) . (10.94)

We shall try to set to zero all the fields in (10.94) that contain a + index. For this, we use
(10.90) to examine their gauge transformations:

δ0h++ = 2i p+ε+ , (10.95)

δ0h+− = i p+ε− + i p−ε+ , (10.96)

δ0h+I = i p+ε I + i pI ε+ . (10.97)
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As before, we assume p+ 	= 0. From (10.95), we see that a judicious choice of ε+ will
permit us to gauge away h++. This fixes our choice of ε+. Looking at equation (10.96),
we see that although we have fixed ε+, we can still find an ε− that will gauge away h+−.
This fixes ε−. Similarly, we can use (10.97) and a suitable choice of ε I to set h+I to zero.
We have used the full gauge freedom to set to zero all of the entries in hμν with + indices.
This defines the light-cone gauge for the gravity field:

light-cone gauge conditions : h++ = h+− = h+I = 0. (10.98)

The remaining degrees of freedom are carried by

(hI J , h−I , h−−) . (10.99)

We must now see what is implied by the equations of motion (10.89). Bearing in mind
the gauge conditions (10.98), when μ = ν = + we find

(p+)2h = 0 −→ h = 0 . (10.100)

More explicitly,

h = ημνhμν = −2h+− + hI I = 0 −→ hI I = 0 , (10.101)

since h+− = 0 in our gauge. The equation hI I = 0 means that the matrix hI J is traceless.
With h = 0, the equation of motion (10.89) reduces to

p2hμν − pμ(pαhνα)− pν(pαhμα) = 0 . (10.102)

Now set μ = +. We obtain p+(pαhνα) = 0, and as a result

pαhνα = 0 . (10.103)

If (10.103) holds, equation (10.102) reduces to

p2hμν = 0 . (10.104)

This is all that remains of the equation of motion! Before delving into this familiar equa-
tion, let us investigate the implications of (10.103). The only free index here is ν. For
ν = + the equation is trivial, since the h+α are zero in our gauge. Consider now ν = I .
This gives pαhIα = 0, which we can expand as

− p+hI− − p−hI+ + pJ hI J = 0 −→ hI− = 1

p+
pJ hI J . (10.105)

Similarly, with ν = − we get pαh−α = 0, which expands to

− p+h−− − p−h−+ + pI h−I = 0 −→ h−− = 1

p+
pI h−I . (10.106)

Equations (10.105) and (10.106) give us the h with − indices in terms of the transverse
hI J . There is no additional content to (10.103).
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We now return to equation (10.104). This equation holds trivially for any field with a +
index. The equation is nontrivial for transverse indices:

p2hI J (p) = 0 . (10.107)

Equations p2hI− = 0 and p2h−− = 0 are automatically satisfied on account of our
solutions (10.105) and (10.106), together with (10.107). Equation (10.107) implies that
hI J (p) = 0 for p2 	= 0, in which case all other components of hμν also vanish. For p2 = 0,
the hI J (p) are unconstrained, except for the tracelessness condition hI I (p) = 0. All other
components are determined in terms of the transverse components.

We conclude that the degrees of freedom of the classical D-dimensional gravitational
field are carried by a symmetric, traceless, transverse tensor field hI J , the components of
which satisfy the equation of motion of a massless scalar. This tensor has as many compo-
nents as a symmetric traceless square matrix of size (D − 2). The number of components
n(D) in this matrix is

n(D) = 1

2
(D − 2)(D − 1)− 1 = 1

2
D(D − 3) . (10.108)

Moreover, as before, we count a massless scalar as one degree of freedom per point on
the mass-shell. Therefore we say that a classical gravity wave has n(D) degrees of free-
dom per point on the mass-shell. In four-dimensional spacetime there are two transverse
directions, and a symmetric traceless 2 × 2 matrix has two independent components. In
four dimensions we thus have n(4) = 2 degrees of freedom. In five dimensions we have
n(5) = 5 degrees of freedom, in ten dimensions n(10) = 35 degrees of freedom, and in
twenty-six dimensions n(26) = 299 degrees of freedom. To obtain graviton states, each of
the independent classical fields hI J fields is expanded in terms of creation and annihilation
operators, just as we did for the scalar field in (10.58). To do so we need oscillators aI J

p+, pT

and aI J†
p+, pT

. We introduce a vacuum |�〉, and a basis of states

aI J †
p+, pT

|�〉 . (10.109)

A one-graviton state with momentum (p+, �pT ) is a linear superposition of the above states:

one-graviton states :
D−1∑

I,J=2

ξI J a I J †
p+, pT

|�〉 , ξI I = 0. (10.110)

Here ξI J is the graviton polarization tensor. The classical tracelessness condition that we
found earlier becomes in the quantum theory the tracelessness ξI I = 0 of the polarization
tensor. Since ξI J is a traceless symmetric matrix of size (D − 2), we have n(D) linearly
independent graviton states for each point on the physical mass-shell.
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Problems

Problem 10.1 Momentum for the classical scalar field.

Show that the integral (10.46), when evaluated for the field configuration (10.33) gives

�P = − i �p
2E p

(
ȧ∗a − a∗ȧ

)
.

Use (10.44) to show that �P = �p
(

a∗pap − a∗−pa−p

)
, as quoted in (10.47).

Problem 10.2 Commutator for the quantum scalar field.

(a) Consider a periodic function f (�x) on the box described above equation (10.34). Such
a function can be expanded as the Fourier series

f (�x) =
∑
�p

f ( �p) ei �p·�x . (1)

Show that

f ( �p) = 1

V

∫
d �x ′ f (�x ′)e−i �p·�x ′ . (2)

Plug (2) back into (1) to obtain an infinite sum representation for the d-dimensional
delta function δd(�x − �x ′).

(b) Consider the complete scalar field expansion in (10.58). Calculate the corresponding
expansion of �(t, �x) = ∂0φ(t, �x). Show that

[φ(t, �x) , �(t, �x ′) ] = i δd(�x − �x ′) . (3)

This is the equal-time commutator between the field operator and its corresponding
conjugate momentum. Most discussions of quantum field theory begin by postulating
this commutator.

Problem 10.3 Light-cone components of Lorentz tensors.†

(a) Verify that the Lorentz covariant equation Aμ = Bμ, for μ = 0, 1, . . ., d, implies that
A+ = B+, A− = B−, and AI = B I .

Given a Lorentz tensor Rμν , how do we define the light-cone components
R+−, R++, . . .? To find out, note that the definition must work for any tensor, so it must
work when Rμν = AμBν . Thus, for example, R+− = A+B−, and writing A+ and B− in
terms of Lorentz components, you can determine R+− in terms of R00, R01, R10, and R11.

(b) Calculate R++, R+−, R−+, and R−− in terms of the Lorentz components of Rμν .
Explain why an equality Rμν = Sμν between Lorentz tensors implies the equality of
the light-cone components.

(c) Check that your result in (b) gives the expected answers for the light-cone components
of the Minkowski metric: η++, η+−, η−+, and η−−.
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(d) Consider the antisymmetric electromagnetic field strength Fμν in four dimensions.
Calculate the light-cone components F+−, F+I , F−I , and F I J in terms of the Lorentz
components of Fμν . Rewrite your answers in terms of �E and �B fields.

Problem 10.4 Constant electric field in light-cone gauge.

Find potentials that describe a uniform constant electric field �E = E0�ex in the light-
cone gauge (A+ = (A0 + A1)/

√
2 = 0). Write A− and AI in terms of the light-cone

coordinates x+, x−, and x I .

Problem 10.5 Gravitational fields that are pure gauge.

Following the discussion of Maxwell fields that are pure gauge, define gravitational fields
that are pure gauge. Prove that any gravitational field hμν(p) which satisfies the equations
of motion is pure gauge when p2 	= 0.

Problem 10.6 Field equations and particle states for the Kalb–Ramond field Bμν .†

Here we examine the field theory of a massless antisymmetric tensor gauge field
Bμν =− Bνμ. This gauge field is a tensor analog of the Maxwell gauge field Aμ. In
Maxwell theory we defined the field strength Fμν = ∂μ Aν − ∂ν Aμ. For Bμν we define
a field strength Hμνρ :

Hμνρ ≡ ∂μBνρ + ∂ν Bρμ + ∂ρ Bμν .

(a) Show that Hμνρ is totally antisymmetric. Prove that Hμνρ is invariant under the gauge
transformations

δBμν = ∂μεν − ∂νεμ .

(b) The above gauge transformations are peculiar: the gauge parameters themselves have
a gauge invariance! Show that ε′μ given as

ε′μ = εμ + ∂μλ ,

generates the same gauge transformations as εμ.

(c) Use light-cone coordinates and momentum space to argue that ε+(p) can be set to zero
for a suitable choice of λ(p). Thus, the effective gauge symmetry of the Kalb–Ramond
field is generated by the gauge parameters ε I (p) and ε−(p).

(d) Consider the spacetime action principle

S ∼
∫

d Dx
(
−1

6
Hμνρ Hμνρ

)
.

Find the field equation for Bμν , and write it in momentum space.

(e) What are the suitable light-cone gauge conditions for Bμν? Bearing in mind the
results of part (c), show that these gauge conditions can be implemented using the
gauge invariance. Analyze the equations of motion, show that p2 Bμν = 0, and find
the components of Bμν which represent truly independent degrees of freedom.
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(f) Argue that the one-particle states of the Kalb–Ramond field are

D−1∑
I,J=2

ζI J a I J†
p+, pT

|�〉 . (1)

What kind of matrix is ζI J ?

Problem 10.7 Massive vector field.†

The purpose of this problem is to understand the massive version of Maxwell fields. We
will see that in D-dimensional spacetime a massive vector field has (D − 1) degrees of
freedom.

Consider the action S = ∫
d Dx L with

L = −1

4
Fμν Fμν − 1

2
m2 Aμ Aμ − 1

2
∂μφ ∂μφ + m Aμ ∂μφ .

The first term in L is the familiar one for the Maxwell field. The second looks like a mass
term for the Maxwell field, but alone would not suffice. The extra terms show the real
scalar field φ that, as we shall see, is eaten to give the gauge field a mass.

(a) Show that the Lagrangian L is invariant under the infinitesimal gauge transformation

δAμ = ∂με , δφ = . . .,

where the dots denote an expression that you must determine. While the gauge field
has the familiar Maxwell gauge transformation, it is unusual to have a real scalar field
with a gauge transformation.

(b) Vary the action and write down the field equations for Aμ and for φ.
(c) Argue that the gauge transformations allow us to set φ = 0. Since the field φ disappears

from sight, we say it is eaten. What do the field equations in part (b) simplify into?
(d) Write the simplified equations in momentum space and show that for p2 	= −m2 there

are no nontrivial solutions, while for p2 = −m2 the solution implies that there are D −
1 degrees of freedom. (It may be useful to use a Lorentz transformation to represent
the vector pμ which satisfies p2 = −m2 as a vector that has a component only in one
direction.)
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To prepare ourselves for quantizing the string, we study the light-cone gauge
quantization of the relativistic point particle. We set up the quantum theory by
requiring that the Heisenberg operators satisfy the classical equations of motion.
We show that the quantum states of the relativistic point particle coincide with
the one-particle states of the quantum scalar field. Moreover, the Schrödinger
equation for the particle wavefunctions coincides with the classical scalar field
equations. Finally, we set up light-cone gauge Lorentz generators.

11.1 Light-cone point particle

In this section we study the classical relativistic point particle using the light-cone gauge.
This is, in fact, a much easier task than the one we faced in Chapter 9, where we examined
the classical relativistic string in the light-cone gauge. Our present discussion will allow
us to face the complications of quantization in the simpler context of the particle. Many of
the ideas needed to quantize the string are also needed to quantize the point particle.

The action for the relativistic point particle was studied in Chapter 5. Let us begin our
analysis with the expression given in equation (5.15), where an arbitrary parameter τ is
used to parameterize the motion of the particle:

S = −m
∫ τ f

τi

√
−ημν

dxμ

dτ

dxν

dτ
dτ . (11.1)

In writing the above action, we have set c = 1. We will also set h̄ = 1 when appropriate.
Finally, the parameter τ will be dimensionless, just as it was chosen to be for the relativistic
string starting in Chapter 9. We can simplify our notation by writing

ημν

dxμ

dτ

dxν

dτ
= ημν ẋμ ẋν = ẋ2 . (11.2)

Thinking of τ as a time variable and of the xμ(τ) as coordinates, the action S defines a
Lagrangian L as

S =
∫ τ f

τi

L dτ , L = −m
√
−ẋ2 . (11.3)
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As usual, the momentum is obtained by differentiating the Lagrangian with respect to the
velocity:

pμ = ∂L

∂ ẋμ
= mẋμ√−ẋ2

. (11.4)

The Euler–Lagrange equations which arise from the Lagrangian are

dpμ

dτ
= 0 . (11.5)

All components of the momentum are constants of the motion. Given (11.4) one readily
checks that the momentum components satisfy the constraint

p2 + m2 = 0 . (11.6)

To define the light-cone gauge for the particle, we set the coordinate x+ of the particle
proportional to τ :

light-cone gauge condition: x+ = 1

m2
p+τ . (11.7)

The factor of m2 on the right-hand side is needed to get the units to work. Now consider
the + component of equation (11.4):

p+ = m√−ẋ2
ẋ+ = 1√−ẋ2

p+

m
. (11.8)

Cancelling the common factor of p+, and squaring, we find

ẋ2 = − 1

m2
. (11.9)

This result helps us simplify the expression (11.4) for the momentum:

pμ = m2 ẋμ . (11.10)

The appearance of m2, as opposed to m, is due to our choice of unitless τ . The equation of
motion (11.5) then gives

ẍμ = 0 . (11.11)

Expanding the constraint (11.6) in light-cone components,

− 2p+ p− + pI pI + m2 = 0 −→ p− = 1

2p+
(pI pI + m2) . (11.12)

The value of p− is determined by p+ and the components pI of the transverse momentum
�pT . Having solved for p−, equation (11.10) gives

dx−

dτ
= 1

m2
p− , (11.13)
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which is integrated to find

x−(τ ) = x−0 + p−

m2
τ , (11.14)

where x−0 is a constant of integration. Equation (11.10) also gives dx I /dτ = pI /m2,
which is integrated to give

x I (τ ) = x I
0 +

pI

m2
τ , (11.15)

where x I
0 is a constant of integration. Note that the light-cone gauge condition (11.7)

implies that x+(τ ) has no constant piece x+0 .

The specification of the motion of the point particle is now complete. Equation (11.12)
tells us that the momentum is completely determined once we fix p+ and the components
pI of the transverse momentum �pT . The motion in the x− direction is determined by
(11.14), once we fix the value of x−0 . The transverse motion is determined by the x I (τ ), or
the x I

0 , since we presume to know the pI . For a symmetric treatment of coordinates versus
momenta in the quantum theory, we choose the x I as dynamical variables. Our independent
dynamical variables for the point particle are therefore

Dynamical variables:
(

x I , x−0 , pI , p+
)

. (11.16)

11.2 Heisenberg and Schrödinger pictures

Traditionally, there are two main approaches to the understanding of time evolution in
quantum mechanics. In the Schrödinger picture, the state of a system evolves in time,
while operators remain unchanged. In the Heisenberg picture, it is the operators which
evolve in time, while the state remains unchanged. Of the two, the Heisenberg picture is
more closely related to classical mechanics, where the dynamical variables (which become
operators in quantum mechanics) evolve in time. Both the Schrödinger and the Heisenberg
pictures will be useful in developing the quantum theories of the relativistic point particle
and the relativistic string. Because we would like to exploit our understanding of classical
dynamics in developing the quantum theories, we will begin by focusing on the Heisenberg
picture.

Both the Heisenberg and the Schrödinger picture make use of the same state space.
Whereas in the Heisenberg picture the state which represents a particular physical sys-
tem is fixed in time, in the Schrödinger picture the state of a system is constantly changing
direction in the state space in a manner which is determined by the Schrödinger equation.
Although we generally think of the operators in the Schrödinger picture as being time inde-
pendent, there are those which depend explicitly on time and therefore have time depen-
dence. These operators are formed from time-independent operators and the variable t .
For example, the position and momentum operators q and p are time independent. But
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the operator O = q + p t has explicit time dependence. If it has explicit time dependence,
even the Hamiltonian H(p, q; t) can be a time-dependent operator.

Now, as we move from the Schrödinger to the Heisenberg picture, we will encounter oper-
ators with two types of time dependence. As we noted earlier, Heisenberg operators have
time dependence, but this time dependence can be both implicit and explicit. The Heisen-
berg equivalent of a time-independent Schrödinger operator is said to have implicit time
dependence. This implicit time dependence is due to our folding into the operators the
time dependence which, in the Schrödinger picture, is present in the state. If a Heisenberg
operator is explicitly time dependent it is because the explicit time dependence of the cor-
responding Schrödinger operator has been carried over.

When we pass from the Schrödinger to the Heisenberg picture, the time-independent
Schrödinger operators q and p, for example, become q(t) and p(t), respectively. The
Schrödinger commutator [q, p] = i turns into the commutator

[ q(t) , p(t) ] = i . (11.17)

Although q(t) and p(t) depend on time, their time dependence is implicit. If ξ(t) is
a Heisenberg operator arising from a time-independent Schrödinger operator, the time
evolution of ξ(t) is governed by

i
dξ(t)

dt
=
[
ξ(t) , H(p(t), q(t); t)

]
. (11.18)

Here H(p(t), q(t); t) is the Heisenberg Hamiltonian corresponding to the possibly time-
dependent Schrödinger Hamiltonian H(p, q; t).

If O(t) is the Heisenberg operator which corresponds to an explicitly time-dependent
Schrödinger operator, then the time evolution of O(t) is given by

i
dO(t)

dt
= i

∂O
∂t

+
[
O(t) , H(p(t), q(t); t)

]
. (11.19)

This equation reduces to (11.18) when the operator has no explicit time dependence. If the
Hamiltonian H(p(t), q(t)) has no explicit time dependence, then we can use (11.18) with
ξ = H , to find

d

dt
H(p(t), q(t)) = 0 . (11.20)

In this case the Hamiltonian is a constant of the motion.

The discussion above must be supplemented by rules to pass from Schrödinger to Heisen-
berg operators. Assume that the Schrödinger Hamiltonian H(p, q) is time independent. In
this case a state |�〉 at time t = 0 evolves in time, and is given at time t by

|�, t〉 = e−i Ht |�〉 . (11.21)
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Quick calculation 11.1 Confirm that |�, t〉 satisfies the Schrödinger equation

i
d

dt
|�, t〉 = H |�, t〉 . (11.22)

It is clear from (11.21) that the operator ei Ht brings time-dependent states to rest:

ei Ht |�, t〉 = |�〉 . (11.23)

If we act with this operator on the product α|�, t〉, where α is a Schrödinger operator, we
find

ei Htα|�, t〉 = ei Ht α e−i Ht |�〉 ≡ α(t)|�〉 , (11.24)

where α(t) = ei Htα e−i Ht is the Heisenberg operator corresponding to the Schrödinger
operator α. This definition also applies for a Schrödinger operator αS(t) that has explicit
time dependence, in which case the corresponding Heisenberg operator is αH(t) =
ei HtαS(t) e−i Ht . The construction ensures that given a set of Schrödinger operators that
satisfy certain commutation relations, the corresponding Heisenberg operators satisfy the
same commutation relations.

Quick calculation 11.2 If [α1, α2] = α3 holds for Schrödinger operators α1, α2, and α3,
show that [α1(t), α2(t)] = α3(t) holds for the corresponding Heisenberg operators.

This result holds even if the Hamiltonian is time dependent (Problem 11.2). It justifies the
commutator in (11.17), noting that the constant right-hand side is not affected by the rule
turning a Schrödinger operator into a Heisenberg operator.

11.3 Quantization of the point particle

We now develop a quantum theory from the classical theory of the relativistic point particle.
We will define the relevant Schrödinger and Heisenberg operators, including the Hamilto-
nian, and describe the state space. All of this will be done in the light-cone gauge.

Our first step is to choose a set of time-independent Schrödinger operators. A reasonable
choice is provided by the dynamical variables in (11.16):

time-independent Schrödinger operators :
(

x I , x−0 , pI , p+
)

. (11.25)

We could include hats to distinguish the operators from their eigenvalues, but this will not
be necessary in most cases. We parameterize the trajectory of a point particle using τ , so
the associated Heisenberg operators are:
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Heisenberg operators :
(

x I (τ ), x−0 (τ ) , pI (τ ) , p+(τ )
)

. (11.26)

We postulate the following commutation relations for the Schrödinger operators:

[ x I , pJ ] = i ηI J , [ x−0 , p+] = i η−+ = −i , (11.27)

with all other commutators set equal to zero. The first commutator is the familiar commuta-
tor of spatial coordinates with the corresponding spatial momenta (recall that ηI J = δ I J ).
The second commutator is well motivated, after all, x−0 is treated as a spatial coordinate
in the light-cone, and p+ is the corresponding conjugate momentum. The second com-
mutator, just like the first one, has an η carrying the indices of the coordinate and the
momentum.

The Heisenberg operators, as explained earlier, satisfy the same commutation relations
as the Schrödinger operators:

[ x I (τ ), pJ (τ )] = i ηI J , [ x−0 (τ ), p+(τ )] = −i , (11.28)

with all other commutators set equal to zero.

We have discussed the operators that correspond to the independent observables of the clas-
sical theory. But just as there are classical observables which depend on those independent
ones, there are also quantum operators which are constructed from the set of independent
Schrödinger operators, and time. These additional operators are x+(τ ), x−(τ ) and p−.
These operators are defined using the quantum analogs of equations (11.7), (11.14), and
(11.12):

x+(τ ) ≡ p+

m2
τ , (11.29)

x−(τ ) ≡ x−0 + p−

m2
τ , (11.30)

p− ≡ 1

2p+
(

pI pI + m2
)

. (11.31)

Note that p− is time independent. Both x+(τ ) and x−(τ ) are time-dependent Schrödinger
operators.

The commutation relations involving the operators x+(τ ), x−(τ ), and p− are deter-
mined by the postulated commutation relations in (11.27), along with the defining
equations (11.29)–(11.31). The decision to choose the operators in (11.25) as the indepen-
dent operators of our quantum theory was very significant. For example, if we had chosen
x+ and p− to be independent operators, we might have been led to write a commutation
relation [x+, p−] = −i . In our present framework, however, this quantity vanishes, since
[ p+, pI ] = 0.



222 The relativistic quantum point particle
�

We have not yet determined the Hamiltonian H . Since p− is the light-cone energy (see
(2.94)), we expect it to generate x+ evolution:

∂

∂x+
←→ p− . (11.32)

Although x+ is light-cone time, we are parameterizing our operators with τ , so we expect
H to generate τ evolution, which is related, but is not the same as x+ evolution. Since
x+ = p+τ/m2, we can anticipate that τ evolution will be generated by

∂

∂τ
= p+

m2

∂

∂x+
←→ p+

m2
p−. (11.33)

We therefore postulate the Heisenberg Hamiltonian

H(τ ) = p+(τ )

m2
p−(τ ) = 1

2m2

(
pI (τ )pI (τ )+ m2

)
. (11.34)

Note that H(τ ) has no explicit time dependence. Equation (11.20) applies, and as a result,
the Hamiltonian is actually time independent.

Let us now make sure that this Hamiltonian generates the expected equations of motion.
First we check that H gives the correct time evolution of the Heisenberg operators (11.26)
which arise from the time-independent Schrödinger operators. The equation governing the
time evolution of those operators is (11.18). Let us begin with p+ and pI :

i
dp+(τ )

dτ
= [

p+(τ ) , H(τ )
] = 0,

i
dpI (τ )

dτ
=
[

pI (τ ) , H(τ )
]
= 0. (11.35)

Both of these commutators vanish because H is a function of pI (τ ) alone, and all the
momenta commute. Equations (11.35) are good news, because the classical momenta p+
and pI are constants of the motion. This allows us to write pI (τ ) = pI and p+(τ ) = p+.
We now test the τ development of the Heisenberg operator x I (τ ):

i
dx I (τ )

dτ
=
[

x I (τ ) ,
1

2m2

(
pJ pJ + m2

)]
= i

pI

m2
. (11.36)

Here, we have used [x I , pJ pJ ] = [x I , pJ ]pJ + pJ [x I , pJ ] = 2i pI . Cancelling the
common factor of i in (11.36), we find

dx I (τ )

dτ
= pI

m2
. (11.37)

This result is in accord with our classical expectations and allows us to write

x I (τ ) = x I
0 +

pI

m2
τ , (11.38)
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where x I
0 is an operator without any time dependence. Finally, we must examine x−0 (τ ).

Since x−0 (τ ) commutes with pI (τ ),

i
dx−0 (τ )

dτ
=
[

x−0 (τ ) ,
1

2m2

(
pI pI + m2

)]
= 0 . (11.39)

As expected, this operator is a constant of the motion, and we can write x−0 (τ ) = x−0 . So
as far as the operators in (11.25) are concerned, our ansatz for H functions properly as a
Hamiltonian.

We now turn to the remaining operators x+(τ ), x−(τ ), and p−(τ ). Of these, p−(τ ) is
a function of the pI only and is therefore time independent. It is easy to to see that the
commutator with H vanishes, so we have nothing left to check for this operator. The
Heisenberg operators x+(τ ) and x−(τ ) both arise from Schrödinger operators with explicit
time dependence, so we use (11.19) to calculate their time evolution. For example:

i
dx−(τ )

dτ
= i

∂x−

∂τ
+ [

x−(τ ) , H(τ )
]

. (11.40)

Since x−(τ ) ≡ x−0 + p−τ/m2 and both x−0 and p− commute with the pI , we see that
[x−(τ ), H(τ )] = 0. Consequently,

dx−(τ )

dτ
= p−

m2
, (11.41)

which is the expected result. Similarly, since x+(τ ) = p+τ/m2, we find that
[x+(τ ), H(τ )] = 0, and therefore

dx+(τ )

dτ
= ∂x+

∂τ
= p+

m2
. (11.42)

These computations show that our ansatz (11.34) for the Hamiltonian generates the
expected equations of operator evolution.

Quick calculation 11.3 We introduced x I
0 in (11.38) as a constant operator. Show that

dx I
0 /dτ must be calculated by viewing x I

0 as the explicitly time-dependent Heisenberg
operator defined by (11.38).

To complete our construction of the point particle quantum theory we must develop
the state space, set up the Schrödinger equation, and define physical states. The time-
independent states of the quantum theory are labeled by the eigenvalues of a maximal set
of commuting operators. For the set of operators introduced in (11.25), a maximal com-
muting subset can include only one element from the pair (x−, p+), and one element from
each of the pairs (x I , pI ). Because it is usually convenient to work in momentum space,
we will work with the operators p+ and pI . So we write the states as

states of the quantum point particle: |p+, �pT 〉 , (11.43)
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where p+ is the eigenvalue of the p+ operator, and �pT is the transverse momentum, the
components of which are the eigenvalues of the pI operators:

p̂+|p+, �pT 〉 = p+|p+, �pT 〉 , p̂ I |p+, �pT 〉 = pI |p+, �pT 〉 . (11.44)

In light of (11.31), these equations imply

p̂−|p+, �pT 〉 = 1

2p+
(

pI pI + m2
)
|p+, �pT 〉 . (11.45)

In addition, the Hamiltonian (11.34) acting on the states gives

H |p+, �pT 〉 = 1

2m2

(
pI pI + m2

)
|p+, �pT 〉 . (11.46)

It then follows that the time-dependent states

exp
(
−i

1

2m2

(
pI pI + m2) τ) |p+, �pT 〉 (11.47)

satisfy the Schrödinger equation. They are the physical time-dependent states associated
with the states in (11.43).

More generally, we consider time-dependent superpositions of the basis states in (11.43):

|�, τ 〉 =
∫

dp+d �pT ψ(τ, p+, �pT ) |p+, �pT 〉 . (11.48)

Since p+ and �pT are continuous variables, an integral is necessary. To produce a general τ -
dependent superposition, we introduced the arbitrary function ψ(τ, p+, �pT ). In fact, this
function is the momentum-space wavefunction associated with the state |�, τ 〉. Indeed,
with dual bras 〈p+, �pT | defined to satisfy

〈p′+, �p ′T | p+, �pT 〉 = δ(p′+ − p+) δ ( �p ′T − �pT ) , (11.49)

we see that

〈p+, �pT |�, τ 〉 = ψ(τ, p+, �pT ) . (11.50)

The Schrödinger equation for the state |�, τ 〉 is

i
∂

∂τ
|�, τ 〉 = H |�, τ 〉 . (11.51)

Using the state in (11.48) and the Hamiltonian in (11.34), we find∫
dp+d �pT

[
i

∂

∂τ
ψ(τ, p+, �pT )− 1

2m2

(
pI pI + m2

)
ψ(τ, p+, �pT )

]
|p+, �pT 〉 = 0 .

(11.52)
Since the basis vectors |p+, �pT 〉 are all linearly independent, the expression within
brackets must vanish for all values of the momenta:

i
∂

∂τ
ψ (τ, p+, �pT ) = 1

2m2

(
pI pI + m2

)
ψ(τ, p+, �pT ) . (11.53)

We recognize this equation as a Schrödinger equation for the momentum-space wavefunc-
tion ψ(τ, p+, �pT ). If the wavefunction satisfies the Schrödinger equation, the state |�, τ 〉
is a physical time-dependent state. This completes our development of the point particle
quantum theory.
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11.4 Quantum particle and scalar particles

The states of the quantum point particle given in (11.43) may remind you of the one-particle
states (10.66) in the quantum theory of the scalar field. This is actually a fundamental
correspondence.

There is a natural identification of the quantum states of a relativistic point
particle of mass m with the one-particle states of the quantum theory of a
scalar field of mass m:

|p+, �pT 〉 ←→ a†
p+, pT

|�〉. (11.54)

The identification is possible because the labels of the point particle states match with the
labels of the creation operators which generate the one-particle states of the scalar quan-
tum field theory. The correspondence between the quantum point particle and the quantum
scalar field theory can be extended from the state space to the operators that act on the state
space. The quantum point particle theory has operators p+, pI , and p−, and so does the
quantum field theory, as shown in (10.67). If we identify the state spaces using (11.54),
then the two sets of operators give the same eigenvalues. This makes the identification
natural.

The above observations lead us to conclude that the states of the quantum point particle and
the one-particle states of the scalar field theory are indistinguishable. Because it contains
creation operators that can act multiple times on the vacuum state, the scalar field theory
has multiparticle states that did not arise in our quantization of the point particle. Indeed,
there are no creation operators in the theory of the quantum point particle. Because it pro-
vides a natural description of multiparticle states, the scalar field theory can be said to be a
more complete theory.

How could we have anticipated that the one-particle states of a quantum scalar field theory
would match those of the quantum point particle? The answer is quite interesting: the
Schrödinger equation for the quantum point particle wavefunctions has the form of the
classical field equation for the scalar field. More precisely:

There is a canonical correspondence between the quantum point particle wave-
functions and the classical scalar field, such that the Schrödinger equation for
the quantum point particle wavefunctions becomes the classical field equation
for the scalar field.

One element of this correspondence is the classical field equation for the scalar field. In
light-cone gauge, this equation takes the form (10.31):(

i
∂

∂τ
− 1

2m2
(pI pI + m2)

)
φ(τ, p+, �pT ) = 0 . (11.55)
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This differential equation is first order in τ . The other element in the correspondence is
this Schrödinger equation (11.53). The two equations are identical once we identify the
wavefunction ψ(τ, p+, �pT ) and the scalar field φ(τ, p+, �pT ):

ψ(τ, p+, �pT ) ←→ φ(τ, p+, �pT ) . (11.56)

This is the claimed correspondence.

The quantization of the point particle is an example of first quantization. In first quan-
tization, the coordinates and momenta of classical mechanics are turned into quantum
operators and a state space is constructed. Generically, the result is a set of one-particle
states. Second quantization refers to the quantization of a classical field theory, the result
of which is a quantum field theory with field operators and multiparticle states. Our analysis
allows us to see how second quantization follows after first quantization. A first quantiza-
tion of the classical point particle mechanics gives one-particle states. We then reinterpret
the Schrödinger equation for the associated wavefunctions as the classical field equation
for a scalar field. A second quantization, this time of the classical field theory, gives us the
set of multiparticle states.

So far we have only quantized the free relativistic point particle. All quantum states, includ-
ing the multiparticle ones obtained by second quantization, represent free particles. How
do we get interactions between the particles? Such processes are included in the scalar field
theory by adding interaction terms to the action. All the terms that we have included so far
are quadratic in the fields. The interaction terms include three or more fields. Since the
quantum point particle state space does not include multiparticle states, the description of
interactions in the language of first quantization is not straightforward. On the other hand,
in the framework of quantum field theory interactions are dealt with very naturally.

11.5 Light-cone momentum operators

Since the point particle Lagrangian L in (11.3) depends only on τ derivatives of the
coordinates, it is invariant under the translations

δxμ(τ) = εμ , (11.57)

with εμ constant. The conserved charge associated with this symmetry transformation is
the momentum pμ of the particle. This follows from (8.16) and (11.4).

What happens to conserved charges in the quantum theory? They become quantum opera-
tors with a remarkable property: they generate, via commutation, a quantum version of the
symmetry transformation that gave rise to them classically!

This property is most apparent if we use a framework where the manifest Lorentz invari-
ance of the classical theory is preserved in the quantization. This is not the framework we
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have used to quantize the point particle. In light-cone gauge quantization, the x0 and x1

coordinates of the particle are afforded special treatment. This hides the Lorentz invariance
of the theory from plain view. We will not discuss fully the Lorentz covariant quantization
of the point particle. A few remarks will suffice for our present purposes. The covariant
quantization of the string is discussed in some detail in Chapter 24.

In the Lorentz covariant quantization of the point particle, we have Heisenberg operators
xμ(τ) and pμ(τ). Note that even the time coordinate x0(τ ) becomes an operator! The
commutation relations are

[ xμ(τ), pν(τ )] = i ημν , (11.58)

as well as
[ xμ(τ), xν(τ )] = 0 and [ pμ(τ), pν(τ )] = 0 . (11.59)

Equation (11.58) is reasonable. The indices match, which ensures consistency with Lorentz
covariance. Moreover, when μ and ν take spatial values, the commutation relations are the
familiar ones. We already know that (11.58) is not consistent with the light-cone gauge
commutators of Section 11.3. We saw there that [x+(τ ), p−(τ )] = 0, while (11.58) would
predict a nonzero result. An equality of two objects which carry Lorentz indices applies
when the indices run over the light-cone values +,−, and I . The equation Rμν = Sμν ,
gives, for example, R+− = S+− (Problem 10.3). As a result, equation (11.58) indeed
gives [x+(τ ), p−(τ )] = iη+− = −i . Let us now check that the operator pμ(τ) generates
translations. More precisely, we check that iερ pρ(τ ) generates the translation (11.57):

δxμ(τ) = [
iερ pρ(τ ) , xμ(τ)

] = iερ (−iηρμ) = εμ . (11.60)

This is an elegant result, but it is by no means clear that it carries over to our light-cone
gauge quantization. We must find out whether the light-cone gauge momentum operators
generate translations.

For this purpose, we expand the generator iερ pρ(τ ) in light-cone components:

iερ pρ(τ ) = −iε− p+ − iε+ p− + iε I pI . (11.61)

We have dropped the τ arguments from the momenta because they are τ -independent. Note
that here, p− is given by (11.31). Let us test (11.60) with ε I 	= 0, and ε+ = ε− = 0:

δxμ(τ) = iε I [ pI , xμ(τ) ] . (11.62)

We would expect that δx J (τ ) = ε J and that δx+(τ ) = δx−(τ ) = 0. All these expectations
are realized. Choosing μ = J , and using the commutator (11.28) we find δx J (τ ) = ε J . To
compute the action on x+(τ ) and x−(τ ), we must use their definitions:

x+(τ ) = p+

m2
τ , x−(τ ) = x−0 + p−

m2
τ . (11.63)

Recalling that pI commutes with all momenta and with x−0 , we confirm that δx+(τ ) =
δx−(τ ) = 0.

Quick calculation 11.4 Test (11.60) with ε− 	= 0 and ε+ = ε I = 0. To do this compute
δxμ(τ) = −iε−[ p+ , xμ(τ) ]. Confirm that δx−(τ ) = ε− and that all other coordinates
are not changed.
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It remains to see whether p− generates the expected translations. Since p− is a nontrivial
function of other momenta, there is some scope for complications! This time we consider
the transformations that are generated using (11.60) with ε+ 	= 0 and ε− = ε I = 0:

δxμ(τ) = −iε+[ p− , xμ(τ) ] . (11.64)

The naive expectation δx+(τ ) = ε+ is not realized: choosing μ = + and using (11.63) we
see that

δx+(τ ) = −iε+
[

p− , p+ τ

m2

]
= 0 . (11.65)

Not only is x+(τ ) left unchanged, but the other components, which naively should be left
unchanged, are not:

δx I (τ ) = −iε+
[

p−, x I (τ )
]
= −iε+ 1

2p+
(−2i pI ) = −ε+ pI

p+
, (11.66)

δx−(τ ) = −iε+
[

p−, x−0 + p−

m2
τ
]
= −iε+[ p−, x−0 ] = −ε+ p−

p+
. (11.67)

In these calculations only one step requires some explanation. How do we find [ p−, x−0 ] ?
The only reason p− does not commute with x−0 is that p− depends on p+. In fact, what
we need to know is the commutator [x−0 , 1/p+]. This can be found as follows:[

x−0 ,
1

p+
]
= x−0

1

p+
− 1

p+
x−0 = 1

p+
p+x−0

1

p+
− 1

p+
x−0 p+ 1

p+

= 1

p+
[ p+ , x−0 ] 1

p+
= i

p+2
. (11.68)

Quick calculation 11.5 Use (11.68) to show that

[ x−0 , p− ] = i
p−

p+
. (11.69)

Equations (11.65), (11.66), and (11.67) show that p− does not generate the expected trans-
formations. What happened? It turns out that p− actually generates both a translation and
a reparameterization of the world-line of the particle. We know that the particle action
is invariant under changes of parameterization τ → τ ′(τ ). When we described symme-
tries in Chapter 8, however, we exhibited them as changes in the dynamical variables
of the system. A change in parameterization can also be described in that way. Writing
τ → τ ′ = τ + λ(τ), with λ infinitesimal, we note that the plausible change

xμ(τ) −→ xμ(τ + λ(τ)) = xμ(τ)+ λ(τ)∂τ xμ(τ) , (11.70)

leads us to write

δxμ(τ) = λ(τ)∂τ xμ(τ) . (11.71)

We claim that these are symmetries of the point particle theory. Actually, the variation
(11.71) does not leave the point particle Lagrangian invariant. The Lagrangian changes
into a total τ derivative (Problem 11.4), but this, in fact, suffices to have a symmetry (see
Problem 8.9).
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Let us now show that p− generates a translation plus a reparameterization. The expected
translation was δx+ = ε+. On the other hand, from (11.71), a reparameterization of
x+ gives δx+ = λ∂τ x+. Bearing in mind (11.65), the expected translation plus the
reparameterization give zero variation, so,

0 = ε+ + λ∂τ x+(τ ) = ε+ + λ
p+

m2
−→ λ = −m2

p+
ε+ . (11.72)

The reparameterization parameter λ turns out to be a constant. We can now use this result to
“explain” the transformations (11.66) and (11.67) that p− generates on x I and on x−. For
these coordinates there is no translation, but the reparameterization still applies. Therefore,

δx I (τ ) = λ ∂τ x I (τ ) = −m2

p+
ε+ pI

m2
= −ε+ pI

p+
, (11.73)

δx−(τ ) = λ ∂τ x−(τ ) = −m2

p+
ε+ p−

m2
= −ε+ p−

p+
, (11.74)

in perfect agreement with the transformations generated by p−. We can also understand
why p− does not change x+. If x+ had been changed by a constant ε+, the new x+ coor-
dinate would not satisfy the light-cone gauge condition whereby x+ is just proportional
to τ . In fact, p− generates a translation plus the compensating transformation needed to
preserve the light-cone gauge condition! That transformation turned out to be a reparame-
terization of the world-line.

One final remark about momentum operators. The Lorentz covariant momentum oper-
ators that we used to motivate our analysis generate simple translations and commute
among each other. It follows directly that, using light-cone coordinates, the operators
p± = (p0 ± p1)/

√
2 and the transverse pI all commute. The light-cone gauge momentum

operators we discussed above are completely different objects. They had an intricate action
on coordinates, and p− was defined in terms of the transverse momenta and p+. Never-
theless, all the light-cone gauge momentum operators still commute. They obey the same
commutation relations that the covariant operators do when expressed using light-cone
coordinates.

11.6 Light-cone Lorentz generators

In Section 8.5 we determined the conserved charges that are associated with the Lorentz
invariance of the relativistic string Lagrangian. Similar charges exist for the relativistic
point particle. As we found in (8.52), the infinitesimal Lorentz transformations of the point
particle coordinates xμ(τ) take the form

δxμ(τ) = εμνxν(τ ) , (11.75)
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where εμν = −ενμ are a set of infinitesimal constants. The associated Lorentz charges are
given by

Mμν = xμ(τ)pν(τ )− xν(τ )pμ(τ) , (11.76)

as you may have derived in Problem 8.5. These charges are conserved classically. The
quantum charges are expected to generate Lorentz transformations of the coordinates.
Again, it is straightforward to see this using the operators of Lorentz covariant quanti-
zation. In this case, the quantum charges are given by (11.76) with xμ(τ) and pμ(τ) taken
to be the Heisenberg operators introduced earlier and satisfying the commutation relations
(11.58) and (11.59). Both xμ(τ) and pμ(τ) are Hermitian operators. The Lorentz charges
Mμν are Hermitian as well:

(Mμν)† = pν(τ )xμ(τ)− pμ(τ)xν(τ ) = Mμν , (11.77)

since the two constants induced by rearranging the coordinates and momenta back to the
original form cancel out.

Quick calculation 11.6 Show that[
Mμν , xρ(τ )

] = i ημρ xν(τ )− i ηνρ xμ(τ). (11.78)

This commutator helps us check that the quantum Lorentz charges generate Lorentz
transformations:

δxρ(τ ) =
[
− i

2
εμν Mμν , xρ(τ )

]
= 1

2
εμν

(
ημρ xν(τ )− ηνρ xμ(τ)

)
= 1

2
ερνxν(τ )+ 1

2
ερμ xμ(τ) = ερνxν(τ ) . (11.79)

Equation (11.78) can be used in light-cone coordinates by simply using light-cone indices.
For example,

[M−I , x+(τ ) ] = iη−+ x I (τ )− iηI+x−(τ ) = −i x I (τ ) , (11.80)

since ηI+ = 0. The operator M−I here is a Lorentz covariant generator expressed in light-
cone coordinates. It is not a light-cone gauge Lorentz generator. Those we have not yet
constructed.

Given a set of quantum operators, it is interesting to calculate their commutators. In quan-
tum mechanics, for example, you learned that the components Lx , L y, and Lz of the
angular momentum satisfy a set of commutation relations ([Lx , L y] = i Lz , and others)
that define the Lie algebra of angular momentum. The momentum operators pμ consid-
ered earlier define a very simple Lie algebra: they all commute. We would like to know
what is the commutator of two Lorentz generators. The computation takes a few steps
(Problem 11.5). Using equation (11.78), and a similar equation for [Mμν , pρ], one finds
that the commutator can be written as a linear combination of four Lorentz generators:

[Mμν, Mρσ ] = iημρ Mνσ − iηνρ Mμσ + iημσ Mρν − iηνσ Mρμ . (11.81)
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This result defines the Lorentz Lie algebra. Equation (11.81) must be satisfied by the
analogous operators Mμν of any Lorentz invariant quantum theory. If it is not possible
to construct such operators, the theory is not Lorentz invariant. This will be crucial to our
quantization of the string, for requiring that (11.81) holds imposes additional restrictions,
which have significant physical consequences.

Quick calculation 11.7 Since Mμν = −Mνμ, the left-hand side of (11.81) changes sign
under the exchange of μ and ν. Verify that the right-hand side also changes sign under this
exchange.

We can now use (11.81) to determine the commutators of Lorentz charges in light-cone
coordinates. The Lorentz generators are given by

M I J , M+I , M−I , and M+− . (11.82)

Consider, for example, the commutator [M+−, M+I ]. To use (11.81) notice the structure
of its right-hand side: each η contains one index from each of the generators in the left-
hand side. For [M+−, M+I ], the only way to get a nonvanishing η is to use the − from the
first generator and the + from the second generator. The nonvanishing term is the second
one on the right-hand side of (11.81), and we find

[M+−, M+I ] = −i η−+M+I = i M+I . (11.83)

Similarly,

[M−I , M−J ] = 0 . (11.84)

Here η must use the I and J indices, but then the other two indices must go into M giving
us M−−, which vanishes by antisymmetry.

Quick calculation 11.8 Show that M+− = M10. This shows that M+− generates a boost
along the x1 direction.

So far, we have considered the covariant Lorentz charges in light-cone coordinates. We
must now find Lorentz charges for our light-cone gauge quantization of the particle. Our
earlier discussion of the momenta suggests that we really face three questions.

(1) How are these charges going to be defined?
(2) What kind of transformations will they generate?
(3) Which commutation relations will they satisfy?

In the remaining part of this section we will explore question (1) in detail. Before doing
so, let us give brief answers to questions (2) and (3), leaving further analysis of these ques-
tions to Problems 11.6 and 11.7. The light-cone gauge Lorentz generators are expected to
generate Lorentz transformations of coordinates and momentum, but in some cases, these
transformations will be accompanied by reparameterizations of the world-line. Regarding
(3), the light-cone gauge Lorentz generators will satisfy the same commutation relations
that the covariant operators in light-cone coordinates do. This establishes that Lorentz sym-
metry holds in the light-cone theory of the quantum point particle. The success of the
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construction is not obvious a priori. It is not clear that the reduced set of light-cone gauge
operators suffices to construct quantum Lorentz charges that generate Lorentz transforma-
tions (plus other transformations) and satisfy the Lorentz algebra.

The simplest guess for the light-cone gauge generators is to use light-cone coordinates in
the covariant formula (11.76) and then replace x+(τ ), x−(τ ), and p− using their light-cone
gauge definitions in (11.29), (11.30), and (11.31). Let us try this prescription with M+−:

M+− ?= x+(τ ) p−(τ )− x−(τ ) p+(τ )

?= p+τ

m2
p− −

(
x−0 + p−

m2
τ
)

p+

?= − x−0 p+ . (11.85)

Since x−0 and p+ are τ -independent, so too is M+−. We have a minor complication, how-
ever. The operator M+− is not Hermitian: (M+−)† − M+− = [x−0 , p+] 	= 0. This failure
of Hermiticity illustrates how the use of the light-cone gauge can affect basic properties of
operators. The covariant Lorentz generators were automatically Hermitian, the light-cone
gauge generators are not. We are therefore motivated to define a Hermitian M+− as

M+− = −1

2
(x−0 p+ + p+x−0 ) . (11.86)

We take this to be the light-cone gauge Lorentz generator M+−.
The most complicated of all generators is M−I . It is the most interesting one as well.

The prescription used for M+− this time gives

M−I ?= x−(τ ) pI − x I (τ ) p−

?=
(

x−0 + p−

m2
τ
)

pI −
(

x I
0 +

pI τ

m2

)
p−

?= x−0 pI − x I
0 p−. (11.87)

As before, the τ -dependence vanishes, but we are left with a complicated result since p−
is a nontrivial function of the other momenta. We define M−I as the Hermitian version of
the operator obtained above:

M−I ≡ x−0 pI − 1

2

(
x I

0 p− + p− x I
0

)
. (11.88)

If the light-cone gauge Lorentz charges are to satisfy the Lorentz algebra we must have

[ M−I , M−J ] = 0 , (11.89)

as we noted in (11.84). Does M−I , as defined by (11.88), satisfy this equation? The answer
is yes, as you will see for yourself in Problem 11.6. This result is necessary to ensure
Lorentz invariance of the quantum theory. All other commutators of Lorentz generators
also work out correctly.

The calculation of [ M−I , M−J ] in quantum string theory is fairly complicated, but the
answer is very interesting. It turns out that this commutator is zero if and only if the string
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propagates in a spacetime of some particular dimension and, furthermore, only if the defini-
tion of mass is changed in such a way that we can find massless gauge fields in the spectrum
of the open string! String theory is such a constrained theory that it is only Lorentz invariant
for a fixed spacetime dimensionality.

Problems

Problem 11.1 Equation of motion for Heisenberg operators.

Assume that the Schrödinger Hamiltonian H = H(p, q) is time independent. In this
case the time-independent Schrödinger operator ξ yields a Heisenberg operator ξ(t) =
ei Htξe−i Ht . Show that this operator satisfies the equation

i
dξ(t)

dt
=
[
ξ(t) , H(p(t), q(t))

]
.

This computation proves that equation (11.18) holds for time-independent Hamiltonians.

Problem 11.2 Heisenberg operators and time-dependent Hamiltonians.

When the Schrödinger Hamiltonian H = H(p, q; t) is time dependent, time evolution of
states is generated by a unitary operator U (t):

|�, t〉 = U (t)|�〉 , (1)

where U (t) bears some nontrivial relation to H . Here |�〉 denotes the state at zero time
and U (0) = 1.

(a) Use the Schrödinger equation to show that

i
dU (t)

dt
= HU (t) . (2)

Let U ≡ U (t), for brevity. Since U−1 acting on |�, t〉 gives a time-independent state,
considerations similar to those given for (11.24) lead us to define the Heisenberg operator
corresponding to the Schrödinger operator α as

α(t) = U−1α U . (3)

(b) Let ξ be a time-independent Schrödinger operator, and let ξ(t) be the corresponding
Heisenberg operator, defined using (3). Show that

i
dξ(t)

dt
=
[
ξ(t) , H(p(t), q(t); t)

]
.

This computation proves that equation (11.18) holds for time-dependent Hamiltonians.

(c) If [α1, α2] = α3 holds for Schrödinger operators α1, α2, and α3, show that
[α1(t), α2(t)] = α3(t) holds for the corresponding Heisenberg operators.
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Problem 11.3 Classical dynamics in Hamiltonian language.

Consider a classical phase space (q, p), a trajectory (q(t), p(t)), and an observable
v (q(t), p(t); t). From the standard rules of differentiation,

dv

dt
= ∂v

∂t
+ ∂v

∂p

dp

dt
+ ∂v

∂q

dq

dt
. (1)

With the Poisson bracket defined as

{A, B} = ∂ A

∂q

∂ B

∂p
− ∂ A

∂p

∂ B

∂q
, (2)

show that
dv

dt
= ∂v

∂t
+ {v, H} . (3)

Comparing this result to (11.19) we see the parallel between the time evolution of a general
operator O and the classical Hamiltonian evolution of an observable v in phase space.

To derive (3) you need the classical equations of motion in Hamiltonian language. These
can be obtained by demanding that∫

dt
(

p(t)q̇(t)− H(p(t), q(t); t)
)

be stationary for independent variations δq(t) and δp(t).

Problem 11.4 Reparameterization symmetries of the point particle.

Show that the variation δxμ(τ) = λ(τ)∂τ xμ(τ) induces a variation δL of the point particle
Lagrangian that can be written as

δL(τ ) = ∂τ

(
λ(τ)L(τ )

)
.

This proves that the reparameterizations δxμ are symmetries in the sense defined in
Problem 8.9. Show, however, that the charges associated with these reparameterization
symmetries vanish. When λ is τ -independent, the reparameterization is an infinitesimal
constant τ translation. The conserved charge is then the Hamiltonian. Show directly that
the Hamiltonian defined canonically from the point particle Lagrangian vanishes.

Problem 11.5 Lorentz generators and Lorentz algebra.

In this problem we consider the Lorentz covariant charges (11.76).

(a) Calculate the commutator [ Mμν , pρ].
(b) Calculate the commutator [ Mμν , Mρσ ] and verify that (11.81) holds.
(c) Consider the Lorentz algebra in light cone coordinates. Give

[ M±I , M J K ] , [ M±I , M∓J ] , [M+− , M±I ] , and [ M±I , M±J ] .

Problem 11.6 Light-cone gauge commutator [M−I , M−J ] for the particle.

The purpose of the present calculation is to show that
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[ M−I , M−J ] = 0 . (1)

(a) Verify that the light-cone gauge operator M−I takes the form

M−I = (x−0 pI − x I
0 p−)+ i

2

pI

p+
. (2)

Set up now the computation of (1) distinguishing the two kinds of terms in (2).
Calculate the contributions to the commutator from mixed terms and from the last
term.

(b) Complete the computation of (1) by finding the contribution from the first term on the
right-hand side of (2).

Problem 11.7 Transformations generated by the light-cone gauge Lorentz generators
M+− and M−I .

(a) Calculate the commutator of M+− (defined in (11.86)) with the light-cone coor-
dinates x+(τ ), x−(τ ), and x I (τ ). Show that M+− generates the expected Lorentz
transformations of these coordinates.

(b) Calculate the commutator of M−I with the light-cone coordinates x+(τ ), x−(τ ), and
x J (τ ). Show that M−I generates the expected Lorentz transformations together with
a compensating reparameterization of the world-line. Calculate the parameter λ for
this reparameterization. [Hint: the reparameterization takes the “hermiticized” form
δxμ(τ) = 1

2 (λ ∂τ xμ + ∂τ xμ λ).]



12 Relativistic quantum open strings

We finally quantize the relativistic open string. We use the light-cone gauge to
set up commutation relations and to define a Hamiltonian in the Heisenberg pic-
ture. We discover an infinite set of creation and annihilation operators, labeled
by an integer and a transverse vector index. The oscillators corresponding to the
X− direction are transverse Virasoro operators. The ambiguities we encounter
in defining the quantum theory are fixed by requiring that the theory be Lorentz
invariant. Among these ambiguities, the dimensionality of spacetime is fixed to
the value 26, and the mass formula is shifted slightly from its classical coun-
terpart such that the spectrum admits massless photon states. The spectrum also
contains a tachyon state, which indicates the instability of the D25-brane.

12.1 Light-cone Hamiltonian and commutators

We are at long last in a position to quantize the relativistic string. We have acquired con-
siderable intuition for the dynamics of classical relativistic strings, and we have examined
in detail how to quantize the simpler, but still nontrivial, relativistic point particle. More-
over, having taken a brief look into the basics of scalar, electromagnetic, and gravitational
quantum fields in the light-cone gauge, we will be able to appreciate the implications of
quantum open string theory. In this chapter we will deal with open strings. We will assume
throughout the presence of a space-filling D-brane. In the next chapter we will quantize the
closed string.

Just as before, we will interpret the classical equations of motion in the light-cone gauge
as equations for the appropriate Heisenberg operators. It is therefore necessary for us to
review the results of our light-cone analysis of the classical relativistic string.

We found a class of world-sheet parameterizations (9.27) for which the equations of motion
are wave equations Ẍμ − Xμ′′ = 0. This remarkable simplification came at the expense
of two constraints: (Ẋ ± X ′)2 = 0. With these constraints, the momentum densities are
simple derivatives of the coordinates:

Pσμ = − 1

2πα′
Xμ′, Pτμ = 1

2πα′
Ẋμ. (12.1)

These equations hold in all gauges within the class we considered. In particular, they are
true in the light-cone gauge. For open strings in the light-cone gauge, we set X+ = 2α′ p+τ
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and solved for X− in terms of the transverse coordinates X I . Indeed, using (9.65) with
β = 2, we have

Ẋ− = 1

2α′
1

2p+
(Ẋ I Ẋ I + X I ′X I ′). (12.2)

This gives us an explicit expression for Pτ−:

Pτ− = 1

2πα′
Ẋ− = 1

2πα′
1

2α′
1

2p+
(2πα′)2

(
Pτ IPτ I + X I ′X I ′

(2πα′)2

)
(12.3)

= π

2p+
(
Pτ IPτ I + X I ′X I ′

(2πα′)2

)
.

These equations will soon become useful.

As a first step in defining a quantum theory of the light-cone relativistic string, we must give
the list of Schrödinger operators. Motivated by the list (11.25) of Schrödinger operators for
the quantum point particle, we choose our τ -independent Schrödinger operators to be

Schrödinger operators:
(

X I (σ ), x−0 , Pτ I (σ ) , p+
)

. (12.4)

The associated Heisenberg operators are then

Heisenberg operators:
(

X I (τ, σ ), x−0 (τ ) , Pτ I (τ, σ ) , p+(τ )
)

. (12.5)

Because the operators (12.4) have no explicit τ dependence, neither do the Heisenberg
operators (12.5). As in the case of the point particle, we expect x−0 and p+ to be fully
τ -independent Heisenberg operators.

Now we set up the commutation relations. For the Schrödinger operators X I (σ ) and
Pτ I (σ ) we must face the fact that these operators have σ dependence. It is reasonable
to demand that such operators fail to commute only if they are at the same point along the
string. We do not expect (simultaneous) measurements at different points on the string to
interfere with each other. Therefore we set[

X I (σ ) ,Pτ J (σ ′)
]
= iηI J δ(σ − σ ′) . (12.6)

Here the delta function is being used to implement the constraint that the commutator must
vanish when σ 	= σ ′. We had to use a Dirac delta function, as opposed to a Kronecker
delta, since σ is a continuous variable. Equation (12.6) is naturally supplemented with the
commutation relations[

X I (σ ) , X J (σ ′)
]
=
[
Pτ I (σ ) ,Pτ J (σ ′)

]
= 0 , (12.7)
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and [
x−0 , p+

] = −i . (12.8)

The operators x−0 and p+ commute with all of the other Schrödinger operators:[
x−0 , X I (σ )

]
=
[

x−0 ,Pτ I (σ )
]
=
[

p+ , X I (σ )
]
=
[

p+ ,Pτ I (σ )
]
= 0 . (12.9)

For the associated Heisenberg operators, the only nonvanishing equal-time commutation
relations are therefore

[
X I (τ, σ ) ,Pτ J (τ, σ ′)

]
= i ηI J δ(σ − σ ′) , (12.10)

as well as [
x−0 (τ ) , p+(τ )

] = −i . (12.11)

All other commutators vanish:[
X I (τ, σ ), X J (τ, σ ′)

]
=
[
Pτ I (τ, σ ),Pτ J (τ, σ ′)

]
= 0 ,[

x−0 (τ ) , X I (τ, σ )
]
=
[

x−0 (τ ) ,Pτ I (τ, σ )
]
= 0 ,[

p+(τ ) , X I (τ, σ )
]
=
[

p+(τ ) ,Pτ I (τ, σ )
]
= 0 . (12.12)

We must now invent the Hamiltonian. Our Hamiltonian should generate τ translation. From
our experience with the point particle, we know that p− generates X+ translation. But in
the light-cone gauge X+ = 2α′ p+τ , so

∂

∂τ
= ∂ X+

∂τ

∂

∂ X+ = 2α′ p+ ∂

∂ X+ . (12.13)

It follows that the Hamiltonian that generates change in τ is expected to be

H = 2α′ p+ p− = 2α′ p+
∫ π

0
dσ Pτ− . (12.14)

This will indeed turn out to be the correct string Hamiltonian. Using (12.3), the Hamilto-
nian can be written more explicitly as the Heisenberg operator

H(τ ) = πα′
∫ π

0
dσ

(
Pτ I (τ, σ )Pτ I (τ, σ )+ X I ′(τ, σ )X I ′(τ, σ )

(2πα′)2

)
. (12.15)

H must generate quantum equations of motion that are operator versions of the classi-
cal equations of motion. H is very simple when expressed in terms of the transverse
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Virasoro modes of Chapter 9. There we saw that L⊥0 = 2α′ p+ p− (equation (9.78)), so
(12.14) immediately gives

H = L⊥0 . (12.16)

This expression for the Hamiltonian is perhaps the most memorable one, though, as we
will see later on, the true Hamiltonian is slightly different. The operator products PP and
X ′X ′ in (12.15) are actually ambiguous operators and need careful definition. Additionally,
Lorentz invariance will require the subtraction of a calculable constant from H .

Now that we have a plausible candidate for the Hamiltonian, we have to derive the equa-
tions of motion. Any Heisenberg operator ξ(τ, σ ) which arises from a time-independent
Schrödinger operator ξ(σ ) must satisfy

i ξ̇ (τ, σ ) = [ ξ(τ, σ ) , H(τ ) ] , (12.17)

where H(τ ) is given in (12.15). Since H(τ ) is built from Heisenberg operators that have
no explicit time dependence, we can substitute H(τ ) for ξ(τ, σ ) in (12.17). We conclude
that it is completely time independent: H(τ ) = H . Furthermore, we can see that x−0 (τ )

and p+(τ ) commute with H . They are therefore time independent operators, so we will
henceforth denote them by x−0 and p+. The commutator (12.11) then becomes

[
x−0 , p+

] = −i . (12.18)

The Heisenberg equation of motion for X I (τ, σ ) is

i Ẋ I (τ, σ ) = [X I (τ, σ ) , H(τ )] =
[

X I (τ, σ ) , πα′
∫ π

0
dσ ′ Pτ J (τ, σ ′)Pτ J (τ, σ ′)

]
,

where we dropped the second term in H since it commutes with X I (τ, σ ):[
X I (τ, σ ) , X J ′(τ, σ ′)

]
= ∂

∂σ ′
[

X I (τ, σ ) , X J (τ, σ ′)
]
= 0 . (12.19)

We also reinserted the time parameter in H(τ ), choosing a time that gives easily evaluated
equal-time commutators. Making use of (12.10) we find

i Ẋ I (τ, σ ) = πα′ · 2 ·
∫ π

0
dσ ′ Pτ J (τ, σ ′) i ηI J δ(σ − σ ′). (12.20)

Performing the integral and cancelling the common factor of i , we find

Ẋ I (τ, σ ) = 2πα′ Pτ I (τ, σ ) . (12.21)

Happily, this coincides with the classical equation of motion (12.1). The other equations of
motion can be checked in a similar fashion. For example, you can calculate Ṗτ I and use
the result to verify that

Ẍ I − X I ′′ = 0 (12.22)
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is the quantum equation of motion (Problem 12.1). As we turn classical string theory
into a quantum theory, the classical boundary conditions become operator equations. For
example, the Neumann boundary conditions

∂σ X I (τ, σ ) = 0 , σ = 0, π , (12.23)

are taken literally as the condition that the operator ∂σ X I (τ, σ ) vanishes at the open string
endpoints.

We learned in Chapter 9 that the linear combinations of derivatives (Ẋ I ± X I ′) are par-
ticularly simple and useful. We conclude this section by calculating commutators of these
derivatives. We begin by using (12.21) to rewrite the commutator (12.10) as[

X I (τ, σ ) , Ẋ J (τ, σ ′)
]
= 2πα′ i ηI J δ(σ − σ ′) . (12.24)

Taking the σ derivative of this equation yields[
X I ′(τ, σ ) , Ẋ J (τ, σ ′)

]
= 2πα′ i ηI J d

dσ
δ(σ − σ ′) . (12.25)

Differentiating
[

X I (τ, σ ), X J (τ, σ ′)
] = 0 with respect to σ and σ ′ and recalling that[

Pτ I (τ, σ ),Pτ J (τ, σ ′)
] = 0, we find that τ and σ derivatives of the coordinates separately

commute among themselves:[
X I ′(τ, σ ) , X J ′(τ, σ ′)

]
=
[

Ẋ I (τ, σ ) , Ẋ J (τ, σ ′)
]
= 0 . (12.26)

Now we examine the commutator[
(Ẋ I + X I ′)(τ, σ ) , (Ẋ J + X J ′)(τ, σ ′)

]
, (12.27)

which as a consequence of (12.26) equals[
Ẋ I (τ, σ ) , X J ′(τ, σ ′)

]
+
[

X I ′(τ, σ ) , Ẋ J (τ, σ ′)
]

. (12.28)

The second term is given by (12.25). The first term equals

−
[

X J ′(τ, σ ′) , Ẋ I (τ, σ )
]
= −(2πα′)iηJ I d

dσ ′
δ(σ ′ − σ) = 2πα′ iηI J d

dσ
δ(σ − σ ′) .

To obtain this result we noted that a σ ′ derivative can be traded for minus a σ derivative
when it acts on a function of (σ − σ ′). Moreover, we used δ(x) = δ(−x). We now see that
both terms in (12.28) are equal, so[

(Ẋ I + X I ′)(τ, σ ) , (Ẋ J + X J ′)(τ, σ ′)
]
= 4πα′ iηI J d

dσ
δ(σ − σ ′) . (12.29)

In fact, more generally, we have found that

[
(Ẋ I ± X I ′)(τ, σ ) , (Ẋ J ± X J ′)(τ, σ ′)

]
= ±4πα′ iηI J d

dσ
δ(σ − σ ′) , (12.30)
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since only cross terms contribute. Finally,

[
(Ẋ I ± X I ′)(τ, σ ) , (Ẋ J ∓ X J ′)(τ, σ ′)

]
= 0 . (12.31)

Equations (12.30) and (12.31) hold for σ, σ ′ ∈ [0, π ].

12.2 Commutation relations for oscillators

The commutation relations written so far are delicate to handle because they involve field
operators and use delta functions. They are an infinite set of relations which hold for con-
tinuous values of σ and σ ′. It is therefore useful to recast them in discrete form, namely,
as a denumerable set of commutation relations. For this purpose we will examine the
mode expansions of Section 9.4. These followed from the classical wave equations and the
boundary conditions for a space-filling D-brane. Since the wave equations and the bound-
ary conditions continue to hold in the quantum theory, we can use the mode expansions
in the quantum theory. The classical modes α I

n , however, become quantum operators with
nontrivial commutation relations.

Recall our solution (9.69) to the wave equation with Neumann boundary conditions:

X I (τ, σ ) = x I
0 +

√
2α′ α I

0τ + i
√

2α′
∑
n 	=0

1

n
α I

n cos nσ e−inτ . (12.32)

In addition, from (9.74) we have

(Ẋ I + X I ′)(τ, σ ) = √
2α′

∑
n∈Z

α I
n e−in(τ+σ) , σ ∈ [0, π ] ,

(Ẋ I − X I ′)(τ, σ ) = √
2α′

∑
n∈Z

α I
n e−in(τ−σ) , σ ∈ [0, π ] .

(12.33)

The above equalities hold for σ ∈ [0, π ] because the open string coordinates are only
defined for σ ∈ [0, π ]. We will now construct a function of σ with period 2π which is
naturally expressed in terms of open string coordinates. To do this, we evaluate the second
equation above at −σ :

(Ẋ I − X I ′)(τ,−σ) = √
2α′

∑
n∈Z

α I
n e−in(τ+σ), σ ∈ [−π, 0]. (12.34)

The range σ ∈ [−π, 0] is required because otherwise the left-hand side is not defined. We
now define the operator AI (τ, σ ) by

AI (τ, σ ) ≡ √
2α′

∑
n∈Z

α I
n e−in(τ+σ) , AI (τ, σ + 2π) = AI (τ, σ ) . (12.35)
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The indicated periodicity is a direct consequence of the definition. It is now simple to relate
AI to open string coordinates over the length-2π interval σ ∈ [−π, π]. For σ ∈ [0, π ] we
use the top equation in (12.33) and for σ ∈ [−π, 0] we use (12.34):

AI (τ, σ ) =
⎧⎨
⎩(Ẋ I + X I ′)(τ, σ ) σ ∈ [ 0 , π ]

(Ẋ I − X I ′)(τ,−σ) σ ∈ [−π, 0] .
(12.36)

The operator AI will be useful to determine the commutation relations for the α I
n oscilla-

tors. For this, we must compute the commutator [AI (τ, σ ), AJ (τ, σ ′)]. Given (12.36) the
evaluation for the full range σ, σ ′ ∈ [−π, π] requires four computations:[

(Ẋ I + X I ′)(τ, σ ) , (Ẋ J + X J ′) (τ, σ ′)
]
, σ, σ ′ ∈ [0, π ],[

(Ẋ I + X I ′)(τ, σ ) , (Ẋ J − X J ′)(τ,−σ ′)
]
, σ ∈ [0, π ], σ ′ ∈ [−π, 0],[

(Ẋ I − X I ′)(τ,−σ) , (Ẋ J + X J ′)(τ, σ ′)
]
, σ ∈ [−π, 0], σ ′ ∈ [0, π ],[

(Ẋ I − X I ′)(τ,−σ) , (Ẋ J − X J ′)(τ,−σ ′)
]
, σ, σ ′ ∈ [−π, 0] . (12.37)

The first commutator, for σ, σ ′ ∈ [0, π ], is simply read from (12.30):[
(Ẋ I + X I ′)(τ, σ ) , (Ẋ J + X J ′) (τ, σ ′)

] = 4πα′ iηI J d

dσ
δ(σ − σ ′). (12.38)

The last commutator, for σ, σ ′ ∈ [−π, 0], is also obtained from (12.30):[
(Ẋ I − X I ′)(τ,−σ) , (Ẋ J − X J ′)(τ,−σ ′)

] = −4πα′ iηI J d

d(−σ)
δ(−σ + σ ′)

= 4πα′ iηI J d

dσ
δ(σ − σ ′),

and coincides with the result (12.38) of the first commutator. For the second and third
commutators in (12.2) we can use (12.31) to conclude that both of them vanish. In fact, the
right-hand side of (12.38) also vanishes since in those cases σ and σ ′ cannot be equal. It
follows that the result of all four commutators can be summarized as[

AI (τ, σ ), AJ (τ, σ ′)
] = 4πα′ iηI J d

dσ
δ(σ − σ ′) , σ, σ ′ ∈ [−π, π]. (12.39)

Using (12.35) and cancelling a common factor of 2α′, the above result gives∑
m′,n′∈Z

e−im′(τ+σ)e−in′(τ+σ ′)
[
α I

m′ , α J
n′
]
= 2π iηI J d

dσ
δ(σ − σ ′). (12.40)

This equation holds for σ, σ ′ ∈ [−π, π]. In order to extract information we apply on both
sides the integral operations

1

2π

∫ 2π

0
dσ eimσ · 1

2π

∫ 2π

0
dσ ′ einσ ′ . (12.41)

On the left-hand side of (12.40) the integrals pick the term with m′ = m and n′ = n:

e−i(m+n)τ
[
α I

m , α J
n

]
. (12.42)
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On the right-hand side of (12.40) the integrals give

iηI J 1

2π

∫ 2π

0
dσ eimσ d

dσ

∫ 2π

0
dσ ′ einσ ′δ(σ − σ ′)

= iηI J 1

2π

∫ 2π

0
dσ eimσ d

dσ
einσ = −n ηI J 1

2π

∫ 2π

0
dσ ei(m+n)σ (12.43)

= −n ηI J δm+n,0 = m ηI J δm+n,0.

Equating our results (12.42) and (12.43), we find

[α I
m , α J

n ] = m ηI J δm+n,0 e+i(m+n)τ = m ηI J δm+n,0, (12.44)

since the Kronecker delta can be used to set m = −n. Therefore, the commutation
relation is

[
α I

m , α J
n

]
= m ηI J δm+n,0. (12.45)

This is the fundamental commutation relation between α modes. Note that α I
0 commutes

with all other oscillators. This is quite reasonable: as shown in (9.52), α I
0 is proportional to

the momentum of the string

α I
0 =

√
2α′ pI , (12.46)

and it is expected to have a nontrivial commutator with x J
0 only.

To complete the list of all possible commutators we must find the commutators between
x I

0 and the oscillators α J
n . For this, we consider equation (12.24), and integrate both sides of

the equation over σ ∈ [0, π ]. On the left-hand side, the terms with oscillators in X I (τ, σ )

give no contribution, and on the right-hand side the delta function disappears giving a factor
of one: [

x I
0 +

√
2α′ α I

0 τ , Ẋ J (τ, σ ′)
]
= 2α′ i ηI J . (12.47)

Since Ẋ J is a sum of terms that contain α J
n , we have [α I

0 , Ẋ I ] = 0. Additionally, using the
mode expansion of Ẋ J , equation (12.47) becomes∑

n′∈Z

[
x I

0 , α J
n′
]

cos n′σ ′ e−in′τ = √
2α′ i ηI J . (12.48)

Reorganizing the left-hand side of this equation we find

[ x I
0 , α J

0 ] +
∞∑

n′=1

[
x I

0 , α J
n′e

−in′τ + α J
−n′e

in′τ
]

cos n′σ = √
2α′ i ηI J . (12.49)
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We apply to both sides of this equation the integral operation 1
π

∫ π

0 dσ cos nσ , with n ≥ 1.
We then find that [

x I
0 , α J

n e−inτ + α J−neinτ
]
= 0 , (12.50)

or equivalently [
x I

0 , α J
n

]
e−inτ +

[
x I

0 , α J−n

]
einτ = 0 . (12.51)

Since the left-hand side must vanish for all values of τ , each term must vanish separately
(prove this!). It follows that [

x I
0 , α J

n

]
= 0 for n 	= 0 . (12.52)

Additionally, equation (12.49) gives[
x I

0 , α J
0

]
= √

2α′ iηI J . (12.53)

This, together with (12.46), gives the expected commutator

[
x I

0 , pJ
]
= iηI J . (12.54)

As in familiar quantum mechanics, the operators x I
0 and pI are Hermitian:

(x I
0 )† = x I

0 , (pI )† = pI . (12.55)

The calculations we performed to obtain the commutation relations took quite a few
steps, which we explained in detail. When we discuss closed strings, or open strings on
general D-brane configurations, similar computations will be required. We will be able to
carry them out using, with minimal modifications, the calculations we just did.

It is useful at this point to examine in detail the commutation relations (12.45) for the α I
n

modes. As we will show below, they are equivalent to those of an infinite set of creation and
annihilation operators. To see this, we begin by defining oscillators, taking our inspiration
from the classical variables introduced in (9.53):

αμ
n = aμ

n

√
n , α

μ
−n = aμ∗

n

√
n , n ≥ 1 . (12.56)

In these equations, both the α and the a are classical variables. Now they become operators.
Classical variables that are complex conjugates of each other become operators that are
Hermitian conjugates of each other in the quantum theory. We can therefore preserve the
first of the above definitions, but the second must be changed. For our light-cone modes
μ = I we take

α I
n = aI

n

√
n and α I−n = aI †

n

√
n , n ≥ 1 . (12.57)
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Note that, with this definition,

(α I
n )† = α I−n , n ∈ Z . (12.58)

This equation holds for n = 0 because α I
0 , being proportional to pI , is also Hermitian. It

is useful to emphasize that, while the α I
n modes are defined for all integers n, the aI

n and
aI †

n operators are only defined for positive n.
An important consequence of the above Hermiticity properties is that X I (τ, σ ), which

used to be real in the classical theory, is now a Hermitian operator.

Quick calculation 12.1 Use the expansion (12.32) and the Hermiticity conditions (12.55)
and (12.58) to show that

(X I (τ, σ ))† = X I (τ, σ ) . (12.59)

The i factor in front of the sum in (12.32) is needed for this calculation to work out.

We can now rephrase the commutation relation for the α modes in terms of the oscillators
(aI

n , aI †
n ). For this purpose, rewrite (12.45) as[

α I
m , α J−n

]
= m δm,nηI J . (12.60)

When m and n are integers of opposite signs the right-hand side vanishes, and the two
operators in the commutator have mode numbers of the same sign. Therefore, we learn that[

aI
m , a J

n

]
=
[

aI †
m , a J†

n

]
= 0 . (12.61)

If both m and n are positive in (12.60) we find[√
m aI

m ,
√

n a J†
n

]
= mδm,nηI J . (12.62)

Moving the square roots to the right-hand side[
aI

m , a J†
n

]
= m√

mn
δm,nηI J . (12.63)

Since the right-hand side vanishes unless m = n, it simplifies to

[
aI

m , a J†
n

]
= δm,n ηI J . (12.64)

This, together with (12.61), shows that (aI
m, aI †

m ) satisfy the commutation relations of
the canonical annihilation and creation operators of a quantum simple harmonic oscilla-
tor. There is a pair of creation and annihilation operators for each value m ≥ 1 of the
mode number and for each transverse light-cone direction I . The commutation relations
are diagonal: oscillators corresponding to different mode numbers, or to different light-
cone coordinates, commute. If the mode numbers and the coordinate labels agree, the
commutator is equal to one. In terms of the α operators, with n ≥ 1:
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α I
n are annihilation operators,

α I−n are creation operators (n ≥ 1).
(12.65)

For future reference let us rewrite the expansion of X I (τ, σ ) in (12.32) in terms of
creation and annihilation operators. Separating out the sum over all integers into sums over
positive and negative integers, and using (12.46), we find

X I (τ, σ ) = x I
0 + 2α′ pI τ + i

√
2α′

∞∑
n=1

(
α I

n e−inτ − α I−n einτ
)cos nσ

n
. (12.66)

Replacing α modes by the corresponding oscillators we obtain

X I (τ, σ ) = x I
0 + 2α′ pI τ + i

√
2α′

∞∑
n=1

(
aI

n e−inτ − aI †
n einτ

)cos nσ√
n

. (12.67)

This is the expansion of the coordinate operator in terms of creation and annihilation oper-
ators.

Let us take stock of what we have learned. The list of operators we started with was given
in (12.5). We have seen that the operators X I (τ, σ ) and Pτ I (τ, σ ) can be traded for an
infinite collection of oscillators, plus pairs of zero modes (x I

0 , pI ). Since the other two
operators in the list, x−0 and p+, are also zero modes, the full set of basic operators of
string theory is a collection of zero modes plus an infinite set of creation and annihilation
operators. This result is so important that we will now derive it in a different way, showing
explicitly how the quantum simple harmonic oscillators arise.

12.3 Strings as harmonic oscillators

Our aim here is to give a more physical derivation of the results obtained in the previous
section. In particular, we will rederive the mode expansion (12.67) and the commutation
relations between the operators in that expansion. These results followed from the fun-
damental commutation relation (12.10) together with the operator equations of motion
(12.22) and the operator boundary conditions (12.23). Of these, the commutation relations
(12.10) are perhaps the least intuitive, as they involve a delta function. In the derivation
below there will be no delta function.

Here is our strategy. We will invent a simple Lagrangian that describes the dynamics of
the light-cone coordinates X I . This is not such a difficult task since we know the equa-
tions of motion of the X I , their boundary conditions, and the definition of the canonical
momenta Pτ I . Then we will expand the coordinate X I (τ, σ ) as a function of σ but with τ -
dependent expansion coefficients. Using the Lagrangian, we will show that those expansion
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coefficients are actually the coordinates of harmonic oscillators that have ever-increasing
energy! We will conclude by relating these oscillators to the creation and annihilation
operators obtained in the previous analysis.

To set up the notation, we begin by reviewing the basic properties of the quantum har-
monic oscillator. Let qn(t) be the coordinate of a classical simple harmonic oscillator, and
let the action be given by

Sn =
∫

Ln(t) dt =
∫

dt
( 1

2n
q̇2

n (t)− n

2
q2

n (t)
)

. (12.68)

We recognize this as a harmonic oscillator because the kinetic energy is proportional to the
velocity-squared, and the potential energy is proportional to the coordinate-squared. For
this Lagrangian, the momentum pn conjugate to the coordinate qn is

pn = ∂L

∂ q̇n
= 1

n
q̇n . (12.69)

A little calculation now gives the Hamiltonian as

Hn(pn, qn) = pn q̇n − Ln = n

2
(p2

n + q2
n ) . (12.70)

In this equation, n plays the role of the frequency ω of the harmonic oscillator. To define
the quantum oscillator, we introduce Schrödinger operators qn and pn , with the canonical
commutation relation

[ qn , pn] = i . (12.71)

Creation and annihilation operators can be introduced as

an = 1√
2
(pn − iqn) , a†

n =
1√
2
(pn + iqn) . (12.72)

You should check that as a consequence of (12.71) the creation and annihilation operators
satisfy the commutation relation

[an , a†
n] = 1 . (12.73)

Inverting the relations in (12.72), we find

qn = i√
2
(an − a†

n) , pn = 1√
2
(an + a†

n) . (12.74)

These can be used to rewrite the Hamiltonian Hn in terms of the creation and annihilation
operators. We find the familiar result

Hn = n
(

a†
nan + 1

2

)
. (12.75)

We can now consider the Heisenberg operators (an(t), a†
n(t)) that are associated with the

Schrödinger operators (an, a†
n). As emphasized in Section 11.2, the Heisenberg operators

satisfy the same commutation relations as the Schrödinger operators:[
an(t) , a†

n(t)
]
= 1 . (12.76)
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The Heisenberg equation of motion for an(t) is

ȧn(t) = i [ Hn(t) , an(t) ] = in
[

a†
n(t)an(t) , an(t)

]
= −in an(t) . (12.77)

This differential equation is solved by

an(t) = e−int an(0) = e−int an , (12.78)

where an is the constant Heisenberg operator that equals an(t) at t = 0. A similar
calculation gives

a†
n(t) = eint a†

n(0) = eint a†
n . (12.79)

As you can see, the angular frequency of oscillation is indeed equal to n. Finally, with these
results and (12.74), we can find the explicit time dependence of the operator qn(t):

qn(t) = i√
2

(an(t)− a†
n(t) ) = i√

2

(
an e−int − a†

n eint
)

. (12.80)

This concludes our review of the quantum simple harmonic oscillator.

We now turn to the discussion of an action that encodes the dynamics of the transverse
light-cone coordinates X I (τ, σ ). We claim that the action is simply given by

S =
∫

dτdσ L = 1

4πα′

∫
dτ

∫ π

0
dσ
(

Ẋ I Ẋ I − X I ′ X I ′) . (12.81)

This action is much simpler than the Nambu–Goto action; it has no square root, for
example. The first term, which contains time derivatives, represents kinetic energy. The
second term, which contains spatial derivatives, represents potential energy. The canonical
momentum associated with X I coincides with the momentum density Pτ I :

∂L
∂ Ẋ I

= 1

2πα′
Ẋ I = Pτ I , (12.82)

as we see comparing with (12.1). This confirms that L is correctly normalized. The
equations of motion for X I follow by variation:

δS = 1

2πα′

∫
dτ

∫ π

0
dσ
(
∂τ (δX I ) Ẋ I − ∂σ (δX I ) X I ′) . (12.83)

Restricting ourselves to variations where the initial and final positions are fixed, we can
drop the total τ derivatives and find

δS = − 1

2πα′

∫
dτ

[
(X I ′δX I )

∣∣∣π
0
+
∫ π

0
dσ δX I

(
Ẍ I − X I ′′)] . (12.84)

It is clear that the requirement that the action be stationary gives us both the wave equation
(12.22) for the coordinates and the boundary conditions at the string endpoints. As a final
check of the consistency of the action we calculate the Hamiltonian:

H =
∫ π

0
dσ H =

∫ π

0
dσ

(
Pτ I Ẋ I − L

)
. (12.85)



249 12.3 Strings as harmonic oscillators
�

Writing the τ derivative of X I in terms of Pτ I we find

H =
∫ π

0
dσ
(
πα′Pτ IPτ I + 1

4πα′
X I ′X I ′) . (12.86)

This Hamiltonian coincides with the one we postulated and tested in Section 12.1.
Let us now use the action (12.81) to quantize the theory. For this purpose we replace

the dynamical variable X I (τ, σ ) by a collection of dynamical variables that have no σ

dependence. This is done by writing the expansion

X I (τ, σ ) = q I (τ )+ 2
√

α′
∞∑

n=1

q I
n (τ )

cos nσ√
n

. (12.87)

This is the most general expression that satisfies Neumann boundary conditions at the
endpoints. The particular normalization used to introduce the expansion coefficients was
chosen for convenience.

Our next step is to evaluate the action (12.81) using the above expansion for X I (τ, σ ).
For this we use

Ẋ I = q̇ I (τ )+ 2
√

α′
∞∑

n=1

q̇ I
n (τ )

cos nσ√
n

,

X I ′ = −2
√

α′
∞∑

n=1

q I
n (τ )

√
n sin nσ .

(12.88)

The evaluation of the action S using the above expansions is quite straightforward because
the σ integrals of (cos nσ cos mσ) and (sin nσ sin mσ) vanish unless n = m. We find,

S =
∫

dτ
[ 1

4α′
q̇ I (τ ) q̇ I (τ )+

∞∑
n=1

( 1

2n
q̇ I

n (τ ) q̇ I
n (τ )− n

2
q I

n (τ ) q I
n (τ )

) ]
. (12.89)

Quick calculation 12.2 Prove equation (12.89).

Comparing the action (12.89) with the one recorded in (12.68) we see that the q I
n (τ ), with

n ≥ 1, are the coordinates of simple harmonic oscillators. The frequency of oscillation
of q I

n (τ ) is n. This is the physical interpretation of the expansion coefficients in (12.87).
Since the action for q I

n (τ ) coincides exactly with the action Sn , no new work is necessary
to compute the Hamiltonian, except for the zero mode q I :

pI = ∂L

∂q̇ I
= 1

2α′
q̇ I and [ q I , pJ ] = iηI J . (12.90)

The Hamiltonian is then given by

H = α′ pI pI +
∞∑

n=1

n

2

(
pI

n pI
n + q I

n q I
n

)
, (12.91)
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where we used (12.70) to write the part of the Hamiltonian that arises from the oscillators.
The earlier analysis of the Heisenberg operator qn(t) led to the solution (12.80). This means
that for the q I

n (τ ) oscillators we have

q I
n (τ ) = i√

2

(
aI

n e−inτ − aI †
n einτ

)
, (12.92)

where (aI
n , aI †

n ) are canonically normalized annihilation and creation operators. For the
Heisenberg operator q I (τ ) we find

q̇ I (τ ) = i [ H, q I (τ )] = iα′ [ pJ pJ (τ ) , q I (τ )] = 2α′ pI (τ ) . (12.93)

Note that pI is a τ -independent Heisenberg operator. We solve this differential equation
for q I (τ ) by writing

q I (τ ) = x I
0 + 2α′ pI τ . (12.94)

Here x I
0 is a constant operator that on account of (12.90) satisfies [x I

0 , pJ ] = iηI J . Finally,
we can substitute our solutions (12.92) and (12.94) into the expansion (12.87) for X I to find

X I (τ, σ ) = x I
0 + 2α′ pI τ + i

√
2α′

∞∑
n=1

(
aI

n e−inτ − aI †
n einτ

)cos nσ√
n

, (12.95)

in exact agreement with the previously derived (12.67). We have therefore given a physical
derivation of the mode expansion and commutation relations. We identified the classical
variables that become oscillators, and we did not have to use delta functions. Having done
so in this case, when we quantize other string configurations we will simply use the abstract
approach of the previous section. It gives a direct and quick route to the desired answers.

12.4 Transverse Virasoro operators

We have written mode expansions for the transverse coordinates X I (τ, σ ) and we have
seen quite explicitly the connection to harmonic oscillators. How about the other light-cone
coordinates, X+(τ, σ ) and X−(τ, σ )? The expansion of X+ is truly simple:

X+(τ, σ ) = 2α′ p+ τ = √
2α′ α+0 τ . (12.96)

As discussed for the classical case in Section 9.5, this means that we are setting

x+0 = 0 , α+n = 0 , n 	= 0 . (12.97)

For the X− coordinate a mode expansion was provided by (9.72):

X−(τ, σ ) = x−0 +√
2α′ α−0 τ + i

√
2α′

∑
n 	=0

1

n
α−n e−inτ cos nσ . (12.98)
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Moreover, we used the constraints to solve for X− in terms of X I , p+, and a constant of
integration x−0 . This meant that the α−n modes could be written in terms of the α I

n modes,
as shown in equation (9.77):

√
2α′ α−n = 1

p+
L⊥n , (12.99)

where

L⊥n ≡ 1

2

∑
p∈Z

α I
n−pα

I
p . (12.100)

The repeated index I is summed over the transverse light-cone directions. In Chapter 9 the
L⊥n were called transverse Virasoro modes. Having seen that the α modes become opera-
tors, the L⊥n will now be called transverse Virasoro operators. The steps that led to (12.100)
remain valid in the quantum theory, except for the fact that the α modes were treated as
commuting classical variables. We now know that the α operators do not commute. We
must therefore question whether the ordering of the two α operators appearing in (12.100)
is the correct one. A better question is whether the ordering matters. Since two α operators
fail to commute only when their mode numbers add up to zero, the two operators in L⊥n
fail to commute only when n = 0. So L⊥0 is the only ambiguous operator.

There is plenty at stake in ordering L⊥0 correctly. The operator L⊥0 is in fact the light-cone
Hamiltonian, as we showed in equation (12.16). Moreover, we saw at the end of Chapter 9
that L⊥0 enters directly into the calculation of the mass of string states. We also mentioned
at that time that the quantum theory would bring a subtlety into the calculation of the mass.
Well, the subtlety has arrived: we must define the quantum operator L⊥0 ! Let us therefore
look at L⊥0 in more detail:

L⊥0 = 1

2

∑
p∈Z

α I−pα
I
p =

1

2
α I

0α I
0 +

1

2

∞∑
p=1

α I−pα
I
p +

1

2

∞∑
p=1

α I
pα

I−p . (12.101)

The first sum on the right-hand side is normal-ordered: annihilation operators appear to
the right of the creation operators. It is useful to work with normal-ordered operators since
they act in a simple manner on the vacuum state. We cannot use operators that do not have
a well defined action on the vacuum state. Since the last sum on the right-hand side of
(12.101) is not a normal-ordered operator, we rewrite it as

1

2

∞∑
p=1

α I
pα

I−p =
1

2

∞∑
p=1

(
α I−pα

I
p + [α I

p , α I−p]
)

= 1

2

∞∑
p=1

α I−pα
I
p +

1

2

∞∑
p=1

p ηI I

= 1

2

∞∑
p=1

α I−pα
I
p +

1

2
(D − 2)

∞∑
p=1

p . (12.102)
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If you look at the last term of the above equation you will note that it is divergent; it
involves the sum of all positive integers! This is clearly problematic. How do we deal with
this? One option is simply to ignore this difficulty, claiming that it is really up to us how we
define L⊥0 . There is a kernel of truth to this option, but it is not completely correct. Adding
a constant to L⊥0 changes the values of the masses of the string states, and if anything, the
above computation has alerted us to the fact that this additive constant could be nonzero,
or even infinite. Taken at face value, the above computation gives

L⊥0 = 1

2
α I

0α I
0 +

∞∑
p=1

α I−pα
I
p +

1

2
(D − 2)

∞∑
p=1

p . (12.103)

The operator L⊥0 enters into our computation of the mass via the definition of p−. From
(12.99), with n = 0,

√
2α′ α−0 = 2α′ p− = 1

p+
L⊥0 . (12.104)

This suggests a strategy. First, we define, once and for all, L⊥0 to be the normal-ordered
operator in (12.103) without including the ordering constant:

L⊥0 ≡ 1

2
α I

0α I
0 +

∞∑
p=1

α I−pα
I
p = α′ pI pI +

∞∑
p=1

p aI †
p aI

p . (12.105)

Note that L⊥0 is Hermitian: (L⊥0 )† = L⊥0 . Second, we introduce an ordering constant a into
(12.104):

2α′ p− ≡ 1

p+
(

L⊥0 + a
)

. (12.106)

If we took seriously our attempt to order L⊥0 , we would have to conclude that

a
?= 1

2
(D − 2)

∞∑
p=1

p . (12.107)

We will discuss below one remarkable interpretation of this equation which does, in fact,
give the correct result. More pragmatically, we will take a to be an undetermined constant.
As we will show in Section 12.5, the quantum consistency of string theory fixes the con-
stant a to an interesting finite value. Before proceeding further, let us investigate how the
inclusion of a modifies the computation of the mass-squared operator. Working from the
definition M2 = −p2, and using (12.105) and (12.106), we find

M2 = −p2 = 2p+ p− − pI pI = 1

α′
(L⊥0 + a )− pI pI

= 1

α′
(

a +
∞∑

n=1

naI
n

†
aI

n

)
. (12.108)

As expected, a introduces a constant shift into the mass-squared operator.
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It is impossible to resist the temptation to interpret (12.107). An important result in mathe-
matics suggests a finite value for the right-hand side. For this we consider the zeta function
ζ(s), which is defined as the infinite sum

ζ(s) =
∞∑

n=1

1

ns
, �(s) > 1 . (12.109)

The argument s of the zeta function is assumed to be a complex number, but as indicated,
the above sum only converges if the real part of the argument is greater than one. We can
use analytic continuation to define the zeta function for all possible values of the argument.
ζ(s) turns out to be finite for all values of s except s = 1. In particular, as you will see in
Problem 12.4, ζ(−1) = −1/12. On account of (12.109) this suggests that

ζ(−1) = − 1

12
?= 1 + 2 + 3 + 4 + · · ·. (12.110)

This is a surprising interpretation for the infinite sum
∑∞

p=1 p. Not only is the result finite,
but it is also negative! Substituting back in (12.107), it gives us

a = − 1

24
(D − 2) . (12.111)

This is actually the correct value of a, as we will explain in Section 12.5. The inspired
guess gave the right answer. We will also see that consistency requires D = 26, so that,
in fact, a = −1. This value for the shift in the mass-squared operator is precisely what is
needed for the spectrum of open strings to include massless photon states!

Having discussed L⊥0 in detail, let us consider the other transverse Virasoro operators.
Since (α J

n )† = α J−n , we may expect that (α−n )† = α−−n , or equivalently, on account of
(12.99), that

(L⊥n )† = L⊥−n . (12.112)

We have already verified this equation for n = 0. For n 	= 0, we can easily prove this
Hermiticity property using (12.100):

(L⊥n )† = 1

2

∑
p∈Z

(α I
n−pα

I
p)

† = 1

2

∑
p∈Z

(α I
p)

†(α I
n−p)

† = 1

2

∑
p∈Z

α I−pα
I−n+p . (12.113)

Since the oscillators in each term of the sum commute, we can exchange them. By also
letting p →−p, we get the expected result:

(L⊥n )† = 1

2

∑
p∈Z

α I−n−pα
I
p = L⊥−n . (12.114)

Perhaps the most interesting property of the Virasoro operators is that they do not com-
mute. We have seen that α I

m and α I
n commute except when m + n equals zero. This is not

the case with the α−n modes. Two Virasoro operators L⊥m and L⊥n never commute when
m 	= n. The commutation properties of Virasoro operators are a bit intricate, so we will
consider them in steps of increasing generality.
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As a warmup, let us consider the commutator between a Virasoro operator and an oscillator
α J

n . We have[
L⊥m , α J

n

]
= 1

2

∑
p∈Z

[
α I

m−pα
I
p , α J

n

]
= 1

2

∑
p∈Z

(
α I

m−p

[
α I

p , α J
n

]
+
[
α I

m−p , α J
n

]
α I

p

)
.

(12.115)
Evaluating the commutators and recalling that ηI J = δ I J , we find[

L⊥m , α J
n

]
= 1

2

∑
p∈Z

(
p δp+n,0 α J

m−p + (m − p)δm−p+n,0 α J
p

)
. (12.116)

Because of the Kronecker deltas only one term contributes in each sum: p = −n in the
first and p = m + n in the second. We thus find[

L⊥m , α J
n

]
= 1

2

(
−n α J

m+n − n α J
m+n

)
. (12.117)

Our final result is therefore

[
L⊥m , α J

n

]
= −n α J

m+n . (12.118)

The mode number on the right-hand side is the sum of the mode numbers on the left-
hand side. This could not be otherwise, since the basic commutator of α operators trades
two operators with opposite mode number for a constant, and in doing so, the total mode
number is conserved. Moreover, the spatial index on the oscillator is preserved. Equation
(12.118) holds for all values of m, including m = 0. Indeed, (12.100), which we used,
gives L⊥0 up to a constant that, although infinite, cannot affect the commutator. It is worth
anyway to check the result directly.

Quick calculation 12.3 Calculate [L⊥0 , α J
n ] using (12.105) and confirm that (12.118) holds

for m = 0.

Quick calculation 12.4 Show that

[
L⊥m , x I

0

]
= −i

√
2α′ α I

m . (12.119)

Let us now consider the commutator of two Virasoro operators L⊥m and L⊥n . The com-
putation is a bit subtle, and it is easy to get incorrect answers. We will avoid subtleties by
checking, at every stage of the calculation, that our expressions are normal ordered. For
this, we begin by rewriting the Visaroso operator (12.100) in such a way that it gives the
correct result even for L0. For this, the sum is split as:

L⊥m = 1

2

∑
k≥0

α I
m−kα

I
k +

1

2

∑
k<0

α I
k α I

m−k . (12.120)
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For any value of m the above right-hand side is normal-ordered: in the first sum the α to
the right is an annihilation operator (or a zero mode) and in the second sum the α to the
left is a creation operator. We now evaluate

[
L⊥m, L⊥n

] = 1

2

∑
k≥0

[
α I

m−kα
I
k , L⊥n

]+ 1

2

∑
k<0

[
α I

k α I
m−k , L⊥n

]
,

= 1

2

∑
k≥0

[
α I

m−k, L⊥n
]
α I

k + 1

2

∑
k<0

α I
k

[
α I

m−k , L⊥n
]

+ 1

2

∑
k≥0

α I
m−k

[
α I

k , L⊥n
]+ 1

2

∑
k<0

[
α I

k , L⊥n
]
α I

m−k . (12.121)

Evaluating the commutators we get

[
L⊥m, L⊥n

] = 1

2

∑
k≥0

(m − k)α I
m+n−kα

I
k +

1

2

∑
k<0

(m − k)α I
k α I

m+n−k

+ 1

2

∑
k≥0

k α I
m−kα

I
k+n +

1

2

∑
k<0

k α I
k+nα I

m−k . (12.122)

The terms on the first line of the right-hand side are always normal ordered. The terms
on the second line can require ordering, depending on the values of m and n. Let us now
consider two cases: m + n 	= 0 and m + n = 0.

Case m+n /= 0. All pairs of oscillators on the right-hand side of (12.122) commute so we
find [

L⊥m, L⊥n
] = 1

2

∑
k∈Z

(m − k)α I
m+n−kα

I
k +

1

2

∑
k∈Z

k α I
m−kα

I
k+n ,

= 1

2

∑
k∈Z

(m − k)α I
m+n−kα

I
k +

1

2

∑
k∈Z

(k − n) α I
m+n−kα

I
k ,

= (m − n)
1

2

∑
k∈Z

α I
m+n−kα

I
k . (12.123)

In passing from the first to the second line we let k → k − n in the second sum. Since
m + n 	= 0 the final operator requires no ordering and is recognized to be L⊥m+n . We have
therefore shown that [

L⊥m, L⊥n
]
= (m − n)L⊥m+n , m + n 	= 0 . (12.124)

The commutator of two Virasoro operators is a Virasoro operator with mode number equal
to the sum of the mode numbers of the operators which enter the commutator. The above
result does not hold when m + n = 0, in which case the answer is different. Nevertheless,
as a mathematical construct, a set of operators L⊥n with n ∈ Z, satisfying (12.124) for all m
and n, defines an interesting Lie algebra (Problem 12.5). This algebra is called the Virasoro
algebra without central extension or the Witt algebra.
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Case m+n =0. In this case we write n = −m and equation (12.122) becomes

[
L⊥m, L⊥−m

] = 1

2

∞∑
k=0

(m − k)α I−kα
I
k +

1

2

∑
k<0

(m − k)α I
k α I−k

+ 1

2

∞∑
k=0

k α I
m−kα

I
k−m + 1

2

∑
k<0

k α I
k−mα I

m−k . (12.125)

In order to compare the various terms it is useful to relabel the summation variables so that
the rightmost oscillator is always α I

k . For this we let k →−k in the second term of the first
line, k → m + k in the first term of the second line, and k → m − k in the second term of
the second line:

[
L⊥m, L⊥−m

] = 1

2

∞∑
k=0

(m − k)α I−kα
I
k +

1

2

∞∑
k=1

(m + k)α I−kα
I
k

+ 1

2

∞∑
k=−m

(m + k) α I−kα
I
k +

1

2

∞∑
k=m+1

(m − k) α I−kα
I
k . (12.126)

We now assume, without loss of generality, that m > 0. It then follows that all terms are
normal-ordered except those in the underlined summand for which −m ≤ k ≤ 0. Splitting
the sum, the underlined term becomes equal to

1

2

m∑
k=0

(m − k) α I
k α I−k +

1

2

∞∑
k=1

(m + k) α I−kα
I
k

= 1

2

m∑
k=0

(m − k) [α I
k , α I−k] +

1

2

m∑
k=0

(m − k) α I−kα
I
k +

1

2

∞∑
k=1

(m + k) α I−kα
I
k .

Evaluating the commutator and substituting the result back into (12.126) we get

[
L⊥m, L⊥−m

] = ∞∑
k=0

(m − k)α I−kα
I
k +

∞∑
k=1

(m + k)α I−kα
I
k + (D − 2)A(m) , (12.127)

where A(m) is the constant

A(m) = 1

2

m∑
k=0

k(m − k) = 1

2
m

m∑
k=1

k − 1

2

m∑
k=1

k2 . (12.128)

To evaluate A(m) we need the following result:

Quick calculation 12.5 Use mathematical induction to prove that

m∑
k=1

k2 = 1

6
(2m3 + 3m2 + m) . (12.129)

Making use of (12.129) we find

A(m) = 1

4
m2(m + 1)− 1

12
(2m3 + 3m2 + m) = 1

12
(m3 − m) . (12.130)
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Expanding out the sums in (12.127) and substituting the value of A(m), we find

[
L⊥m, L⊥−m

] = 2m
(1

2
α I

0α I
0 +

∞∑
k=0

α I−kα
I
k

)
+ 1

12
(D − 2)(m3 − m) . (12.131)

We recognize that the operator in parenthesis is L⊥0 . Therefore, our final result is

[
L⊥m, L⊥−m

] = 2m L⊥0 + 1

12
(D − 2)(m3 − m) . (12.132)

This completes the computation for the case m + n = 0.
The general result for the commutator of two Virasoro operators is obtained by writing a

formula that gives (12.124) for m + n 	= 0 and gives (12.132) for m + n = 0. This is easily
done and the result is

[
L⊥m, L⊥n

]
= (m − n) L⊥m+n +

D − 2

12

(
m3 − m

)
δm+n,0 . (12.133)

A set of operators L⊥n , with n ∈ Z, satisfying (12.133) defines the centrally extended Vira-
soro algebra. The second term on the above right-hand side is called the central extension.
It is a constant or, more properly, a constant times the identity operator (the operator that
acting on any state gives back the state). This term is said to be central because it com-
mutes with all other operators in the algebra. The central term vanishes for m = 0 and for
m = ±1. There is therefore no central term in the commutator [L1, L−1]. The Virasoro
algebra is perhaps the most important algebra in string theory. In the light-cone quantiza-
tion of string theory – our subject in this chapter – the Virasoro operators enter into the
definition of the Lorentz generators, as we will see in Section 12.5.

We conclude this section by studying how the Virasoro operators act on the string coor-
dinates. Since quantum operators act via commutators, we must find the commutator of
a Virasoro operator with the coordinate operator X I (τ, σ ). We will see that the Virasoro
operators generate reparameterizations of the world-sheet.

Making use of the coordinate expansion (12.32) we find

[ L⊥m , X I (τ, σ ) ] = [L⊥m, x I
0 ] + i

√
2α′

∑
n 	=0

1

n
cos nσ e−inτ [L⊥m, α I

n ]

= −i
√

2α′α I
m − i

√
2α′

∑
n 	=0

cos nσ e−inτ α I
m+n , (12.134)
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where we used (12.118) and (12.119) to evaluate the commutators. The right-hand side
above can be written as a single sum:

[ L⊥m , X I (τ, σ ) ] = −i
√

2α′
∑
n∈Z

cos nσ e−inτ α I
m+n

= −i
√

2α′ 1

2

∑
n∈Z

(e−in(τ−σ) + e−in(τ+σ)) α I
m+n

= −i
√

2α′ 1

2

∑
n∈Z

(e−i(n−m)(τ−σ) + e−i(n−m)(τ+σ)) α I
n ,

where in the last step we let n → n − m. Finally,

[ L⊥m , X I (τ, σ ) ] = − i

2
eim(τ−σ)

√
2α′

∑
n∈Z

e−in(τ−σ)α I
n

− i

2
eim(τ+σ)

√
2α′

∑
n∈Z

e−in(τ+σ) α I
n .

To interpret this result it is necessary to express the right-hand side in terms of derivatives
of the string coordinates. This is done with the help of (12.33):

[ L⊥m , X I (τ, σ ) ] = − i

2
eim(τ−σ) (Ẋ I − X I ′)− i

2
eim(τ+σ)(Ẋ I + X I ′)

= −ieimτ cos mσ Ẋ I + eimτ sin mσ X I ′. (12.135)

This equation has taken the form

[ L⊥m , X I (τ, σ ) ] = ξτ
m Ẋ I + ξσ

m X I ′, (12.136)

where

ξτ
m(τ, σ ) = −ieimτ cos mσ ,

ξσ
m (τ, σ ) = eimτ sin mσ . (12.137)

The interpretation of (12.136), we claim, is that the Virasoro operators generate reparame-
terizations of the world-sheet. In particular, they change the τ and σ coordinates as

τ −→ τ + ε ξτ
m(τ, σ ) ,

σ −→ σ + ε ξσ
m (τ, σ ) , (12.138)

where ε is an infinitesimal parameter. In order to see this, note that Taylor expansion gives

X I (τ + ε ξτ
m , σ + ε ξσ

m

) = X I (τ, σ )+ ε (ξτ
m Ẋ I + ξσ

m X I ′)

= X I (τ, σ )+ ε
[

L⊥m , X I (τ, σ )
]
. (12.139)

This equation states that the action of the Virasoro operators on the string coordinates
generates the same change that would occur as a result of a reparameterization of the
world-sheet. This is what we wanted to show.
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What is the reparameterization generated by L⊥0 ? Setting m = 0 in (12.137), we find
ξτ

0 = −i and ξσ
0 = 0. As a result, (12.136) gives

[L⊥0 , X I ] = −i∂τ X I , (12.140)

which we recognize as the Heisenberg equation of motion for X I . Indeed, L⊥0 is, up to
an additive constant, the string Hamiltonian, and as such, it must generate time transla-
tions. It is also interesting to note that for all m, ξσ

m vanishes at σ = 0 and at σ = π . This
means that the reparameterizations generated by the Virasoro operators do not change the
σ coordinates of the string endpoints. The range of σ remains [0, π ].

The functions ξτ
m and ξσ

m in (12.137) are not real, and used in (12.138) they spoil the
reality of the coordinates τ and σ . This complication is familiar to you from quantum
mechanics. Real transformations are generated by anti-Hermitian operators. The momen-
tum operator �p = −i∇ is Hermitian, and therefore it is the anti-Hermitian combination
i �p = ∇ that generates real translations. Out of the operators L⊥m and L⊥−m , we can generate
two anti-Hermitian combinations:

L⊥m − L⊥−m and i (L⊥m + L⊥−m) . (12.141)

Consider the first combination. It follows from (12.136) that the parameters for the
transformation generated by (L⊥m − L⊥−m) are

ξτ = ξτ
m − ξτ−m = 2 sin mτ cos mσ ,

ξσ = ξσ
m − ξσ−m = 2 cos mτ sin mσ . (12.142)

Quick calculation 12.6 Show that the parameters for the transformation generated by
i (L⊥m + L⊥−m) are

ξτ = 2 cos mτ cos mσ,

ξσ = −2 sin mτ sin mσ. (12.143)

Our discussion of the Virasoro operators has been quite detailed. We have examined their
precise definition, and we have seen how they affect the computation of the mass. We
have determined their commutator algebra, and we have exhibited how they act on string
coordinates. In the following section we will see that the Virasoro operators also enter into
the definition of the operators that generate Lorentz transformations.

12.5 Lorentz generators

In Chapter 8, the Lorentz invariance of the string action allowed us to find a set of con-
served world-sheet currents Mα

μν labeled by the indices μ and ν, with μ 	= ν. The resulting
conserved charges Mμν were given in (8.65), and for open strings with σ ∈ [0, π ] they read

Mμν =
∫ π

0
Mτ

μν(τ, σ ) dσ =
∫ π

0
(XμPτ

ν − XνPτ
μ) dσ. (12.144)
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Making use of (12.1) and raising the spacetime indices,

Mμν = 1

2πα′

∫ π

0

(
Xμ Ẋν − Xν Ẋμ

)
dσ. (12.145)

Constructing suitable quantum operators can be delicate, so let us gain some intuition by
thinking classically. Explicit mode expansions for Xμ and Ẋν are given in equations (9.56)
and (9.57). Since Mμν is guaranteed to be τ -independent, to evaluate (12.145) it suffices
to pick up the τ -independent terms that arise in the products. For example,

Xμ Ẋν = xμ
0 (
√

2α′ αν
0 )+ i 2α′

∑
n 	=0

1

n
αμ

n αν−n cos2 nσ + · · ·, (12.146)

where the dots represent τ -dependent terms that must fail to contribute in the calculation
of Mμν . With this equation, and a similar one with μ and ν exchanged, we find that upon
integration (12.145) gives

Mμν = xμ
0 pν − xν

0 pμ − i
∞∑

n=1

1

n

(
α

μ
−nαν

n − αν−nαμ
n

)
. (12.147)

Quick calculation 12.7 Prove equation (12.147).

Equation (12.147) gives the classical Lorentz generators in terms of oscillation modes. We
should ask ourselves whether we can use it, with the α recognized as operators, to define
the quantum Lorentz generators. We will use (12.147) to suggest the form of the quantum
Lorentz generators in light-cone gauge string theory. Since the canonical structure of the
theory in the light-cone gauge is unusual, there is no guarantee that we can build consistent
quantum Lorentz generators. An inability to construct quantum Lorentz generators would
mean that quantum string theory fails to be physically Lorentz invariant.

In light-cone gauge, the most delicate quantum Lorentz generator is M−I because the X−
coordinate is a rather nontrivial function of the transverse coordinates. A consistent M−I

must generate Lorentz transformations on the string coordinates, possibly accompanied
by world-sheet reparameterizations. Indeed, in the simpler context of the point particle,
the action of M−I includes world-line reparameterizations. The generator M−I must also
satisfy the commutation relation [

M−I , M−J
]
= 0 . (12.148)

To find a candidate for M−I , we consider equation (12.147) and write

M−I ?= x−0 pI − x I
0 p− − i

∞∑
n=1

1

n

(
α−−nα I

n − α I−nα−n
)

. (12.149)

This is just a first guess, though it is a pretty good one. A satisfactory M−I should be both
Hermitian and normal-ordered. Let us consider Hermiticity first. The first term in the right-
hand side of (12.149) is Hermitian since x−0 and pI commute. The second term, however,
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is not, since x I
0 and p− do not commute. A simple solution is to symmetrize the term by

writing

M−I ?= x−0 pI − 1

2

(
x I

0 p− + p−x I
0

)
− i

∞∑
n=1

1

n

(
α−−nα I

n − α I−nα−n
)

. (12.150)

The last term above is fully Hermitian since (α I
n )† = α I−n and (α−n )† = α−−n . Consider now

normal ordering. Do all of the annihilation operators appear to the right of the creation
operators? They do, because the α− oscillators are normal-ordered Virasoro operators.
Finally, to be complete, we must give the definition of p−. As stated in (12.106), p−
includes an undetermined constant a that reflects our difficulties in ordering the Vira-
soro operator L⊥0 . With this definition, and writing the other minus oscillators in terms
of Virasoro operators, we find

M−I = x−0 pI − 1

4α′ p+
(

x I
0

(
L⊥0 + a

)
+
(

L⊥0 + a
)

x I
0

)

− i√
2α′ p+

∞∑
n=1

1

n

(
L⊥−nα I

n − α I−n L⊥n
)

. (12.151)

Now that we have a candidate for the quantum Lorentz charge M−I , we can discuss the
computation of [M−I , M−J ].

There is much at stake in this calculation. It is in fact, one of the most important calculations
in string theory. Our Lorentz charge has two undetermined parameters: the dimension D
of spacetime, implicit in the sums over transverse directions, and the constant a affecting
the mass of the particles. The calculation is long and uses many of our previously derived
results, including the Virasoro commutation relations. We will not attempt to do it here,
but the result is[

M−I , M−J
]
= − 1

α′ p+2

∞∑
m=1

(
α I−mα J

m − α J−mα I
m

)

×
{

m
[
1 − 1

24
(D − 2)

]
+ 1

m

[ 1

24
(D − 2)+ a

]}
. (12.152)

The right-hand side is a sum of terms, each of which contains the operator(
α I−mα J

m − α J−mα I
m

)
for a different value of m. Such terms cannot cancel each other, so

the commutator above vanishes if and only if the coefficient in large braces vanishes for all
positive integers m:

m
[
1 − 1

24
(D − 2)

]
+ 1

m

[ 1

24
(D − 2)+ a

]
= 0 , ∀m ∈ Z

+ . (12.153)

It suffices to examine this condition for m = 1 and m = 2 to conclude that each of the
terms in brackets must simply vanish. We therefore have

1 − 1

24
(D − 2) = 0 and

1

24
(D − 2)+ a = 0 . (12.154)

The first equation fixes the dimension of spacetime:
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D = 26 . (12.155)

The second equation then fixes the constant a:

a = − 1

24
(D − 2) = −24

24
= −1 . (12.156)

This value of a coincides with the one obtained in (12.111) by ordering L⊥0 and using
the zeta function to interpret the resulting infinity. For future reference, with a = −1 the
expression for p− in (12.106) becomes

2α′ p− ≡ 1

p+
(

L⊥0 − 1
)

. (12.157)

In addition, because of (12.14) the string Hamiltonian is now just

H = L⊥0 − 1 . (12.158)

Here, of course, L⊥0 is the normal-ordered operator without additional constants. The above
equation is the precise version of equation (12.16).

In summary, we have seen that the condition of Lorentz invariance of quantum string the-
ory simultaneously fixes the dimension of spacetime and the constant shift in the masses of
the particles. In superstring theory a similar calculation fixes the dimensionality of space-
time to the value D = 10. The fact that string theory cannot be a good Lorentz invariant
quantum theory in any arbitrary dimension shows that string theory is very constrained.
Even more, since the dimension of spacetime is uniquely selected by the requirement of
consistency, we can say that string theory predicts the dimension of spacetime!

12.6 Constructing the state space

The classical open string does not provide a reasonable theory of physics because the mass
of string states assumes a continuous range of values. Only the ground state is massless
in the classical theory, and this ground state does not include any polarization labels. As a
result, classical open strings have no states that can be identified as photons. The miracle of
quantum string theory is that both of these problems are solved. The continuous spectrum
disappears after quantization. Candidate photon states emerge because the downward shift
of the squared masses gives us massless states with polarization labels.
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Let us begin by introducing the ground states of the quantum string. The quantum string
shares with the quantum point particle the same set of zero modes. We have the canonical
pairs (x I

0 , pI ) and (x−0 , p+). Therefore, just as for the point particle (see (11.43)), we
introduce states

|p+, �pT 〉. (12.159)

The above states are called ground states for all values of the momenta indicated by the
labels. They are also declared to be vacuum states for all the oscillators in string theory.
Thus, by definition, they are annihilated by all the aI

n :

aI
n |p+, �pT 〉 = 0 , n ≥ 1, I = 2, . . ., 25. (12.160)

How do we create states from the |p+, �pT 〉? We simply act on them with the creation oper-
ators. There are infinitely many of them, and we can operate on each state arbitrarily many
times with any particular creation operator. The list of creation operators at our disposal is
infinite, but it can be organized as follows:

a(2)
1

†
a(3)

1

† · · · a(25)
1

†

a(2)
2

†
a(3)

2

† · · · a(25)
2

†

...
...

...
...

a(2)
n

†
a(3)

n
† · · · a(25)

n
†

...
...

...
...

(12.161)

Above, the polarization index I has been enclosed by parentheses. The general basis state
|λ〉 of the state space can be written as

|λ〉 =
∞∏

n=1

25∏
I=2

(
aI

n
†
)λn,I |p+, �pT 〉 . (12.162)

Here the non-negative integer λn,I denotes the number of times that the creation operator
aI

n
†

appears. As you can see, the state |λ〉 is specified by stating how many times each of
the oscillators in the list (12.161) acts on the ground state. This information is given by the
list of non-negative integers λn,I for all n ≥ 1 and all I = 2, . . ., 25. Since all the creation
operators commute among each other, the order in which they appear is irrelevant. We
restrict ourselves to the case where states only have a finite number of creation operators
acting on the ground states. This means that for each state |λ〉 only a finite number of λn,I

are different from zero. The string Hilbert space is an infinite-dimensional vector space:
it is spanned by an infinite set of linearly independent basis states |λ〉. This is why string
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theory describes an infinite number of different particles! A general state in the Hilbert
space is a linear superposition of the basis states |λ〉.

To understand the physical significance of the above states, consider the mass-squared
operator (12.108), with our new found knowledge that a = −1:

M2 = 1

α′
(
−1 +

∞∑
n=1

naI
n

†
aI

n

)
. (12.163)

The sum appearing in (12.163) is important enough to have its own name; it is called the
number operator N⊥:

N⊥ ≡
∞∑

n=1

naI
n

†
aI

n , M2 = 1

α′
(−1 + N⊥) . (12.164)

N⊥ is the sum of standard number operators, one for each harmonic oscillator in the string.
The main property of N⊥ is that its commutator with a creation operator gives the mode
number of that operator: [

N⊥, aI
n

† ] = n aI
n

†
, (12.165)

as you can readily verify. In addition,[
N⊥, aI

n

]
= −n aI

n . (12.166)

Since the number operator is normal-ordered it annihilates the ground states:

N⊥|p+, �pT 〉 = 0 . (12.167)

Note, incidentally, that the number operator N⊥ enters into the definition of L⊥0 in (12.105).
We can write

L⊥0 = α′ pI pI + N⊥ . (12.168)

Let us get some practice using N⊥ by computing its action on some basis states.

Consider, for example, its action on aI
2

†|p+, �pT 〉:

N⊥aI
2

†|p+, �pT 〉 =
[

N⊥, aI
2

†
]
|p+, �pT 〉 + aI

2
†
N⊥|p+, �pT 〉 = 2aI

2
†|p+, �pT 〉 .

The state is an eigenstate of N⊥ with eigenvalue 2. Now let us try a more complicated
state:

N⊥a J
3

†
aI

2
†|p+, �pT 〉 =

[
N⊥, a J

3
†
]

aI
2

†|p+, �pT 〉 + a J
3

†
N⊥aI

2
†|p+, �pT 〉

= 5 a J
3

†
aI

2
†|p+, �pT 〉 . (12.169)

It is clear that when the number operator acts on a basis state, the eigenvalue is the sum of
the mode numbers of the creation operators appearing in the state. In general, for the basis
state |λ〉 in (12.162) we have
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N⊥|λ〉 = N⊥
λ |λ〉 , with N⊥

λ =
∞∑

n=1

25∑
I=2

nλn,I . (12.170)

Since N⊥ enters additively into the mass-squared operator (12.164), we see that the oscil-
lator with mode number n contributes n units of 1/α′ to M2. The eigenvalues of N⊥ are
non-negative integers, so for all string states M2 ≥ −1/α′.

The open string state space is naturally equipped with an inner product. To define this
inner product we introduce bras 〈p+, �pT | which are the Hermitian conjugates of the kets
|p+, �pT 〉, and declare that

〈p′+, �p ′T | p+, �pT 〉 = δ(p′+ − p+) δ ( �p ′T − �pT ) . (12.171)

The delta functions here are necessary because the Hermiticity of the operators p+ and �pT

guarantees that the overlap above vanishes unless the p+ and �pT eigenvalues of the states
are identical. For the basis state |λ〉 in (12.162), we introduce the Hermitian conjugate bra
〈λ| defined by

〈λ| = 〈p+, �pT |
∞∏

n=1

25∏
I=2

(
aI

n

)λn,I
. (12.172)

The Hermitian conjugate of |λ〉b, where b is a number, is simply b∗〈λ|. The inner product
(λ′ , λ) between two basis states |λ′〉 and |λ〉 is defined as

(λ′ , λ) = 〈λ′| λ〉 . (12.173)

For arbitrary states, the inner product is defined by declaring it to be linear on the second
argument and antilinear on the first argument. To evaluate the overlap 〈λ′|λ〉 one moves the
annihilation operators in 〈λ′| towards the ground state in |λ〉 and the creation operators in
|λ〉 towards the ground state in 〈λ′|. In moving these operators across each other we use the
commutation relations (12.64), which appear in the standard form because in the overlap
the annihilation operators are to the left of the creation operators. The commutators give
+1 whenever they are nonvanishing, so the result of simplifying the oscillator content of
the overlap is a positive number times the basic overlap in (12.171). For example, take
|λ′〉 = aI †

1 |p′+, �p ′T 〉 and |λ〉 = a J†
1 |p+, �pT 〉. We then find

〈λ′| λ〉 = 〈p′+, �p ′T | aI
1 a J†

1 |p+, �pT 〉 = δ I J δ(p′+ − p+) �δ ( �p ′T − �pT ) , (12.174)

where we evaluated the overlap by replacing the product of oscillators by their commutator
and using (12.171). Since the delta functions are positive functions, we conclude that all
basis states |λ〉 have positive norm: (λ, λ) > 0. This inner product does not vanish because
the annihilation operators on the bra match with the creation operators on the ket. Tech-
nically, (λ, λ) is infinite because of the delta functions, but this infinity becomes harmless
when we consider continuous superpositions of states. Using the linearity and antilinearity
of the inner product, we conclude that any state has positive norm. This is consistent with
our statement that the open string state space is a Hilbert space.
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Quick calculation 12.8 Explain why (λ′, λ) = 0 whenever the basis states |λ′〉 and |λ〉 are
different.

For each state |λ〉 in (12.162), we can construct the corresponding time-dependent physical
state

exp
(
−i(L⊥0 − 1) τ

)
|λ〉 , (12.175)

which satisfies the Schrödinger equation with Hamiltonian (12.158). In the light-cone
quantization of the string a time-dependent state is physical if it satisfies the Schrödinger
equation. We will consider more general superpositions of time-dependent states in the
following section.

We are now ready to discuss particular states in some detail. We will begin with the simplest
ones, the ground states. These are the unique states with N⊥ = 0. As in the case of the point
particle, the states |p+, �pT 〉 are the one-particle states of a scalar field. They are states of a
scalar particle. What is the mass of this particle? To find out, we act on the states with M2:

M2| p+, �pT 〉 = 1

α′
(−1 + N⊥)| p+, �pT 〉 = − 1

α′
| p+, �pT 〉 . (12.176)

The value of M2 is all due to the ordering constant. If this constant had vanished the
mass would have been zero. In fact, massless scalars are problematic – they have not been
observed in nature. The result, however, is strange: M2 = −1/α′ < 0. The wavefunction
of the state tells the same story: ψ(τ, p+, �pT ) can be set in correspondence with a classi-
cal scalar field. This scalar field, which has a negative mass-squared, is called a tachyon.
A negative mass-squared is a sign of instability: the potential for a scalar field goes like
V = 1

2 M2φ2 (see (10.2)), so a negative M2 simply means that the stationary point φ = 0
is unstable. The energy can be reduced by having φ 	= 0. We will study this further in
Section 12.8.

Let us consider now the excited states with lowest M2. Those arise when N⊥ takes
the smallest possible nonzero value, N⊥ = 1. Remarkably, due to the ordering constant,
the N⊥ = 1 states have M2 = 0. They are massless states. Had the ordering constant taken
a noninteger value, quantum string theory would have no massless states. We get states

with N⊥ = 1 when we act with any of the transverse oscillators aI
1

†
on the ground states

|p+, �pT 〉. That means that we have D − 2 = 24 massless states:

aI
1

†|p+, �pT 〉 , M2aI
1

†|p+, �pT 〉 = 0 . (12.177)

The general massless state is a linear combination of the above basis states:

25∑
I=2

ξI a I
1

†|p+, �pT 〉 . (12.178)
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The above expression may remind you of the photon states (10.88) that we found in our
light-cone analysis of Maxwell theory:

D−1∑
I=2

ξI a I †
p+, pT

|�〉 . (12.179)

We have a matching of states: in both cases ξI is an arbitrary transverse vector, and the
states correspond to one another:

aI
1

†|p+, �pT 〉 ←→ aI †
p+, pT

|�〉 . (12.180)

Both states have exactly the same Lorentz labels, they carry the same momenta, and have
the same mass. This proves a remarkable result. The open string theory quantum states
include photon states! Our study of open string theory started from the Nambu–Goto
action. This action has no hint whatsoever of electromagnetic gauge invariance. Never-
theless, we have shown that open string theory contains Maxwell field excitations. This
astonishing result is largely due to the mass shift encountered in passing from the classical
to the quantum theory of the open string.

It is worth belaboring the point. In Chapter 10 we showed that the quantum states of free
Maxwell theory – the photon states – are (D − 2) massless states, labeled by a transverse
Lorentz index. The index is important: it indicates that these states transform into each
other under Lorentz transformations. Exactly these kind of states have appeared in our
quantization of the string. Additionally, the collection of wavefunctions ψI (τ, p+, �pT )

associated with the states in (12.177) matches with the components AI of the Maxwell
gauge field. Finally, the Schrödinger equation for these wavefunctions matches the light-
cone gauge field equation for the Maxwell field. We will show this in the following section.

Let us conclude with an examination of the states with N⊥ = 2. They are built by acting

on the ground states with aI
1

†
a J

1
†

or with aI
2

†
. The number of states built with aI

1
†
a J

1
†

is the
same as the number of independent entries in a symmetric matrix of size (D − 2), namely
1
2 (D − 2)(D − 1). The number of states built with aI

2
†

is (D − 2). The total number of
states is therefore

1

2
(D − 2)(D − 1)+ (D − 2) = 1

2
(D − 2)(D + 1) , (12.181)

and their mass-squared is given by M2 = 1/α′. These particles are known as massive ten-
sors, and in D = 26 there are 324 such states. Our results for all states with N⊥ ≤ 2 are
summarized in Table 12.1. A formula useful to count states at higher values of N⊥ is
derived in Problem 12.11. The formula tells you that at N⊥ = 3, for example, you get

2600 states by acting with aI
1

†
a J

1
†
aK

1
†

on the ground states.
Each state |λ〉 of the quantum string represents a one-particle state of fixed momentum.

Thus, the aI
1

†|p+, �pT 〉 are one-photon states, and the aI
1

†
a J

1
†|p+, �pT 〉 are one-particle

tensor states (not two-photon states). Each state |λ〉 has discrete labels λn,I and continuous
labels p+ and �pT . There is one wavefunction for each set of discrete labels, as you can
see in the table. Accordingly, there is one quantum field for each set of discrete labels.
The multiparticle states are described using these quantum fields. The total quantum field
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�Table 12.1 List of open string states with N⊥ ≤ 2

N⊥ |λ〉 α′M2 Number of states Wavefunction

0 |p+, �pT 〉 −1 1 ψ(τ, p+, �pT )

1 aI
1

†|p+, �pT 〉 0 D − 2 ψI (τ, p+, �pT )

2 aI
1

†
a J

1
†|p+, �pT 〉 1 1

2 (D − 2)(D + 1) ψI J (τ, p+, �pT )

aI
2

†|p+, �pT 〉 ψI (τ, p+, �pT )

�Fig. 12.1 An unoriented open string is a quantum state that can be obtained by superposition of states
that differ only by orientation. The unoriented state is invariant under orientation reversal.

theory which describes the whole set of quantum fields associated with the one-particle
states of the string is called string field theory.

The quantum theory we have discussed so far is that of oriented open strings. The quan-
tum operator X I (τ, σ ) involves a parameter σ ∈ [0, π ] and thus an orientation, defined
as the direction of increasing σ . It is possible to define a theory of unoriented strings
(Problem 12.12). The key idea is that one can define an operator � that is a symmetry of
the theory (commutes with the Hamiltonian) and reverses the orientation of strings. The
theory of unoriented strings is obtained by restricting the oriented string spectrum to the
set of states that are invariant under the action of �. Unoriented strings are not strings
without orientation: they should be viewed as quantum superposition of states that, as
a whole, are invariant under orientation reversal. We can imagine an unoriented state as
the superposition of a string state and the same state with opposite orientation, as shown
in Figure 12.1.

12.7 Equations of motion

To elaborate on the correspondence between string states and quantum fields we now
consider the Schrödinger equations satisfied by the string wavefunctions. We saw in
Section 11.4 that the Schrödinger equation for the point particle wavefunction is isomor-
phic to the classical field equation of a scalar field. We want to repeat such an analysis for
the string.
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To construct general time-dependent states from the string basis states we need
wavefunctions. Consider, for example, a basis state

aI1
n1

†
. . . aIk

nk

†|p+, �pT 〉 . (12.182)

The general time-dependent state built by superposition is

|�, τ 〉 =
∫

dp+ d �pT ψI1...Ik (τ, p+, �pT ) aI1
n1

†
. . . aIk

nk

†|p+, �pT 〉 . (12.183)

The polarization indices carried by the oscillators match with the index labels of the wave-
function ψI1...Ik (τ, p+, �pT ). This equation is the string analog of (11.48), which gives
the general time-dependent state of the point particle. For general tachyon states (12.183)
becomes

|tachyon, τ 〉 =
∫

dp+ d �pT ψ(τ, p+, �pT ) |p+, �pT 〉 . (12.184)

For photon states we write

|photon, τ 〉 =
∫

dp+ d �pT ψI (τ, p+, �pT ) aI
1

†|p+, �pT 〉 . (12.185)

The Schrödinger equation satisfied by the general states (12.183) is

i
∂

∂τ
|�, τ 〉 = H |�, τ 〉 . (12.186)

Here, the Hamiltonian is given by

H = (L⊥0 − 1) = α′ pI pI + N⊥ − 1 = α′(pI pI + M2) , (12.187)

where we used (12.158) and (12.168). Using the explicit expression (12.183) for the states,
equation (12.186) gives:

i
∂

∂τ
ψI1...Ik =

(
α′ pI pI + N⊥ − 1

)
ψI1...Ik , (12.188)

where N⊥ denotes the eigenvalue of the operator N⊥ for the state (12.183).

Quick calculation 12.9 Show that equation (12.188) emerges from the Schrödinger equa-
tion (12.186). The calculation parallels that which gave (11.53).

For the tachyon states (12.184), N⊥ = 0, and we get

i
∂ψ

∂τ
=
(
α′ pI pI − 1

)
ψ . (12.189)

For the photon states (12.185), N⊥ = 1, and we get

i
∂ψI

∂τ
= α′ pJ pJ ψI . (12.190)

Let us now compare these Schrödinger equations with the relevant classical field equations.
We showed in Chapter 10 that the scalar field equation(

∂2 − m2
)

φ = 0 , (12.191)
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could be written as (10.30):(
i

∂

∂x+
− 1

2p+
(pI pI + m2)

)
φ(x+, p+, �pT ) = 0 . (12.192)

Letting x+ = 2α′ p+τ we now have(
i

∂

∂τ
− α′(pI pI + m2)

)
φ(τ, p+, �pT ) = 0 . (12.193)

This equation is precisely the same as (12.189) when m2 = −1/α′, confirming the identi-
fication of the tachyon with a scalar field. Perhaps more surprisingly, equation (12.193) is
structurally equivalent to the Schrödinger equation (12.188) satisfied by any string wave-
function. The only difference is that the wavefunctions carry indices. As a result, if the
correspondence is to hold, the classical field equation for the field associated with any
string state must take the form (12.191), with the field carrying some indices.

This may seem strange: is not the Maxwell classical field equation, for example, more
complicated than the field equation for a scalar? Not in the light-cone gauge. We noticed
this before: equation (10.83) showed that the transverse components of the gauge field
satisfy p2 AI (p) = 0. This is of the form (12.191) with m2 = 0. The steps leading from
(12.191) to (12.193), when applied to ∂2 AI = 0 give(

i
∂

∂τ
− α′ pJ pJ

)
AI (τ, p+, �pT ) = 0 . (12.194)

This classical field equation for the Maxwell field is in complete correspondence with the
Schrödinger equation (12.190) for the N⊥ = 1 wavefunctions.

12.8 Tachyons and D-brane decay

We conclude this chapter by discussing the physics of the tachyon. We explained earlier
that the tachyon state has the lowest value of M2:

M2|p+, �pT 〉 = − 1

α′
|p+, �pT 〉 . (12.195)

The field associated with this state is a scalar field. What does it mean for this scalar to
have a negative M2? The physics of the open string tachyon was a mystery ever since
the discovery of string theory. A series of developments starting in 1999 have essentially
elucidated the role of the open string tachyon. Let us discuss what has been learned.

Our first goal is to understand the instability of a theory with a tachyon. For this purpose
we consider the Lagrangian density for a classical scalar field, along the lines of Section
10.2. In some generality,

L = −1

2
ημν ∂μφ ∂νφ − V (φ) = 1

2
(∂0φ)2 − 1

2
|∇φ|2 − V (φ) , (12.196)
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(a)

V(φ) V(φ)

φ

(b)

M 
2 > 0 M 

2 > 0 

φ

�Fig. 12.2 (a) A potential V(φ) = 1
2 M2φ2 with positive mass-squared M2. The value φ = 0 is a stable

critical point. (b) A potential V(φ) = 1
2 M2φ2 with negative mass-squared M2. The value

φ = 0 is an unstable critical point.

where V (φ) is the potential for the scalar field. For spatially homogeneous field config-
urations, ∇φ = 0, and the potential energy density is given by the potential V (φ). The
equation of motion following from variation is

∂2φ − V ′(φ) = 0 , (12.197)

where prime denotes the derivative with respect to the argument. More explicitly,

− ∂2φ

∂t2
+∇2φ − V ′(φ) = 0 . (12.198)

Quick calculation 12.10 Prove that equation (12.197) arises from variation of the action
S = ∫

d DxL.

To understand the instability of the tachyon scalar field theory it suffices to consider the
free part of the tachyon Lagrangian; interactions will feature later. For a free scalar field
theory, the potential V (φ) takes the form

V (φ) = 1

2
M2φ2 . (12.199)

Here M2 is the mass-squared of the scalar field (this potential will change with the inclu-
sion of interactions). When M2 > 0, the potential V (φ) has a stable minimum at φ = 0.
When M2 < 0, V (φ) has an unstable maximum at φ = 0 (Figure 12.2). We can understand
the implications of such potentials by studying the equation of motion for the field. Using
the specified form of V , equation (12.198) gives

− ∂2φ

∂t2
+∇2φ − M2φ = 0 . (12.200)

To make our analysis simpler, let us assume that the field φ depends only on time. The
equation of motion then becomes

d2φ(t)

dt2
+ M2φ(t) = 0 . (12.201)
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When M2 = M · M > 0, the solutions of this equation represent oscillations:

φ = A cos (Mt)+ B sin (Mt) = C sin (Mt + α0) . (12.202)

This is the interpretation of a scalar field with a “good” mass-squared. The scalar field
could sit at φ = 0 forever because it is a stable point; if it is displaced, it simply oscillates
around φ = 0.

Consider, on the other hand, the tachyon, which is an example of a scalar with negative
mass-squared. In this case it is convenient to write M2 = −β2 = −β · β, and equation
(12.201) becomes

d2φ(t)

dt2
− β2φ(t) = 0 , (12.203)

with β2 > 0. This time the solutions are

φ(t) = A cosh (βt)+ B sinh (βt) . (12.204)

Consider the solution φ(t) = sinh (βt). At time zero φ is zero, but as time goes to infinity
φ also goes to infinity. We can imagine this as the field rolling to the right of the potential in
Figure 12.2(b). In fact, for any nontrivial solution, φ necessarily reaches infinite absolute
value either in the far past or in the far future. The tachyon could stay at φ = 0 forever,
using the trivial solution φ(t) = 0, but any infinitesimal perturbation would set it on a
course to a dramatic roll-off. The value φ = 0 is an allowed critical point, but it is unstable.
We cannot realistically expect the tachyon to stay near φ = 0 for an indefinite length of
time. This is the instability of a theory that contains a tachyon. Since the mass-squared of
the open string tachyon is equal to (−1/α′), the free part of the tachyon potential is

V free
tach (φ) = − 1

2α′
φ2 . (12.205)

A mechanical analogy works for arbitrary potentials V (φ). You can visualize the spa-
tially homogeneous rolling of a scalar field on a potential V (φ) by considering the motion
of a particle on the potential V (x), where x , replacing φ, is the coordinate along the motion.
Indeed, the relevant equations match. For an arbitrary potential V (φ), homogeneous rolling
is governed by

d2φ

dt2
= −V ′(φ) , (12.206)

while the rolling of a unit-mass particle on a potential V (x) is governed by Newton’s
second law:

d2x

dt2
= −V ′(x) . (12.207)

The presence of a tachyon signals an instability of open string theory. More precisely,
there is some instability in the theory of open strings on the background of a space-filling
D25-brane. It is clear that we should try to understand the fate of this instability: once the
tachyon begins to roll, where does it end? For a while, not everyone agreed that this was an
urgent question. Some argued that along with the lack of fermions, the tachyon was another
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good reason to consider this open string theory unrealistic and not worth much study. Some
even saw the tachyon as a sign that open bosonic string theory is simply inconsistent. For
quite a few years, superstring theories, the kind of string theories that also include fermions,
seemed blessedly devoid of tachyons. Later studies, however, showed that tachyons can
appear when we construct realistic models based on superstrings. It then became clear that
we must try to understand tachyons.

The open string theory we have in our hands is the theory of strings on a D25-brane, a
D-brane that fills all of the space dimensions. The D25-brane is a physical object, not just
a mathematical construct, so it has a constant energy density T25 which, in fact, can be
calculated exactly. The key insight can now be stated: the theory of open strings is, in some
sense, the theory of the D25-brane itself! We have viewed tachyons as states of strings
attached to a D-brane. A D-brane with open strings attached, it turns out, is an excited
state of the D-brane. If this is so, a tachyon state represents an excitation that can lower
the energy of the D-brane. The existence of the tachyon is telling us that the D25-brane is
unstable!

Since the tachyon describes the physics of the D25-brane, the energy density of this
brane is a contribution to the potential energy of the system, and it must be incorporated
into the tachyon potential. As a result, the potential in (12.205) is changed into

Vtach(φ) = T25 − 1

2α′
φ2 + βφ3 + · · ·. (12.208)

We have also included in the tachyon potential a cubic term and represented other possible
terms by dots. All the terms that are cubic or higher order in the field represent the effect of
interactions. The above potential describes correctly our statements about the D25-brane.
The unstable point φ = 0 represents the world with a D25-brane, and therefore has an
energy density T25. To find out what happens when the tachyon starts rolling down, we
need to calculate the full tachyon potential Vtach(φ).

The physics can be anticipated before computing this potential. If the D25-brane is
unstable, it will decay. The stable endpoint of this process would be a world without
the D25-brane. If this is so, the tachyon potential must have a stable critical point at
some φ = φ∗ with Vtach(φ

∗) = 0. That stable critical point would represent a background
with zero energy, a background where the D25-brane, rendered unstable by the tachyon,
has disappeared completely! The expected form of the tachyon potential is shown in
Figure 12.3.

This proposal has now been verified convincingly. The complete tachyon potential was
calculated using the field theory of open strings and, remarkably, it was possible to display
a critical point with zero energy. With this result, and additional evidence obtained by
other means, physicists have demonstrated that the tachyon instability is the instability of
the D25-brane.

What happens when the tachyon rolls down to the stable minimum and the D25-brane
disappears? All the open strings must also disappear, because open string endpoints are
confined to D-branes. Closed strings, however, can exist in the absence of D-branes. All



274 Relativistic quantum open strings
�

Vtach (φ)

T25

φ∗ φ0

�Fig. 12.3 The tachyon potential for the open string theory based on a D25-brane. The configuration
φ = 0 represents the unstable D-brane. The stable critical point φ∗ has zero energy.

the energy initially stored in the D25-brane goes into closed strings. At the stable critical
point φ∗ all particles that arise as open string excitations, including the tachyon, must dis-
appear. This shows that the theory near φ∗ is quite subtle. Vacuum string field theory is an
attempt to formulate string theory at the vacuum φ∗ where both D-branes and open strings
disappear.

Further interesting facts about tachyons and D-branes have emerged. It has been shown
that Dp-branes with p < 25 are themselves large and coherent excitations of the tachyon
field of the D25-brane. In some sense, D-branes are made of tachyons! This is also true,
with minor modifications, in superstring theory. In superstring theory certain D-branes
carry charge and therefore charge conservation ensures that they are stable against decay.
In fact, the open string theory in the background of any such D-brane has no tachyons.
However, a configuration consisting of a D-brane and a coincident, oppositely charged anti-
D-brane, is unstable: the two objects can annihilate without violating charge conservation.
The open strings which stretch from the D-brane to the anti-D-brane contain a tachyon –
a superstring tachyon! This tachyon describes the instability of the D-brane/anti-D-brane
pair. The study of D-brane/anti-D-brane annihilation plays an important role in attempts to
use string theory to describe the early universe. It is thus possible that the tachyon will end
up playing a prominent role in string cosmology.

Problems

Problem 12.1 Heisenberg equation for the momentum density.

We verified in (12.21) that Ẋ I = 2πα′Pτ I follows from the Heisenberg equation i ξ̇ =
[ξ, H ], when ξ = X I . Calculate Ṗτ I , and use the result to verify that the classical equation
of motion Ẍ I − X I ′′ = 0 holds as an operator equation.
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Problem 12.2 Testing explicitly some vanishing commutators.

Use the mode expansion (12.32) and the commutation relations of the α to check explicitly
that equation (12.26) holds: [X I ′(τ, σ ), X J ′(τ, σ ′)] = [Ẋ I (τ, σ ) , Ẋ J (τ, σ ′)] = 0.

Problem 12.3 Testing explicitly the main commutator.

(a) Use the explicit mode expansions of X I and Pτ J , together with the commutation
relations (12.45) and (12.54), to show that[

X I (τ, σ ) ,Pτ J (τ, σ ′)
]
= i ηI J 1

π

∑
n∈Z

cos nσ cos nσ ′ .

(b) If the above result agrees with (12.10), we must have

δ(σ − σ ′) = 1

π

∑
n∈Z

cos nσ cos nσ ′ . (1)

This equation follows from the completeness of the functions cos nσ with n ≥ 0 on the
interval σ ∈ [0, π ]. The completeness is readily explained: any function f (σ ) defined
over σ ∈ [0, π ] can be extended to a function over σ ∈ [−π, π] by letting f (−σ) ≡
f (σ ) for σ ∈ [0, π ]. The resulting function is an even function of σ and by the basic
result of Fourier series it can be expanded in terms of cosines. We can therefore expand
any function f (σ ) with σ ∈ [0, π ] as

f (σ ) =
∞∑

n=0

An cos nσ . (2)

Prove (1) by calculating An and substituting the result back into the right-hand side
of (2).

Problem 12.4 Analytic continuation of the zeta function.

Consider the definition of the gamma function �(s) = ∫∞
0 dt e−t t s−1. Let t → nt in this

integral, and use the resulting equation to prove that

�(s) ζ(s) =
∫ ∞

0
dt

ts−1

et − 1
, �(s) > 1 . (1)

Verify also the small t expansion

1

et − 1
= 1

t
− 1

2
+ t

12
+O(t2) . (2)

Use the above equations to show that for �(s) > 1

�(s) ζ(s) =
∫ 1

0
dt ts−1

( 1

et − 1
− 1

t
+ 1

2
− t

12

)
+ 1

s − 1
− 1

2s
+ 1

12 (s + 1)

+
∫ ∞

1
dt

ts−1

et − 1
.
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Explain why the right-hand side above is well defined for �(s) > −2. It follows that this
right-hand side defines the analytic continuation of the left-hand side to�(s) > −2. Recall
the pole structure of �(s) (Problem 3.6) and use it to show that ζ(0) = −1/2 and that
ζ(−1) = −1/12.

Problem 12.5 The Virasoro algebra is a Lie algebra.

A vector space L with elements x, y, z, . . . and a bilinear bracket [· , ·], that takes two ele-
ments of L and yields another element of L , is a Lie algebra if the two following conditions
hold.

(i) Antisymmetry: [x, y] = −[y, x] for all elements x and y of L .
(ii) Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, for all elements x, y, and z

of L .

Consider the vector space L spanned by the Virasoro operators with modes n ∈ Z. Show
that the commutators in (12.124), assumed to hold for all values of m and n, define a Lie
algebra. Then, consider the commutators in (12.133), and show that they also define a
Lie algebra.

Problem 12.6 Consistency conditions on the Virasoro algebra central terms.

The Virasoro commutation relations take the form

[L⊥m, L⊥n ] = (m − n)L⊥m+n + C(m)δm+n,0 , (1)

where C(m) is a function of m that was calculated directly in this chapter. The purpose
of this problem is to find the constraints on C(m) that follow from the condition that (1)
defines a Lie algebra.

(a) What does the antisymmetry requirement on a Lie algebra tell you about C(m)? What
is C(0)?

(b) Consider now the Jacobi identity for generators L⊥m, L⊥n , and L⊥k with m + n + k = 0.
Show that

(m − n)C(k)+ (n − k)C(m)+ (k − m)C(n) = 0 . (2)

(c) Use equation (2) to show that C(m) = αm and C(m) = βm3, for constants α and β,
yield consistent central extensions.

(d) Consider equation (2) with k = 1. Show that C(1) and C(2) determine all C(n).

Problem 12.7 Exercises with Virasoro operators.

(a) Use the Virasoro algebra (12.133) to show that if a state is annihilated by L1 and L2 it
is annihilated by all Ln with n ≥ 1.

(b) Consider the Virasoro operators L0, L1, and L−1. Write out the three relevant commu-
tators. Do these operators form a subalgebra of the Virasoro algebra? Is there a central
term in here? Calculate the result of acting with each of these three operators on the
zero-momentum vacuum state |0〉.
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Problem 12.8 Virasoro operators acting on states.

(a) Use (12.100) to write the state L⊥−6|0〉 as a finite sum of terms with oscillators acting
on the vacuum. Do the same for L⊥−2L⊥−2|0〉.

(b) Write L⊥2 L⊥−2|0〉 and L⊥−2L⊥2 |0〉 as finite sums of terms with oscillators acting on
the vacuum. Use the results to evaluate [L⊥2 , L⊥−2]|0〉. Confirm that your evaluation
is consistent with the Virasoro algebra (12.133).

Problem 12.9 Reparameterizations generated by Virasoro operators.

(a) Consider the string at τ = 0. Which of the combinations in (12.141) reparameterizes
the σ coordinate of the string while keeping τ = 0? When τ = 0 is preserved, the
world-sheet reparameterization is actually a string reparameterization. Show that the
generators of these reparameterizations form a subalgebra of the Virasoro algebra.

(b) Describe the general world-sheet reparameterization that leaves the midpoint σ = π/2
of the τ = 0 open string fixed. Express this reparameterization using an infinite set of
constrained parameters.

Problem 12.10 Reparameterizations and constraints.

(a) Verify that the reparameterization parameters in (12.137) satisfy the relations (omitting
the subscript m for convenience)

ξ̇ τ = ξσ ′ , ξ̇ σ = ξτ ′ .

(b) Think of the reparameterizations (12.138) generated by the Virasoro operators as a
change of coordinates

τ ′ = τ + ε ξτ (τ, σ ) , σ ′ = σ + ε ξσ (τ, σ ) .

Note that for infinitesimal ε the above equations also imply that

τ = τ ′ − ε ξτ (τ ′, σ ′) , σ = σ ′ − ε ξσ (τ ′, σ ′) .

Show that the classical constraints

∂τ X · ∂σ X = 0 , (∂τ X)2 + (∂σ X)2 = 0 ,

assumed to hold in (τ, σ ) coordinates, also hold in (τ ′, σ ′) coordinates (to order ε).

Problem 12.11 Counting symmetric products.†

Prove that the number N of different products of the form

aI1aI2 . . . aIn ,

where the superscripts I1, I2, . . ., In run over k values 1, 2, . . . , k, is given by

N = (n + k − 1)!
n! (k − 1)! = k

1
· k + 1

2
· k + 2

3
· · · k + n − 1

n
.
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Hint: one can represent each product using n identical balls and k − 1 identical dividers.
For k = 6 and n = 9, for example, we have:

•
∣∣∣• • ∣∣∣ ∣∣∣• • •∣∣∣•∣∣∣• • ←→ a1 a2a2 a4a4a4 a5 a6a6 .

Problem 12.12 Unoriented open strings.

The open string Xμ(τ, σ ), with σ ∈ [0, π ] and fixed τ , is a parameterized curve in
spacetime. The orientation of a string is the direction of increasing σ on this curve.

(a) Consider now the open string Xμ(τ, π − σ) at the same τ . How is this second string
related to the first string above? How are their endpoints and orientations related? Make
a rough sketch showing the original string as a continuous curve in spacetime, and the
second string as a dashed curve in spacetime.

Introduce an orientation reversing twist operator � such that

� X I (τ, σ )�−1 = X I (τ, π − σ) . (1)

Moreover, declare that

� x−0 �−1 = x−0 , � p+ �−1 = p+ . (2)

(b) Use the open string oscillator expansion (12.32) to calculate

� x I
0 �−1 , �α I

0 �−1 , and �α I
n �−1 (n 	= 0) .

(c) Show that � X−(τ, σ )�−1 = X−(τ, π − σ). Since � X+(τ, σ )�−1 = X+(τ, π − σ),
equation (1) actually holds for all string coordinates. We say that orientation reversal
is a symmetry of open string theory because it leaves the open string Hamiltonian H
invariant: �H�−1 = H . Explain why this is true.

(d) Assume that the ground states are twist invariant:

� |p+, �pT 〉 = �−1 |p+, �pT 〉 = |p+, �pT 〉 .
List the open string states for N⊥ ≤ 3, and give their twist eigenvalues. Prove that, in
general,

� = (−1)N⊥
.

(e) A state is said to be unoriented if it is invariant under twist. If you are commissioned to
build a theory of unoriented open strings, which of the states in part (d) would you have
to discard? In general, which levels of the original string state space must be discarded?

Problem 12.13 Tachyon potentials.

Consider scalar field theories of the form

S =
∫

d Dx
(
−1

2
∂μφ∂μφ − V (φ)

)
. (1)
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We will examine three different scalar potentials:

V1(φ) = 1

α′
1

3φ0
(φ − φ0)

2
(
φ + 1

2
φ0

)
, (2a)

V2(φ) = − 1

4α′
φ2 ln

(φ2

φ2
0

)
, (2b)

V3(φ) = 1

8α′
φ2

0

(φ2

φ2
0

− 1
)2

, (2c)

where φ0 is a (positive) constant. For each of the three potentials Vi , do the following.

(a) Plot Vi (φ) as a function of φ.
(b) Find the critical points of the potential and the values of the potentials at those points.

Each critical point represents a possible background for the scalar field theory.
(c) At each critical point φ̄ expand the action for fluctuations of φ around this point, that

is, let φ = φ̄ + ψ where the fluctuation ψ is small. The quadratic term in ψ (with no
derivatives) can be used to read the mass of the scalar particle. Give the mass of the
scalar particle for each critical point.

The potential V1 is a rough model for the tachyon potential on an unstable D-brane.
V2 is an exact (effective) tachyon potential on an unstable D-brane. The potential V3 is a
rough model for the superstring tachyon potential on the world-volume of a D-brane and a
coincident anti-D-brane.



13 Relativistic quantum closed strings

Except for shared position and momentum zero modes, the operator content of
quantum closed strings can be viewed as two commuting copies of the open
string operators. Even in the light-cone gauge, the reparameterization invari-
ance cannot be fully fixed: there is no natural way to choose a starting point
for a closed string. As a result, the closed string spectrum is subject to the
constraint L⊥0 − L̄⊥0 = 0, which selects the states that are invariant under rigid
rotations of the string. We find that the massless closed string quantum states
include one-particle graviton states, making string theory a quantum gravity the-
ory. Additionally, we find massless Kalb–Ramond and dilaton states. The dilaton
state controls the strength of string interactions. We study closed strings on the
orbifold R

1/Z2.

13.1 Mode expansions and commutation relations

When it was first discovered, string theory was thought to be a theory of strongly inter-
acting particles – a theory of hadrons. The consistency of open string theory required the
inclusion of closed strings. But there was a problem with closed strings: among the exci-
tations of closed strings there were massless states with spin two. No known hadron had
these properties. Despite much effort, all attempts to eliminate these closed string states
from the spectrum failed.

It turns out that these massless states can be identified as graviton states, and physi-
cists eventually realized that closed string theory could be a theory of quantum gravity. In
this chapter we quantize the relativistic closed string and see how graviton states emerge.
Much of the quantization procedure will resemble our quantization of the open string in
Chapter 12, but there are a number of new features. Let us begin by recalling some of the
important facts about closed strings that we learned in Chapter 9. We considered at that
time a family of gauges (see (9.27)) defined by the conditions

n · X = α′(n · p) τ , n · p = 2π n · Pτ . (13.1)

The second condition implies that the parameter σ spans an interval of length 2π :

σ ∈ [0, 2π ] . (13.2)

Here, σ = 0 and σ = 2π represent the same point on the closed string. The range σ ∈
[0, 2π ] for closed strings is twice the range σ ∈ [0, π ] used for open strings. We found
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that the conditions (13.1) do not fully fix the parameterization of the closed strings. Unlike
open strings, closed strings do not have a special point that can be selected as σ = 0.
We used this arbitrariness to our advantage: once we selected some σ = 0 on one closed
string, we could impose the constraint X ′ · Ẋ = 0 by suitably choosing the σ = 0 point on
all of the other closed strings on the world-sheet. After this, we still had the ability to let
σ → σ + σ0, with some constant σ0 that is the same for all strings. This rigid rotation of
the lines of constant σ is a reparameterization invariance of the closed string action that
cannot be fixed. When we build the quantum states of the closed string, this will result in a
constraint on states.

The condition X ′ · Ẋ = 0, together with the parameterization conditions (13.1), implied
X ′2 + Ẋ2 = 0. We thus obtained the familiar conditions

(Ẋ ± X ′)2 = 0 , (13.3)

and the momentum densities became simple derivatives of the coordinates:

Pσμ = − 1

2πα′
X ′μ, Pτμ = 1

2πα′
Ẋμ. (13.4)

Finally, all the string coordinates were seen to satisfy the wave equation:

( ∂2

∂τ 2
− ∂2

∂σ 2

)
Xμ = 0 . (13.5)

Let us now consider the classical solution to the equation of motion for the closed string.
The general solution to the wave equation is

Xμ(τ, σ ) = Xμ
L (τ + σ)+ Xμ

R(τ − σ) , (13.6)

where Xμ
L (the L stands for left-moving) is a wave moving towards more negative σ and

Xμ
R (the R stands for right-moving) is a wave moving towards more positive σ . For open

strings, the left-moving and right-moving waves were related to each other by the boundary
conditions at the endpoints. The closed string has no endpoints, but we have a periodicity
condition to work with. The parameter space (τ, σ ) for closed strings is a cylinder, so, to
describe closed strings properly we compactify the world-sheet coordinate σ :

σ ∼ σ + 2π . (13.7)

Two points on the world-sheet whose difference of σ coordinates is a multiple of 2π are
the same point. We can in fact use any interval of the form [σ0, σ0 + 2π ] to describe the
closed strings; the choice in (13.2) is one of the possible choices. When we include the τ

coordinate, the identification of points on the parameter space is given by

(τ, σ ) ∼ (τ, σ + 2π) . (13.8)

We demand that Xμ assumes the same value at any two coordinates that represent the same
point on the parameter space:
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Xμ(τ, σ ) = Xμ(τ, σ + 2π) , for all τ and σ . (13.9)

This condition is both easier to deal with and easier to interpret than the naive condi-
tion Xμ(τ, 0) = Xμ(τ, 2π). The periodicity condition (13.9) is appropriate for strings that
propagate in a simply connected space, a space in which every closed string can be contin-
uously shrunk to a point. Minkowski space, for example, is simply connected. If a spatial
direction is curled up into a circle, closed strings wrapped around the circle cannot be
shrunk away. Space is then not simply connected, and the coordinate along the circle is
not single valued. For such a coordinate, the periodicity condition (13.9) must be modified
(see Chapter 17).

We will now show that the periodicity condition (13.9) induces a small but significant
constraint that relates the left-moving and the right-moving waves. Let us define two new
variables,

u = τ + σ ,
v = τ − σ .

(13.10)

In terms of these variables, equation (13.6) becomes

Xμ = Xμ
L (u)+ Xμ

R(v) . (13.11)

When σ → σ + 2π , the variables u and v increase and decrease by 2π , respectively. As a
result, the periodicity condition (13.9) gives

Xμ
L (u)+ Xμ

R(v) = Xμ
L (u + 2π)+ Xμ

R(v − 2π) , (13.12)

or, equivalently,

Xμ
L (u + 2π)− Xμ

L (u) = Xμ
R(v)− Xμ

R(v − 2π) . (13.13)

This equation establishes that the left-moving and right-moving waves are in fact depen-
dent on each other: if one fails to be periodic, the other has to fail by the same amount.
Since u and v are independent variables, both the u derivative of the right-hand side and
the v derivative of the left-hand side must vanish. As a consequence, we find that both
Xμ

L
′
(u) and Xμ

R
′
(v) are strictly periodic functions with period 2π (for functions of a single

variable primes denote derivatives with respect to the argument). We can therefore write
the mode expansions

Xμ
L
′
(u) =

√
α′
2

∑
n∈Z

ᾱμ
n e−inu,

Xμ
R
′
(v) =

√
α′
2

∑
n∈Z

αμ
n e−inv . (13.14)

A set of barred α modes was introduced for the expansion of Xμ
L
′
(u). Even though they

are written identically, the unbarred α modes used in the expansion of Xμ
R
′
(v) have no
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relation to the open string modes of Chapter 12. In closed string theory we need two sets
of α modes, barred and unbarred. We integrate equations (13.14) to find

Xμ
L (u) = 1

2
x Lμ

0 +
√

α′
2

ᾱ
μ
0 u + i

√
α′
2

∑
n 	=0

ᾱ
μ
n

n
e−inu,

Xμ
R(v) = 1

2
x Rμ

0 +
√

α′
2

α
μ
0 v + i

√
α′
2

∑
n 	=0

α
μ
n

n
e−inv, (13.15)

where the coordinate zero modes x Lμ
0 and x Rμ

0 have appeared as constants of integration.
These are somewhat puzzling, after all, in open string theory there was a single coordinate
zero mode whose canonical conjugate was the momentum of the string. We will see that
only the sum of the two zero modes plays a role here. If the space is not simply connected,
however, each of the coordinate zero modes plays a role, as we will see in Chapter 17.

The aperiodicity of Xμ
R and of Xμ

L is a consequence of the linear terms appearing in
(13.15). Condition (13.13) constrains these terms giving

2π

√
α′
2

ᾱ
μ
0 = 2π

√
α′
2

α
μ
0 , (13.16)

and therefore

ᾱ
μ
0 = α

μ
0 . (13.17)

Owing to this equality, quantum closed string theory has only one momentum operator. As
we will soon see, this means that canonical quantization works consistently with only one
coordinate zero mode operator.

We can now assemble the mode expansion for Xμ(τ, σ ) by substituting (13.15) into (13.6):

Xμ(τ, σ ) = 1

2
x Lμ

0 +
√

α′
2

ᾱ
μ
0 (τ + σ)+ i

√
α′
2

∑
n 	=0

ᾱ
μ
n

n
e−in(τ+σ)

+ 1

2
x Rμ

0 +
√

α′
2

α
μ
0 (τ − σ)+ i

√
α′
2

∑
n 	=0

α
μ
n

n
e−in(τ−σ) . (13.18)

With ᾱ
μ
0 = α

μ
0 , we find

Xμ(τ, σ ) = 1

2
(x Lμ

0 + x Rμ
0 )+√

2α′ αμ
0 τ + i

√
α′
2

∑
n 	=0

e−inτ

n
(αμ

n einσ + ᾱμ
n e−inσ ) .

(13.19)
As expected, Xμ is a periodic function of σ with period 2π . The canonically conjugate
momentum density is

Pτμ(τ, σ ) = 1

2πα′
Ẋμ(τ, σ ) = 1

2πα′
(
√

2α′ αμ
0 + · · · ) , (13.20)
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where the dots represent the terms in Ẋμ that integrate to zero over the interval σ ∈ [0, 2π ]
and therefore do not contribute to the evaluation of the total momentum:

pμ =
∫ 2π

0
Pτμ(τ, σ )dσ = 1

2πα′

∫ 2π

0
dσ

√
2α′ αμ

0 =
√

2

α′
α

μ
0 . (13.21)

Thus we have the relation

α
μ
0 =

√
α′
2

pμ . (13.22)

This differs from the corresponding open string result (12.46) by a factor of two, but the
idea is the same: α

μ
0 is proportional to the spacetime momentum carried by the string.

There is only one momentum variable, and thus in the quantum theory there is only one
momentum operator. We should also have only one conjugate coordinate zero mode. Thus,
despite our left–right decomposition of the solution to the wave equation, x L

0 and x R
0 cannot

both be independent variables. Only their sum appears in (13.19), so it must be the sum
that is the relevant coordinate zero mode. Without loss of generality, we set

x Lμ
0 = x Rμ

0 ≡ xμ
0 , (13.23)

and equation (13.19) takes its final form:

Xμ(τ, σ ) = xμ
0 +√

2α′ αμ
0 τ + i

√
α′
2

∑
n 	=0

e−inτ

n
(αμ

n einσ + ᾱμ
n e−inσ ) . (13.24)

It is convenient at this stage to record the τ and σ derivatives of the coordinates. With
the help of (13.6) we note that

Ẋμ = Xμ
L
′
(τ + σ)+ Xμ

R
′
(τ − σ) ,

Xμ′ = Xμ
L
′
(τ + σ)− Xμ

R
′
(τ − σ) .

(13.25)

Adding and subtracting these equations, and using (13.14), we find

Ẋμ + Xμ′ = 2Xμ
L
′
(τ + σ) = √

2α′
∑
n∈Z

ᾱμ
n e−in(τ+σ) ,

Ẋμ − Xμ′ = 2Xμ
R
′
(τ − σ) = √

2α′
∑
n∈Z

αμ
n e−in(τ−σ) .

(13.26)

Note that the barred oscillators do not mix with the unbarred oscillators in these combi-
nations of derivatives. We have tailored the normalization constants to arrive at the above
relations. They are completely analogous to the open string expansions (12.33). This will
allow us to obtain some closed string commutators without doing any new computations.
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Let us now turn to the quantization of the closed string theory. The canonical commuta-
tion relations take the same form as in open string theory. For the transverse light-cone
coordinates and momenta we set[

X I (τ, σ ) ,Pτ J (τ, σ ′)
]
= iδ(σ − σ ′)ηI J , (13.27)

and, as usual, we set to zero the commutator of coordinates with coordinates and the com-
mutator of momenta with momenta. For zero modes, we also have [x−0 , p+] = −i . Since
the commutation relations did not change, equations (12.30) and (12.31) are valid here.
The first of these is

[ (Ẋ I ± X I ′)(τ, σ ) , (Ẋ J ± X J ′)(τ, σ ′) ] = ±4πα′ iηI J d

dσ
δ(σ − σ ′) . (13.28)

In fact, this time the situation is simpler. Equations (13.28) hold for σ, σ ′ ∈ [0, 2π ] since
the string coordinates are defined for this full interval. Moreover, the mode expansions
(13.26) also hold for the full interval. Since the combinations of derivatives take the same
exact form as they did for open strings, the above equation leads to identical looking com-
mutation relations. The oscillators, however, are barred when we use the top sign and
unbarred when we use the lower sign. The result is therefore

[
ᾱ I

m, ᾱ J
n

]
= m δm+n,0 ηI J ,[

α I
m, α J

n

]
= m δm+n,0 ηI J . (13.29)

On account of the expansions (13.26), we call the ᾱ operators left-moving operators, and
we call the α operators right-moving operators. Each of these sets matches the operator
content of an open string theory. The commutation relations also take the form we would
expect from open string theory. Closed string theory thus has the operator content of two
copies of open string theory, except for zero modes. The momentum zero modes are equal
(α I

0 = ᾱ I
0 ), and there is only one set of coordinate zero modes x I

0 , x−0 .
Equation (12.31) states that combinations of derivatives with opposite signs commute.

In the present case this leads to the result that left-moving and right-moving oscillators
commute:

[
α I

m , ᾱ J
n

]
= 0 . (13.30)

We can define canonical creation and annihilation operators just as we did for open strings:

α I
n = aI

n

√
n and α I−n = aI †

n

√
n , n ≥ 1 ,

ᾱ I
n = ā I

n

√
n and ᾱ I−n = ā I †

n

√
n , n ≥ 1 . (13.31)



286 Relativistic quantum closed strings
�

The nonvanishing commutation relations are then the expected ones:[
ā I

m , ā J†
n

]
= δm,n ηI J ,

[
aI

m , a J†
n

]
= δm,n ηI J . (13.32)

The commutators that involve x I
0 can be found following steps analogous to those used

for open strings. This time (Problem 13.1) we find that [x I
0 , α J

n ] and [x I
0 , ᾱ J

n ] vanish when
n 	= 0, and

[
x I

0 , α J
0

]
=
[

x I
0 , ᾱ J

0

]
= i

√
α′
2

ηI J −→
[

x I
0 , pJ

]
= iηI J , (13.33)

where the expression to the right arises because of (13.22).
What is the light-cone closed string Hamiltonian? We know that p− generates X+

translations, and that, in addition, X+ = α′ p+τ . As a result, ∂τ = α′ p+∂X+ , and the
Hamiltonian must be given by

H = α′ p+ p− . (13.34)

In order to find the normal-ordered version of this Hamiltonian, we now turn to the
transverse Virasoro operators of closed string theory.

13.2 Closed string Virasoro operators

We learned in Chapter 12 that the open string transverse Virasoro operators are essentially
the modes α−n of the light-cone coordinate X−. For closed string coordinates we have two
types of modes, barred and unbarred. This is also true for the closed string X− coordinates:
we have α−n and ᾱ−n modes, and therefore we expect to have two sets of Virasoro operators.
On account of (13.17), however, we have α−0 = ᾱ−0 , so a surprise awaits us with regards to
the Virasoro operators with mode number zero.

To begin our analysis we need an expression that relates X− to the transverse coordinates.
The requisite formula is (9.65), with β = 1, as appropriate for closed strings:

Ẋ− ± X−′ = 1

α′
1

2p+
(Ẋ I ± X I ′)2 . (13.35)

We define Virasoro operators following the pattern in equation (9.79):

(Ẋ I + X I ′)2 = 4α′
∑
n∈Z

(1

2

∑
p∈Z

ᾱ I
pᾱ

I
n−p

)
e−in(τ+σ) ≡ 4α′

∑
n∈Z

L̄⊥n e−in(τ+σ) ,

(Ẋ I − X I ′)2 = 4α′
∑
n∈Z

(1

2

∑
p∈Z

α I
pα

I
n−p

)
e−in(τ−σ) ≡ 4α′

∑
n∈Z

L⊥n e−in(τ−σ) . (13.36)
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In each of the above lines, the equality requires a small calculation using (13.26), and the
second relation is a definition. More explicitly,

L̄⊥n = 1

2

∑
p∈Z

ᾱ I
pᾱ

I
n−p , L⊥n = 1

2

∑
p∈Z

α I
pα

I
n−p . (13.37)

These are the two sets of Virasoro operators of closed string theory. Plugging the definitions
in (13.36) back into (13.35) we obtain

Ẋ− + X−′ = 2

p+
∑
n∈Z

L̄⊥n e−in(τ+σ) , Ẋ− − X−′ = 2

p+
∑
n∈Z

L⊥n e−in(τ−σ) . (13.38)

On the other hand, the derivatives of X−, as those of any other closed string coordinate,
can be expanded along the lines of (13.26) to give

Ẋ− + X−′ = √
2α′

∑
n∈Z

ᾱ−n e−in(τ+σ) , Ẋ− − X−′ = √
2α′

∑
n∈Z

α−n e−in(τ−σ) . (13.39)

We compare equations (13.38) and (13.39) to read the expressions for the minus oscillators:

√
2α′ ᾱ−n = 2

p+
L̄⊥n ,

√
2α′ α−n = 2

p+
L⊥n . (13.40)

For n = 0, however, there is a constraint. Since α−0 = ᾱ−0 , we have the level-matching
condition

L⊥0 = L̄⊥0 . (13.41)

If you look at the definitions of L̄⊥0 and L⊥0 in (13.37), you will realize that these two
operators are clearly very different from each other. What does it mean that they must
be equal? Since operators are ultimately defined by their action on states, the meaning of
the equality (13.41) is that any state |λ, λ̄〉 of the closed string must satisfy L⊥0 |λ, λ̄〉 =
L̄⊥0 |λ, λ̄〉. This is therefore a constraint on the state space of the theory: “states” that do not
satisfy this constraint do not in fact belong to the state space.

To fix the ordering ambiguities in the operators L̄⊥0 and L⊥0 we define them to be ordered
operators without any additional constants:

L̄⊥0 = α′

4
pI pI + N̄⊥ , L⊥0 = α′

4
pI pI + N⊥ . (13.42)

Here N̄⊥ and N⊥ are the number operators that are associated with the barred and un-
barred operators, respectively:

N̄⊥ ≡
∞∑

n=1

nā I †
n ā I

n , N⊥ ≡
∞∑

n=1

naI †
n aI

n . (13.43)

While we will not go through the trouble of proving it, the critical dimension for closed
strings turns out to be D = 26. This follows from the requirement that the quantum theory
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be Lorentz invariant. It is no coincidence that the critical dimension for closed strings coin-
cides with the critical dimension for open strings. It means that both types of strings can
coexist. In fact, since open strings can, in general, close to form closed strings, it would
have been quite strange if the critical dimensions did not agree.

The constant ambiguities due to the ordering of L̄⊥0 and L⊥0 are also fixed by the condition
of Lorentz invariance, just as it happened for open strings. The answer could be anticipated,
since the left and right sectors of closed string theory behave like open strings. In addition,
the naive argument based on zeta functions suggests that the ordering constants for L⊥0 and
L̄⊥0 are the same and equal to that for the L⊥0 operator of the open string. These constants
are included in the relation between α−0 and L⊥0 and in the corresponding barred relation.
Therefore equations (13.40), for n = 0, become

√
2α′ ᾱ−0 = 2

p+
(L̄⊥0 − 1) ,

√
2α′ α−0 = 2

p+
(L⊥0 − 1) . (13.44)

The level-matching constraint L⊥0 = L̄⊥0 , which emerged from α−0 = ᾱ−0 , remains
unchanged by the constant shifts. Using (13.42), this constraint can be written more
simply as

N⊥ = N̄⊥ . (13.45)

Averaging the two expressions for α−0 in (13.44), we can find a symmetric expression:

√
2α′α−0 ≡ 1

p+
(L⊥0 + L̄⊥0 − 2) = α′ p− , (13.46)

where the relation to p− follows from (13.22). With p− known, we can calculate the
mass-squared:

M2 = −p2 = 2p+ p− − pIpI = 2

α′
(L⊥0 + L̄⊥0 − 2)− pIpI . (13.47)

Substituting the values of L̄⊥0 and L⊥0 given in (13.42) yields

M2 = 2

α′
(

N⊥ + N̄⊥ − 2
)
. (13.48)

This is the mass formula for closed string states. The closed string Hamiltonian (13.34) can
be written in terms of Virasoro operators using (13.46). The result is very simple:

H = α′ p+ p− = L⊥0 + L̄⊥0 − 2 . (13.49)

This Hamiltonian is the sum of an “open string” Hamiltonian L⊥0 − 1 for the right-moving
operators, and an “open string” Hamiltonian L̄⊥0 − 1 for the left-moving operators. Using
(13.42) the Hamiltonian can be written as
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H = α′

2
pIpI + N⊥ + N̄⊥ − 2 . (13.50)

Both the L⊥m operators and the L̄⊥m operators satisfy the Virasoro algebra (12.133). In addi-
tion, the commutators between barred and unbarred Virasoro operators vanish. So, the full
set of closed string Virasoro operators define two commuting Virasoro algebras.

We conclude this section with a study of the Virasoro action on closed string coordinates.
The commutation of the closed string Virasoro operators with the oscillators follows the
pattern of equation (12.118). We have[

L̄⊥m , ᾱ J
n

]
= −n ᾱ J

m+n ,
[

L⊥m , α J
n

]
= −n α J

m+n , (13.51)

and, in addition, [
L⊥m , ᾱ J

n

]
=
[

L̄⊥m , α J
n

]
= 0 . (13.52)

On the other hand, both L̄⊥m and L⊥m have a nontrivial commutator with x I
0 :

Quick calculation 13.1 Verify that[
L̄⊥m , x I

0

]
= −i

√
α′
2

ᾱ I
m ,

[
L⊥m , x I

0

]
= −i

√
α′
2

α I
m . (13.53)

Let us focus here only on the action of L⊥0 and L̄⊥0 on the string coordinates. The required
formulae are obtained in the following exercise:

Quick calculation 13.2 Verify that[
L̄⊥0 , X I (τ, σ )

]
= − i

2
(Ẋ I + X I ′) ,

[
L⊥0 , X I (τ, σ )

]
= − i

2
(Ẋ I − X I ′) . (13.54)

Adding the two equations in (13.54), we find[
L⊥0 + L̄⊥0 , X I (τ, σ )

]
= −i

∂ X I

∂τ
. (13.55)

This equation is consistent with the Heisenberg equation of motion for X I , since the closed
string Hamiltonian is (L⊥0 + L̄⊥0 − 2). Subtracting the two equations in (13.54), we find a
more surprising result: [

L⊥0 − L̄⊥0 , X I (τ, σ )
]
= i

∂ X I

∂σ
. (13.56)

This equation shows that L⊥0 − L̄⊥0 generates constant translations along the string. Indeed,
for infinitesimal ε,

X I (τ, σ )+
[
−iε(L⊥0 − L̄⊥0 ) , X I (τ, σ )

]
= X I (τ, σ + ε) . (13.57)

More generally, a finite translation along the string can be obtained by acting on the string
coordinate with exponentials of L⊥0 − L̄⊥0 . Writing

P ≡ L⊥0 − L̄⊥0 , (13.58)
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we find that (Problem 13.3)

e−i Pσ0 X I (τ, σ ) ei P σ0 = X I (τ, σ + σ0) , (13.59)

for any finite σ0. For σ0 = ε, infinitesimal, this general result reduces to (13.57). The oper-
ator P generates the one reparameterization symmetry that cannot be fixed even in the
light-cone gauge. Since P annihilates all closed string states (see (13.41)), we conclude
that closed string states are invariant under rigid σ translations. By this we mean that
exp(−i Pσ0)|�〉 = |�〉, for any closed string state |�〉.

In the two-dimensional (τ, σ ) parameter space of the closed string world-sheet, the
operator L⊥0 + L̄⊥0 is a generator of τ translations. It is therefore a world-sheet energy.
Since the gauge condition relates τ to the light-cone time, this world-sheet energy turns
out to give us the spacetime Hamiltonian, the generator of light-cone time evolution. The
other combination L⊥0 − L̄⊥0 = P generates translations along the world-sheet coordinate
σ . It can therefore be viewed as a world-sheet momentum. This momentum should not be
confused with the spacetime momentum of the string. For closed string states the world-
sheet momentum must in fact vanish, and this is a nontrivial constraint. States with nonzero
momentum along σ can be built, but they do not belong to the closed string state space.

13.3 Closed string state space

We are now ready to build the state space of the quantum closed string. The ground states
are |p+, �pT 〉 and they are annihilated by both the left-moving and the right-moving anni-
hilation operators. To generate all of the basis states we must act on the ground states with
the creation operators aI †

n and ā I †
n . The general candidate basis vector is

|λ, λ̄〉 =
[ ∞∏

n=1

25∏
I=2

(aI †
n )λn,I

]
×
[ ∞∏

m=1

25∏
J=2

(ā J†
m )λ̄m,J

]
|p+, �pT 〉. (13.60)

Just as with open strings, the occupation numbers λn,I and λ̄n,I are non-negative integers.
The number operators act on |λ, λ̄〉 with eigenvalues

N⊥ =
∞∑

n=1

25∑
I=2

nλn,I , N̄⊥ =
∞∑

m=1

25∑
J=2

mλ̄m,J . (13.61)

Except for the momentum labels, the above states are those that one would obtain by
combining multiplicatively arbitrary states built from the left-moving and from the right-
moving operators (compare with (12.162)). Not all of the states in (13.60) belong to the
closed string state space. The constraint (13.45) must be satisfied by the true states of
the theory. A basis vector |λ, λ̄〉 belongs to the state space if and only if it satisfies the
level-matching constraint

N⊥ = N̄⊥ . (13.62)
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�Table 13.1 The states with N⊥ + N̄⊥ ≤ 2 in the closed string spectrum

N⊥, N̄⊥ |λ, λ̄〉 1
2α′M2 Number of states Wavefunction

0, 0 |p+, �pT 〉 −2 1 ψ(τ, p+, �pT )

1, 1 aI
1

†
ā J†

1 |p+, �pT 〉 0 (D − 2)2 ψI J (τ, p+, �pT )

This constraint cannot be “solved”. It is clear that eliminating some oscillator from the
list of operators that can act on the ground states is no help whatsoever. A better strategy
would be to select a particular oscillator and attempt to use it, as many times as needed, to
fix any state that does not satisfy (13.62). Not even this is possible, because any oscillator
can only contribute a positive amount to the number operator. The constraint (13.62) must
be implemented in a case-by-case fashion. The masses of the states are obtained from
(13.48):

1

2
α′ M2 = N⊥ + N̄⊥ − 2 . (13.63)

Let us identify the first few basis states, give their masses, and explain what fields they
represent. The results are tabulated in Table 13.1.

The ground states in the first row of Table 13.1 are the one-particle states of a quantum
scalar field. For such states N⊥ = N̄⊥ = 0 and M2 = −4/α′ < 0, so these are closed
string tachyons; they are in fact completely analogous to the tachyons of open string the-
ory. The mass-squared of the closed string tachyon is four times larger than that of the
open string tachyon. The closed string tachyon is far less understood than the open string
tachyon. In particular, the closed string tachyon potential has not yet been calculated reli-
ably. The instabilities associated with closed string tachyons are expected to be instabilities
of spacetime itself. They remain largely mysterious.

The next excited states must be built with two oscillators acting on the ground states. This
is because we must satisfy the constraint N⊥ = N̄⊥. One oscillator must be from the left-
sector and one from the right-sector, both with the lowest possible mode number – mode
number one. This gives the states described in the second line of the table. All these states
have M2 = 0, so they are of great interest. Since I and J are completely arbitrary labels
attached to different oscillators, the number of states is (D − 2)2.

Let us consider the general state of fixed momentum at the massless level. We write it as∑
I,J

RI J aI
1

†
ā J†

1 |p+, �pT 〉 . (13.64)

Here RI J are the elements of an arbitrary square matrix of size (D − 2). Any square matrix
can be decomposed into its symmetric part and its antisymmetric part:

RI J = 1

2
(RI J + RJ I )+ 1

2
(RI J − RJ I ) ≡ SI J + AI J , (13.65)
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where SI J and AI J are the symmetric and antisymmetric parts of RI J , respectively. The
symmetric part SI J can in fact be decomposed further:

SI J =
(

SI J − 1

D − 2
δI J S

)
+ 1

D − 2
δI J S , S ≡ SI I = δ I J SI J . (13.66)

The first term on the right-hand side is traceless:

δ I J
(

SI J − 1

D − 2
δI J S

)
= S − 1

D − 2
δI J δ I J S = 0 , (13.67)

since δI J δ I J = D − 2. Therefore (13.66) decomposes SI J into a traceless matrix plus a
multiple of the unit matrix. Let ŜI J denote the traceless part of SI J and let S′ = S/(D − 2).
All in all, we have decomposed RI J as

RI J = ŜI J + AI J + S′δI J . (13.68)

This is the standard decomposition of a matrix into a symmetric-traceless part, an antisym-
metric part, and a trace part. Each of the three pieces can be specified independently when
writing a general matrix RI J . Therefore, the states in (13.64) can be split into three groups
of linearly independent states: ∑

I,J

ŜI J a I
1

†
ā J†

1 |p+, �pT 〉 , (13.69)

∑
I,J

AI J aI
1

†
ā J†

1 |p+, �pT 〉 , (13.70)

S′ aI
1

†
ā I †

1 |p+, �pT 〉 . (13.71)

We now make a remarkable claim: the states (13.69) represent one-particle graviton
states! We examined one-particle graviton states in Section 10.6. In the quantum theory of
the free gravitational field these states are given by (10.110):

D−1∑
I,J=2

ξI J a I J†
p+, pT

|�〉 , (13.72)

where ξI J is an arbitrary symmetric traceless matrix. Since ŜI J is also a symmet-
ric traceless matrix, the identification of states is possible if we identify the basis
states:

aI
1

†
ā J†

1 |p+, �pT 〉 ←→ aI J†
p+, pT

|�〉 . (13.73)

This identification is possible because the two sets of states have the same Lorentz labels,
they carry the same momentum, and they have the same mass (both zero). This shows that
the closed string has graviton states. Gravity has appeared in string theory! We never put
in a dynamical metric and we never spoke about general covariance, yet somehow, the
quantum states of the gravitational field have emerged!

The set of states in (13.70) corresponds to the one-particle states of the Kalb–Ramond
field, an antisymmetric tensor field Bμν with two indices. The light-cone analysis of this
field was discussed in Problem 10.6 (see, in particular, parts (e) and (f)). The Bμν field is
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in many ways the tensor generalization of the Maxwell gauge field Aμ. The Kalb–Ramond
field couples to strings in a way that is analogous to the way that the Maxwell field couples
to particles. Thus, as we will see in Chapter 16, strings carry Kalb–Ramond charge.

There is one state that remains to be examined. The oscillator part of (13.71) has no free
indices (I is summed over), so it represents one state. It corresponds to a one-particle state
of a massless scalar field. This field is called the dilaton.

The above discussion of particle states is supplemented by an analysis of wavefunctions
and field equations. Such analysis follows closely the treatment in Section 12.7. Wavefunc-
tions ψI J (τ, p+, pT ) describe the general time-dependent states at the massless level of
the closed string:

|�, τ 〉 =
∫

dp+d �pT ψI J (τ, p+, �pT ) aI
1

†
ā J†

1 |p+, �pT 〉 . (13.74)

The Schrödinger equation satisfied by the states is i∂τ |�, τ 〉 = H |�, τ 〉. Using (13.50)
and noting that for the states in question N⊥ = N̄⊥ = 1, we find

i
∂ψI J

∂τ
= α′

2
pK pK ψI J . (13.75)

The wavefunctions ψI J (τ, p+, pT ) become the fields of the classical field theories, with
the Schrödinger equations interpreted as classical field equations. The symmetric-traceless
part of ψI J becomes the graviton field, the antisymmetric part becomes the Kalb–Ramond
field, and the trace part becomes the dilaton field. The Schrödinger equations for the wave-
functions of the graviton states, the Kalb–Ramond states, and the dilaton state, are all
included in (13.75), and can be separated by selecting the symmetric-traceless compo-
nents, the antisymmetric components, and the trace component of ψI J . On the other hand,
in light-cone coordinates the massless scalar field equation ∂2φ = 0 takes the form (10.30):(

i
∂

∂x+
− 1

2p+
pK pK

)
φ(x+, p+, �pT ) = 0 . (13.76)

Setting x+ = α′ p+τ , we find(
i

∂

∂τ
− α′

2
pK pK

)
φ(τ, p+, �pT ) = 0 . (13.77)

This equation takes the same form as (13.75). In fact, in the light-cone gauge, graviton
fields, Kalb–Ramond fields, and the dilaton field, all satisfy the simple equation ∂2φ... = 0,
where the dots refer to the relevant indices. This is manifestly true for the massless dilaton,
which is a scalar. For graviton fields, it was demonstrated in equation (10.107). For Kalb–
Ramond fields, the equation p2 Bμν = 0 was shown to hold in the light-cone gauge as part
of the analysis in Problem 10.6.

In summary, at the massless level of the closed string we found gravity fields, Kalb–
Ramond fields, and dilaton fields. Each of these fields deserves intense study. The gravity
field is studied in general relativity. We will focus on the Kalb–Ramond field in Chapter 16.
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The dilaton is a massless scalar field with surprising properties. A proper study of the dila-
ton belongs to an advanced course, but in the following section we discuss the role that it
plays in string theory.

13.4 String coupling and the dilaton

The massless scalar field called the dilaton has a fascinating property: its expectation value
controls the string coupling! This coupling is a dimensionless number that sets the strength
of string interactions.

The classic example of a coupling constant is the electromagnetic fine-structure constant
α ≡ e2/(4π h̄c) � 1/137. This dimensionless coupling constant controls the strength of
electromagnetic interactions. In the hydrogen atom Hamiltonian, for example, α appears
in the term which gives the electrostatic interaction energy between the proton and the
electron. The mass-scale in the hydrogen atom is set by the mass m of the electron. Phys-
ical, dimensionful quantities, such as the binding energy E of the ground state, depend on
the dimensionful parameter m of the theory, the fundamental constants h̄ and c, and the
dimensionless coupling α:

E = e2

4π

1

2a0
= 1

2

( e2

4π h̄c

)2
mc2 = 1

2
α2 (mc2) , (13.78)

where a0 = 4π h̄2/me2 is the Bohr radius. In the hypothetical limit α → 0, the binding
energy vanishes, and the Bohr radius is infinite. This is what becomes of the hydrogen
atom when we turn off electromagnetic interactions.

In string theory the story is not so different, at first. The dimensionful parameter can be
taken to be α′, which defines the string length �s =

√
α′ (working with h̄ = c = 1). Let g

denote the dimensionless coupling for closed string interactions. If g was set to zero, then
strings would not interact. Interactions in gravity are determined by the value of Newton’s
gravitational constant. If closed strings do not interact, gravitation would emerge without
interactions, and the value of Newton’s constant in string theory would be zero. Since it
vanishes when g → 0, Newton’s constant is naturally expected to be proportional to some
positive power of g; it turns out that it is proportional to g2. Dimensional analysis fixes
the α′ dependence of Newton’s constant. Equation (3.108) shows that the D-dimensional
Newton constant G(D) has (natural) units of L D−2. In fact, in natural units, G(D) is equal to
the D-dimensional Planck length �

(D)
P to the power (D − 2). So [G(26)] = L24, and since

[α′] = L2, we find

G(26) ∼ g2 (α′)12 . (13.79)

Most phenomenological studies of string theory begin with ten-dimensional superstring
theories. These theories contain both bosonic and fermionic excitations, so they include
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the two types of particles that we observe in nature. The ten-dimensional Newton constant
G(10) in superstring theory is given by

G(10) = (
�
(10)
P

)8 ∼ g2 (α′)4 . (13.80)

It then follows that

�
(10)
P ∼ g1/4

√
α′ = g1/4 �s . (13.81)

If the string coupling g is a small number, the string length is larger than the Planck
length. If g is of order unity, the string length and the Planck length are comparable.
To find four-dimensional implications, we use the relation (3.116) between higher- and
lower-dimensional Newton constants in a compactification. Assume that six of the dimen-
sions of the ten-dimensional world are curled up into a space with volume V (6). Then, the
four-dimensional Newton constant G is related to the ten-dimensional one by

G = G(10)

V (6)
∼ g2 α′ 1

V (6)/(α′)3
. (13.82)

The ratio V (6)/(α′)3 is a dimensionless number that is typically assumed to be large. For
a compactification of fixed volume, as measured in units of the string length, the four-
dimensional Newton constant behaves like

G ∼ g2 α′ . (13.83)

In a theory with both open and closed strings, the open string coupling go is actually
determined in terms of the closed string coupling g. One can prove that

g2
o ∼ g . (13.84)

This relation arises due to certain topological properties of two-dimensional world-sheets.

The coupling which controls the strength of an interaction may sometimes fail to be
constant. Consider adding to a free Hamiltonian H0 an interaction term gHint that is pro-
portional to a dimensionless coupling g. If g is declared to be a constant, you must specify
its value by hand in order to define the complete Hamiltonian H0 + gHint. But suppose
that g is not a constant but rather a dynamical variable g(t), and that the full Hamiltonian
includes an additional term Hg that gives dynamics to g. In this case you cannot specify
the coupling g arbitrarily by hand. The coupling would be determined, perhaps uniquely,
or perhaps not, by the Hamiltonian equations derived from H0 + gHint + Hg . If g(t) is
uniquely determined, no choice is needed. If g(t) is not uniquely determined, some other
criterion may be needed to select the physically realized solution.

The situation in string theory is similar; the string coupling can fail to be a constant. The
closed string coupling g is determined by the value of the dilaton field φ(x):

g ∼ eφ . (13.85)

It follows that, in principle, the string coupling g is not an adjustable parameter of string
theory. Rather, it is a dynamical parameter – a field, in fact. This is an ideal property in a
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unified theory of all interactions, for it holds the promise that the string coupling may be
calculable. On the other hand, it seems clear that the string coupling is not uniquely deter-
mined in string theory. Depending on the values taken by the other fields in the theory, the
dilaton field may evolve in different ways. Under certain circumstances, the dilaton expec-
tation value may even be an adjustable constant. One attractive possibility is that the other
fields in the theory generate a potential for the dilaton. If this potential has a stable critical
point the dilaton may be set equal to the critical value. Even more, the dilaton field would
then acquire a mass. This is necessary for a realistic model of physics because there are no
known massless scalars in nature.

If the string coupling is small, the quantum mechanical amplitudes for string interactions
can be calculated accurately using known results about Riemann surfaces. The fascinat-
ing properties of Riemann surfaces allow one to understand why the infinities that plague
quantum amplitudes in general relativity do not appear in string theory. This subject will
be discussed in Chapter 26.

13.5 Closed strings on the R
1/Z2 orbifold

We introduced orbifolds in §2.8 and stated that they are nontrivial spaces on which string
propagation is tractable. In this and the following section we demonstrate this claim for
the case of closed strings on the simplest orbifold, the half-line R

1/Z2. Since we must
deal with the full quantum string theory, the orbifold direction is just one direction in the
26-dimensional spacetime. This direction x25 ≡ x , is effectively restricted to x ≥ 0 by the
Z2 identification

x ∼ −x . (13.86)

No other coordinate is affected. The orbifold theory does not require boundary conditions
at x = 0. The orbifold theory is defined by imposing a natural restriction on states of closed
strings that live on the spacetime before orbifolding – a restriction on the spectrum of the
original parent theory.

Writing X25(τ, σ ) ≡ X (τ, σ ), the collection of string coordinates is X+, X−, Xi , with
i = 2, . . ., 24, and X . We introduce an operator U that implements on the string coor-
dinates the Z2 transfomation that defines the orbifold. Thus, acting on X we must
have

U X (τ, σ )U−1 = −X (τ, σ ) . (13.87)

Since U should not transform any other string coordinate we demand

U Xi (τ, σ )U−1 = Xi (τ, σ ) . (13.88)

Moreover, we demand the invariance of p+ and x−0 :

U p+U−1 = p+ , and U x−0 U−1 = x−0 , (13.89)
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x x

�Fig. 13.1 A closed string state invariant under x →−x is obtained by superposition of two states
that go into each other as x →−x.

since these, together with (13.87) and (13.88), imply the invariance of X+ and X−:

U X±(τ, σ ) U−1 = X±(τ, σ ) . (13.90)

Indeed, the invariance of X+ = α′ p+τ follows directly from the invariance of p+. The
invariance of X− holds because it is the sum of the invariant mode x−0 , terms quadratic
in the invariant coordinates, and terms quadratic in Ẋ , X ′ (see (13.35)). It follows that p−
is invariant under the U action. Since p+ is also invariant, the Hamiltonian H = α′ p+ p−
(see (13.49)) is invariant: U HU−1 = H . This means that U is a symmetry of the closed
string theory.

The orbifold closed string theory keeps only U -invariant states of the parent theory. Since
U is a symmetry, the truncation to U -invariant states is a consistent reduction: if the Hamil-
tonian were not U invariant, states that are U invariant at one time need not remain U
invariant for all times. Intuitively, for U -invariant string states, the physics at −x is deter-
mined by the physics at x , thus effectively making half of the space irrelevant. U -invariant
states are naturally constructed by quantum superposition (Figure 13.1).

To implement the restriction to U -invariant states it is convenient to determine the action
of U on the oscillators. The coordinate X (τ, σ ) has the usual mode expansion (13.24) of a
closed string coordinate

X (τ, σ ) = x0 + α′ pτ + i

√
α′
2

∑
n 	=0

e−inτ

n

(
αneinσ + ᾱne−inσ

)
. (13.91)

If we are to have equation (13.87) for all values of τ and σ we must have

U x0 U−1 = −x0 , U p U−1 = −p ,

U αn U−1 = −αn , U ᾱn U−1 = −ᾱn .
(13.92)

All operators in the expansion of X change sign under the action of U . All modes in the
expansion of the coordinates Xi are left invariant by the action of U .

Quick calculation 13.3 Justify U HU−1 = H directly from the oscillator expansion of
H = L⊥0 + L̄⊥0 − 2.

Let us now discuss the states of the theory, beginning with the ground states. We denote
the ground states of the parent theory by |p+, �p, p〉, where �p is a vector with components
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pi and p denotes the momentum in the x direction. We also assume that states that have
no momentum in the x direction are invariant under the action of U :

U |p+, �p, 0〉 = |p+, �p, 0〉 . (13.93)

Being invariant under U , the state |p+, �p, 0〉 is a ground state of the orbifold theory, but
there are many more. To find these, we first derive the U action on |p+, �p, p〉. We assume
that for every pair of conjugate coordinate and momentum operators (q, p) momentum
states are defined to satisfy |p + δp〉 = exp(iδp q)|p〉, with δp a constant. Applied to our
pair (x0, p), we find |p+, �p, p〉 = eix0 p|p+, �p, 0〉 and, therefore,

U |p+, �p, p〉 = Ueix0 pU−1U |p+, �p, 0〉 = ei(−x0)p|p+, �p, 0〉 = |p+, �p,−p〉, (13.94)

namely,

U |p+, �p, p〉 = |p+, �p,−p〉 . (13.95)

It is now easy to form U -invariant states by linear combinations:

Orbifold ground states: |p+, �p, p〉 + |p+, �p,−p〉. (13.96)

More precisely, orbifold ground states are general time-dependent superpositions of the
above states:∫

ψ(τ, p+, �p, p) |p+, �p, p〉 dp+d �p dp , ψ(τ, p+, �p,−p) = ψ(τ, p+, �p, p) .

(13.97)
The Fourier transformed ground state wavefunctions ψ(τ, p+, �p, x) are even functions of
x . The massless states of the orbifold theory require N⊥ = N̄⊥ = 1. Indeed, orbifolding
does not change the mode expansion of X and the formula for M2 is not changed. To build
the states we need two oscillators, one barred one unbarred, acting on suitable ground
states. Basis massless states are given by

αi
−1ᾱ

j
−1

(|p+, �p, p〉 + |p+, �p,−p〉),
αi
−1ᾱ−1

(|p+, �p, p〉 − |p+, �p,−p〉),
α−1ᾱ

i
−1

(|p+, �p, p〉 − |p+, �p,−p〉),
α−1ᾱ−1

(|p+, �p, p〉 + |p+, �p,−p〉).
All these states are U -invariant. For those that have an odd number of X oscillators we use
a combination of vacuum states with U = −1 so that the full state has U = +1. Massive
states can be constructed similarly. It would seem that this is the end of the story, but there
is a surprise. The orbifold theory includes more states than the ones discussed above. It con-
tains a twisted sector with a new kind of closed strings. Let us examine these strings now.

13.6 The twisted sector of the orbifold

The additional closed strings that appear in the so-called twisted sector can be imagined as
open strings in the parent theory, but with endpoints at locations identified by the orbifold
condition (13.86). More precisely, we write
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σ = 2π σ = 0
�

�Fig. 13.2 A “twisted” closed string satisfies X(τ , σ + 2π) = −X(τ , σ). The string for σ ∈ [0, 2π] is
shown as a continuous line and the part σ ∈ [2π , 4π] as a dashed line. The vertical
coordinate represents any x i.

X (τ, σ + 2π) = −X (τ, σ ) . (13.98)

This equation tells us that X (τ, 2π) = −X (τ, 0), which means that the orbifold identifi-
cation makes them the same point and the string becomes effectively closed. For arbitrary
σ the equation tells us that the string effectively repeats its position when σ is increased
by 2π . In the parent space the string only closes after σ → σ + 4π , as is clear from two
applications of (13.98). A two-dimensional representation of a string obeying (13.98) is
shown in Figure 13.2. We note that a twisted closed string must go through x = 0. This is
clear because the continuous function X (τ, σ ) in (13.98) takes both positive and negative
values.

To develop the quantum theory of this sector we first find the appropriate oscillator
expansion for the coordinate X that satisfies (13.98). As usual, to solve the wave equation,
we write

X (τ, σ ) = X L(u)+ X R(v) , u = τ + σ , v = τ − σ . (13.99)

The constraint (13.98) implies that

X L(u + 2π)+ X R(v − 2π) = −X L(u)− X R(v), (13.100)

or, equivalently,

X L(u + 2π)+ X L(u) = −( X R(v)+ X R(v − 2π)
)
. (13.101)

Taking derivatives with respect to u and v we find

X ′
L(u + 2π) = −X ′

L(u) , X ′
R(v + 2π) = −X ′

R(v). (13.102)

For an ordinary string coordinate Xi
L
′
and Xi

R
′
are periodic functions with period 2π . For X

the derivatives reverse sign when the argument changes by 2π . To write a mode expansion
that is conveniently normalized we mimic (13.14). In order to get a sign change when
u → u + 2π we need exponentials of the form exp(iku) with k half-integer. We therefore
write
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X ′
L(u) =

√
α′
2

∑
n∈Zodd

ᾱ n
2

e−i n
2 u ,

X ′
R(v) =

√
α′
2

∑
n∈Zodd

α n
2

e−i n
2 v . (13.103)

The labels on the oscillators, now half-integers, match the factors of u or v in the
exponentials. Integrating (13.103) we get

X L(u) = xL + i

√
α′
2

∑
n∈Zodd

2

n
ᾱ n

2
e−i n

2 u

X R(v) = xR + i

√
α′
2

∑
n∈Zodd

2

n
α n

2
e−i n

2 v . (13.104)

Equation (13.101) now gives xL = −xR , or xL + xR = 0. Putting the left- and right-
moving parts together we arrive at the mode expansion for the twisted sector closed
strings:

X (τ, σ ) = i

√
α′
2

∑
n∈Zodd

2

n
e−i n

2 τ
(
ᾱ n

2
e−i n

2 σ + α n
2
ei n

2 σ
)

. (13.105)

The expansion contains neither coordinate nor momentum zero modes. It costs energy to
get away from x = 0 since at least one point on the string must remain at x = 0. As we
will see later, the fields associated with twisted states are localized at the fixed point x = 0
and depend only on x+, x−, and xi .

The commutation relations for the modes can be derived in complete analogy to the
usual case. The coordinate obeys [X (τ, σ ) ,Pτ (τ, σ ′)] = iδ(σ − σ ′). Moreover, given our
mode expansions the coordinate X satisfies (13.26) with n → n/2 and sums over odd
numbers:

Ẋ + X ′ = 2X ′
L(τ + σ) = √

2α′
∑

n∈Zodd

ᾱ n
2

e−i n
2 (τ+σ) ,

Ẋ − X ′ = 2X ′
R(τ − σ) = √

2α′
∑

n∈Zodd

α n
2
e−i n

2 (τ−σ) . (13.106)

Applying the top-sign version of (13.28) to X , we get∑
m′,n′∈Zodd

e−i m′
2 (τ+σ)e−i n′

2 (τ+σ ′)
[
ᾱm′

2
, ᾱ n′

2

]
= 2π i

d

dσ
δ(σ − σ ′) . (13.107)

To extract the commutators we apply the following integral operators to the left and right
sides of equation (13.107):

1

2π

∫ 2π

0
dσ ei m

2 σ · 1

2π

∫ 2π

0
dσ ′ ei n

2 σ ′ , m, n ∈ Zodd . (13.108)
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Two functions ei k
2 σ and ei k′

2 σ with k, k′ ∈ Zodd and k + k′ 	= 0 are orthogonal over the
interval [0, 2π ] because k + k′ is an even integer. The integrations in (13.108) therefore
select a single commutator on the left-hand side, and one can show that

[
ᾱm

2
, ᾱ n

2

]
= m

2 δm+n,0 . (13.109)

This is the expected form of the commutation relations.

Quick calculation 13.4 Prove (13.109).

Similar commutation relations hold for the right-moving oscillators and, as usual, left-
moving and right-moving oscillators commute:

[
αm

2
, α n

2

]
= m

2 δm+n,0 ,
[
αm

2
, ᾱ n

2

]
= 0 . (13.110)

We must still implement the orbifold identification, so equation (13.87) must hold for
the twisted X in (13.105). We can readily read off the action of U on the new oscillators:

Uα n
2
U−1 = −α n

2
, U ᾱ n

2
U−1 = −ᾱ n

2
. (13.111)

The absence of a momentum zero mode in the expansion of X means that twisted states
do not have a conserved momentum along the X direction. U -invariant ground states are
labeled by p+ and the transverse momentum �p along the Xi :

twisted sector ground states: |p+, �p 〉 . (13.112)

These are not to be confused with the ground states (13.96) in the “untwisted” sector that
have zero momentum along X .

To discuss excited states in the twisted sector we need the relevant formula for α′M2. This
time we can expect changes because the half-integer moding of the X oscillators can alter
the ordering constant. To find out, we recall that in open string theory we anticipated the
value of the ordering constant by performing the naive ordering of L⊥0 and using the ζ -
function motivated rule 1 + 2 + 3 + · · · → − 1

12 . Let us do the same now for the closed
string operator L̄⊥0 . We see from the top equation in (13.36) that L̄⊥0 is determined by

contributions from (Ẋ I + X I ′)2, that is, (Ẋ i + Xi ′)2 + (Ẋ + X ′)2. Since the mode expan-
sions of Ẋ i + Xi ′ and those of Ẋ + X ′ are completely analogous, the formula for L̄⊥0 in
(13.37) will be modified to read

L̄⊥0 = 1

2

∑
p∈Z

ᾱi
pᾱ

i−p +
1

2

∑
k∈Zodd

ᾱ k
2
ᾱ− k

2
. (13.113)
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Each of the twenty-three directions i in the first sum contributes an ordering constant of
1
2 · (− 1

12 ) = − 1
24 . The new contribution arises from ordering the second summand:

1

2

∑
k∈Zodd

ᾱ k
2
ᾱ− k

2
= 1

2

∑
k∈Z

+
odd

ᾱ k
2
ᾱ− k

2
+ 1

2

∑
k∈Z

+
odd

ᾱ− k
2
ᾱ k

2

=
∑

k∈Z
+
odd

ᾱ− k
2
ᾱ k

2
+ 1

2

∑
k∈Z

+
odd

[
ᾱ k

2
, ᾱ− k

2

]

=
∑

k∈Z
+
odd

ᾱ− k
2
ᾱ k

2
+ 1

4

∑
k∈Z

+
odd

k . (13.114)

To evaluate this we need to calculate the “sum” of all the odd positive integers. This is done
as follows:

∞∑
k=1

k =
∑

k∈Z
+
odd

k +
∑

k∈Z
+
even

k =
∑

k∈Z
+
odd

k + 2
∞∑

k=1

k . (13.115)

It then follows that ∑
k∈Z

+
odd

k = −
∞∑

k=1

k = 1

12
. (13.116)

We can now write the precise quantum form of (13.113):

L̄⊥0 = 1

4
α′ pi pi +

∞∑
p=1

ᾱi−pᾱ
i
p − 23 · 1

24
+

∑
k∈Z

+
odd

ᾱ− k
2
ᾱ k

2
+ 1

4
· 1

12
, (13.117)

which we write as

L̄⊥0 = 1

4
α′ pi pi + N̄⊥ − 15

16
, N̄⊥ =

∞∑
p=1

ᾱi−pᾱ
i
p +

∑
k∈Z

+
odd

ᾱ− k
2
ᾱ k

2
. (13.118)

A completely analogous formula holds for L⊥0 .

Quick calculation 13.5 Show that [N̄⊥, ᾱ− q
2
] = q

2 ᾱ− q
2

and explain why N̄⊥ is properly
called a number operator.

To write the mass-squared formula recall that 1
2α′M2 is equal to the sum of N⊥ plus N̄⊥

plus the ordering constants, as in (13.48). We thus have

1

2
α′M2 = N⊥ + N̄⊥ − 15

8
. (13.119)

The twisted sector ground states |p+, �p 〉 have N⊥ = N̄⊥ = 0. They are tachyonic states
with 1

2α′M2 = − 15
8 . The first excited states are built using the lowest moded twisted

oscillators:

α− 1
2
ᾱ− 1

2
|p+, �p〉 , 1

2
α′M2 = 1

2
+ 1

2
− 15

8
= −7

8
. (13.120)
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The momentum labels on twisted states indicate that the wavefunctions are of the form
ψ(τ, p+, �p), or ψ(τ, x−, �x) in coordinate space. Given the correspondence between wave-
functions and fields, we conclude that the fields associated with twisted states have no x
argument. These fields must live at some specific value of x . Given that energetics forces
twisted states to localize around x = 0, we reasonably conclude that the fields live on the
reduced 25-dimensional spacetime defined by x = 0. The above ground states and first
excited states are associated with scalar fields because the states have no indices along
directions in the reduced spacetime.

Orbifolds always have a twisted sector thus orbifolding has a double effect – the so-called
double strike. One effect is that states of the parent theory that are not invariant under the
orbifold action are projected out. The other effect is that we gain a whole new sector of
states that satisfy “twisted” boundary conditions.

Problems

Problem 13.1 Commutation relations for oscillators.

(a) Use the lower-sign version of equation (13.28) and the appropriate mode expansion to
verify explicitly that the unbarred commutation relations of (13.29) emerge.

(b) The set of functions einσ , with n ∈ Z, is complete on the interval σ ∈ [0, 2π ]. Use this
fact to prove that

δ(σ − σ ′) = 1

2π

∑
n∈Z

ein(σ−σ ′) . (1)

(c) Compute explicitly the commutator [X I (τ, σ ),Pτ J (τ, σ ′)] using the mode expansions
of X and P and the commutation relations (13.29), (13.30), and (13.33). Use equation
(1) to confirm that the expected answer (13.27) emerges.

(d) Prove the zero mode commutation relations (13.33), starting with a derivation of[
x I

0 +
√

2α′α I
0τ , Ẋ J (τ, σ ′)

]
= iα′ηI J ,

which is the closed string analog of equation (12.47).

Problem 13.2 A projector into physical states.

Consider the vector space H spanned by the set of states |λ, λ̄〉 in equation (13.60). Explain
why, for any state |λ, λ̄〉 ∈ H, the eigenvalue of P = L⊥0 − L̄⊥0 is an integer. Show that

P0 =
∫ 2π

0

dθ

2π
e−i(L⊥0 −L̄⊥0 )θ ,

is a projector from H into the vector subspace where P = 0. Thus P0 projects into the state
space of closed strings.
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Problem 13.3 Action of L⊥0 − L̄⊥0 .

(a) Prove that equation (13.59) holds for finite σ0. You may find it useful to define f (σ0) =
e−i Pσ0 X I (τ, σ ) ei P σ0 and to calculate multiple derivatives of f , evaluated at σ0 = 0.

(b) Explain why

e−i Pσ0 (Ẋ I ± X I ′)(τ, σ ) ei P σ0 = (Ẋ I ± X I ′)(τ, σ + σ0) . (1)

(c) Use equation (1) to calculate e−i Pσ0 α I
n ei P σ0 and e−i Pσ0 ᾱ I

n ei P σ0 . In doing so, you
are finding the action of a σ translation on the oscillators.

(d) Consider the state

|U 〉 = α I−m ᾱ J−n|p+, �pT 〉 , m, n > 0 .

Use the results of (c) to calculate e−i Pσ0 |U 〉. What is the condition that makes the state
|U 〉 invariant under σ translations?

Problem 13.4 L⊥0 − L̄⊥0 as world-sheet momentum.

(a) Use equations (13.36) to show that

L⊥0 − L̄⊥0 = − 1

2πα′

∫ 2π

0
dσ Ẋ I X I ′ . (1)

Also prove that

L⊥0 − L̄⊥0 = − p+

2π

∫ 2π

0
dσ

∂ X−

∂σ
,

which explains that L⊥0 − L̄⊥0 vanishes classically because X−, just like any other
string coordinate, must satisfy the closed string periodicity condition.

(b) The dynamics of the transverse light-cone string coordinates is governed by the
Lagrangian density (12.81):

L = 1

4πα′
(

Ẋ I Ẋ I − X I ′ X I ′) .

Show that the infinitesimal constant σ translation δX I = ε ∂σ X I is a symmetry of
L in the sense of Problem 8.10. Calculate the associated charge and show that it is
proportional to L⊥0 − L̄⊥0 , as given in (1).

Problem 13.5 Unoriented closed strings.

This problem is the closed string version of Problem 12.12. The closed string Xμ(τ, σ )

with σ ∈ [0, 2π ] and fixed τ is a parameterized closed curve in spacetime. The orientation
of a string is the direction of increasing σ on this curve.

(a) Consider now the closed string Xμ(τ, 2π − σ) with the same τ as above. How is this
second string related to the first string above? How are their orientations related? Make
a rough sketch, showing the original string as a continuous line and the second string
as a dashed line.
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Introduce an orientation reversing twist operator � such that

� X I (τ, σ )�−1 = X I (τ, 2π − σ) . (1)

Moreover, declare that

� x−0 �−1 = x−0 , � p+ �−1 = p+ . (2)

(b) Use the closed string oscillator expansion (13.24) to calculate

� x I
0 �−1 , �α I

0 �−1 , �α I
n �−1 , and � ᾱ I

n �−1 .

(c) Show that � X−(τ, σ )�−1 = X−(τ, 2π − σ). Since � X+(τ, σ )�−1 = X+(τ, 2π −
σ), equation (1) actually holds for all string coordinates. We say that orientation
reversal is a symmetry of closed string theory because it leaves the closed string
Hamiltonian H invariant: �H�−1 = H . Explain why this is true.

(d) Assume that the ground states are twist invariant. List the closed string states for N⊥ ≤
2, and give their twist eigenvalues. If you were commissioned to build a theory of
unoriented closed strings, which of the states would you have to discard? What are the
massless fields of unoriented closed string theory?

Problem 13.6 Orientifold Op-planes.

An orientifold Op-plane is a a hyperplane with p spatial dimensions, just as a Dp-brane
has p spatial dimensions. The Op-plane arises when we perform a truncation which keeps
only the closed string states that are invariant under the symmetry transformation which
simultaneously reverses the string orientation and reflects the coordinates normal to the
Op-plane.

For an Op-plane, let x1, . . ., x p be the directions along the Op-plane, and let
x p+1, . . ., xd with d = 25 be the directions orthogonal to the Op-plane. The Op-plane
position is defined by xa = 0 for a = p + 1, . . ., d . We will organize the string coordi-
nates as X+ , X− , {Xi } , {Xa} with i = 2, . . ., p, and a = p + 1, . . ., d. Let �p denote
the operator generating the transformation

�p Xa(τ, σ )�−1
p = −Xa(τ, 2π − σ) , (1)

�p Xi (τ, σ )�−1
p = Xi (τ, 2π − σ) . (2)

Moreover, assume that

�p x−0 �−1
p = x−0 , �p p+ �−1

p = p+ . (3)

(a) For an O23-plane the two normal directions x24, x25 can be represented by a plane.
A closed string at a fixed τ appears as a parameterized closed curve Xa(τ, σ ) in this
plane. Draw such an oriented closed string that lies fully in the first quadrant of the
(x24, x25) plane. Draw also the string X̃a(τ, σ ) = −Xa(τ, 2π − σ).
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(b) For any operator O the action of �p is defined by O → �pO�−1
p . Use the expansion

(13.24) to calculate the action of �p on the operators

xa
0 , pa, αa

n , ᾱa
n , xi

0, pi , αi
n, and ᾱi

n .

Show that �p X±(τ, σ )�−1
p = X±(τ, 2π − σ). Explain why the orientifold transfor-

mations are symmetries of closed string theory.
(c) Denote the ground states by |p+, pi , pa〉. Assume that the states |p+, pi , �0 〉 are

invariant under �p: �p|p+, pi , �0 〉 = |p+, pi , �0 〉. Prove that

�p|p+, pi , pa 〉 = |p+, pi ,−pa 〉 .
Assume that, for every pair of conjugate coordinate and momentum operators (q, p),
the momentum states are defined to satisfy |p + δp〉 = exp(iδp q)|p〉, with δp a
constant.

The massless states of the oriented closed string theory are given by

|�〉 =
∫

dp+d �p i d �p a �±
I J (τ, p+, pi , pa)

(
α I−1ᾱ

J
−1 ± α J

−1ᾱ
I−1

)
|p+, pi , pa〉,

where �±
I J are wavefunctions, and the transverse light-cone indices I, J run over all the

values taken by the indices i and a.
Now consider the truncation to �p invariant states: �p|�〉 = |�〉. The resulting string

theory is the theory in the presence of the orientifold Op-plane. Intuitively, for an invariant
state the amplitudes for the string to lie along each of the two related curves of part (a) are
equal.

(d) Find the conditions that must be satisfied by �±
ab,�

±
ia,�±

i j to guarantee �p invariance.
All of the conditions are of the form

�±
I J (τ, p+, pi , pa) = · · · �±

I J (τ, p+, pi ,−pa) ,

where the dots represent a sign factor that you must determine for each case.

Remarks: in coordinate space, letting xm = {x0, . . ., x p}, the above invariance conditions
require that

�±
I J (xm, xa) = · · · �±

I J (xm,−xa) .

In the presence of an orientifold plane, the values of the fields at (xm, xa) determine the
values of the fields at the reflected point (xm,−xa). The fields are either even or odd under
xa →−xa . The orientifold plane is some kind of mirror that relates the physics at reflected
points, effectively cutting the space in half. In one half of the space, and away from the
orientifold, there are no constraints, so one has the full set of fields of oriented closed
strings. An O25-plane is space filling. Since it has no normal directions, the orientifold
symmetry includes only string orientation reversal. This case was studied in Problem 13.5.



14 A look at relativistic superstrings

Realistic string theories must contain fermionic states, like the states of electrons
or quarks. Superstrings include anticommuting dynamical variables in addition
to the commuting coordinates Xμ that describe the position of strings. For open
superstrings, quantization gives a state space with a Neveu–Schwarz (NS) sector
that contains bosonic states and a Ramond (R) sector that contains fermionic
states. The theory has supersymmetry, a symmetry that ensures that the number
of bosonic and fermionic degrees of freedom are the same at any mass level. We
examine type II closed string theories, which arise by tensoring the state spaces
of open superstrings.

14.1 Introduction

We have so far studied bosonic string theories, both open and closed. These string theories
live in 26-dimensional spacetime, and all of their quantum states represent bosonic particle
states. Among them we found important bosonic particles, such as the photon and the
graviton. Non-Abelian gauge bosons, needed to transmit the strong and weak forces, also
arise in bosonic string theory, as we will see in Chapter 15.

Realistic string theories, however, must also contain the states of fermionic particles.
You may recall that a quantum state of identical bosonic particles is symmetric under the
exchange of any two of the particles. A quantum state of identical fermionic particles, on
the other hand, is antisymmetric under the exchange of any two of the particles. Quarks
and leptons are fermionic particles. To obtain them we need superstring theories. We will
not study superstrings in detail in this book. A proper explanation would require a detailed
discussion of spinors and the Dirac equation in various numbers of dimensions, as well
as other technicalities. This would take us too long. Here we give you a brief discussion
of the basics of superstrings, enough to appreciate that they are natural generalizations
of the bosonic string with some interesting new ingredients. Certain applications that are
discussed in this book involve superstrings; this chapter provides the required background
material.

The superstring spectrum contains no tachyon. As a result, the theory of open super-
strings can describe D-branes that are stable. Since bosonic string theory D-branes are
always unstable, this affords new and interesting possibilities. In addition, superstrings
have supersymmetry. Supersymmetry is a symmetry that relates the bosonic and fermionic
quantum states of the theory: in a superstring theory we find an equal number of fermionic
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and bosonic states at every mass level. If supersymmetry exists in nature it must be spon-
taneously broken: we do not observe degeneracies between fermions and bosons. Many
physicists believe that supersymmetry is an attractive candidate for the physics that lies
beyond the presently established Standard Model of particle physics.

14.2 Anticommuting variables and operators

We describe the position of classical bosonic strings using the string coordinates Xμ(τ, σ ).
The Xμ(τ, σ ) are classical commuting variables: products of them are independent of the
order of the factors. In the quantum theory the Xμs become operators that do not generally
commute. The failure of two operators A and B to commute is encoded in the commutator
[A, B] ≡ AB − B A.

To get fermions in string theory we introduce new dynamical world-sheet variables
ψ

μ
1 (τ, σ ) and ψ

μ
2 (τ, σ ). The classical variables ψ

μ
α (α = 1, 2) are not ordinary commut-

ing variables, but rather anticommuting variables. Since this is an important concept let us
digress.

Two variables b1 and b2 are said to anticommute with one another if

b1b2 = −b2b1. (14.1)

If b1 and b2 are anticommuting variables, more is true. The variables must anticommute
with themselves. Thus b1b1 = −b1b1, which means that

b1b1 = 0, b2b2 = 0. (14.2)

For classical anticommuting variables the order of factors is important. If we have a set of
anticommuting variables bi indexed by i , then we have

bi b j = −b j bi , ∀i, j. (14.3)

Quick calculation 14.1 Verify that the matrices γ 1 and γ 2 defined by

γ 1 =
(

0 −1
1 0

)
, γ 2 =

(
0 1
1 0

)
(14.4)

anticommute, but are not anticommuting variables.

In a quantum theory classical anticommuting variables become quantum operators that
can sometimes fail to anticommute. Given two such quantum operators f1 and f2, the
failure to anticommute is measured by the anticommutator { f1, f2}, defined by

{ f1, f2} ≡ f1 f2 + f2 f1. (14.5)

If two quantum operators anticommute, their anticommutator is zero.
We can explain what anticommuting operators have to do with fermions. Recall that

the quantization of a scalar field, for example, gave us creation and annihilation operators
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that create particles. The creation operators a†
p all commute among themselves and help us

construct the multiparticle states

(a†
p1

)n1 (a†
p2

)n2 . . . (a†
pk

)nk |�〉, (14.6)

that contain n1 particles with momentum �p1, n2 particles with momentum �p2, and so on.
The ni s are arbitrary positive integers.

To describe the relativistic electron and its antiparticle, the positron, one uses the clas-
sical Dirac field, a classical anticommuting field variable. The quantization of the Dirac
field gives rise to creation and annihilation operators for electrons and different creation
and annihilation operators for positrons. For convenience, let us focus on electrons. The
creation operators f †

p,s are labeled by momentum �p and spin s. Electrons are spin one-half
particles, so the spin label can only take two values. All the electron creation opera-
tors are anticommuting variables and they all anticommute. In particular, this means that
f †

p,s f †
p,s = 0, for any �p and s. A multiparticle state of electrons takes the form

f †
p1,s1

f †
p2,s2

. . . f †
pk ,sk

|�〉 (14.7)

and describes a state with an electron with momentum �p1 and spin s1, an electron with
momentum �p2 and spin s2, and so on. Note that we cannot get a state with two electrons that
have the same momentum and the same spin because f †

p,s f †
p,s |�〉 = 0. The anticommuting

creation operators automatically implement Fermi’s exclusion principle. In fact, if we use
a wavefunction to create a superposition of states∑

s1,s2

∫
d �p ψ

(
p1, s1; p2, s2

)
f †

p1,s1
f †

p2,s2
|�〉, (14.8)

we can quickly conclude that only the part of the wavefunction ψ that is antisymmetric
under the simultaneous exchange p1 ↔ p2 and s1 ↔ s2 contributes to the above state.

Quick calculation 14.2 Prove the above claim.

14.3 World-sheet fermions

As we mentioned before, classical superstrings require anticommuting dynamical variables
ψ

μ
α (τ, σ ), with α = 1, 2. Recall that for each value of μ the dynamical variable Xμ(τ, σ )

is a world-sheet boson. As it turns out, for each μ, the two components ψ
μ
1 and ψ

μ
2 com-

prise the variables needed to describe a fermion on the (τ, σ ) world, that is, a world-sheet
fermion. Remarkably, the quantization of such objects results in particle states that behave
as spacetime fermions, which is what we need.

In light-cone quantization X+ was set proportional to τ and X− was solved for in terms
of other quantities. With superstrings this remains true but, in addition, the light-cone
gauge condition sets ψ+

α = 0 and allows one to solve for ψ−
α . Both X− and ψ−

α receive
contributions from the transverse X I and ψ I

α . Since both Xμ and ψ
μ
α are spacetime Lorentz
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vectors, both enter into the definition of the light-cone Lorentz generator M−I . It fol-
lows that the commutator [M−I , M−J ] receives contributions from both Xμ and ψ

μ
α . The

requirement that this commutator vanishes gives constraints different from those obtained
for bosonic strings. The number of spacetime dimensions is no longer twenty-six, but rather
ten. The downward shift of the mass-squared equals minus one-half, rather than minus one.

In the light-cone gauge we need only concern ourselves with the transverse fields
ψ I

α(τ, σ ). To study their quantization it is convenient to have an action, denoted as Sψ ,
that describes their dynamics. This action is the fermion analog of the action (12.81) that
describes the dynamics of the transverse coordinates X I . So, all in all, the action S that
describes the full set of degrees of freedom takes the form

S = 1

4πα′

∫
dτ

∫ π

0
dσ
(

Ẋ I Ẋ I − X I ′ X I ′)+ Sψ, (14.9)

with

Sψ = 1

2π

∫
dτ

∫ π

0
dσ
[
ψ I

1 (∂τ + ∂σ )ψ I
1 + ψ I

2 (∂τ − ∂σ )ψ I
2

]
. (14.10)

The action Sψ is the Dirac action for a fermion that lives in the two-dimensional (τ, σ )

world. Note that each term in Sψ contains just one derivative. For bosons, like the X I ,
terms in the action contain two derivatives. A term in the Lagrangian that couples a field to
itself and has just one derivative risks being an irrelevant total derivative. Indeed, consider
an arbitrary field h and a coupling h(∂τ h). We have

h(∂τ h) = ∂τ (hh)− (∂τ h)h, (14.11)

or, equivalently,

h(∂τ h)+ (∂τ h)h = ∂τ (hh). (14.12)

If the field h is commuting, the two terms on the left-hand side are identical and, indeed,
h(∂τ h) is a total derivative. If the field h is anticommuting, (∂τ h)h = −h(∂τ h) and both
the left-hand side and the right-hand side of the equation vanish. We learn that h(∂τ h), for
h anticommuting, is not a total derivative. This means that the action Sψ is nontrivial only
because the ψ I

α fields are anticommuting.
Let us vary the fields ψ I

α in Sψ in order to find the equations of motion and the boundary
conditions. We have

δSψ = 1

2π

∫
dτ

∫ π

0
dσ
[
δψ I

1 (∂τ + ∂σ )ψ I
1 + ψ I

1 (∂τ + ∂σ )δψ I
1

+ δψ I
2 (∂τ − ∂σ )ψ I

2 + ψ I
2 (∂τ − ∂σ )δψ I

2

]
. (14.13)

Consider the second term on the first line of the above right-hand side:

ψ I
1 (∂τ + ∂σ )δψ I

1 = ∂τ (ψ
I
1 δψ I

1 )+ ∂σ (ψ I
1 δψ I

1 )− [(∂τ + ∂σ )ψ I
1 ]δψ I

1

= ∂τ (ψ
I
1 δψ I

1 )+ ∂σ (ψ I
1 δψ I

1 )+ δψ I
1 (∂τ + ∂σ )ψ I

1 . (14.14)
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A similar calculation can be done for the second term on the second line of (14.13). Back
into this equation and, as usual, ignoring the total derivatives along time,

δSψ = 1

π

∫
dτ

∫ π

0
dσ
[
δψ I

1 (∂τ + ∂σ )ψ I
1 + δψ I

2 (∂τ − ∂σ )ψ I
2

]
+ 1

2π

∫
dτ
[
ψ I

1 δψ I
1 − ψ I

2 δψ I
2

]σ=π

σ=0
. (14.15)

We can now read immediately the equations of motion

(∂τ + ∂σ )ψ I
1 = 0, (∂τ − ∂σ )ψ I

2 = 0, (14.16)

as well as the boundary conditions

ψ I
1 (τ, σ∗) δψ I

1 (τ, σ∗)− ψ I
2 (τ, σ∗) δψ I

2 (τ, σ∗) = 0, (14.17)

that must hold both at σ∗ = 0 and at σ∗ = π for all times.

We will use the above equations of motion and boundary conditions to discuss the quan-
tization and the state space of the theory. Our analysis will not be complete. In particular,
we will not discuss the anticommutation relations satisfied by the fields ψ I

α and, as a result,
we will not justify the anticommutation relations of the corresponding oscillators. Never-
theless, the discussion will illuminate the main features of the quantization, and all results
should seem plausible.

We begin by noting that the equations of motion (14.16) imply that ψ I
1 is right-moving

and ψ I
2 is left-moving:

ψ I
1 (τ, σ ) = � I

1 (τ − σ),

ψ I
2 (τ, σ ) = � I

2 (τ + σ). (14.18)

Let us now consider the boundary conditions (14.17). What can we do to satisfy these
conditions? A little thought shows that attempts to make each term in (14.17) vanish do
not work. Try, for example, setting ψ I

1 (τ, 0) = 0. Our solution in (14.18) then implies
� I

1 (τ ) = 0, for all τ , which results in ψ I
1 (τ, σ ) ≡ 0.

The situation improves if we impose boundary conditions that relate ψ I
1 and ψ I

2 at the
endpoints. For each σ∗ we take

ψ I
1 (τ, σ∗) = ±ψ I

2 (τ, σ∗), (14.19)

where the choice of sign is still to be determined. If the fields are so constrained at an
endpoint, their variations must also respect this condition:

δψ I
1 (τ, σ∗) = ±δψ I

2 (τ, σ∗). (14.20)

It then follows by multiplication of the last two equations that (14.17) holds for either
choice of sign.

Let us now discuss the signs. Since both ψ I
1 and ψ I

2 appear quadratically in the
action, their signs can be changed without physical consequence. This arbitrariness is used
conventionally to demand that at the endpoint σ∗ = 0,

ψ I
1 (τ, 0) = ψ I

2 (τ, 0). (14.21)
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Since we cannot change the sign of ψ I
1 or ψ I

2 without changing this condition, the choice
of sign at the other endpoint is physically relevant:

ψ I
1 (τ, π) = ±ψ I

2 (τ, π). (14.22)

The full superstring theory state space breaks into two subspaces or, as they are typically
called, two sectors : a Ramond (R) sector which contains the states that arise using the top
choice of sign, and a Neveu–Schwarz (NS) sector which contains the states that arise using
the lower choice of sign. The boundary conditions are better understood by assembling a
fermion field � I defined over the full interval σ ∈ [−π, π]:

� I (τ, σ ) ≡
⎧⎨
⎩ψ I

1 (τ, σ ) σ ∈ [ 0, π ]
ψ I

2 (τ,−σ) σ ∈ [−π, 0].
(14.23)

This construction is reminiscent of (12.36), which defined a field over σ ∈ [−π, π] for
bosonic open strings. The boundary condition (14.21) guarantees that � I is continuous at
σ = 0. Moreover, on account of (14.18), � I (τ, σ ) is a function of τ − σ :

� I (τ, σ ) = χ I (τ − σ). (14.24)

Finally, the boundary condition (14.22) gives

� I (τ, π) = ψ I
1 (τ, π) = ±ψ I

2 (τ, π) = ±� I (τ,−π). (14.25)

We thus learn that a periodic fermion � I corresponds to Ramond boundary conditions and
an antiperiodic fermion � I corresponds to Neveu–Schwarz boundary conditions:

� I (τ, π) = +� I (τ,−π) Ramond boundary condition,

� I (τ, π) = −� I (τ,−π) Neveu–Schwarz boundary condition.
(14.26)

Let us consider both cases in detail now.

14.4 Neveu−Schwarz sector

Since the Neveu–Schwarz fermion � I is a function of τ − σ and changes sign when σ →
σ + 2π , it must be expanded with fractionally moded exponentials:

� I (τ, σ ) ∼
∑

r∈Z+1/2

bI
r e−ir(τ−σ), (14.27)

up to a normalization factor that will not enter our discussion. Indeed, for any r = n + 1
2 ,

with n integer, we have

eir(σ+2π) = eirσ ei
(

n+ 1
2

)
2π = eirσ eiπ = −eirσ , (14.28)

which guarantees that � I is antiperiodic. Since � I is anticommuting, the expansion coef-
ficients bI

r are anticommuting operators. Following our usual notation, the negatively
moded coefficients bI−1/2, bI−3/2, bI−5/2, . . ., are creation operators, while the positively
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moded ones bI
1/2, bI

3/2, bI
5/2, . . . are annihilation operators. These operators act on a vac-

uum, henceforth called the Neveu–Schwarz vacuum |NS〉. These operators satisfy the
anticommutation relation

{bI
r , bJ

s } = δr+s,0δ
I J . (14.29)

Given that all creation operators anticommute with one another and square to zero, each
bI−r can appear at most once in any state. Since the X I (τ, σ ) are quantized as usual, we
still have the α I−n creation operators. Thus, the states in the NS sector are of the form:

NS sector: |λ〉 =
9∏

I=2

∞∏
n=1

(α I−n)λn,I

9∏
J=2

∏
r= 1

2 , 3
2 ,...

(bJ−r )
ρr,J |NS〉 ⊗ |p+, �pT 〉. (14.30)

Here the ρr,J are either zero or one. We have written the full ground state as a “product”
⊗ of the ground state |NS〉 for the bJ−r operators and the ground state |p+, �pT 〉 for the α I−n
operators. The order in which the b operators appear in the state does not matter when we
consider a single state. Since all the bs anticommute, different orderings can only differ by
an overall sign, and no new states are obtained.

The mass-squared operator in the NS sector, before normal ordering, is given by

M2 = 1

α′
(1

2

∑
p 	=0

α I−pα
I
p +

1

2

∑
r∈Z+ 1

2

rbI−r bI
r

)
. (14.31)

We can use the heuristic method based on ζ -functions to find the ordering constant “a”
in M2 – the constant that must be added inside the above parenthesis when the sums are
replaced by their normal-ordered versions. For the bosonic α I oscillators we know that
each coordinate contributes − 1

24 to a. We record this piece of information as

aB = − 1

24
. (14.32)

For the NS fermions the terms in M2 that require reordering are

1

2

∑
r=− 1

2 ,− 3
2 ,...

rbI−r bI
r =

1

2

∑
r= 1

2 , 3
2 ,...

(−r)bI
r bI−r

= 1

2

∑
r= 1

2 , 3
2 ,...

rbI−r bI
r −

1

2
(D − 2)

(1

2
+ 3

2
+ 5

2
+ · · ·

)
.

(14.33)

In the first step we let r →−r and in the second step we used the anticommutator (14.29).
The sum over odd positive integers was evaluated in (13.116) and gives + 1

12 . It then
follows that

1

2

∑
r=− 1

2 ,− 3
2 ,...

rbI−r bI
r =

1

2

∑
r= 1

2 , 3
2 ,...

rbI−r bI
r −

1

48
(D − 2). (14.34)

We have thus learned that each NS fermion (antiperiodic fermion) contributes to a the
constant aNS given by

aNS = − 1

48
. (14.35)
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The full ordering constant for M2 is therefore

a = (D − 2)(aB + aNS) = (D − 2)
(
− 1

24
− 1

48

)
= −(D − 2)

1

16
. (14.36)

For D = 10 we find a = − 1
2 and therefore (14.31) gives

M2 = 1

α′
(− 1

2 + N⊥), with N⊥ =
∞∑

p=1

α I−pα
I
p +

∑
r= 1

2 , 3
2 ...

rbI−r bI
r . (14.37)

N⊥ is a number operator that counts the contributions from the α I s and the bI s.

Quick calculation 14.3 To test that N⊥ includes the fermionic contribution to the number,
show that the eigenvalue of N⊥ on bI−r1

bJ−r2
|NS〉, with r1, r2 > 0, is r1 + r2.

We can now list the first few levels of states in the NS sector. Organized by the number
eigenvalue or, equivalently, mass-squared, we have

α′M2 = − 1
2 , N⊥ = 0 : |NS〉 ⊗ |p+, �pT 〉,

α′M2 = 0, N⊥ = 1
2 : bI−1/2|NS〉 ⊗ |p+, �pT 〉,

α′M2 = 1
2 , N⊥ = 1 : {α I−1, bI−1/2bJ

−1/2

}|NS〉 ⊗ |p+, �pT 〉,
α′M2 = 1, N⊥ = 3

2 :
{
α I−1bJ

−1/2, bI−3/2, bI−1/2bJ
−1/2bK−1/2

}|NS〉 ⊗ |p+, �pT 〉. (14.38)

The states with N⊥ = 0 have α′M2 = − 1
2 . The states with N⊥ = 1

2 are massless. There
are eight of them, labeled by the vector index I .

Quick calculation 14.4 How many states are there at N⊥ = 3
2 ?

It is useful to have an operator whose value on states is +1 if the state is bosonic and −1
if the state is fermionic. This operator is usually called (−1)F , where F stands for fermion
number. This is reasonable, states with even fermion number are bosonic and states with
odd fermion number are fermionic. To calculate (−1)F on any state we must first give the
eigenvalue of (−1)F on the Neveu–Schwarz ground states |NS〉 ⊗ |p+, �pT 〉. Let us declare
that number to be minus one, thus making the ground states fermionic:

(−1)F |NS〉 ⊗ |p+, �pT 〉 = − |NS〉 ⊗ |p+, �pT 〉. (14.39)

The eigenvalue of (−1)F on a state is equal to minus one times a sequence of factors of
minus one, one for each fermionic oscillator that appears in the state. Thus, acting on the
generic state (14.30) we get

(−1)F |λ〉 = −(−1)
∑

r,J ρr,J |λ〉. (14.40)

Operationally, this result follows if we take (−1)F to anticommute with all of the fermionic
operators {

(−1)F , bI
r

} = 0. (14.41)
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Consider again our list of states (14.38). Since fermionic oscillators contribute half-
integers to N⊥, states with integer N⊥ must have an even number of fermionic oscillators.
So all states with integer N⊥ have (−1)F = −1; they are fermionic states. All states with
half-integer N⊥ have an odd number of fermionic oscillators and therefore (−1)F = +1.
These are bosonic states, and they include the eight massless states on the second line of
the table.

The fermion or boson character of the states we have discussed so far is restricted to
the (τ, σ ) world-sheet, where the � fields are fermions. We will later discuss if the above
states are fermions or bosons in spacetime.

14.5 Ramond sector

With Ramond boundary conditions (14.26) the field � I is periodic and can be expanded
using integrally moded oscillators:

� I (τ, σ ) ∼
∑
n∈Z

d I
n e−in(τ−σ). (14.42)

Since � I is anticommuting, the oscillators d I
n are anticommuting operators. Again, the

negatively moded oscillators d I−1, d I−2, d I−3, . . ., are creation operators, while the positively
moded ones d I

1 , d I
2 , d I

3 , . . . are annihilation operators. The Ramond oscillators satisfy the
anticommutation relation

{d I
m, d J

n } = δm+n,0δ
I J . (14.43)

As in the NS sector, the Ramond creation operators are all anticommuting and, as a result,
can appear at most only once on any given state.

Ramond fermions are more complicated than NS fermions because the eight fermionic
zero modes d I

0 must be treated with care. It turns out that these eight operators can be
organized by simple linear combinations into four creation operators and four annihilation
operators. Let us call the four creation operators

ξ1, ξ2, ξ3, ξ4. (14.44)

Being zero modes, these creation operators do not contribute to the mass-squared of the
states. Postulating a unique vacuum |0〉, the creation operators allow us to construct 16 =
24 degenerate Ramond ground states. In fact, eight of these states have an even number of
ξs acting on |0〉 and the other eight have an odd number of ξs acting on |0〉. Explicitly, the
eight states |Ra〉, a = 1, 2, . . ., 8, with an even number of creation operators are

states |Ra〉 :

⎧⎪⎪⎨
⎪⎪⎩
|0〉,
ξ1ξ2|0〉, ξ1ξ3|0〉, ξ1ξ4|0〉, ξ2ξ3|0〉, ξ2ξ4|0〉, ξ3ξ4|0〉,
ξ1ξ2ξ3ξ4|0〉. (14.45)
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The eight states |Rā〉, ā = 1̄, 2̄, . . ., 8̄, with an odd number of creation operators are

states |Rā〉 :
⎧⎨
⎩ ξ1|0〉, ξ2|0〉, ξ3|0〉, ξ4|0〉,

ξ1ξ2ξ3|0〉, ξ1ξ2ξ4|0〉, ξ1ξ3ξ4|0〉, ξ2ξ3ξ4|0〉. (14.46)

The states |Ra〉 and |Rā〉 comprise the full set of degenerate Ramond ground states, denoted
as |RA〉 with A = 1, . . ., 16. The Ramond sector of the state space contains the states

R sector: |λ〉 =
9∏

I=2

∞∏
n=1

(α I−n)λn,I

9∏
J=2

∞∏
m=1

(d J−m)ρm,J |RA〉 ⊗ |p+, �pT 〉. (14.47)

Here the ρm,J are either zero or one.
Just like in the NS sector, the Ramond sector has an (−1)F operator. This operator

anticommutes with all the fermion oscillators, including the zero modes:{
(−1)F , d I

n

} = 0, (14.48)

and, additionally, we conventionally declare |0〉 to be fermionic

(−1)F |0〉 = −|0〉. (14.49)

It thus follows that all eight |Ra〉 states are fermionic and all |Rā〉 states are bosonic.
The mass-squared operator in the R sector, before normal ordering, is given by

M2 = 1

α′
(1

2

∑
p 	=0

α I−pα
I
p +

1

2

∑
n∈Z

nd I−n d I
n

)
. (14.50)

For the R fermions the terms that require ordering are

1
2

∑
n=−1,−2,...

nd I−n d I
n = − 1

2

∑
n=1,2,...

nd I
n d I−n

= 1
2

∑
n=1,2,...

nd I−n d I
n −

1

2
(D − 2)(1 + 2 + 3 + · · · )

= 1
2

∑
n=1,2,...

nd I−n d I
n +

1

24
(D − 2). (14.51)

We thus learn that the ordering contribution from a (periodic) Ramond fermion is

aR = 1

24
. (14.52)

This number is precisely the opposite of aB . Since there are equal numbers of bosonic
coordinates X I and Ramond fermions, their respective normal-ordering contributions to
the mass-squared cancel out and (14.50) gives:

M2 = 1

α′
∑
n≥1

(
α I−nα I

n + nd I−n d I
n

)
. (14.53)

This formula implies that all the Ramond ground states are massless.
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Let us now list the states at various mass levels

α′M2 = 0 : |Ra〉
∥∥ |Rā〉

α′M2 = 1 : α I−1|Ra〉, d I−1|Rā〉
∥∥ α I−1|Rā〉, d I−1|Ra〉,

α′M2 = 2 : {α I−2, α I−1α
J
−1, d I−1d J

−1}|Ra〉,
∥∥ {α I−2, α I−1α

J
−1, d I−1d J

−1}|Rā〉,
{α I−1d J

−1, d I−2}|Rā〉
∥∥ {α I−1d J

−1, d I−2}|Ra〉. (14.54)

We have separated the states in two groups with identical number of states: to the left of
the bars we find the states with (−1)F = −1 (fermionic states) and to the right of the bars
the states with (−1)F = +1 (bosonic states). Note that for each state to the left there is a
corresponding state to the right built on a ground state of opposite fermion number. The
appearance of an equal number of bosonic and fermionic states at every mass level is a
signal of supersymmetry. This is, however, supersymmetry on the world-sheet. As we will
soon see, spacetime supersymmetry arises only after we combine states from the Ramond
and Neveu–Schwarz sectors.

14.6 Counting states

Before assembling a supersymmetric theory we digress to learn how to count the number
of states that a string theory has at any given mass level. Our goal is to obtain generating
functions that encode these numbers for the NS and R sectors.

The generating functions contain the information about numbers of states in their power
series expansions. Typically we want a function f (x) such that

f (x) =
∞∑

n=0

a(n) xn, (14.55)

where a(n) is the number of states with, say, N⊥ = n. Suppose we have just one oscillator
a†

1 . There is then just one state |0〉 with N⊥ = 0, one state a†
1 |0〉 with N⊥ = 1 and, in fact,

one state (a†
1)k |0〉 with N⊥ = k. It follows that the function f1(x) corrresponding to this

system is

f1(x) = 1 + x + x2 + x3 + · · · = 1

1 − x
. (14.56)

Suppose we had just one oscillator a†
2 with mode number two. Then we get one vacuum

and one state for each even value of N⊥, resulting in a function f2(x) that takes the form:

f2(x) = 1 + x2 + x4 + x6 + · · · = 1

1 − x2
. (14.57)

We now ask: what is the function f12(x) corresponding to the states built using both a†
1 and

a†
2? To obtain these states we form all the products where the first factor is a state built with

a†
1s and the second factor is a state built with a†

2s. In forming these products one removes
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the ground states, multiplies the oscillators, and restores the ground state. It follows that
f12 is given by the product of f1 and f2:

(1 + x + x2 + x3 + · · · )(1 + x2 + x4 + x6 + · · · ). (14.58)

To aid the imagination one can place the oscillator content of the states on the generating
functions:

(1 + a†
1 x + (a†

1)2x2 + (a†
1)3x3 + · · · )(1 + a†

2 x2 + (a†
2)2x4 + (a†

2)3x6 + · · · ).
It is clear that the product forms all possible states, and states with N⊥ = k appear together
with xk . This makes it clear that (14.58) is the correct answer:

f12(x) = f1(x) f2(x) = 1

1 − x

1

1 − x2
. (14.59)

If we use oscillators a†
1, a†

2, a†
3, . . . of all mode numbers, the generating function is

f (x) =
∞∏

n=1

1

1 − xn
= 1

1 − x

1

1 − x2

1

1 − x3
. . .. (14.60)

The above use of multiplication is quite general. Consider a state space with oscillators
of type A and generating function f A(x) as well as a state space with oscillators of type B
and generating function fB(x). Then, the generating function for the state space built with
oscillators of types A and B is f AB(x) = f A(x) fB(x).

As an application we compute the generating function for bosonic open string theory. In
this theory we have oscillators of all mode numbers, but they come in 24 species, one
for each transverse light-cone direction. Since each species gives a generating function
(14.60), the full generating function for bosonic open string theory is obtained by raising
the right-hand side of (14.60) to the 24th power:

∞∏
n=1

1

(1 − xn)24
. (14.61)

Since mass-squared is more physical that N⊥ it is useful to use α′M2 instead of N⊥ to
define the generating function. In a generating function based on α′M2 the coefficient of
xk counts the number of states with α′M2 = k. For open bosonic strings α′M2 = N⊥ − 1,
so the α′M2 generating function is obtained by dividing the N⊥ generating function by one
power of x . As a result, the generating function fos(x) for bosonic open string theory is

fos(x) = 1

x

∞∏
n=1

1

(1 − xn)24
. (14.62)

With the help of a symbolic manipulator we readily find that

fos(x) = 1

x
+ 24 + 324 x + 3200 x2 + 25650 x3 + 176256 x4 + · · ·. (14.63)

This equation reminds us that we have a tachyon with α′M2 = −1, 24 massless states of a
Maxwell field, and 324 states with α′M2 = +1.



319 14.6 Counting states
�

Quick calculation 14.5 Use the binomial formula to calculate, by hand, the terms in fos(x)

up to and including O(x2).

Quick calculation 14.6 Construct explicitly all the states with α′M2 = 2 and count them,
verifying that there are indeed a total of 3200 states. You may find the counting formula in
Problem 12.11 useful.

To obtain the generating functions for the NS and R sectors we must learn how to count
states built with fermionic oscillators. Happily, this is easy to do. Again, we begin by using
N⊥ and assuming that we have a single fermionic creation operator f−r that contributes
r to N⊥. For this oscillator we can only build two states |0〉 and f−r |0〉. The generating
function fr (x) is therefore

fr (x) = 1 + xr . (14.64)

Since the NS sector contains oscillators bI−1/2, bI−3/2, . . . coming in eight species, the
generating function associated with these is

[
(1 + x1/2)(1 + x3/2)(1 + x5/2) · · · ]8 =

∞∏
n=1

(1 + xn− 1
2 )8. (14.65)

Recalling that α′M2 = N⊥ − 1
2 and that we have eight bosonic coordinates as well, the

α′M2 based generating function fNS(x) for the NS sector is

fNS(x) = 1√
x

∞∏
n=1

(1 + xn− 1
2

1 − xn

)8
. (14.66)

Expanding for the first few orders we get

fNS(x) = 1√
x
+ 8 + 36

√
x + 128 x + 402 x

√
x + 1152 x2 + · · ·. (14.67)

This expansion shows the tachyon at α′M2 = −1/2, the eight massless states, and the 36
states at α′M2 = 1/2. The corresponding states were listed in (14.38).

For the Ramond sector we have α′M2 = N⊥, with no offset. Since the fermionic
oscillators d I−1, d I−2, . . . are integrally moded we get

fR(x) = 16
∞∏

n=1

(1 + xn

1 − xn

)8
. (14.68)

The overall multiplicative factor appears because each combination of oscillators gives rise
to 16 states by acting on each of the available ground states. The power series expansion
of (14.68) gives

fR(x) = 16 + 256 x + 2304 x2 + 15360 x3 + · · ·. (14.69)

The NS generating function contains both integer and half-integer powers of x , while the
R generating function only has integer powers of x . We note that the R coefficients are
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actually double the corresponding NS coefficients. This is not a coincidence, as we will
see in the following section.

14.7 Open superstrings

We have seen that the Ramond sector has world-sheet supersymmetry: there are equal num-
bers of fermionic and bosonic states at each mass level. Consider, for example, the ground
states. There are sixteen of them, obtained by acting on |0〉 with four linear combinations
built from the zero modes d I

0 . The states break into two groups |Ra〉 and |Rā〉 of eight
states each, with opposite values of (−1)F .

Since the d I
0 carry a Lorentz index they form a Lorentz vector and transform as such

under Lorentz transformations. The ground states, however, are built in an intricate way
using the zero modes (see (14.45) and (14.47)), so they do not transform as vectors. In
fact, under Lorentz transformations the |Ra〉 transform among themselves and so do the
|Rā〉. Both transform as spinors, the kind of transformation that is appropriate for states
that are spacetime fermions. Both the index a and the index ā are spinor indices, but they
label somewhat different spinors. This reflects the fact that there are two different kinds of
fermions in a ten-dimensional spacetime. Curiously, if you have just one fermion there is
no way of telling which kind it is, but once you have two of them, you can tell if they are
of the same type or of different type.

So, do we get two spacetime fermions from the R sector ground states? There are two
reasons to believe that the answer should be no. First, there is something strange about
getting spacetime fermions from both |Ra〉 and |Rā〉, given that these states have opposite
values of (−1)F and thus rather different commuting character. Second, with two space-
time fermions we would not get spacetime supersymmetry. Identifying |Ra〉 as spacetime
fermions and |Rā〉 as spacetime bosons is not an alternative either, since spacetime bosons
cannot carry a spinor index.

A strategy then emerges. Since all states in the R sector have a spinor index, we will only
attempt to get spacetime fermions from this sector. We also recognize that all fermions
must arise from states with the same value of (−1)F . Following Gliozzi, Scherk, and
Olive (GSO) we proceed to truncate the Ramond sector down to the set of states with
(−1)F =− 1. These are the states to the left of the bars in (14.54). With our conventions,
these are world-sheet fermionic states that are now recognized to be states of spacetime
fermions. The resulting, truncated sector is called the R− sector. The R+ sector is defined
as the set of R states with (−1)F = +1. At each mass level it contains the same number of
states as the R− sector.

After this truncation, the generating function (14.68) for the Ramond sector reduces to

fR−(x) = 8
∞∏

n=1

(1 + xn

1 − xn

)8
, (14.70)
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since each combination of oscillators now acts on eight ground states only, the ones of the
type required to get (−1)F = −1. Expanding the above power series we have

fR−(x) = 8 + 128 x + 1152 x2 + 7680 x3 + 42112 x4 + · · ·. (14.71)

There are eight massless fermionic states.

Let us now reconsider the states of the NS sector. No states here carry spinor indices, so
we attempt to get spacetime bosons from this sector. The ground states |NS〉 ⊗ |p+, �pT 〉
are tachyonic and have (−1)F = −1. The massless states bI−1/2|NS〉 ⊗ |p+, �pT 〉 carry a
Lorentz vector index, so they are naturally identified as the eight photon states that arise
from a ten-dimensional Maxwell gauge field. We wish to keep these eight states to match
the eight massless fermionic states of the R sector. Since all bosons should arise from states
with the same value of (−1)F , we truncate the NS sector to the set of states with (−1)F =
+1. The resulting states comprise the so-called NS+ sector. The NS+ sector contains the
massless states and throws away the tachyonic states. Moreover, as explained earlier, the
states with (−1)F = +1 all have an odd number of fermionic oscillators and integer α′M2.
The set of mass-squared levels in the NS+ sector coincides with the set of mass-squared
levels in the R− sector. The NS− sector is defined to contain all the states of the NS sector
with (−1)F = −1. The NS− sector contains a tachyon.

Our results strongly hint that the full open string theory, defined by combining additively
the set of states from the R− and NS+ sectors, has a supersymmetric spectrum. Indeed,
the integer mass-squared levels in the NS generating function (14.67) have degeneracies
that match those of (14.71) for the R− sector.

In order to see if the number of fermionic and bosonic states match for all levels we need
a generating function fNS+(x) for the NS+ sector. If we take fNS(x) in (14.66) and change
the sign inside each factor in the numerator

1√
x

∞∏
n=1

(1 − xn− 1
2

1 − xn

)8
, (14.72)

the only effect is changing the sign of each term in the generating function whose states
arise with an odd number of fermions. Since these are precisely the states we want to keep,
we can obtain the desired generating function by subtracting (14.72) from (14.66) and
dividing by two

fNS+(x) = 1

2
√

x

[ ∞∏
n=1

(1 + xn− 1
2

1 − xn

)8 −
∞∏

n=1

(1 − xn− 1
2

1 − xn

)8]
. (14.73)

In order to have spacetime supersymmetry we need fNS+(x) = fR−(x), or explicitly:

1

2
√

x

[ ∞∏
n=1

(1 + xn− 1
2

1 − xn

)8 −
∞∏

n=1

(1 − xn− 1
2

1 − xn

)8] = 8
∞∏

n=1

(1 + xn

1 − xn

)8
. (14.74)

This intricate identity was proven by Carl Gustav Jacob Jacobi in his treatise on elliptic
functions, published in 1829. Jacobi called (14.74) an obscure identity: “aequatio identica
satis abstrusa”. Presently, we recognize it as a key equation at the basis of supersymmetric
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string theory. The critical dimension of ten is also visible from the powers of eight on both
sides of the equation.

The constructed theory of open superstrings is the theory of a single space-filling stable
D9-brane. The D-brane is stable since the theory has no tachyon.

14.8 Closed string theories

We saw in Chapter 13 that closed strings are roughly obtained by combining multiplica-
tively left-moving and right-moving copies of an open string theory. The same is true for
closed superstring theory. Since an open superstring has two sectors (NS and R), closed
string sectors can be formed in four ways by combining a left-moving sector (NS or R)
with a right-moving sector (NS or R). The result is four closed string sectors:

closed string sectors: (NS, NS), (NS, R), (R, NS), (R,R) . (14.75)

Conventionally, the first input in (·, ·) is the left-moving sector and the second input is the
right-moving sector. We also have operators (−1)FL and (−1)FR that count fermions in
the L and R sectors, respectively. In open superstrings spacetime bosons arise from the
NS sector and spacetime fermions arise from the R sector. In closed superstring theories
spacetime bosons arise from the (NS,NS) sector and also from the (R,R) sector, since this
sector is “doubly” fermionic. The spacetime fermions arise from the (NS,R) and (R, NS)
sectors.

In order to get a closed string theory with supersymmetry we must truncate the four
sectors above. A consistent truncation arises if we use truncated left and right sectors to
begin with. Suppose we take, for example,

left sector :
{

NS+
R−

}
, right sector :

{
NS+
R+

}
. (14.76)

Combining these sectors multiplicatively we find the four sectors of the type IIA
superstring:

type IIA: (NS+, NS+), (NS+, R+), (R−, NS+), (R−, R+). (14.77)

In a closed string theory the value of the mass-squared is given by

1
2α′M2 = α′M2

L + α′M2
R, (14.78)

where M2
L and M2

R denote the mass-squared operators for the open string theories that are
used to build the left and right sectors, respectively. As befits closed strings there is also
the level-matching condition α−0 = ᾱ−0 on the states. This condition guarantees that the
left and right sectors give identical contributions to the mass-squared: α′M2

L = α′M2
R . No

closed string states can be formed if the left and right mass levels do not match.
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The type IIA superstring has no tachyons and its massless states are obtained by
combining the massless states of the various sectors:

(NS+, NS+) : b̄I−1/2|NS〉L ⊗ bJ
−1/2|NS〉R ⊗ |p+, �pT 〉, (14.79)

(NS+, R+) : b̄I−1/2|NS〉L ⊗ |Rb̄〉R ⊗ |p+, �pT 〉, (14.80)

(R−, NS+) : |Ra〉L ⊗ bI−1/2|NS〉R ⊗ |p+, �pT 〉, (14.81)

(R−, R+) : |Ra〉L ⊗ |Rb̄〉R ⊗ |p+, �pT 〉. (14.82)

The states in (14.79) carry two independent vector indices I, J that run over eight values.
There are therefore 64 bosonic states. Just like the massless states in bosonic closed string
theory they carry two vector indices. We therefore get a graviton, a Kalb–Ramond field,
and a dilaton:

(NS+, NS+) massless fields : gμν, Bμν, φ. (14.83)

Quick calculation 14.7 Count the number of graviton, Kalb–Ramond, and dilaton states
in ten dimensions. Add these numbers up and confirm that you get 64.

The states in (14.80) and (14.81) include only one Ramond vacuum and are therefore
spacetime fermions. With a = 1, . . ., 8 and b̄ = 1̄, . . ., 8̄, these give a total of 2 × 8 × 8 =
128 fermionic states. Finally, the states in (14.82) include the product of two R ground
states, they are “doubly” fermionic, and thus spacetime bosons. There are 8 × 8 = 64
massless (R−, R+) bosonic states. Together with the NS–NS states in (14.79), they add
up to the 128 massless bosonic states of the closed superstring. As required by super-
symmetry, these match with the 128 massless fermionic states of the R–NS and NS–R
sectors.

It should be said that the same type IIA string theory arises if the R+ and R− sectors in
(14.76) where interchanged. Plainly, the type IIA superstring arises when the left and right
truncated R sectors are of different types.

A different theory, a type IIB superstring, arises if the chosen Ramond sectors are of the
same type:

left :
{

NS+
R−

}
, right :

{
NS+
R−

}
. (14.84)

We then get

type IIB: (NS+, NS+), (NS+, R−), (R−, NS+), (R−, R−). (14.85)

The massless states of this theory are

(NS+, NS+) : b̄I−1/2|NS〉L ⊗ bJ
−1/2|NS〉R ⊗ |p+, �pT 〉, (14.86)

(NS+, R−) : b̄I−1/2|NS〉L ⊗ |Rb〉R ⊗ |p+, �pT 〉, (14.87)

(R−, NS+) : |Ra〉L ⊗ bI−1/2|NS〉R ⊗ |p+, �pT 〉, (14.88)

(R−, R−) : |Ra〉L ⊗ |Rb〉R ⊗ |p+, �pT 〉. (14.89)
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The same type IIB theory would arise had we replaced both R− sectors in (14.84) by R+
sectors.

While the (NS+, NS+) bosons of type IIA and type IIB theories are the same, the R–
R bosons are rather different. In the type IIA theory the massless R–R bosons include
a Maxwell field Aμ and a three-index antisymmetric gauge field Aμνρ . In the type IIB
theory the massless R–R bosons include a scalar field A, a Kalb–Ramond field Aμν , and a
totally antisymmetric gauge field Aμνρσ with four indices. Summarizing

R–R massless fields in type IIA : Aμ, Aμνρ, (14.90)

R–R massless fields in type IIB : A, Aμν, Aμνρσ . (14.91)

The above R–R fields are deeply related to the existence of stable D-branes in type II super-
string theories. We discuss this in Section 16.4, where we explain that stable D-branes are
actually charged. In bosonic string theory all Dp-branes are unstable and none of them is
charged.

The two truncations of (14.75) discussed above led to supersymmetric closed string the-
ories. Other truncations of (14.75) are actually consistent, but the resulting theories are
not supersymmetric. These truncations use the NS− sector, leading to a spectrum with
tachyons.

Quick calculation 14.8 What sector(s) can be combined with a left-moving NS− to form
a consistent closed string sector?

In addition to the type II theories, there are also two heterotic superstring theories. These
are remarkable closed string theories. While a type II closed superstring arises by com-
bining together left-moving and right-moving copies of open superstrings, in the heterotic
string we combine a left-moving open bosonic string with a right-moving open superstring!
Out of the 26 left-moving bosonic coordinates of the bosonic factor only ten of them are
matched by the right-moving bosonic coordinates of the superstring factor. As a result, this
theory effectively lives in ten-dimensional spacetime. Heterotic strings come in two ver-
sions: E8 × E8 type and SO(32) type. These labels characterize the groups of symmetries
that exist in the theories. E8 is a group, in fact, it is the largest exceptional group (the E is
for exceptional). The group SO(32) is the group generated by 32-by-32 matrices that are
orthogonal and have unit determinant. A discussion of the heterotic SO(32) theory can be
found in Problem 14.5.

Finally, in addition to both type II and heterotic theories, there is the type I theory.
This is a supersymmetric theory of open and closed unoriented strings. A string theory is
unoriented (see Problems 12.12 and 13.5) if the states of the theory are invariant under
an operation that reverses the orientation of the strings. Both the type II theories and the
heterotic theories are theories of oriented closed strings.

The complete list of ten-dimensional supersymmetric string theories is therefore

• type IIA,
• type IIB,
• E8 × E8 heterotic,
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• SO(32) heterotic,
• type I.

These five theories have all been known since the middle of the 1980s. Some relation-
ships between them were found soon after their discovery, but a clearer picture emerged
only in the late 1990s. The limit of type IIA theory as the string coupling is taken to infin-
ity was shown to give a theory in eleven dimensions. This theory is called M-theory, with
the meaning of M to be decided when the nature of the theory becomes clear. It is known,
however, that M-theory is not a string theory. M-theory contains membranes (2-branes) and
5-branes, and these branes are not D-branes. M-theory may end up playing a prominent role
in understanding string theory. The discovery of many other relationships between the five
string theories listed above and M-theory has made it clear that we really have just one
theory. This is a fundamental result: there is a unique theory, and the five superstrings and
M-theory are different limits of this unique theory.

It is not clear if bosonic strings are part of this interrelated set of theories. They certainly
seem quite different from the superstrings. It would be very interesting, however, if all
string theories were one single theory. There have been suggestions that bosonic string
theories and superstrings are related via cosmological solutions. We have certainly not
heard the last word on this subject.

Problems

Problem 14.1 Counting bosonic states.

(a) Consider k ordinary commuting oscillators ai , with i = 1, . . ., k. How many products
of the form ai1ai2 can be built? How many ai1ai2ai3 ? How many ai1ai2ai3ai4 ? [Hint:
use the result in Problem 12.11.]

(b) List and count the states in the α′M2 = 3 level of the open bosonic string. Confirm
that you get the same number of states predicted by the generating function fos(x) in
(14.63).

Problem 14.2 Generating function for the unoriented bosonic open string theory.

Write a generating function for the unoriented bosonic open string theory by starting
with the generating function fos(x) for the full oriented theory and adding a term that
implements the projection to unoriented states.

Problem 14.3 Massive level in the open superstring.

(a) Consider eight anticommuting variables bi , with i = 1, . . ., 8. Ignoring signs, how
many inequivalent products of the form bi1 bi2 can be built? How many bi1 bi2 bi3 ? How
many bi1 bi2 bi3 bi4 ?

(b) Consider the first and second excited levels of the open superstring (α′M2 = 1 and
α′M2 = 2). List the states in the NS sector and the states in the R sector. Confirm that
you get the same number of states.
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Problem 14.4 Closed string degeneracies.

For closed string states the left-moving and right-moving excitations are each described
like states of open strings with identical values of α′M2. The value of α′M2 for the closed
string state is four times that value.

(a) State the values of α′M2 and give the degeneracies for the first five mass levels of the
closed bosonic string theory.

(b) State the values of α′M2 and give the separate degeneracies of bosons and fermions
for the first five mass levels of the type IIA closed superstrings. Would the answer have
been different for type IIB?

Problem 14.5 Counting states in heterotic SO(32) string theory.

In heterotic (closed) string theory the right-moving part of the theory is that of an open
superstring. It has an NS sector whose states are built with oscillators α I−n and bI−r acting
on the NS vacuum. It also has an R sector whose states are built with oscillators α I−n and
d I−n acting on the R ground states. The index I runs over 8 values. The standard GSO
projection down to NS+ and R− applies.

The left-moving part of the theory is that of a peculiar bosonic open string. The 24
transverse coordinates split into eight bosonic coordinates X I with oscillators ᾱ I−n and 16
peculiar bosonic coordinates. A surprising fact of two-dimensional physics allows us to
replace these 16 coordinates by 32 two-dimensional left-moving fermion fields λA, with
A = 1, 2, . . ., 32. The (anticommuting) fermion fields λA imply that the left-moving part
of the theory also has NS′ and R′ sectors, denoted with primes to differentiate them from
the standard NS and R sectors of the open superstring.

The left NS′ sector is built with oscillators ᾱ I−n and λA−r acting on the vacuum |NS′〉L ,
declared to have (−1)FL = +1:

(−1)FL |NS′〉L = +|NS′〉L .

The naive mass formula in this sector is

α′M2
L =

1

2

∑
n 	=0

ᾱ I−nᾱ I
n +

1

2

∑
r∈Z+ 1

2

r λA−rλ
A
r .

The left R′ sector is built with oscillators ᾱ I−n and λA−n acting on a set of R′ ground states.
The naive mass formula in this sector is

α′M2
L =

1

2

∑
n 	=0

(
ᾱ I−nᾱ I

n + n λA−nλA
n

)
.

Momentum labels are not needed in this problem so they are omitted throughout.

(a) Consider the left NS′ sector. Write the precise mass-squared formula with normal-
ordered oscillators and the appropriate normal-ordering constant. The GSO projection
here keeps the states with (−1)FL = +1; this defines the left NS′+ sector. Write
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explicitly and count the states we keep for the three lowest mass levels, indicating
the corresponding values of α′M2

L . [This is a long list.]
(b) Consider the left R′ sector. Write the precise mass-squared formula with normal-

ordered oscillators and the appropriate normal-ordering constant. We have 32 zero
modes λA

0 and 16 linear combinations behave as creation operators. As usual, half
of the ground states have (−1)FL = +1 and the other half have (−1)FL = −1. Let
|Rα〉L denote ground states with (−1)FL = +1. How many ground states |Rα〉L are
there? Keep only states with (−1)FL = +1; this defines the left R′+ sector. Write
explicitly and count the states we keep for the two lowest mass levels, indicating the
corresponding values of α′M2

L . [This is a shorter list.]

At any mass level α′M2 = 4k of the heterotic string, the spacetime bosons are obtained
by “tensoring” all the left states (NS′+ and R′+) with α′M2

L = k with the right-moving
NS+ states with α′M2

R = k. Similarly, the spacetime fermions are obtained by tensoring
all the left states (NS′+ and R′+) with α′M2

L = k with the right-moving R− states with
α′M2

R = k. At any mass level where either left states or right states are missing, one cannot
form heterotic string states.

(c) Are there tachyonic states in heterotic string theory? Write out the massless states of
the theory (bosons and fermions) and describe the fields associated with the bosons.
Calculate the total number of states in heterotic string theory (bosons plus fermions)
at α′M2 = 4. Answer: 18 883 584 states.

(d) Write a generating function fL(x) =∑
r a(r)xr for the full set of GSO-truncated

states in the left-moving sector (include both NS′+ and R′+ states). Use the con-
vention where a(r) counts the number of states with α′M2

L = r . Use fL(x) and an
algebraic manipulator to find the total number of states in heterotic string theory at
α′M2 = 8. Answer: 6 209 372 160.
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15 D-branes and gauge fields

The open strings we have studied so far were described by coordinates all
of which satisfy Neumann boundary conditions. These open strings move on
the world-volume of a space-filling D25-brane. Here we quantize open strings
attached to more general D-branes. We begin with the case of a single Dp-brane,
with 1 ≤ p < 25. We then turn to the case of multiple parallel Dp-branes, where
we see the appearance of interacting gauge fields and the possibility of mas-
sive gauge fields. We continue with the case of parallel D-branes of different
dimensionalities.

15.1 Dp-branes and boundary conditions

A Dp-brane is an extended object with p spatial dimensions. In bosonic string theory,
where the number of spatial dimensions is 25, a D25-brane is a space-filling brane. The let-
ter D in Dp-brane stands for Dirichlet. In the presence of a D-brane, the endpoints of open
strings must lie on the brane. As we will see in more detail below, this requirement imposes
a number of Dirichlet boundary conditions on the motion of the open string endpoints.

Not all extended objects in string theory are D-branes. Strings, for example, are 1-branes
because they are extended objects with one spatial dimension, but they are not D1-branes.
Branes with p spatial dimensions are generically called p-branes. A 0-brane is some kind
of particle. Just as the world-line of a particle is one-dimensional, the world-volume of a
p-brane is (p + 1)-dimensional. Of these p + 1 dimensions, one is the time dimension and
the other p are spatial dimensions. We first discussed the concept of D-branes in Section
6.5. In addition, Problem 6.11 examined the classical motion of open strings ending on
D-branes of various dimensionalities. Our main subject in the present chapter is the quan-
tization of open strings in the presence of various kinds of D-branes. This is a rich subject
with important implications for the problem of constructing realistic physical models using
strings. Furthermore, the study of D-branes and the gravitational fields they produce has
led to surprising new insights in the study of strongly interacting gauge theories.

In this section, we set up the notation needed to describe D-branes, and then we state the
appropriate boundary conditions. We let d denote the total number of spatial dimensions
in the theory; in the present case, d = 25. The total number of spacetime dimensions is
D = d + 1 = 26. A Dp-brane with p < 25 extends over a p-dimensional subspace of the
25-dimensional space. We will focus on simple Dp-branes: those that are p-dimensional
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hyperplanes inside the d-dimensional space. How can we specify such hyperplanes? We
need (d − p) linear conditions. In three spatial dimensions (d = 3), a 2-brane (p = 2) is a
plane, and it is specified by one linear condition (d − p = 3 − 2 = 1). For example, z = 0,
specifies the (x, y) plane. Similarly, a string along the z axis (p = 1) is specified by two
linear conditions (d − p = 3 − 1 = 2): x = 0 and y = 0. We need as many conditions as
there are spatial coordinates normal to the brane.

Consider now a Dp-brane. We introduce spacetime coordinates xμ, with μ=
0, 1, . . ., 25, that are split into two groups. The first group includes the coordinates tan-
gential to the brane world-volume. These are the time coordinate and p spatial coordinates.
The second group includes the (d − p) coordinates normal to the brane world-volume. We
write

x0, x1, . . ., x p︸ ︷︷ ︸
Dp tangential coordinates

x p+1, x p+2, . . ., xd︸ ︷︷ ︸
Dp normal coordinates

. (15.1)

The location of the Dp-brane is specified by fixing the values of the coordinates normal to
the brane. With this split in mind we write

xa = x̄a , a = p + 1, . . ., d. (15.2)

Here the x̄a are a set of (d − p) constants. In a completely analogous fashion, the string
coordinates Xμ(τ, σ ) are split as

X0, X1, . . ., X p︸ ︷︷ ︸
Dp tangential coordinates

X p+1, X p+2, . . ., Xd︸ ︷︷ ︸
Dp normal coordinates

. (15.3)

Since the endpoints of the open string must lie on the Dp-brane, the string coordinates
normal to the brane must satisfy Dirichlet boundary conditions

Xa(τ, σ )

∣∣∣
σ=0

= Xa(τ, σ )

∣∣∣
σ=π

= x̄a , a = p + 1, . . ., d. (15.4)

The string coordinates Xa are called DD coordinates, because both endpoints satisfy a
Dirichlet boundary condition. The open string endpoints can move freely along the direc-
tions tangential to the D-brane. As a result, the string coordinates tangential to the D-brane
satisfy Neumann boundary conditions:

Xm ′(τ, σ )

∣∣∣
σ=0

= Xm ′(τ, σ )

∣∣∣
σ=π

= 0 , m = 0, 1, . . ., p. (15.5)

These string coordinates are called NN coordinates because both endpoints satisfy a
Neumann boundary condition. We see that the split (15.3) into tangential and normal
coordinates is also a split into coordinates which satisfy Neumann and Dirichlet boundary
conditions, respectively:

X0, X1, . . ., X p︸ ︷︷ ︸
NN coordinates

X p+1, X p+2, . . ., Xd︸ ︷︷ ︸
DD coordinates

. (15.6)

In order to use the light-cone gauge we need at least one spatial NN coordinate that can
be used together with X0 to define the coordinates X±. We therefore need to assume p ≥ 1,
and our analysis does not apply to strings attached to a D0-brane. D0-branes are perfectly
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consistent objects, but in order to study them we need a Lorentz covariant quantization (see
Chapter 24 and Problem 24.4). We will label the light-cone coordinates as

X+, X−, {Xi }︸ ︷︷ ︸
NN

{Xa}︸︷︷︸
DD

i = 2, . . ., p and a = p + 1, . . ., d. (15.7)

15.2 Quantizing open strings on Dp-branes

Having specified the boundary conditions on the various string coordinates, we can pro-
ceed to the quantization of open strings in the presence of a Dp-brane. The purpose of the
analysis that follows is to determine the spectrum of open string states and to use this result
to understand more deeply what goes on in the world-volume of a Dp-brane.

Our earlier work in Chapter 12 is quite useful here. The NN coordinates Xi (τ, σ ) satisfy
exactly the same conditions that are satisfied by the light-cone coordinates X I (τ, σ ) of
open strings attached to a D25-brane. All expansions and commutation relations for the Xi

coordinates can be obtained from those of X I by replacing I → i in the relevant equations.
We recall that the X− coordinate was determined in terms of the transverse light-cone

coordinates in equation (9.65):

Ẋ− ± X−′ = 1

2α′
1

2p+
(Ẋ I ± X I ′)2. (15.8)

Moreover, the mode expansion of Ẋ I ± X I ′ was given in (9.74):

Ẋ I ± X I ′ = √
2α′

∑
n∈Z

α I
n e−in(τ±σ). (15.9)

A completely analogous mode expansion held for the coordinate X−; this expansion con-
tinues to hold without change since X− remains an NN coordinate. The above equations,
together with the X− expansion, led to (12.105) and (12.106), summarized here as

2p+ p− ≡ 1

α′
(1

2
α I

0 α I
0 +

∞∑
n=1

α I−n α I
n + a

)
. (15.10)

The ordering constant a was determined to be equal to minus one for the quantization of
strings on a D25-brane. The light-cone index I = 2, . . ., 25, takes values that, for a Dp-
brane, run over NN coordinates labeled by i and DD coordinates labeled by a. As a result,
(15.8) now becomes

Ẋ− ± X−′ = 1

2α′
1

2p+
{
(Ẋ i ± Xi ′)2 + (Ẋa ± Xa ′)2

}
. (15.11)

As explained before, the Xi coordinates are expanded as

Ẋ i ± Xi ′ = √
2α′

∑
n∈Z

αi
n e−in(τ±σ). (15.12)
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The Xa coordinates are the ones we must investigate. If an expansion analogous to (15.12)
holds for Xa , we will be able to find p− by letting I → (i, a) in (15.10), just as we did in
order to obtain (15.11).

We are now in a position to address the novel part of the quantization of open strings
attached to a Dp-brane. The coordinates Xa normal to the brane satisfy the wave equation,
so the general solution is a superposition of two waves:

Xa(τ, σ ) = 1

2

(
f a(τ + σ)+ ga(τ − σ)

)
. (15.13)

Let us examine the boundary conditions (15.4). At σ = 0 we obtain

Xa(τ, 0) = 1

2

(
f a(τ )+ ga(τ )

) = x̄a, (15.14)

so that ga(τ ) = − f a(τ )+ 2x̄a , and as a result,

Xa(τ, σ ) = x̄a + 1

2

(
f a(τ + σ)− f a(τ − σ)

)
. (15.15)

The boundary condition at σ = π then gives us

f a(τ + π) = f a(τ − π). (15.16)

This simply means that f a(u) is a periodic function with period 2π . This information is
incorporated into the following expansion:

f a(u) = f̃ a
0 +

∞∑
n=1

(
f̃ a

n cos nu + g̃a
n sin nu

)
. (15.17)

It is interesting to note that there is no term linear in u. Such a term was present when
the coordinate satisfied a Neumann boundary condition because in that case it was the
derivative f ′(u) which was periodic. Replacing (15.17) in (15.15) and performing some
trigonometric simplification, we find

Xa(τ, σ ) = x̄a +
∞∑

n=1

(
− f̃ a

n sin nτ sin nσ + g̃a
n cos nτ sin nσ

)
. (15.18)

Redefining the expansion coefficients that are arbitrary anyway, we can write

Xa(τ, σ ) = x̄a +
∞∑

n=1

(
f a
n cos nτ + f̃ a

n sin nτ
)

sin nσ. (15.19)

Since there is no term linear in τ , the string has no net time-averaged momentum in the
xa direction. This is reasonable since strings must remain attached to the brane. If there
were a paτ term present, the endpoints σ = 0, π would not remain at xa = x̄a when
τ 	= 0.

In order to define the quantum theory associated with Xa , we focus on the classical
parameters that describe the motion of the open string in equation (15.19). Since we are
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trying to quantize strings attached to a fixed Dp-brane, the values x̄a are not parame-
ters that can be adjusted to describe various open string motions. The ( f a, f̃ a), on the
other hand, are parameters of the open string motion. Therefore, in quantizing the open
string, the x̄a remain numbers and do not become operators, while the ( f a, f̃ a) turn into
operators.

We now rewrite (15.19) in terms of oscillators, defined in order to simplify the following
analysis:

Xa(τ, σ ) = x̄a +√
2α′

∑
n 	=0

1

n
αa

n e−inτ sin nσ. (15.20)

The string coordinate Xa is Hermitian if (αa
n )† = αa−n , which is the usual Hermiticity

property of oscillators. Note that the zero mode αa
0 does not exist. Additionally,

Ẋa = −i
√

2α′
∑
n 	=0

αa
n e−inτ sin nσ , Xa ′ = √

2α′
∑
n 	=0

αa
n e−inτ cos nσ, (15.21)

and therefore

Xa ′ ± Ẋa = √
2α′

∑
n 	=0

αa
n e−in(τ±σ). (15.22)

The analogy with (15.12) is quite close, but there are two differences. First, when the lower
sign applies, the combinations of derivatives differ by an overall minus sign. Second, the
zero mode is absent in (15.22).

The quantization is now straightforward. With Pτ a(τ, σ ) = Ẋa/2πα′, the nonvanishing
commutators are postulated to be[

Xa(τ, σ ) , Ẋb(τ, σ ′)
]
= 2πα′ i δab δ(σ − σ ′). (15.23)

Following the analysis of Section 12.2, this commutator can be rewritten in the form
(12.30), with (I, J ) replaced by (a, b). Since the mode expansions (15.22) take the stan-
dard form, the earlier analysis applies. The overall sign difference alluded to above is of no
import since (Xa ′ − Ẋa) appears twice in the relevant commutators. We thus find

[αa
m, αb

n ] = m δab δm+n,0 , m, n 	= 0. (15.24)

The zero modes work out consistently: x̄a is a constant, and there is no conjugate momen-
tum since αa

0 ≡ 0. The sign difference is also immaterial for the evaluation of (15.11) since
(Xa ′ − Ẋa) appears squared. Therefore, equation (15.10) can be split as

2p+ p− ≡ 1

α′
(
α′ pi pi +

∞∑
n=1

[
αi−n αi

n + αa−n αa
n

]
− 1

)
. (15.25)

A few comments are needed here. Since pa ∼ αa
0 ≡ 0, the term 1

2α I
0α I

0 simply became
α′ pi pi (recall that α

μ
0 = √

2α′ pμ). The ordering constant has been set to minus one, as for
the D25-brane. The critical dimension has not been changed either. This is reasonable since
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only the zero mode structure is different in Xa and Xi . In particular, the naive contributions
needed to normal order L⊥0 are the same for Xa and for Xi . It follows from (15.25) that

M2 = −p2 = 2p+ p− − pi pi = 1

α′
( ∞∑

n=1

[
αi−nαi

n + αa−nαa
n

]
− 1

)
. (15.26)

Using creation and annihilation operators, we get

M2 = 1

α′
(
−1 +

∞∑
n=1

p∑
i=2

n ai
n

†
ai

n +
∞∑

m=1

d∑
a=p+1

m aa
m

†aa
m

)
. (15.27)

Let us now consider the state space of the quantum string. The ground states in the
D25-brane background were |p+, �pT 〉, where �pT = (p2, . . ., p25) is the vector with com-
ponents pI . The I index now runs over both i and a values, but there are no pa operators,
so the ground states of the theory are labeled by p+ and pi only:

|p+, �p 〉 with �p = (p2, . . ., p p). (15.28)

We build additional states by acting with oscillators on the ground states. We have
oscillators along the brane:

ai
n

†
, n ≥ 1, i = 2, . . ., p, (15.29)

and oscillators normal to the brane:

aa
n

†
, n ≥ 1, a = p + 1, . . ., d. (15.30)

So the states take the form

[ ∞∏
n=1

p∏
i=2

(
ai

n
†
)λn,i

] [ ∞∏
m=1

d∏
a=p+1

(
aa

m
†
)λm,a

]
|p+, �p〉. (15.31)

Schrödinger wavefunctions take the schematic form

ψi1...i p a1...aq (τ, p+, �p ). (15.32)

Just like the indices on the oscillators, the indices on the wavefunctions are of two types:
indices along the directions tangent to the brane (i-type) and indices along the directions
normal to the brane (a-type).

In the field theories that describe the states of the string, the fields take the same form as the
string Schrödinger wavefunctions. We can therefore ask: where do the fields corresponding
to (15.32) live? Are these fields defined over all of spacetime, or only in some subspace of
spacetime?

Since the fields are functions of the momenta pi , by Fourier transformation they can
be viewed as fields that depend on the coordinates xi . The τ dependence is in fact an x+
dependence, and the p+ dependence can be Fourier transformed into an x− dependence.
All together, we have fields that depend on x+, x−, and xi , with i = 2, . . ., p. These are
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precisely the (p + 1) coordinates that span the world-volume of the Dp-brane. It is reason-
able to conclude that the fields actually live on the Dp-brane. Indeed, this world-volume is
the only natural candidate for a (p + 1)-dimensional subspace of spacetime.

Our analysis suggests, but does not prove, that the fields live on the Dp-brane; the posi-
tions x̄a of the Dp-brane did not appear in the states nor in the wavefunctions. How could
we prove that the fields live on the Dp-brane? We would have to study interactions. Since
closed strings have no endpoints, they are not fixed by D-branes and can exist over all of
spacetime. By scattering closed strings off the Dp-brane we can investigate whether the
interactions between fields from the closed string sector and fields from the open string
sector take place on the D-brane world-volume. The answer appears to be yes. Statements
about where open string fields live, however, are likely to be ambiguous or even gauge
dependent. Different answers could be completely consistent.

We conclude our analysis of the Dp-brane by giving a list and detailed description of the
fields that satisfy M2 ≤ 0. All these fields live on the Dp-brane, so we must state how they
transform under the Lorentz transformations that preserve the Dp-brane. These are Lorentz
transformations in p + 1 dimensions, and the fields may be scalars or vectors, for example.
Let us begin with the simplest states, the ground states:

|p+, �p 〉 , M2 = − 1

α
. (15.33)

These states are tachyon states on the brane, and they have exactly the same mass as the
tachyon states we found on the D25-brane. The corresponding tachyon field, of course, is
just a Lorentz scalar on the brane.

The next states have one oscillator acting on them. Consider first the case in which the
oscillator arises from a coordinate tangent to the brane:

ai
1

†|p+, �p 〉 , i = 2, . . ., p, M2 = 0. (15.34)

For any momenta, these are (p + 1)− 2 massless states. Moreover, the index they carry
lives on the brane. They are therefore states that transform as a Lorentz vector on the
brane. Since the number of states equals the spacetime dimensionality of the brane minus
two, these are clearly photon states. The associated field is a Maxwell gauge field living on
the brane. This is a fundamental result:

a Dp-brane has a Maxwell field living on its world-volume. (15.35)

Finally, let us consider the case in which the oscillator acting on the ground state arises
from a coordinate normal to the brane:

aa†
1 |p+, �p 〉, a = p + 1, . . ., d, M2 = 0. (15.36)

For any momenta, these are (d − p) states living on the brane. Since the index a is not a
Lorentz index for the brane, this index is merely a counting label. These states transform
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as Lorentz scalars on the brane. Therefore, we get a massless scalar field for each direction
normal to the Dp-brane:

a Dp-brane has a massless scalar for each normal direction. (15.37)

These massless scalars have a physical interpretation. In Section 12.8 we indicated that
open string states represent D-brane excitations. Our Dp-brane and a slightly displaced
parallel Dp-brane are actually states of the same energy. The displaced Dp-brane can be
viewed as a zero-energy excitation of the original brane. It is also an excitation with zero
momentum, since it represents a displacement that is constant over all of the Dp-brane. A
zero-momentum excitation with zero energy is a massless excitation because it obeys the
energy-momentum relation E = p of a massless particle. The massless scalars identified
in (15.36) give rise to these excitations. This interpretation is supported by the fact that we
have as many massless fields as there are directions normal to the Dp-brane. Those are the
independent directions in which the Dp-brane can be moved. Note that a space-filling D25-
brane has no massless scalars on its world-volume, consistent with the fact that it cannot
be displaced.

All in all, the massless states on the Dp-brane are (p − 1) photon states and (d − p) scalar
field states. Apart from the momentum labels which are different, we have the same number
of massless states as on the D25-brane. The (d − 1) states on the D25-brane are accounted
for on the Dp-brane by (p − 1) photon states and (d − p) scalar states.

15.3 Open strings between parallel Dp-branes

We will now consider the quantization of open strings that extend between two parallel
Dp-branes. In describing such branes we will continue to use the notation of the previous
sections. Two parallel branes of the same dimensionality have the same set of longitudinal
coordinates and the same set of normal coordinates. Recall that the values x̄a of the normal
coordinates specify the position of a Dp-brane. This time the first Dp-brane is located at
xa = x̄a

1 and the second at xa = x̄a
2 . If we happen to have x̄a

1 = x̄a
2 for all a, the two Dp-

branes coincide in space – they are on top of each other. Otherwise, they are separated. In
Figure 15.1 we show two parallel, separated D2-branes.

What kinds of open strings does this configuration of parallel Dp-branes support? There are
actually four different classes of strings, each of which must be analyzed separately. The
first two classes are made up of open strings that begin and end on the same D-brane, either
brane one or brane two. These strings we already studied and quantized in the previous
section. The other two classes consist of strings that start on one brane and end on the
other. These are stretched strings. The strings that begin on brane one and end on brane
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brane 1

x 
1

x 
3

x 
2

brane 2

�Fig. 15.1 Two parallel D2-branes. Here x1 and x2 are longitudinal coordinates, and x3 is a normal
coordinate. The positions of brane one and brane two are specified by the coordinates x̄3

1
and x̄3

2, respectively. We show the four types of strings that this configuration supports.

two are different from the strings that begin on brane two and end on brane one. These
strings are oppositely oriented, and the orientation of a string (the direction of increasing
σ ) matters. As we will show in Chapter 16, the charge of a string changes sign when
we reverse its orientation. The classes of open strings that are supported on a particular
configuration of D-branes are called sectors. The quantum theory of open strings in the
presence of two parallel Dp-branes has four sectors. In Figure 15.1 we show a string for
each of the four sectors.

Let us consider the sector consisting of open strings that begin on brane one and end on
brane two. The NN string coordinates X+, X−, and Xi are quantized just as before, since
the corresponding boundary conditions are still given by (15.5). On the other hand, for the
DD string coordinates the boundary conditions (formerly given by (15.4)) are now

Xa(τ, σ )

∣∣∣
σ=0

= x̄a
1 , Xa(τ, σ )

∣∣∣
σ=π

= x̄a
2 , a = p + 1, . . ., d. (15.38)

The solution of the wave equation subject to these boundary conditions can be studied
starting from (15.15), which already incorporates the boundary condition at σ = 0. In the
present case we just change x̄a to x̄a

1 :

Xa(τ, σ ) = x̄a
1 +

1

2

(
f a(τ + σ)− f a(τ − σ)

)
. (15.39)

The boundary condition at σ = π now gives us

f a(τ + π)− f a(τ − π) = 2 (x̄a
2 − x̄a

1 ), (15.40)
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or, equivalently,

f a(u + 2π)− f a(u) = 2 (x̄a
2 − x̄a

1 ). (15.41)

This means that the derivative f a ′(u) is a periodic function with period 2π and has an
expansion of the type indicated in (15.17). Integrating, the function f a(u) has an expansion
of the form

f a(u) = f a
0 u +

∞∑
n=1

(ha
n cos nu + ga

n sin nu). (15.42)

We have not included a constant term because it would drop out of Xa , as can be seen in
(15.39). The constant f a

0 is fixed by the boundary condition (15.41):

f a
0 = 1

π
(x̄a

2 − x̄a
1 ). (15.43)

It is now possible to substitute f a(u) into (15.39). Aside from handling the zero modes,
the computations are identical to those that led to (15.19). This time we obtain

Xa(τ, σ ) = x̄a
1 + (x̄a

2 − x̄a
1 )

σ

π
+

∞∑
n=1

(
f a
n cos nτ + f̃ a

n sin nτ
)

sin nσ. (15.44)

Note that the boundary conditions are manifestly satisfied. To describe strings that extend
from brane two to brane one we merely exchange x̄a

1 and x̄a
2 in the above equation. We can

rewrite (15.44) in terms of oscillators, using (15.20) as a model:

Xa(τ, σ ) = x̄a
1 + (x̄a

2 − x̄a
1 )

σ

π
+√

2α′
∑
n 	=0

1

n
αa

n e−inτ sin nσ. (15.45)

The constants x̄a
1 and x̄a

2 do not become quantum operators because for fixed D-branes,
just as before, they are not parameters of the open string fluctuations. Note the absence of
terms linear in τ ; the open strings have no time-averaged momentum in the xa directions.
Even though we are not giving new names to the oscillators above, they are different oper-
ators from those we obtained during the quantization of strings that begin and end on the
same Dp-brane. The oscillators in different sectors must not be confused. This time the
derivatives give

Ẋa = −i
√

2α′
∑
n∈Z

αa
n e−inτ sin nσ , Xa ′ = √

2α′
∑
n∈Z

αa
n e−inτ cos nσ, (15.46)

where
√

2α′αa
0 =

1

π
(x̄a

2 − x̄a
1 ). (15.47)

Although the strings do not carry momentum in the xa direction, there is still a nonvanish-
ing αa

0 . There is no contradiction because the interpretation of α0 as momentum requires
that α0 appear in Ẋ . As you can see, αa

0 appears in Xa ′, but not in Ẋa . A nonvanishing αa
0

implies stretched strings: αa
0 vanishes precisely when the two D-branes coincide. Similar

operators emerge in the expansion of closed strings that wrap around compact dimensions
(see Chapter 17).
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The two derivatives in (15.46) can be combined to form

Xa ′ ± Ẋa = √
2α′

∑
n∈Z

αa
n e−in(τ±σ). (15.48)

It follows from this result, and our comments in the previous section, that the oscillators
satisfy the expected commutation relations. To calculate the mass-squared operator, we
reconsider equation (15.10). As before, we let I → (i, a) and set the subtraction constant
a equal to minus one, giving

2p+ p− = 1

α′
(
α′ pi pi + 1

2
αa

0 αa
0 +

∞∑
n=1

[
αi−n αi

n + αa−n αa
n

]
− 1

)
. (15.49)

We therefore have

M2 = 2p+ p− − pi pi = 1

2α′
αa

0αa
0 +

1

α′
( ∞∑

n=1

[
αi−nαi

n + αa−nαa
n

]
− 1

)
. (15.50)

Using the explicit value of αa
0 in (15.47), we finally obtain

M2 =
( x̄a

2 − x̄a
1

2πα′
)2 + 1

α′
(N⊥ − 1), (15.51)

where

N⊥ =
∞∑

n=1

p∑
i=2

nai
n

†
ai

n +
∞∑

m=1

d∑
a=p+1

maa†
m aa

m . (15.52)

The first term on the right-hand side of (15.51) is a new contribution to the mass-squared of
the states. Since the string tension is T0 = 1/(2πα′), this term is simply the square of the
energy of a classical static string stretched between the two D-branes. It is reasonable to
find that the mass-squared operator is altered by the addition of this constant. The constant
vanishes precisely when the branes coincide.

Let us now consider the ground states. In fact, let us examine the ground states from each of
the four open string sectors available in this D-brane configuration. The momentum labels
of these states are the same for each sector: p+ and �p. To distinguish the various sectors,
we include as additional ground-state labels two integers [i j], each of which can take the
value one or two. The first integer denotes the brane on which the σ = 0 endpoint lies, and
the second integer denotes the brane on which the σ = π endpoint lies. In short, the open
strings in the [i j] sector extend from brane i to brane j . The ground states are written as
|p+, �p ; [i j]〉, and they are of four types:

|p+, �p ; [11]〉 , |p+, �p ; [22]〉 , |p+ �p ; [12]〉 , |p+, �p ; [21]〉. (15.53)

The states of open strings in the [i j] sector are constructed from oscillators acting on
|p+, �p ; [i j]〉. The states take the form indicated in (15.31), with the exception that the
ground state is replaced by |p+, �p ; [i j]〉. The oscillators in the four sectors are the same
in number and in type, but they are fundamentally different operators. We could label them
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with the [i j] labels for clarity, but this is seldom necessary because the ground states carry
the sector labels.

Where do the fields corresponding to the [12] string states live? This question is difficult
to answer. They are clearly (p + 1)-dimensional fields, since the momentum structure of
the states is the same as the one we had for the states of strings fully attached to a single
brane. As far as the stretched strings are concerned, the two D-branes are on a similar
footing, so we cannot say that the fields live on any single one of them. In some sense,
the fields must live on both D-branes. Operationally, the fields are declared to live on
some fixed (p + 1)-dimensional space (not necessarily identified with any of the two D-
branes), and are seen to have nonlocal interactions that reflect the fact that the D-branes are
separated. The spacetime interpretation of fields that arise from stretched strings appears
to require a new way of thinking, the basis of which may be provided by a branch of
mathematics called noncommutative geometry.

We continue our discussion of the state space by giving a list and a detailed description of
the fields which comprise the two lowest levels of the stretched-string state space. Just as
we did for the single brane, we will determine whether the states are scalars or vectors with
respect to the (p + 1)-dimensional Lorentz symmetry. The simplest states are the ground
states:

|p+, �p ; [12]〉 , M2 = − 1

α′
+
( x̄a

2 − x̄a
1

2πα′
)2

. (15.54)

If the separation between the branes vanishes, these states are tachyon states of the usual
mass-squared. If the branes are separated, the mass-squared gets a positive contribution. In
fact, for the critical separation

|x̄a
2 − x̄a

1 | = 2π
√

α′, (15.55)

the ground states represent a massless scalar field. For larger separations, the ground states
represent a massive scalar field.

The next states have one oscillator acting on them. Assume, until stated otherwise, that
the separation between the branes is nonzero. If the oscillator acting on the ground states
arises from a coordinate normal to the brane we have

aa†
1 |p+, �p ; [12]〉 , a = p + 1, . . ., d, M2 =

( x̄a
2 − x̄a

1

2πα′
)2

. (15.56)

For any momenta, these are (d − p) massive states. Since the index a is not a Lorentz index
for the (p + 1)-dimensional spacetime, these states are Lorentz scalars. We therefore get
(d − p) massive scalar fields. If the oscillator arises from a coordinate tangent to the brane
we have

ai †
1 |p+, �p ; [12]〉 , i = 2, . . ., p, M2 =

( x̄a
2 − x̄a

1

2πα′
)2

. (15.57)

For any momenta, these are (p + 1)− 2 = p − 1 massive states. Moreover, they carry
an index corresponding to the (p + 1)-dimensional spacetime. We might think that these
states make up a massive Maxwell gauge field, but this is not exactly right.
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A massive gauge field has more degrees of freedom than a massless gauge field. The
results of Problem 10.7 indicate that a massive gauge field has one more state than a mass-
less gauge field for each allowed value of the momentum. In a D-dimensional spacetime, a
massless gauge field has D − 2 states for each pμ which satisfies p2 = 0, while a massive
gauge field has D − 1 states for each pμ which satisfies p2 + m2 = 0. Therefore, in the
case at hand, one of the scalar states in (15.56) must join the (p − 1) states in (15.57) to
form the massive vector. At the end we have one massive vector and (d − p − 1) massive
scalars.

Can we guess which scalar state in (15.56) becomes part of the massive gauge field?
If p = d − 1 the answer is simple. In that case, the D-branes are separated along one
coordinate, and there is only one scalar in (15.56). The scalar uses the oscillator labeled
with the direction along which the branes are separated. When p < d − 1, there is more
than one state in (15.56). The scalar state that becomes part of the vector is the linear
combination ∑

a

(x̄a
2 − x̄a

1 ) aa†
1 |p+, �p ; [12]〉. (15.58)

Of all directions normal to the D-branes, the direction defined by the spatial vector with
components x̄a

2 − x̄a
1 is unique: it takes us from one brane to the other one. To visualize

this, think of two parallel D1-branes in three-dimensional space. There are clearly many
normal directions that do not take us from one brane to the other, and just one direction
that does. The educated guess (15.58) can be proven to be the correct one.

We obtain a very interesting situation in the limit as the separation between the branes goes
to zero. Even though the D-branes are then coincident, they are still distinguishable and we
still have the four open string sectors. The massless open string states which represent
strings extending from brane one to brane two include a massless gauge field and (d − p)

massless scalars. This is the same field content as that of a sector where strings begin and
end on the same D-brane. When the two D-branes coincide we therefore get a total of four
massless gauge fields. These gauge fields actually interact with one another – in the string
picture they do so by the process of joining endpoints. Theories of interacting gauge fields
are called Yang–Mills theories. They were discovered in the 1950s and later on used suc-
cessfully to build the theories of electroweak and strong interactions. On the world-volume
of two coincident D-branes we indeed get a U (2) Yang–Mills theory. More precisely, we
get a U (2) Yang–Mills theory with some additional interactions that become negligible at
low energies. The two in U (2) is there precisely because we have two coincident D-branes.
The meaning of U (2) will be discussed below.

Suppose that we have N Dp-branes. This time the sectors will be labeled by pairs [i j],
where i and j are integers that run from 1 to N . The [i j] sector consists of open strings
that start on the i th brane and end on the j th brane. It is clear that there are N 2 sectors.
In this setup, string interactions can be visualized neatly. In a typical process, a first open
string joins with a second open string to form a new open string. To do so, the end of the
first string (σ = π ) joins with the beginning of the second string (σ = 0). The new string
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�Fig. 15.2 (a) Three D-branes, labeled i, j, and k, and strings in the [ij] and [jk] sectors. (b) The end of
the string in the [ij] sector meets the beginning of the string in the [jk] sector and the
interaction takes place. (c) The resulting string in the [ik] sector.

begins at the beginning of the first string and ends at the end of the second string. If the open
strings are stretched between D-branes, a first string from the [i j] sector can be joined by
a second open string from the [ jk] sector to give a “product” open string in the [ik] sector.
This interaction is possible since both the end of the first string and the beginning of the
second string lie on the same D-brane. The physical process can be imagined to take place
as in Figure 15.2. The result is a single string, which does not remain attached to the j
D-brane since the joining point is no longer an endpoint. The new string belongs to the
[ik] sector. We write this possible interaction as

[i j] ∗ [ jk] = [ik] , j not summed. (15.59)

If the N Dp-branes are coincident, the N 2 sectors result in N 2 interacting massless gauge
fields. This defines a U (N ) Yang–Mills theory on the world-volume of the N coincident
D-branes:

N coincident D-branes carry U (N ) massless gauge fields. (15.60)

In fact, the full spectrum of the open string theory consists of N 2 copies of the spectrum of
a single Dp-brane.

If we have a single brane, (15.60) tells us that we get a U (1) Yang–Mills theory. In
fact, U (1) Yang–Mills theory is Maxwell theory, so (15.60), for N = 1, is consistent with
(15.35). Here U (1) denotes a group: the elements of the group are complex numbers of unit
length and group multiplication is just multiplication. The U (1) group is relevant because,
at any spacetime point, the gauge parameters in Maxwell theory are actually elements of
U (1). So far, our study of Maxwell gauge transformations has made no use of the U (1)



345 15.4 Strings between parallel Dp- and Dq-branes
�

group structure, but this group structure is needed to understand the gauge symmetry in the
presence of compact spatial dimensions (Chapter 18). For U (N ) Yang–Mills theory, U (N )

is also a group of symmetries: the elements of the group are N × N unitary matrices and
group multiplication is matrix multiplication. At any spacetime point, the gauge parameters
of U (N ) Yang–Mills theory are elements of the group U (N ).

Quick calculation 15.1 Recall that a group is a set which is closed under an associa-
tive multiplication; it contains an identity element, and each element has a multiplicative
inverse. Verify that U (1) and U (N ), as described above, are groups.

The discrete labels i, j used to label the branes and the various open string sectors are
sometimes called Chan–Paton indices. These indices were introduced during the early
stages of string theory, long before D-branes were known, as an algebraic device to obtain
Yang–Mills theories from open strings. With the discovery of D-branes it became clear that
the Chan–Paton indices are simply labels of D-branes in a multi-D-brane configuration.

The appearance of Yang–Mills theories on the world-volume of a D-brane configuration
is of great relevance because Yang–Mills theories are used to describe the Standard Model
of particle physics. The electroweak theory is described by a U (2) Yang–Mills theory.
The four gauge bosons of this theory include the photon γ , the W+, the W−, and the
Z0. The latter three are massive gauge bosons. The mechanism by which massless gauge
fields become massive is known as the Higgs mechanism of field theory. A possible D-
brane realization of the Higgs mechanism is obtained by separating D-branes which, when
coincident, give the corresponding massless gauge particles. If we have two coincident
D3-branes we obtain a U (2) Yang–Mills theory, with four massless gauge fields living on
the four-dimensional world-volume of the branes. Is this a good model for the electroweak
gauge theory? Not quite. If we separate the D3-branes to give mass to some of the gauge
bosons, two of them acquire a mass – the two arising from the stretched strings – and two
remain massless. In the electroweak gauge theory only one gauge field remains massless.
A more sophisticated D-brane configuration is needed to produce a model of the elec-
troweak theory. A setup with intersecting D-branes that can be used to construct a particle
physics model will be examined in Section 21.1. The construction of semi-realistic models
is discussed in Section 21.4.

15.4 Strings between parallel Dp- and Dq-branes

In this section we examine the configuration of two parallel D-branes with different dimen-
sionality. Let p and q be two integers which satisfy 1 ≤ q < p ≤ 25, and consider a
configuration consisting of a Dp-brane and a Dq-brane. We assume p > q, since the case
p = q was already considered. The branes are coincident if the Dq-brane world-volume
is a subset of the Dp-brane world-volume. We take the branes to be parallel. This means
the same as what we mean when we say that a line is parallel to a plane: there is a plane
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�Fig. 15.3 A D2-brane stretched on the (x, y) plane and a parallel D1-brane stretched along the x axis
and located at y = 0, z = z0. Also shown is an open string going from the D2-brane to the
D1-brane. For such a string, the string coordinate Y is of ND type.

parallel to the given plane which contains the line. Thus, if the Dp-brane and Dq-brane
are separate, there is a p-dimensional hyperplane parallel to the Dp-brane that contains the
Dq-brane.

A case that can be easily visualized is that of a D2-brane and a D1-brane, as illustrated
in Figure 15.3. The D2-brane stretches along the x and y directions and is located at z = 0.
The D1-brane stretches along the x direction and is located at y = 0 and at z = z0. This
D1-brane is parallel to the D2-brane, and they are coincident only when z0 = 0. Table 15.1
summarizes the relevant spatial information about the D-branes. A dash (−−) indicates a
direction along the D-brane, and a bullet (•) indicates a direction normal to the D-brane.
The coordinate x is a common tangential direction. The coordinate y is a mixed direction:
one brane extends along this direction while the other does not. The z coordinate is a
common normal direction. More generally, for the Dp-, Dq-brane configuration we have

x0, x1, . . ., xq︸ ︷︷ ︸
common tangential coordinates

xq+1, xq+2, . . ., x p︸ ︷︷ ︸
mixed coordinates

x p+1, x p+2, . . ., xd︸ ︷︷ ︸
common normal coordinates

. (15.61)

There are (q + 1) common tangential coordinates (all the world-volume coordinates of
the Dq-brane, including time), (p − q) directions that are tangential to the Dp-brane and
normal to the Dq-brane, and (d − p) common normal directions.

We have already studied strings that begin and end on the same D-brane, so we focus
here on the strings that go from one D-brane to the other. For definiteness, consider
the strings that stretch from the Dp-brane to the Dq-brane. We have partial knowledge
about these strings: the common tangential coordinates are NN, and the common normal
coordinates are DD. We have already studied these two types of coordinates. The mixed
coordinates, which are tangential to one of the branes and normal to the other, are new. In
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�Table 15.1 D-brane configuration and boundary conditions

Coordinate x y z

D2 – – •
D1 – • •
[D2 , D1] NN ND DD

Note. In the second and third rows a dash – indicates
coordinates along which the D-brane stretches and a
bullet • indicates coordinates normal to the brane. In
the last row we indicate the boundary conditions for
open strings belonging to the sector [D2, D1] of
strings that stretch from the D2-brane to the
D1-brane.

our D2-, D1-brane example the y direction is mixed. For a string that stretches from the
D2-brane to the D1-brane, the string coordinate Y associated with y is N at σ = 0, since y
is tangential to the D2-brane, and D at σ = π , since y is normal to the D1-brane; in short,
Y is an ND coordinate. For a string that stretches from the D1-brane to the D2-brane, Y is
a DN coordinate.

In the Dp-, Dq-brane configuration, the mixed spatial coordinates were listed in (15.61).
For open strings that stretch from the Dp-brane to the Dq-brane, the analogously labeled
string coordinates satisfy a Neumann boundary condition on the starting Dp-brane and a
Dirichlet boundary condition on the ending Dq-brane; they are ND coordinates. The full
set of string coordinates splits into

X0, X1, . . ., Xq︸ ︷︷ ︸
NN coordinates

Xq+1, Xq+2, . . ., X p︸ ︷︷ ︸
ND coordinates

X p+1, X p+2, . . ., Xd︸ ︷︷ ︸
DD coordinates

. (15.62)

In the light-cone, we use three types of indices to label the string coordinates:

X+, X−, {Xi }︸ ︷︷ ︸
NN

{Xr }︸︷︷︸
ND

{Xa}︸︷︷︸
DD

, (15.63)

where

i = 2, . . ., q, r = q + 1, . . ., p, and a = p + 1, . . ., d. (15.64)

We think of the Dp-brane as the first brane and the Dq-brane as the second brane. The posi-
tion of the Dp-brane is specified by the coordinates x̄a

1 , and the position of the Dq-brane is
specified by the coordinates x̄r

2 and x̄a
2 . In our D2-, D1-brane example of Figure 15.3, the

role of x̄r
2 is played by the y coordinate of the D1-brane. This coordinate can be set to zero

by a suitable choice of axes.

Let us begin our analysis of the ND coordinates Xr . The boundary conditions are

∂ Xr

∂σ
(τ, σ )

∣∣∣
σ=0

= 0 , Xr (τ, σ )

∣∣∣
σ=π

= x̄r
2 . (15.65)
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The x̄r
2 coordinates can be set equal to zero by a suitable choice of axes, but we will not

do so. As opposed to the coordinate differences x̄a
1 − x̄a

2 that define the separation between
the D-branes, the x̄r

2 will not play any significant role. Consider now the usual expansion

Xr (τ, σ ) = 1

2

(
f r (τ + σ)+ gr (τ − σ)

)
. (15.66)

The boundary condition at σ = 0 gives us

f r ′(u) = gr ′(u) → gr (u) = f r (u)+ cr
0. (15.67)

Bearing in mind that the second boundary condition will set Xr equal to x̄r
2 at σ = π , we

choose cr
0 = 2x̄r

2 so that

Xr (τ, σ ) = x̄r
2 +

1

2

(
f r (τ + σ)+ f r (τ − σ)

)
. (15.68)

The condition at σ = π then gives

f r (u + 2π) = − f r (u). (15.69)

The function f r (u) goes into minus itself when its argument increases by 2π . We encoun-
tered a similar situation for the twisted sector of the R

1/Z2 orbifold (Section 13.6) and
for Neveu–Schwarz fermions (Section 14.4). What are needed are trigonometric functions
with half-integer moding:

f r (u) =
∑

n∈Z
+
odd

[
f r
n cos

(nu

2

)
+ hr

n sin
(nu

2

)]
. (15.70)

Substituting back into (15.68) and relabeling the expansion coefficients, we get

Xr (τ, σ ) = x̄r
2 +

∑
n∈Z

+
odd

[
Ar

n cos
(nτ

2

)
+ Br

n sin
(nτ

2

)]
cos

(nσ

2

)
. (15.71)

This is our expansion of the ND coordinates. To proceed with the quantization we define
oscillators with half-integer moding. Another useful guide is the desired simplicity of Ẋr ±
Xr ′. We are thus led to write

Xr (τ, σ ) = x̄r
2 + i

√
2α′

∑
n∈Zodd

2

n
αr

n
2

e−i n
2 τ cos

(nσ

2

)
, (15.72)

where the sum runs over both positive and negative odd integers. The factor of i in front
of the sum is necessary so that the Hermiticity of Xr imposes the standard Hermiticity
property on the oscillators: (

αr
n
2

)† = αr
− n

2
. (15.73)

The x̄r
2 are constants and do not become operators. There are no zero modes in the expan-

sion of Xr , and therefore ND coordinates carry no average momentum. We also record the
derivatives

Ẋr ± Xr ′ = √
2α′

∑
n∈Zodd

αr
n
2

e−i n
2 (τ±σ), (15.74)
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which are indeed of the expected form. This expansion reminds us of similar ones (13.106)
for the twisted sector orbifold coordinate X .

The (nontrivial) commutation relations for the string coordinates take the form

[Xr (τ, σ ), Ẋ s(τ, σ ′)] = i(2πα′)δ(σ − σ ′)δrs . (15.75)

This equation implies that we can use the appropriate version of (12.30):[
(Ẋr ± Xr ′)(τ, σ ) , (Ẋ s ± Xs ′)(τ, σ ′)

] = ±4πα′ iηrs d

dσ
δ(σ − σ ′). (15.76)

Since the expansions (15.74) take the standard form, equation (12.40) also holds, with
minor modifications, for σ, σ ′ ∈ [0, 2π ]:∑

m′,n′∈Zodd

e−i m′
2 (τ+σ)e−i n′

2 (τ+σ ′)
[
αr

m′
2

, αs
n′
2

]
= 2π iηrs d

dσ
δ(σ − σ ′). (15.77)

The commutators are extracted just like we did below (13.107) and the answer is[
αr

m
2

, α s
n
2

]
= m

2 δrs δm+n,0. (15.78)

This is the expected form of the commutation relations.

Let us now calculate the mass-squared operator. This operator receives contributions from
all the coordinates in this sector: the NN, the ND, and the DD coordinates. This is clear
from (15.8) since the original light-cone index I now runs over i , r , and a labels. Given
that the linear combination of derivatives (15.74) takes the standard form, the contribution
from the ND coordinates takes a familiar form. The formula for 2p+ p− can be obtained
by a minor modification of equation (15.49):

2p+ p− = 1

α′
(
α′ pi pi + 1

2
αa

0 αa
0 +

∞∑
n=1

[
αi−n αi

n + αa−n αa
n

]
+

∑
m∈Z

+
odd

αr
−m

2
αr

m
2
+ a

)
.

(15.79)
In writing this equation we have restored the ordering constant a, which, as you recall,
arises heuristically by ordering the oscillators in L⊥0 (see (12.102), (12.107), and (12.110)).
Since all the oscillators for both the NN and DD directions are integrally moded, their
normal-ordering constants are the same and equal to 1

2 (−1
12 ) = − 1

24 . With a total of
24 transverse light-cone coordinates, if we only have NN and DD coordinates we get
a = −1. The ND coordinates, however, give a different contribution. The sum that must
be rearranged in this case is

1

2

∑
m∈Zodd

αr
−m

2
αr

m
2
=

∑
m∈Z

+
odd

αr
−m

2
αr

m
2
+ 1

2

∑
m∈Z

+
odd

[
αr

m
2

, αr
−m

2

]
. (15.80)

The first term on the right-hand side is the one that appears in (15.79), and the second
term is the ordering contribution. Since we have (p − q) ND coordinates, the ordering
constant is

1

2

∑
m∈Z

+
odd

[
αr

m
2

, αr
−m

2

]
= 1

4
(p − q)

∑
m∈Z

+
odd

m = 1

48
(p − q), (15.81)
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where we used (15.78) and recalled that the sum over positive odd integers is equal to 1
12 .

This calculation shows that each ND coordinate contributes + 1
48 to the ordering constant

in α′M2. A DN string coordinate will contribute the same amount. In summary, the normal
ordering contributions to α′M2 for the various string coordinates are

aNN = aDD = − 1

24
, aND = aDN = 1

48
. (15.82)

Returning to the problem at hand, the total ordering constant a is given by (15.81) plus the
contribution of the (24 − (p − q)) coordinates that are either NN or DD:

a = − 1

24

(
24 − (p − q)

)+ 1

48
(p − q) = −1 + 1

16
(p − q). (15.83)

With this information we can now find M2. Following the same steps as in (15.50),

M2 =
( x̄a

2 − x̄a
1

2πα′
)2 + 1

α′
(

N⊥ − 1 + 1

16
(p − q)

)
, (15.84)

where

N⊥ =
∞∑

n=1

q∑
i=2

n ai
n

†
ai

n +
∑

k∈Z
+
odd

p∑
r=q+1

k

2
ar†

k
2

ar
k
2
+

∞∑
m=1

d∑
a=p+1

m aa†
m aa

m . (15.85)

This formula for M2 incorporates all the effects we have discussed: a shifted order-
ing constant, a contribution from stretched strings, and a number operator that includes
contributions from NN, DD, and ND coordinates.

Let us examine the state space and the fields associated with the two lowest mass levels.
The ground states are labeled as

|p+, �p ; [12]〉 , �p = (p2, . . ., pq). (15.86)

The momentum labels on the states indicate that the corresponding fields live in a (q + 1)-
dimensional spacetime. Roughly, they live on the world-volume of the Dq-brane, the brane
of lower dimensionality. The general rule is clear: the spacetime dimensionality of the
fields which arise in any given sector equals the number of NN string coordinates in the
sector. The state space is built by letting the three types of oscillators – ai†

p , ar†
k/2, and aa†

m –
act on the ground states.

The ground states have N⊥ = 0 and correspond to a single scalar field on the Dq-brane.
This scalar is in general massive, but it can be tachyonic or massless depending on the
separation of the branes and the value of p − q. Assume, for simplicity, that the branes
coincide. If, additionally, p − q = 16, then the scalar is massless. The next states are of
the form

ar†
1
2
|p+, �p ; [12]〉 , N⊥ = 1/2. (15.87)

These states give rise to (p − q) scalar fields, since the index r does not correspond to
a world-volume direction on the Dq-brane. All other states are necessarily massive since
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they have N⊥ ≥ 1, and this together with p > q implies that M2 > 0. In particular, we do
not find any massless gauge fields.

Problems

Problem 15.1 A Dp-brane with orientifolds.

In this problem (a sequel to Problem 13.6), we study the effects of orientifolds on open
strings.

The space-filling O25-plane truncates the spectrum down to the set of states that are
invariant under the operation � which reverses the orientation of strings. When we have a
Dp-brane, � acts on the open string coordinates as follows:

� Xa(τ, σ )�−1 = Xa(τ, π − σ), (1)

� Xi (τ, σ )�−1 = Xi (τ, π − σ). (2)

As usual, we demand that � x−0 �−1 = x−0 and � p+ �−1 = p+ .

(a) Give the � action on the oscillators αa
n and αi

n . What is the expected � action on α−n ?
Does it work out?

(b) Assume that the ground states |p+, �p 〉 are � invariant. Find the states of the theory
for N⊥ ≤ 2. As you will see, some massless states survive. Interpret these states along
the lines of the discussion below (15.37).

Replace the O25-plane by an Op-plane coincident with the Dp-brane at x̄a = 0. Let �p

denote the operator for which this theory keeps only the states with �p = +1.

(c) How should equations (1) and (2) change when � is replaced by �p? Give the �p

action on the oscillators αa
n and αi

n .
(d) Describe the full spectrum of the theory as a simple truncation of the Dp-brane spec-

trum. You will find no massless scalars in this case. What does this suggest regarding
the possible motions of the Dp-brane?

Problem 15.2 String products and orientation reversing symmetries.

Equation (15.59) tells how open string sectors combine under interactions. The same
product notation can be used for strings. By

|A〉 ∗ |B〉 (1)

we mean the string state that is obtained when a string in state |A〉 interacts with a string in
state |B〉. The string product must obey the rule of sectors: the state in (1) must belong to
the sector [A] ∗ [B], where [A] and [B] denote the sectors where string states |A〉 and |B〉
belong, respectively.

Use pictures of strings A and B to motivate the equations

�(|A〉 ∗ |B〉) = (�|B〉) ∗ (�|A〉), (2)
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�p (|A〉 ∗ |B〉) = (�p|B〉) ∗ (�p|A〉). (3)

Here � is string orientation reversal and �p is orientifolding (orientation reversal plus
reflection about a set of coordinates).

Problem 15.3 N coincident Dp-branes and orientifolds.

Let N coincident Dp-branes coincide with an Op-plane, all of them located at x̄a = 0. The
orientifolding symmetry �p, as usual, includes reflection of the coordinates normal to the
orientifold and simultaneous orientation reversal of strings. Assume that the reflection of
coordinates leaves each of the Dp-branes invariant (as opposed to mapping them into each
other). The states of the theory are those for which �p = +1.

(a) Explain why it is reasonable to postulate that

�p|p+, �p ; [i j]〉 = |p+, �p ; [ j i]〉.
What are the ground states of the theory? How many are there?

(b) Describe the full open string spectrum of the theory in terms of the spectrum of a single
Dp-brane. Check that for N = 1 you reproduce the result of Problem 15.1 (d).

Problem 15.4 Separated Dp-branes and an Op-plane.

We have learned that an orientifold acts as a kind of mirror. If we are to have D-branes
that do not coincide with an orientifold, then there must be mirror D-branes at the reflected
points. Therefore, to analyze the theory of Dp-branes off an orientifold Op-plane we begin
with N Dp-branes and N mirror Dp-branes at the reflected positions. We must then define
the orientifold action on all the states of the theory of 2N Dp-branes. Finally, we use
this action to truncate down to the invariant states, obtaining in this way the states of the
orientifold theory.

Consider the situation illustrated in Figure 15.4, where we show the configuration as
seen in a plane spanned by two coordinates normal to the branes and the orientifold. The
N Dp branes are labeled 1, 2, . . ., N , and the mirror images are labeled 1̄, 2̄, . . ., N̄ . Two
strings are exhibited: one in the [24] sector and the other in the [11̄] sector.

(a) Show the two strings obtained by the orientifold symmetry. Since the arguments p+, �p
of the ground states are always present, let us omit them for brevity. The ground states
are of four types:

|[i j]〉 , |[i j̄]〉 , |[ī j]〉 , |[ī j̄]〉. (1)

Each class contains N 2 ground states since i and j run from 1 to N and ī and j̄ run
from 1̄ to N̄ . Define an expected action of �p on the ground states in (1). Show that
your choice satisfies �2

p = 1 acting on the ground states.
(b) What are the possible interactions between strings in the four types of sectors built on

the states (1)? Write your answers using the notation of (15.59).
(c) It is a fact about string interactions that the string product of ground states gives states

that have a component along a ground state. Thus, for example,

|[i j̄]〉 ∗ |[ j̄ k]〉 = |[i k]〉 + · · ·. (2)
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�Fig. 15.4 Problem 15.4. A set of N Dp-branes together with a set of N image Dp-branes. The orienti-
fold Op plane is at the origin.

Write the other possible ground state products. Test the consistency of your definition
of �p by acting with �p on both sides of the equations giving ground state products.
To act on products, use equation (3) of Problem 15.2.

(d) Find the �p action on the αi
n oscillators using �p Xi (τ, σ )�−1

p = Xi (τ, π − σ). Since
the strings are stretched along, or have nonzero values for, the xa coordinates, an
equation of the type �p Xa(τ, σ )�−1

p = −Xa(τ, π − σ) cannot be fully implemented.

Using (15.20) for Xa , for example, we would need �p x̄a�−1
p = −x̄a , which cannot

hold since the x̄a are numbers. A legal derivation of the �p action on the αa
n oscillators

can be obtained by requiring �p Ẋa(τ, σ )�−1
p = −Ẋa(τ, π − σ). Verify that for any

arbitrary product R of oscillators of both types

�p R �−1
p = (−1)N⊥

R, (3)

where N⊥ is the total number of R.
(e) Describe the orientifold spectrum in terms of the spectrum of a single Dp-brane. For

this, consider an arbitrary product R of oscillators and build the general states∑
i j

(
ri j R|[i j]〉 + ri j̄ R|[i j̄]〉 + rī j R|[ī j]〉 + rī j̄ R|[ī j̄]〉

)
, (4)

where ri j , ri j̄ , rī j , and rī j̄ are four N by N matrices. Find the conditions that �p

invariance imposes on these matrices. There are two cases to consider, depending on
the number N⊥ of R. You should find that for N⊥ odd there are N (2N − 1) lin-
early independent states in (4). For N⊥ even there are N (2N + 1) linearly independent
states.
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Since the gauge fields arise from N⊥ = 1 states, there are N (2N − 1) of them. This is
the number of entries in a 2N -by-2N antisymmetric matrix. The interacting theory of such
gauge fields is an SO(2N ) Yang–Mills gauge theory (SO stands for special orthogonal).
The SO(10) gauge theory, for example, can be used to build a grand unified theory of the
strong and electroweak interactions.

Problem 15.5 Separated Dp-branes and a different Op-plane.

The brane setup here is that of Problem 15.4. In part (a) of that problem you defined a
simple action of �p on the ground states |[i j]〉, |[i j̄]〉, |[ī j]〉, and |[ī j̄]〉. Find an alter-
native �p action where some of the relations have a minus sign: �p|[. . . ]〉 = ±|[. . . ]〉.
Test its consistency by verifying that �2

p = 1 on ground states and that the products of
ground states are compatible with the �p action, as you tested in part (c) of Problem 15.4.
Determine the spectrum of this variant orientifold theory.

The gauge fields arise from N⊥ = 1, and you will find that there are N (2N + 1) of
them. The interacting theory of such gauge fields is a U Sp(2N ) Yang–Mills gauge theory
(U Sp stands for unitary symplectic).

Problem 15.6 DN string coordinates.

In Section 15.4 we considered strings that stretch from a Dp- to a Dq-brane, focusing on the
coordinates Xr which satisfy ND boundary conditions. Consider now strings that stretch
from the Dq- to the Dp-brane. For such strings the coordinates Xr are of DN type.

(a) Write the boundary conditions satisfied by the Xr coordinates and use them to derive
a mode expansion along the lines of our result (15.72) for an ND coordinate.

(b) Find also the equations that replace (15.74). Explain briefly why the mass-squared
formula (15.84) needs no modification.

(c) If we let σ → π − σ in (15.72) we automatically get a function with DN boundary
conditions. Compare with the mode expansion you found in (a), and explain why the
Hermiticity properties are consistent.

Problem 15.7 D1-branes at an angle.

Consider two infinitely long D1-branes stretched on the (x2, x3) plane. The first brane is
defined by x3 = 0, and the second brane is at an angle γ measured counterclockwise from
the x2 axis. Let the open string coordinates be X2(τ, σ ) and X3(τ, σ ), and consider only
open strings which begin on the first brane and end on the second brane. Determine the
boundary conditions satisfied by X2 and X3 at σ = 0 and σ = π .

Problem 15.8 Strings in a configuration with a Dp-brane and a D25-brane.

Consider the full state space of open string theory in a configuration with a Dp-brane and
a D25-brane. Assume 1 ≤ p ≤ 24. For each sector of the theory give the M2 operator, and
examine explicitly the states which arise in the two lowest levels, indicating the types of
fields they correspond to and where these fields live.
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Problem 15.9 A pair of intersecting D22-branes.

We study here a configuration of two D22-branes. One of them, henceforth called brane
1, is defined by x25 = x23 = x22 = 0. The other one, brane 2, is defined by x24 = x23 =
x22 = 0.

Draw a picture of the brane configuration as it appears in the (x24, x25) plane. Construct
a table, such as Table 15.1, adding more columns to include all coordinates and more rows
to include all sectors. For each sector of the theory give the M2 operator and examine
explicitly the states which arise in the two lowest levels, indicating the types of fields they
correspond to and where these fields live.

A basic point: if xa is a common Dirichlet direction in a configuration of two intersecting
D-branes, then the xa coordinates of the two D-branes must be the same. Explain why.



16 String charge and electric charge

If a point particle couples to the Maxwell field then that particle carries electric
charge. Strings couple to the Kalb–Ramond field; therefore, strings carry a new
kind of charge – string charge. For a stretched string, string charge can be visu-
alized as a current flowing along the string. Strings can end on D-branes without
violating conservation of string charge because the string endpoints carry electric
charge and the resulting electric field lines on a D-brane carry string charge. Cer-
tain D-branes in superstring theory carry electric charge for Ramond–Ramond
fields. If a charged brane is fully wrapped on a compact space, it appears to a
lower-dimensional observer as a point particle carrying the electric charge of a
Maxwell field that arises from dimensional reduction.

16.1 Fundamental string charge

As we have seen before, a point particle can carry electric charge because there is an
interaction which allows the particle to couple to a Maxwell field. The world-line of the
point particle is one-dimensional and the Maxwell gauge field Aμ carries one index. This
matching is important. The particle trajectory has a tangent vector dxμ(τ)/dτ , where τ

parameterizes the world-line. Because it has one Lorentz index, the tangent vector can
be multiplied by the gauge field Aμ to form a Lorentz scalar. Working with natural units
(h̄ = c = 1), the interaction for a point particle of charge q is written as a term in the action
taking the form

q
∫

Aμ(x(τ ))
dxμ(τ)

dτ
dτ. (16.1)

It is convenient to require that q be dimensionless in natural units. Since the action is
also dimensionless in natural units, the gauge field Aμ must carry units of inverse length,
or mass: [Aμ] = M . The field strength has units [Fμν] = M2 because it is obtained by
differentiation of the gauge field with respect to the spacetime coordinates.

The complete interacting system of the charged particle and the Maxwell field is defined
by the action considered in Problem 5.6:

S′ = −m
∫
P

ds + q
∫
P

Aμ(x)dxμ − 1

4 κ2
0

∫
d Dx Fμν Fμν. (16.2)

The first term on the right-hand side is the particle action, and the last term is the
action for the Maxwell field. We have included the dimensionful constant κ0, with units
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[ κ2
0 ] = M4−D , in order to make this term dimensionless. This constant is necessary

whenever D 	= 4.

Can a relativistic string be charged? The above argument makes it clear that Maxwell
charge is naturally carried by points. Closed strings do not have special points, but open
strings have distinguished endpoints. It is therefore plausible that the endpoints of open
strings carry electric Maxwell charge. We will show later that this is indeed the case. At
the moment, however, we are looking for something fundamentally different. Since elec-
tric Maxwell charge is naturally associated with points, we may wonder whether there
is some new kind of charge that is naturally associated with strings. For a new kind of
charge, we need a new kind of gauge field. Thus, we may ask: is there a field in string
theory that is related to the string in the same way that the Maxwell field is related to
a particle? The answer is yes. The field is the Kalb–Ramond antisymmetric two-tensor
Bμν(= −Bνμ). This is a massless field that arises in closed string theory (see Section 13.3
and Problem 10.6).

Let us now mimic the logic that led to (16.1). At any point of the string trajectory we
have two linearly independent tangent vectors. Indeed, with world-sheet coordinates τ and
σ , the two tangent vectors can be chosen to be ∂ Xμ/∂τ and ∂ Xμ/∂σ . With these two
tangent vectors and the two-index field Bμν we can construct a Lorentz scalar:

−
∫

dτdσ
∂ Xμ

∂τ

∂ Xν

∂σ
Bμν (X (τ, σ )) . (16.3)

This is how the string couples to the antisymmetric Kalb–Ramond field. It is called an
electric coupling because it is the natural generalization of the electric coupling of a point
particle to a Maxwell field. Thus we say that the string carries electric Kalb–Ramond
charge. The coupling (16.3) must be dimensionless in natural units, so Bμν carries units of
inverse length-squared or mass-squared: [Bμν] = M2. This coupling must also be invariant
under (τ, σ ) reparameterizations, just like the Nambu–Goto string action is. You will see in
Problem 16.1 that the antisymmetry of Bμν is necessary to ensure the reparameterization
invariance of (16.3). An important point regarding the extent to which reparameterization
invariance holds will be addressed later in this section.

Just as (16.2) represents the complete dynamics of a particle and a Maxwell field, the string
coupling (16.3) must be supplemented by the string action Sstr and a term giving dynamics
to the Bμν field:

S = Sstr − 1

2

∫
dτdσ Bμν (X (τ, σ ))

∂ X [μ

∂τ

∂ Xν]

∂σ
− 1

6κ2

∫
d Dx Hμνρ Hμνρ. (16.4)

Here we have defined the antisymmetrization

a[μbν] ≡ aμbν − aνbμ (16.5)
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and the field strength Hμνρ associated with Bμν :

Hμνρ ≡ ∂μ Bνρ + ∂ν Bρμ + ∂ρ Bμν, (16.6)

as in Problem 10.6. In the last term on the right-hand side of (16.4) we have introduced
a dimensionful constant κ needed to make this term dimensionless ([ κ2] = M6−D). In
closed string theory the constant κ is a calculable function of the string coupling and α′.
The antisymmetrization is responsible for the factor of 1/2 which multiplies the second
term on the right-hand side of (16.4). We have antisymmetrized the factor multiplying Bμν

because it is natural to do so: since Bμν is antisymmetric, any symmetric part of the factor
does not contribute to the product. Note the hybrid nature of the action (16.4): part of it is
an integral over the string world-sheet, and part of it is an integral over all of spacetime.

In order to appreciate the nature of string charge, we reconsider the Maxwell equations
(3.34), where the electric current appears as a source of the electromagnetic field:

∂ Fμν

∂xν
= jμ. (16.7)

Here the electric charge density is j0. A static particle gives rise to electric charge, but zero
electric current. The particle is a source of the Maxwell field, while the string is a source
of the Bμν field. There is an equation of motion for the Bμν field, analogous to (16.7).
We obtain this equation by calculating the variation of the action (16.4) under a variation
δBμν(x). The variation of the last term in the action was calculated in Problem 10.6:

δ

[
− 1

6κ2

∫
d Dx Hμνρ Hμνρ

]
= 1

κ2

∫
d Dx δBμν(x)

∂ Hμνρ

∂xρ
. (16.8)

To vary the second term in S we must vary Bμν(x), but in this term the field is evaluated
on the string world-sheet. The field Bμν(X) can be rewritten as an integral over all of
spacetime of Bμν(x) times a delta function which localizes the field to the world-sheet:

Bμν (X (τ, σ )) =
∫

d Dx δD (x − X (τ, σ )) Bμν(x). (16.9)

With this identity, the second term in S is rewritten as

−
∫

d Dx Bμν(x)
1

2

∫
dτdσδD (x − X (τ, σ ))

∂ X [μ

∂τ

∂ Xν]

∂σ
≡ −

∫
d Dx Bμν(x) jμν(x),

(16.10)
where we have introduced the symbol jμν with value

jμν(x) = 1

2

∫
dτdσ δD (x − X (τ, σ ))

(∂ Xμ

∂τ

∂ Xν

∂σ
− ∂ Xν

∂τ

∂ Xμ

∂σ

)
. (16.11)

It is noteworthy that jμν is only supported (i.e. it does not vanish) on spacetime points that
belong to the string world-sheet. Indeed, if x is not on the world-sheet, then the argument
of the delta function is never zero and the integral vanishes. The object jμν will play the
role of a current. By construction, it is antisymmetric under the exchange of its indices:

jμν = − jνμ. (16.12)
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We have now done all the work needed to find the equation of motion for Bμν .
Combining equations (16.8) and (16.10), the total variation of the action S is

δS =
∫

d Dx δBμν(x)
( 1

κ2

∂ Hμνρ

∂xρ
− jμν

)
. (16.13)

If this variation is to vanish for arbitrary but antisymmetric δBμν , the antisymmetric
part of the factor multiplying δBμν must vanish (Problem 16.2). Since the entire term
in parentheses is antisymmetric, it must vanish:

1

κ2

∂ Hμνρ

∂xρ
= jμν. (16.14)

Quick calculation 16.1 To test your understanding of antisymmetric variations, consider
indices i, j = 1, 2 that run over two values and arbitrary antisymmetric variations δBi j

such that δBi j Gi j = 0. Show explicitly that the only condition you get is Gi j − G ji = 0.

The similarity between (16.14) and (16.7) is quite remarkable. It suggests that jμν is some
kind of conserved current. The vector jμ on the right-hand side of (16.7) is a conserved
current because

∂ jμ

∂xμ
= ∂2 Fμν

∂xμ∂xν
= 0, (16.15)

on account of the antisymmetry of Fμν and the exchange symmetry of partial derivatives.
In a similar fashion, equation (16.14) gives

∂ jμν

∂xμ
= 1

κ2

∂2 Hμνρ

∂xμ∂xρ
= 0. (16.16)

The μ index in jμν is tied to the conservation equation, but the ν index is free. The tensor
jμν can thus be viewed as a set of currents labeled by the index ν. For each fixed ν, the
current components are given by the various values of μ. Since the zeroth component of
a current is a charge density, we have several charge densities j0ν . More precisely, since
j00 = 0 (16.12), the nonvanishing charge densities are j0k , with k running over spatial
values. Therefore the charge densities of a string define a spatial vector:

Kalb–Ramond charge density is a vector �j0 with components j0k . (16.17)

We will soon prove that the charge density vector is tangent to the string. Consider equation
(16.16) for ν = 0:

∂ jμ0

∂xμ
= −∂ j0k

∂xk
= 0. (16.18)

This is the statement that the string charge density is a divergenceless vector:

∇ · �j0 = 0. (16.19)
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The vector string charge �Q is naturally defined as the space integral of the string charge
density:

�Q =
∫

dd x �j0. (16.20)

To understand string charge more concretely, let us evaluate jμν in the static gauge
X0 = τ . With this condition, the delta function in equation (16.11) takes the form

δ
(

x0 − X0(τ, σ )
)

δ
(
�x − �X(τ, σ )

)
= δ(t − τ) δ

(
�x − �X(τ, σ )

)
, (16.21)

and we can perform the τ integral to find

jμν(�x, t) = 1

2

∫
dσ δ

(
�x − �X(t, σ )

) [∂ Xμ

∂t

∂ Xν

∂σ
− ∂ Xν

∂t

∂ Xμ

∂σ

]
(t, σ ). (16.22)

Clearly, at any fixed time t0, the current jμν is supported on the string – the set of points
�X(t0, σ ). For j0k the second term in (16.22) does not contribute on account of X0 = t , and
we find

�j0(�x, t) = 1

2

∫
dσ δ

(
�x − �X(t, σ )

) �X ′(t, σ ). (16.23)

The �X ′ factor on the right-hand side of this equation tells us that at every point on the
string the string charge density �j0 is tangent to the string. It points, in fact, along the
tangent defined by increasing σ . Since the orientation of a string is said to be the direction
of increasing σ , the charge density vector lies along the orientation of the string!

This might seem puzzling. We have emphasized that the reparameterization invariance
of the string action means that a change of parameterization cannot change the physics.
Changing the direction of increasing σ is a reparameterization, so how can this change
the string charge density? While the Nambu–Goto action is invariant under any reparam-
eterization, the coupling (16.3) of the string to the Kalb–Ramond field is not. If we let
σ → π − σ while keeping τ invariant, the measure dτdσ does not change sign but Xν ′
does. As a result, (16.3) changes sign. In fact, any reparameterization that changes the
orientation of the world-sheet will reverse the sign of this term (Problem 16.1).

Open strings are therefore oriented curves. At any fixed time they are fully specified by
a curve in space together with an identification of the endpoint that corresponds to σ = 0
(or, equivalently, the endpoint σ = π ). Although closed strings do not have endpoints, they
still have an orientation, which is also defined by the direction of increasing σ . The open
and closed string theories we examined in previous chapters were theories of oriented
open strings and oriented closed strings, respectively. Theories of unoriented strings do
exist. These are consistent theories obtained by truncating the state space of (oriented)
string theories down to the subspace of states that are invariant under the operation of
orientation reversal. We examined these theories in a series of problems beginning with
Problems 12.12 and 13.5. The theory of unoriented closed strings has no Kalb–Ramond
field in the spectrum. This fits in nicely with our discussion since states of unoriented
strings do not carry string charge (where could it point to?).
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The integral in (16.23) is easily evaluated for an infinitely long static string stretched along
the x1 axis (a similar configuration was studied in Section 6.7). This string is described by
the equations

X1(t, σ ) = f (σ ), X2 = X3 = · · · = Xd = 0, (16.24)

where f (σ ) is a function of σ whose range is from −∞ to +∞. The function f must be
either a strictly increasing or a strictly decreasing function of σ . We expect this distinction
to be significant, as these two alternatives correspond to strings with opposite orienta-
tion. Only X1 has σ dependence, so equation (16.23) implies that the only nonvanishing
component of jμν is j01 (= − j10):

j01(�x, t) = 1

2

∫
dσδ

(
x1 − X1(τ, σ )

)
δ(x2)δ(x3) . . . δ(xd) f ′(σ )

= 1

2
δ(x2)δ(x3) . . . δ(xd)

∫ ∞

−∞
dσ δ(x1 − f (σ )) f ′(σ ).

(16.25)

Letting σ(x1) denote the unique solution of x1 − f (σ ) = 0, a familiar property of delta
functions gives∫ ∞

−∞
dσδ(x1 − f (σ )) f ′(σ ) = f ′(σ (x1))

| f ′(σ (x1))| = sgn( f ′(σ (x1))), (16.26)

where sgn(a) denotes the sign of a. Since the function f is strictly increasing or strictly
decreasing, this sign is either positive or negative for all x1. Thus, back to j01(�x, t),

j01(x1, . . ., xd ; t) = 1
2 sgn( f ′) δ(x2) . . . δ(xd) = 1

2 sgn( f ′)δ(�x⊥), (16.27)

where �x⊥ is the vector whose components comprise the directions orthogonal to the string.
The string charge density is localized on the string, and we see explicitly the orientation
dependence in the sign of f ′. For an arbitrary static string the spatial string coordinates Xk

are time independent. As a result, equation (16.22) implies that

j ik = 0, for a static string. (16.28)

For a static string only the string charge densities j0k are nonvanishing.

Before concluding this section, let us briefly discuss the issue of background fields. We
have argued here that the string action must be supplemented by the coupling (16.3). You
may ask: were we wrong in our earlier quantization of the string, where we did not consider
this extra term in the string action? No, our quantization was valid for zero background
Kalb–Ramond field. The field Bμν in (16.3) is a called a background Kalb–Ramond field.
A Kalb–Ramond background is a Bμν field that satisfies its classical equations of motion.
The logical process that led us to consider backgrounds ran as follows. We quantized the
closed string and discovered Kalb–Ramond particle states. From these quantum states, we
deduced the existence of Bμν fields and derived their (linearized) equations of motion. By
postulating that backgrounds exist, we are implying that there are nontrivial Bμν fields that
satisfy their full equations of motion. One speaks of background electromagnetic fields,
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referring to �E and �B fields that satisfy Maxwell’s equations. In a related vein, a gravita-
tional background is a spacetime whose metric gμν satisfies Einstein’s equations of general
relativity.

Suppose we were handed a Bμν field configuration. How could we decide whether it
provides a background? If we had available the full nonlinear field equations, we could
simply test whether the field configuration provides a solution. Since we do not have such
field equations, a less direct procedure is necessary. We must re-quantize the string, this
time using the coupling (16.3) to take into account the effects of the candidate background
Bμν . If the quantization is successful then we may conclude that the field configuration
provides a background. This procedure can be carried out in practice, and physicists have
discovered several Bμν backgrounds.

16.2 Visualizing string charge

In classical Maxwell electromagnetism there are many different configurations of charge:
point charges, line charges, surface charges, and continuous charge distributions. Since
we have seen that the string charge is localized on the string, you may perhaps think that
string charge density can be imagined as some Maxwell line charge density on the string.
Not really. String charge density can be visualized as a Maxwell current on the string.
Indeed, we saw that string charge density is a spatial vector that points in the direction of
the string – this is just what a Maxwell current on the string looks like.

The string charge density can be integrated over space to define the total string charge
�Q (16.20). This charge has some shortcomings: it is infinite for an infinitely long stretched

string (see (16.27)), and it vanishes for a contractible closed string (Problem 16.3). It is
possible, however, to use the string charge density to count strings. The string number N ,
to be defined below, counts the number of strings linked by a given space.

The string charge density �j0 behaves like an electric Maxwell current because of (16.19).
Electric charge conservation in electromagnetism requires

∂ρ

∂t
+∇ · �j = 0. (16.29)

In magnetostatics, the electric charge density ρ is time independent, and, as a result, the
electric current density is divergenceless. This means that charge does not accumulate any-
where at any time. Divergenceless currents cannot stop. When they flow on wires either
the wires form loops (closed strings for us) or they are infinitely long (infinite strings).
We learned that ∇ · �j0 = 0 vanishes even if we have time-dependent string configura-
tions. Thus electric string charge density is always analogous to an electric current in
magnetostatics. String charge conservation requires strings to form closed loops or to be
infinitely long.

To elaborate further on the magnetostatic analogy, we examine the Kalb–Ramond fields
created by static strings. We will see that the Kalb–Ramond field strength can be encoded



363 16.2 Visualizing string charge
�

in an effective magnetic field. To simplify matters we work in four-dimensional spacetime.
There are two possibilities regarding equation (16.14): either both free indices are space
indices or one is a time index and the other is a space index. In the first case we have

∂ Hikρ

∂xρ
= 0, (16.30)

since j ik vanishes for static strings. We satisfy this equation with the following ansatz: all
components of H are time independent and

Hi jk = 0. (16.31)

The other equation to consider is

∂ H0kl

∂xl
= κ2 j0k . (16.32)

We cast this equation into the form of a Maxwell equation by introducing a vector �BH with
components BH m defined by

H0kl = εklm BH m . (16.33)

Here εi jk is totally antisymmetric and satisfies ε123 = 1. The vector �BH is called the field
strength dual to H . Substituting back into (16.32), we find

εklm ∂ BH m

∂xl
= κ2 j0k −→ (∇ × �BH )k = κ2 j0k . (16.34)

At this stage, the relevant components of H have been encoded in a dual “magnetic field,”
and equation (16.32) has been recast in the form

∇ × �BH = κ2 �j0. (16.35)

This is Ampère’s equation for the magnetic field of a current κ2 �j0. Note that, given our
ansatz, equation (16.35) is equivalent to the original equations for H ; if we cannot solve
it, there is no solution for H . The consistency condition for (16.35) is familiar. Since the
divergence of a curl is zero, the existence of a solution requires (once again) that �j0 be
divergenceless. Alternatively, given a closed one-dimensional curve � that is the boundary
of a two-dimensional surface S, the integral form of equation (16.35) is

1

κ2

∮
�

�BH · d �� =
∫

S

�j0 · d�a. (16.36)

A curve � is said to link a string if the string pierces every surface whose boundary is �. If
the string ended at some point, the current �j0 would end at that point, as well, leading to a
nonvanishing ∇ · �j0 and, consequently, to an inconsistency in (16.35). If the string ended
at some point, then for any fixed � the left-hand side in (16.36) would be well defined, but
the right-hand side would depend on the choice of surface S. This is also an inconsistency.

Equation (16.36) naturally leads to the definition of the string number N announced at
the beginning of this section. The string number N associated with a curve � is defined as

1
2 N ≡ 1

κ2

∫
�

�BH · �d� =
∫

S

�j0 · d�a. (16.37)
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�Fig. 16.1 Comparing the computations of Maxwell charge and of string number in a world with three
spatial dimensions. The two-sphere which encloses the Maxwell charge is analogous to the
circle which links the strings.

We expect N to give the number of strings linked by the curve �. Let us calculate, as an
illustration, the value of N for the string stretched along the x1 axis that we considered in
the previous section. We assume, however, that there are only three spatial dimensions, so
that the results of the present section apply. Choosing the orientation so that f ′(σ ) > 0,
equation (16.27) gives

j01 = 1
2δ(y)δ(z). (16.38)

Consider now a closed curve � linking the string and lying in a plane of constant x .
Assume that on this plane the curve encloses a surface S whose oriented normal points
in the positive x direction. Since both the area vector and �j0 point in the x direction, we
find

1
2 N =

∫
S

�j0 · d�a =
∫

S
j01dydz = 1

2

∫
S
δ(y)δ(z) dydz = 1

2 . (16.39)

As expected, we got N = 1. In general, N = N , where N is the number of strings linked
by the chosen curve. The orientation matters: if the curve links two strings with opposite
orientation, then their individual contributions to N will cancel. The �BH field in the above
example can be calculated easily. It is also possible to write an explicit expression for the
antisymmetric tensor field Bμν (Problem 16.4).

Let us compare with electromagnetism. For a localized Maxwell charge distribution, the
charge is calculated by integrating the electric charge density over a three-ball B3 enclosed
by a suitable two-sphere S2 that encloses the charges (see Figure 16.1). A set of parallel,
infinite strings is surrounded – but not enclosed – by a suitable circle S1. This is the natural
analog: in the same way as electric charges do not touch the surface S2 that encloses them,
strings do not touch the “surface” S1 that links them. You cannot remove a Maxwell charge
without puncturing the two-sphere, nor can you remove a string without breaking the circle.
The computation analogous to the volume integral of Maxwell charge density, gives the
number of strings linked by an S1 as an integral of the local flux of string charge density
over a two-ball B2 (a disk) whose boundary is the S1. Finally, in Maxwell theory the
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charge can also be computed as a flux integral of the electric field over the surface S2

which encloses the charges. The string number is computed analogously as an integral of
the Kalb–Ramond dual field strength �BH along the curve which links the strings.

Quick calculation 16.2 A string lies along the x1 axis in a world with four spatial dimen-
sions x1, x2, x3, and x4. Write a couple of equations that define a sphere that links the
string.

16.3 Strings ending on D-branes

We learned in Section 15.2 that there is a Maxwell field living on the world-volume of
every D-brane. Indeed, photon states arise from the quantization of open strings whose
endpoints lie on the D-brane. The quantization of closed strings in Section 13.3 revealed
states that arise from a Kalb–Ramond field Bμν living over all spacetime. We have seen
that the string couples electrically to the Bμν field. There is therefore an obvious question:
if D-branes have Maxwell fields, is there any object that carries electric charge for these
fields? This puzzle is related to another one: what happens to the string charge density –
which as we learned can be visualized as a current – when a string ends on a D-brane?
Does string charge conservation fail to hold?

Puzzles with charge conservation have led to interesting insights in the past. It led, for
example, to the recognition of the displacement current in time-dependent electromagnetic
processes. In string theory, the solution to the puzzle involves the realization that the ends
of the open string behave as electric point charges! They are charged under the Maxwell
field that lives on the D-brane where the string ends. Moreover, the electric field lines of
those point charges carry string charge. The interplay between string charge and electric
charge, and between the associated Kalb–Ramond and Maxwell fields, results in string
charge conservation.

Current conservation is intimately related to gauge invariance. In electromagnetism, the
coupling of the gauge field to a current is a term in the action which takes the form

Scoup =
∫

d Dx Aμ(x) jμ(x). (16.40)

In equation (16.2), for example, the coupling term is the middle term on the right-hand
side. The gauge transformations are

δAμ(x) = ∂με, (16.41)

and the field strength Fμν = ∂μ Aν − ∂ν Aμ is gauge invariant: δFμν = 0. The first and last
terms on the right-hand side of (16.2) are manifestly gauge invariant. This is generic, terms
in the action other than (16.40) are gauge invariant by themselves. The gauge invariance of
the action then requires the gauge invariance δScoup = 0 of the coupling (16.40). Assuming
that the current jμ is itself gauge invariant,
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δScoup =
∫

d Dx (∂με) jμ(x) = −
∫

d Dx ε ∂μ jμ(x), (16.42)

where we integrated by parts and set the boundary terms to zero by assuming that the
parameter ε vanishes sufficiently rapidly at infinity. We now see that current conservation
(∂μ jμ = 0) implies gauge invariance (δScoup = 0).

Similar ideas hold for the coupling of the Kalb–Ramond field Bμν . The gauge
transformations of Bμν were given in Problem 10.6:

δBμν = ∂μ�ν − ∂ν�μ. (16.43)

The totally antisymmetric field strength Hμνρ (16.6) is invariant under these gauge trans-
formations. As indicated on the right-hand side of (16.10), the coupling of Bμν to a current
jμν(= − jνμ) is of the general form

−
∫

d Dx Bμν(x) jμν(x). (16.44)

Quick calculation 16.3 Prove that the coupling term (16.44) is invariant under the gauge
transformations (16.43) if jμν is a conserved current.

The above results indicate that we can investigate potential failures of current conservation
by focusing on the gauge invariance properties of the actions. Let us therefore reconsider
the term in the action (16.4) that couples the string to the Bμν field:

SB = −1

2

∫
dτdσεαβ∂α Xμ∂β Xν Bμν(X (τ, σ )). (16.45)

Here we have introduced two-dimensional indices, α, β = 0, 1, as well as ∂0 = ∂/∂τ and
∂1 = ∂/∂σ . Also, εαβ is totally antisymmetric with ε01 = 1. Since the gauge invariance of
SB is a little subtle, we will study a simpler case first. We will check the gauge invariance
of the term that couples a point particle to the Maxwell field:

q
∫

Aμ(x)dxμ. (16.46)

Why is this invariant under (16.41)? Using a parameter τ that ranges from −∞ to +∞, we
see that the variation is proportional to∫ ∞

−∞
dτ δAμ(x(τ ))

dxμ

dτ
=
∫ ∞

−∞
dτ

∂ε(x(τ ))

∂xμ

dxμ

dτ
=
∫ ∞

−∞
dτ

dε(x(τ ))

dτ

= ε(x(τ = ∞))− ε(x(τ = −∞)).

(16.47)

Since τ parameterizes time, t (τ →±∞) = ±∞. Gauge invariance then follows if we
assume that the gauge parameter vanishes in the infinite past and in the infinite future:
ε(t = ±∞, �x) = 0.

Let us now return to our problem, the gauge invariance of the action (16.45). Since the
arguments of Bμν are the string coordinates, the gauge transformations take the form

δBμν(X) = ∂�ν

∂ Xμ
− ∂�μ

∂ Xν
, (16.48)
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�Fig. 16.2 A D-brane and the world-sheet of an open string. The world-sheet boundaries lie on the
D-brane: they are the world-lines of the open string endpoints σ = 0 and σ = π . X m and X a

are string coordinates along the brane and normal to the brane, respectively.

where the arguments of � are also the string coordinates X (τ, σ ). The terms multiplying
Bμν in (16.45) are antisymmetric in μ and ν (check this!). As a result, each term in (16.48)
gives the same contribution to the variation:

δSB = −
∫

dτdσ εαβ ∂�ν

∂ Xμ
∂α Xμ∂β Xν = −

∫
dτdσεαβ ∂α�ν ∂β Xν . (16.49)

Writing out the various terms,

δSB = −
∫

dτdσ
(
∂τ�ν ∂σ Xν − ∂σ �ν ∂τ Xν

)
= −

∫
dτdσ

(
∂τ (�ν∂σ Xν)− ∂σ (�ν∂τ Xν)

)
.

(16.50)

Note that we have two total derivatives. The ∂τ term gives no contribution since we can
assume that � vanishes at the endpoints of time. If the string under consideration is closed,
then there is no boundary in σ and the ∂σ term gives no contribution, either. This shows
the gauge invariance of SB for closed strings.

For an open string, however, the ∂σ term in (16.50) gives rise to boundary contributions
that do not vanish. The open string world-sheet has boundaries, which appear as lines on
the world-volume of a D-brane (Figure 16.2). Let us now calculate δSB for open strings.
We will call the string coordinates along the brane Xm and the string coordinates normal
to the brane Xa :

Xμ = (Xm, Xa), μ = (m, a). (16.51)
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If the D-brane is a Dp-brane, then m = 0, 1, . . ., p. We drop the ∂τ term in (16.50), as
before, and focus on

δSB =
∫

dτdσ ∂σ (�ν∂τ Xν) =
∫

dτ
[
�m∂τ Xm +�a∂τ Xa

]σ=π

σ=0
. (16.52)

Since the Xa are DD coordinates, ∂τ Xa = 0 at both endpoints, and the second term above
gives no contribution. As a result,

δSB =
∫

dτ�m∂τ Xm
∣∣∣
σ=π

−
∫

dτ�m∂τ Xm
∣∣∣
σ=0

. (16.53)

Gauge invariance has failed because of these two boundary terms. This demonstrates that
string charge conservation fails at the endpoints of an open string. We must restore gauge
invariance. As we have already said, this requires coupling the Maxwell fields on the brane
to the ends of the string.

So let us add to the string action a couple of terms that give electric charge to the string
endpoints:

S = SB +
∫

dτ Am(X)
d Xm

dτ

∣∣∣
σ=π

−
∫

dτ Am(X)
d Xm

dτ

∣∣∣
σ=0

. (16.54)

Since the terms above have opposite signs, the string endpoints are oppositely charged.
As a convention, we have chosen the string to begin at the negatively charged endpoint
and to end at the positively charged endpoint. We have also set q = ±1 for the endpoint
charges, and we will keep this convention throughout. The physical strength of charges
can only be determined if we know the normalization of the F2 terms on the D-brane.
This normalization is fixed by the constant κ2

0 in (16.2). The F2 terms, together with the
couplings in (16.54), determine how the string endpoints create electromagnetic fields. The
normalization of the F2 terms on the D-brane involve the string coupling and α′. They will
be determined in Section 20.3.

More briefly, and in the notation of (16.53), we rewrite (16.54) as

S = SB +
∫

dτ Am ∂τ Xm
∣∣∣
σ=π

−
∫

dτ Am∂τ Xm
∣∣∣
σ=0

. (16.55)

How can we use these terms to restore gauge invariance? By letting the Maxwell field vary
under the gauge transformation of the Bμν field! This is a little strange and surprising, but
without an interplay between the two types of fields we could not fix our problem of gauge
invariance.

So we postulate that, whenever we vary Bμν with a gauge parameter �μ = (�m,�a),
we must also vary the Maxwell field Am on the D-brane:

δBμν = ∂μ�ν − ∂ν�μ,

δAm = −�m . (16.56)
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If we vary Am in this way, then the variation of the last two terms in (16.55) cancels the
variations found in (16.53), thus restoring gauge invariance.

Letting A vary as in (16.56) solves the problem at hand, but it raises some interesting
questions. Besides the entire string action, we also want the Maxwell action to be gauge
invariant. Since this action is proportional to F2, we ask: is Fmn gauge invariant? It is not!
Indeed,

δFmn = ∂mδAn − ∂nδAm = −∂m�n + ∂n�m = −δBmn, (16.57)

where in the last step we recognized that the variation coincides with the gauge trans-
formation of Bmn . This is significant, because it follows that the fully gauge invariant
combination is

δ(Fmn + Bmn) = 0. (16.58)

We call the new invariant quantity Fmn :

Fmn ≡ Fmn + Bmn, δFmn = 0. (16.59)

On the D-brane, Fmn is the physically significant field strength. The familiar field strength
Fmn is not fully physical because it is not gauge invariant. Maxwell’s equations will be
modified by replacing F by F . In many circumstances this will be a small modification,
and for zero B, F equals F . The interplay between these fields helps us to understand
intuitively the fate of the string charge when a string ends on a D-brane. We turn to this
issue now.

We have seen that string charge density can be thought of as a kind of current flowing
down the string. Suppose we have a string ending on a D-brane, as shown in Figure 16.3.
The current cannot stop flowing at the string endpoint, so it must flow out into the D-brane.
How can it do so? We know that the string endpoint is charged, so electric field lines emerge
from it spreading out inside the D-brane. The field lines cannot go into the ambient space
since the Maxwell field only lives on the D-brane. We will see that, in fact, the electric field
lines carry the string charge!

As equation (16.10) indicates, string charge density j0k is, by definition, the quantity that
couples to B0k . Whatever couples to B0k appears on the right-hand side of (16.14) as a
contribution to j0k . On the D-brane, a Lagrangian density proportional to − 1

4FmnFmn , is
the gauge invariant generalization of the Maxwell Lagrangian density. Expanding it out,

− 1

4
FmnFmn = −1

4
Bmn Bmn − 1

4
Fmn Fmn − 1

2
Fmn Bmn . (16.60)

The last term above is particularly interesting. We can expand it further as

− 1

2
Fmn Bmn = −F0k B0k + · · ·. (16.61)
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E

�Fig. 16.3 A string ending on a D-brane. The string charge density carried by the string can be viewed
as a current flowing down the string. The current is carried on the D-brane by the electric
field lines.

The complete action for the D-brane and the string will include this F0k B0k term. Anything
that couples to B0k carries string charge, so F0k represents string charge on the brane. But
F0k = Ek is the electric field. Therefore, electric field lines on the D-brane carry string
charge.

16.4 D-brane charges

We have learned that a string carries electric charge for the Kalb–Ramond field of closed
string theory. It is natural to wonder whether there are other extended objects in string
theory that carry charge, as well. In addition to strings, the only extended objects we have
encountered so far are Dp-branes, with various values of p. Do they carry charge?

Point particles have one-dimensional world-lines and carry electric charge if they couple
to a one-index massless gauge field. Strings have two-dimensional world-sheets and carry
electric charge if they couple to the Kalb–Ramond gauge field, a massless, two-index anti-
symmetric tensor field. A Dp-brane has a (p + 1)-dimensional world-volume and is said
to be electrically charged if it couples to a massless antisymmetric tensor field with (p + 1)

indices. The world-volume of the Dp-brane is parameterized by τ and the set of coordi-
nates σ 1, σ 2, . . ., σ p. The spacetime coordinates that describe the position of the brane are
Xμ(τ, σ 1, . . ., σ p), with μ = 0, 1, . . ., d, and the antisymmetric tensor field is denoted by
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Aμμ1...μp (x). The required coupling is a generalization of (16.3):

Sp = −
∫

dτdσ1 . . . dσp
∂ Xμ

∂τ

∂ Xμ1

∂σ 1
· · · ∂ Xμp

∂σ p
Aμμ1···μp

(
X (τ, σ 1, . . ., σ p)

)
.

(16.62)
In natural units Sp is dimensionless, so the antisymmetric tensor field has natural units
[ Aμμ1...μp ] = M p+1 = L−(p+1).

In bosonic closed string theory, the Kalb–Ramond field is the only massless antisymmet-
ric tensor field. This field is sourced by strings, as we have seen. In the absence of additional
massless antisymmetric tensors, the bosonic string Dp-branes cannot be charged. On the
other hand, type IIA and type IIB closed superstring theories have additional antisymmetric
tensors in the Ramond–Ramond sector. These were listed in equations (14.90) and (14.91):

IIA : Aμ, Aμνρ,

IIB : A, Aμν, Aμνρσ .
(16.63)

It turns out that the R–R gauge fields couple electrically to the appropriate D-branes. In
type IIA superstring theory, Aμ couples to D0-branes and Aμνρ couples to D2-branes. In
type IIB superstring theory, Aμν couples to D1-branes and Aμνρσ couples to D3-branes.
The field A in IIB theory carries no index, so it does not couple electrically to any conven-
tional D-brane (it couples electrically to an object called a D-instanton). Summarizing, the
electrically charged D-branes are

IIA : D0, D2,

IIB : D1, D3.
(16.64)

Charge and energy conservation together imply that a charged object cannot decay if
there are no lighter mass candidate decay products that can carry the charge. The D-branes
in (16.64) are in fact stable D-branes, and they cannot decay into open or closed string
states. The bosonic D-branes carry no charge and are unstable, as demonstrated by the
existence of a tachyon field on their world-volume. It is known that Dp-branes with even
p are stable in type IIA theory but unstable in type IIB theory. The D6-branes of type
IIA theory, for example, are stable. Additionally, Dp-branes with odd p are stable in type
IIB theory but unstable in type IIA theory. The stable D3-branes of type IIB theory are
particularly intriguing because their world-volume is a four-dimensional spacetime. All
stable D-branes of type II string theory are charged. Nevertheless, the ones that do not
appear in the list (16.64) – the D4, D6, and D8 of type IIA theory, and the D5, D7, and D9
of type IIB theory – turn out to carry magnetic charge for either the R–R gauge fields in
(16.63) or for other subtle R–R states that we have not included in our discussion. We will
not study magnetic charge in this book.

The (electric) charge of a Dp-brane has a simple description when p spatial dimensions
are curled up into circles and the Dp-brane is wrapped around the resulting compact space.
In this case, the p compact space directions lie along the D-brane (they are of type – in the
notation of Table 15.1). The other spacetime directions, which define the effective lower-
dimensional spacetime, are normal to the brane (they are of type •). The lower-dimensional
observer, who only has access to these noncompact directions, sees the brane as a point
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particle. Our claim is that this particle is electrically charged under a Maxwell field that
originates from the antisymmetric tensor field Aμμ1...μp .

Let x1, . . ., x p denote the p compact directions, and let X1, . . ., X p denote the corre-
sponding brane coordinates. If the compact directions are circles of radii R1, . . ., R p and
we use parameters σ k ∈ [0, 2π ], then

Xk(τ, σ 1, . . ., σ p) = Rkσ k, k = 1, . . ., p (not summed), (16.65)

represents the wrapped Dp-brane. Indeed, when σ k runs from zero to 2π , the coordinate
Xk runs from zero to 2π Rk , thus going once around the kth circle. Let Xm , with m an
index for noncompact directions, take the form

Xm(τ, σ 1, . . ., σ p) = xm(τ ). (16.66)

This equation states that the Dp-brane appears as a point particle to the lower-dimensional
observer: for any τ , the full Dp-brane is mapped to a single point in the lower-dimensional
spacetime.

Since only Xk depends on σ k , the nonvanishing contributions to (16.62) arise when
μk = k, for k = 1, . . ., p:

Sp = −
∫

dτdσ1 . . . dσp
∂ Xμ

∂τ
R1 R2 . . . R p Aμ 12...p

(
X (τ, σ 1, . . ., σ p)

)
. (16.67)

The tensor field A... is fully antisymmetric and all compact indices have been used, so the
index μ can only take values over the noncompact directions: μ = m. As a result,

Sp = −
∫

dτdσ1 . . . dσp
d Xm

dτ
R1 R2 . . . R p Am 12...p

(
Xm(τ ), Xk(σ k)

)
. (16.68)

Finally, let us restrict our attention to the part of the A... field that is independent of the
compact coordinates: Am 12...p(xm(τ )). Equation (16.68) then becomes

Sp = −R1 R2 . . . R p
∫

dτdσ1 . . . dσp
dxm

dτ
Am 12...p (x(τ )) . (16.69)

The σ integrals can now be done, giving a factor of (2π)p, which, together with the product
of the radii, yields the volume Vp = (2π R1) . . . (2π R p) of the compact space. Noting that,
for all intents and purposes, Am 12...p is a one-index gauge field, we introduce the gauge
field Ām , defined by

1

(α′)p/2
Ām(x(τ )) ≡ Am 12...p (x(τ )) . (16.70)

The factor of α′ was introduced in order to give the gauge field Ām the expected dimension
of mass, or inverse length. The field Ām is said to be the Maxwell field that arises from
the tensor field A... by dimensional reduction. In this process of dimensional reduction we
did two things: (1) all indices except one were taken to run over compact dimensions, and
(2) we dropped the dependence of the field on the compact dimensions. We will examine
dimensional reduction further in Section 17.6. Using (16.70), the value of Sp in (16.69)
becomes

Sp = − Vp

(α′)p/2

∫
dτ

dxm

dτ
Ām (x(τ )) = − Vp

(�s)p

∫
Ām dxm, (16.71)
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which is recognized as the coupling of a point particle to a Maxwell field Ām . The Dp-brane
appears as a charged point particle. The Maxwell charge Q of the brane is

Q = Vp

(�s)p
. (16.72)

The charge Q is given by the volume of the brane, measured in units of string length to the
pth power. Q is dimensionless, as it should be.

Problems

Problem 16.1 Reparameterization invariance of the string/Kalb–Ramond coupling.

Consider a world-sheet with coordinates (τ, σ ) and a reparameterization that leads to
coordinates (τ ′(τ, σ ), σ ′(τ, σ )). Show that the coupling (16.3) transforms as follows:∫

dτ ′dσ ′ ∂ Xμ

∂τ ′
∂ Xν

∂σ ′
Bμν(X) = sgn(γ )

∫
dτdσ

∂ Xμ

∂τ

∂ Xν

∂σ
Bμν(X),

where sgn(γ ) denotes the sign of γ and

γ = ∂τ

∂τ ′
∂σ

∂σ ′
− ∂τ

∂σ ′
∂σ

∂τ ′
.

Note that your proof requires the antisymmetry of Bμν . If sgn(γ ) = +1, the reparame-
terization is orientation preserving. If sgn(γ ) = −1, the reparameterization is orientation
reversing. Give two examples of nontrivial orientation preserving reparameterizations and
two examples of nontrivial orientation reversing reparameterizations.

Problem 16.2 Antisymmetric variations and equations of motion.

Let δBμν = −δBνμ be an arbitrary antisymmetric variation (μ, ν = 0, 1, . . ., d). Show that

δBμνGμν =
d∑

μ>ν

d∑
ν=0

δBμν(G
μν − Gνμ).

Now show that if δBμνGμν = 0 for all antisymmetric variations δBμν then
Gμν −Gνμ= 0.

Problem 16.3 Properties of the string charge �Q.

(a) Consider a string at some fixed time t0 and a region R of space that contains a portion
of this string: the string enters the region R at a point �xi and leaves the region R at a
point �x f (assume there is no compactification of space). Use (16.23) to calculate the
string charge �Q = ∫

R dd x �j0 contained in R at time t0. Use your result to show that
the total string charge �Q associated with a closed string is zero.

(b) A more abstract proof that �Q is zero for any localized configuration of closed strings
requires showing that ∇ · �j0 = 0 implies

∫
dd x �j0 = 0. If you have trouble showing

this you may look in your favorite E&M book: the same proof is needed in magneto-
statics to demonstrate that the multipole expansion for the magnetic field of a localized
current has no monopole term.
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(c) Assume now that one space coordinate x is curled up into a circle of radius R,
and consider a closed string wrapped around this circle. Calculate the string charge
�Q. Explain why the answer is not zero, and compare with the result obtained

in (16.72).

Problem 16.4 Kalb–Ramond field of a string.

Following the discussion in Section 16.2, calculate the field Hμνρ created by a string
stretched along the x axis. Find a simple Bμν that gives rise to the field strength H . Interpret
your answer in terms of a magnetostatics analog.

Problem 16.5 Explicit checks of current conservation.

In Problem 5.3 you constructed the current vector of a charged point particle:

jμ(�x, t) = qc
∫

dτ δD(x − x(τ ))
dxμ(τ)

dτ
.

Verify directly that this is a conserved current (∂μ jμ = 0). Now extend this result to the
case of a closed string. Verify directly that the current in (16.11) is conserved.

Problem 16.6 Equation of motion for a string in a Kalb–Ramond background.

Consider the string action (6.39) supplemented by the coupling (16.3) to the Kalb–Ramond
field. Perform a variation δXμ, and prove that the equations of motion for the string are

∂Pτ
μ

∂τ
+ ∂Pσ

μ

∂σ
= −Hμνρ

∂ Xν

∂τ

∂ Xρ

∂σ
. (1)

Problem 16.7 H -field and a circular closed string.

Assume we have a constant, uniform H field that takes the value H012 = h, with all
other components equal to zero. Assume we also have a circular closed string lying in
the (x1, x2) plane. The purpose of this problem is to show that the tension of the string and
the force on the string due to H can give rise to an equilibrium radius. As we will also see,
the equilibrium is unstable.

We will analyze the problem in two ways. First, we use the equation of motion (1)
derived in Problem 16.6, working with X0 = τ (c = 1):

(a) Find simplified forms for Pτ
μ and Pσ

μ for a static string.
(b) Check that the μ = 0 component of the equation of motion is trivially satisfied. Show

that the μ = 1 and μ = 2 components give the same result: for a suitable orientation
of the closed string, the radius R of the string is fixed at the value R = T0/|h|.

Second, we evaluate the action using the simplified geometry of the problem. For this,
assume that the radius R(t) is time dependent.

(c) Find Bμν fields that give rise to the H field. In fact, you can find a solution where only
B01 or B02, or both, are nonzero.

(d) Show that the coupling term (16.3) for the string in question is equal to∫
dt πh R2(t)
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if the string is oriented counterclockwise in the (x1, x2) plane. Explain why this term
represents (minus) potential energy.

(e) Consider the full action for this circular string, and use this to compute the energy
functional E(R(t), Ṙ(t)) (your analysis of the circular string in Problem 6.7 may save
you a little work).

(f) Assume Ṙ(t) = 0, and plot the energy functional E(R(t)) for h > 0 and h < 0. Show
that the equilibrium value of the radius coincides with the one obtained before, and
explain why this equilibrium value is unstable.



17 T-duality of closed strings

If a spatial dimension is curled up into a circle then closed strings are affected
in two ways: their momentum along the circle gets quantized, and new wind-
ing states that wrap around the circle arise. The complementary behavior of
momentum and winding states, as a function of the radius of the circle, results
in a surprising symmetry: in closed string theory, the physics when the circle
has radius R is indistinguishable from the physics when the circle has radius
α′/R. This equivalence is proven by exhibiting an operator map between the two
theories that respects all commutation relations.

17.1 Duality symmetries and Hamiltonians

Duality symmetries are some of the most interesting symmetries in physics. The term
“duality” is generally used by physicists to refer to the relationship between two systems
that have very different descriptions but identical physics. The main subject of this chapter
is one such situation that arises in closed string theory. You may think that a world where
one dimension is curled up into a circle of radius R could easily be distinguished from a
world in which the circle has radius α′/R (recall that α′ has units of length-squared), but
in closed string theory these two worlds are indistinguishable for any value of R. There
is a duality symmetry that relates them to each other. This symmetry is called T-duality,
where the T stands for toroidal. A compactification is called toroidal if the compact space
is a torus. With this terminology, a one-dimensional torus is defined to be a circle.

The AdS/CFT correspondence, to be described in Chapter 23, is an example of a duality:
a type IIB superstring background and a supersymmetric Yang–Mills theory are in fact
physically equivalent systems. In this section we will discuss duality symmetries that can
be found in two familiar situations. Our first example is from electromagnetism and the
second is from mechanics.

Consider Maxwell’s equations in the absence of sources:

∇ · �E = 0 , ∇ × �B = 1

c

∂ �E
∂t

,

∇ · �B = 0 , ∇ × �E = −1

c

∂ �B
∂t

. (17.1)
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One immediately notices that these equations remain invariant under the following duality
transformation:

( �E , �B) → (− �B , �E) . (17.2)

This invariance of the equations of motion is called the duality symmetry of electromag-
netism. Had we simply looked at the familiar Lagrangian for electromagnetism, we might
have missed this symmetry. Indeed, expanding the Lagrangian density (see, for example,
Problem 5.6) in terms of electric and magnetic fields, we have

L = −1

4
Fμν Fμν = −1

4
(2F0k F0k + Fi j Fi j )

= −1

2
(−F0k F0k + 1

2
Fi j Fi j )

= 1

2
(E2 − B2) , (17.3)

where we wrote E2 = �E · �E and B2 = �B · �B. The Lagrangian density L is not invari-
ant under the duality transformation (17.2) – it changes sign. Of course, L and −L, both
written in terms of potentials, lead to the same equations of motion.

Lagrangians treat kinetic and potential energies differently: kinetic energy enters with
a positive sign while potential energy enters with a negative sign. Any symmetry that
exchanges these types of energy fails to leave the Lagrangian invariant. Both potential
and kinetic energies enter into the Hamiltonian with the same sign, so duality symmetries
are often exhibited using the Hamiltonian. In electromagnetism, the square of the electric
field accounts for the kinetic energy since the electric field involves the time derivative of
the vector potential (see equation (3.8)). The square of the magnetic field accounts for the
potential energy since the magnetic field involves spatial derivatives of the vector potential.
The Hamiltonian, or energy functional, is proportional to the volume integral of (E2 + B2).
The duality transformation (17.2) leaves the Hamiltonian unchanged.

Since the dynamical variables in electromagnetism are the gauge potentials, one may
ask: are there transformations of the potentials that induce (17.2)? Not exactly, but close.
One can formulate electromagnetism (without sources) using dynamical variables �E and
�A, both divergenceless. Duality transformations are then written as spatially nonlocal trans-

formations of �E and �A. (A typical spatially nonlocal transformation expresses the output
at a point �x in terms of the values of the input at all points �x ′.)

Consider now a second example. The system is a simple harmonic oscillator consisting
of a mass m attached to a spring with spring constant k. The Hamiltonian is given by

H(m, k) = p2

2m
+ 1

2
kx2 , (17.4)

where we have included the parameters m and k as arguments of the Hamiltonian. This
Hamiltonian leads to oscillatory motion with angular frequency ω = √

k/m. The form of
ω suggests a symmetry under the following duality transformation:

(m , k ) −→
( 1

k
,

1

m

)
. (17.5)
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The Lagrangian for the original oscillator

L = 1

2
mẋ2 − 1

2
kx2 , (17.6)

just as in the electromagnetic case, does not remain invariant under the duality transforma-
tion. On the other hand, the equation of motion

mẍ = −kx , (17.7)

is invariant under the duality. The Hamiltonian associated with the dual parameters is

H
( 1

k
,

1

m

)
= 1

2
kp2 + 1

2m
x2 . (17.8)

Unlike before, now the Hamiltonian is not invariant. To exhibit the connection to the origi-
nal Hamiltonian H(m, k) we must use canonical transformations. This means changing the
canonical variables in such a way that all commutation relations are preserved and there-
fore the physics remains the same. Consider the canonical transformation K that acts on x
and p as follows:

K: x −→ p , p −→ −x . (17.9)

This transformation is canonical because all the relevant commutation relations, which in
this case is only [x, p] = i , are preserved:

K: [ x, p ] −→ [ p,−x ] = −(−i) = i . (17.10)

Under this canonical transformation the Hamiltonian in (17.8) becomes

K: H
( 1

k
,

1

m

)
−→ 1

2
k (−x)2 + 1

2m
p2 = H(m, k) . (17.11)

The Hamiltonian of the system with dual parameters is canonically equivalent to the
original Hamiltonian, so the physics is indeed unchanged by the transformation (17.5).

17.2 Winding closed strings

To explore T-duality of closed string theory, we must first understand what effects there
are on closed strings when one spatial dimension has been made into a circle. The closed
strings we considered in Chapter 13 were moving in Minkowski space, and they could all
be shrunk to zero size continuously. If we have one compact dimension then not all closed
strings can be reduced continuously to zero size.

The easiest way to visualize this phenomenon is to imagine a world with only two spatial
dimensions, one of which is compact. Such a world can be thought of as the surface of
an infinitely long cylinder. Let x be the coordinate that has been made compact via the
identification

x ∼ x + 2π R , (17.12)
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�Fig. 17.1 Left: a collection of closed strings living on the surface of a two-dimensional cylinder. Right:
the same set of strings represented on the covering space of the cylinder. Strings with
nontrivial winding numbers appear in the covering space as open strings.

and let y denote the coordinate that extends along the length of the cylinder. This cylinder
is shown on the left side of Figure 17.1. On the right side of the figure we show the (x, y)

plane from which the cylinder was formed using the identification (17.12). This plane is
known as the covering space of the cylinder. As usual, the x coordinate of a string will be
denoted by X .
Let us consider what kinds of closed strings can live on the two-dimensional surface of the
cylinder. We will also examine, on the right, how these strings appear in the covering space.
While every string on the cylinder actually has infinitely many copies in the covering space
(recall Section 2.7), to avoid confusion we will show only one copy.

The simplest strings are those that do not wrap around the cylinder. String (a) in
Figure17.1 is such a string. This string, without its copies, is shown in the covering space
directly to the right, where it appears as a string that is actually closed. String (a) can be
contracted down to a point in a continuous way. This is clear both on the cylinder and in the
covering space. We say that string (a) has zero winding number because it does not “wind
around” the compact dimension. The string coordinate in the covering space satisfies

string (a): X (τ, σ = 2π)− X (τ, σ = 0) = 0 . (17.13)

This is the periodicity condition that we encountered in Chapter 13, where, more generally,
we wrote X (τ, σ + 2π) = X (τ, σ ).

Consider now string (b) in the figure. This string is oriented in the direction of increasing
x and wraps once around the cylinder. String (b) cannot be contracted to a point without
first cutting it. We say that string (b) has winding number +1, since it winds once around
the circle in the direction of positive x . The picture of this string in the covering space is
interesting. If we mark point B on the cylinder as a reference starting point for the string,
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then in the covering space the string looks like an open curve that begins at B and ends at
the point B ′. We recognize that the string is actually closed because B and B ′ are identified
by (17.12). The closed string is parameterized with σ ∈ [0, 2π ], where B corresponds to
σ = 0, and B ′ corresponds to σ = 2π . The string coordinate in the covering space then
satisfies

string (b): X (τ, σ = 2π)− X (τ, σ = 0) = 2π R . (17.14)

Analogous remarks hold for string (c). This string wraps around the cylinder once in the
opposite direction, so it is said to have winding number −1. In the covering space we have

string (c): X (τ, σ = 2π)− X (τ, σ = 0) = −2π R . (17.15)

Strings (b) and (c) illustrate a general fact. Strings which wind around the cylinder appear
in the covering space as open strings. But not every open string in the covering space rep-
resents a wound closed string. Some represent truly open strings on the cylinder. An open
string in the covering space represents a closed string that is wound around the cylinder
precisely when its endpoints are identified by (17.12). Since string (a) has zero winding, it
is a closed string in the covering space.

Consider now a string, such as string (d), that wraps twice around the cylinder. The
starting reference point is taken to be D, at which point both x = 0 and σ = 0. After the
string has wrapped once it reaches point E on the cylinder. It then winds once more to
finally reach point D′ with σ = 2π . Points D and D′ are the same on the cylinder. In the
covering space they are separate, but they are identified by (17.12). This string is said to
have winding number +2, and it satisfies

String (d): X (τ, σ = 2π)− X (τ, σ = 0) = 2 (2π R) . (17.16)

String (e) is a string with winding number +2, just like string (d). But the y coordinate
of string (e) is a constant function of σ . Since it has the same winding number as string
(d), it also satisfies condition (17.16). Back on the cylinder the windings overlap. In the
covering space the string is represented as a straight horizontal line of length 4π R.

A small confusion is possible here. Consider two distinct points p and p′ on string (e)
that are separated by a distance 2π R along the string. These two points happen to lie on
top of the same point on the cylinder, but they are not the same point on the wrapped
string. In the covering space the points p and p′ of the string are separated by a horizontal
distance of 2π R. They lie on top of points that are identified, but p and p′ are themselves
not identified. You can imagine painting one half of the string yellow and the other half
green. Point p would belong on the yellow part of the string and point p′ would belong
on the green part. The piece of string that stretches along the interval [2π R, 4π R] in the
covering space is not a copy of the piece of string that stretches along [0, 2π R].

In Figure 17.1 we omitted all duplicate strings from the covering space. Each portion of
string that is drawn represents a distinct portion of the string on the cylinder. This was done
precisely in order to avoid the above confusion. If, for example, we had included the copies
of string (b) in the covering space, then it would be impossible to distinguish between
strings (b) and (e) without using colors to draw them differently in the covering space.
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All closed strings, however long they may be, and however many times they may wrap,
are parameterized with a σ range of 2π . We say that a string has winding number m, with
m an integer, if it wraps m times around the cylinder in the direction of positive x . In this
case, the string coordinate in the covering space satisfies

winding number m: X (τ, σ + 2π) = X (τ, σ )+ m(2π R) . (17.17)

Strings with different winding numbers cannot be continuously deformed into each other,
and therefore the winding number of a closed string is a topological property. Mathemat-
ically, winding numbers appear because we have two circles: one with coordinate σ and
one with coordinate x . The closed strings are mappings from the σ -circle into the x-circle.
A mapping of one circle into another is characterized by an integer known as the winding
number of the map. For closed strings, this integer is the winding number m.

For purposes that will become clear later, we define the winding w in terms of the
winding number m and the radius of the space:

w ≡ m R

α′
. (17.18)

The winding has units of inverse length, or momentum. In fact, winding will turn out to
be a new kind of momentum. Using this definition, equation (17.17) becomes

X (τ, σ + 2π) = X (τ, σ )+ 2πα′ w . (17.19)

We are now ready to discuss the mode expansion and quantization of closed strings in the
presence of a compact dimension.

17.3 Left movers and right movers

Let us consider now strings that are propagating in a 26-dimensional spacetime that has
coordinates x0, x1, . . ., x25. Assume that the coordinate x25 is curled up into a circle of
radius R. Since we are going to use the light-cone gauge (this is possible because the string
coordinates X0 and X1 are not associated with compact directions), it is convenient to
organize the string coordinates as

X+, X−, X2, X3, . . ., X24︸ ︷︷ ︸
Xi

, X25 . (17.20)

Xi denotes transverse light-cone coordinates, but we do not permit the i index to take
the value 25. We will always write the coordinate index explicitly, so we can delete the
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superscript from X25 without risk of confusion. With this understanding, the above set of
coordinates will be represented by

X+, X−, {Xi }, and X with i = 2, 3, . . ., 24 . (17.21)

The periodicity condition for X is given by (17.19). Since X satisfies the wave equation,
the general solution is

X (τ, σ ) = X L(τ + σ)+ X R(τ − σ) = X L(u)+ X R(v) , (17.22)

where u = τ + σ and v = τ − σ . Applying condition (17.19) we get

X L(u + 2π)+ X R(v − 2π) = X L(u)+ X R(v)+ 2πα′ w , (17.23)

which can be rewritten as

X L(u + 2π)− X L(u) = X R(v)− X R(v − 2π)+ 2πα′ w . (17.24)

The last term in the right-hand side was not present when we studied closed strings in Chap-
ter 13 (see (13.13)). Some of the earlier analysis still applies, however. Just as before, the
derivatives X ′

L(u) and X ′
R(v) are periodic functions of their arguments. So the expansions

(13.14) hold in the present case, and equations (13.15) hold as well:

X L(u) = 1

2
x L

0 +
√

α′
2

ᾱ0 u + i

√
α′
2

∑
n 	=0

ᾱn

n
e−inu ,

X R(v) = 1

2
x R

0 +
√

α′
2

α0 v + i

√
α′
2

∑
n 	=0

αn

n
e−inv . (17.25)

The new feature is that ᾱ0 does not necessarily equal α0. Instead, equation (17.24) gives

2π

√
α′
2

ᾱ0 = 2π

√
α′
2

α0 + 2πα′ w , (17.26)

so, after cancelling constants,

ᾱ0 − α0 =
√

2α′ w . (17.27)

We see that now ᾱ0 is equal to α0 if and only if the winding vanishes. We can also calculate
the momentum p of the string along the compact direction:

p = 1

2πα′

∫ 2π

0
(Ẋ L + Ẋ R)dσ = 1√

2α′
(α0 + ᾱ0) , (17.28)

where we used equations (17.3) and noted that only the terms that are linear in u and v

contribute to the integral. The momentum is proportional to the average of α0 and ᾱ0. In
summary, we can now write

p = 1√
2α′

(ᾱ0 + α0) ,

w = 1√
2α′

(ᾱ0 − α0) . (17.29)



383 17.4 Quantization and commutation relations
�

These equations suggest that the winding w is on the same footing as the momentum p.
We think of both w and p as momentum operators. For reference, we record the values of
the zero modes:

α0 =
√

α′
2

(p − w) ,

ᾱ0 =
√

α′
2

(p + w) . (17.30)

When there was no compactification we had α0 = ᾱ0, and this meant that there was only
one momentum. Because of this, we were led to expect that only one coordinate zero mode
was relevant. Now, however, we have α0 	= ᾱ0, and so there are two different kinds of
momenta. There is therefore room for two distinct coordinate zero modes. We rewrite x L

0 =
x0 + q0 and x R

0 = x0 − q0, thus introducing the average coordinate x0 and the coordinate
difference q0. These, together with (17.3), allow us to rewrite (17.3) as

X L(τ + σ) = 1

2
(x0 + q0)+ α′

2
(p + w)(τ + σ)+ i

√
α′
2

∑
n 	=0

ᾱn

n
e−in(τ+σ) ,

X R(τ − σ) = 1

2
(x0 − q0)+ α′

2
(p − w)(τ − σ)+ i

√
α′
2

∑
n 	=0

αn

n
e−in(τ−σ) . (17.31)

The full coordinate X (τ, σ ) is obtained by adding the above expressions for X L and X R :

X (τ, σ ) = x0 + α′ pτ + α′wσ + i

√
α′
2

∑
n 	=0

e−inτ

n
(ᾱne−inσ + αneinσ ) . (17.32)

In this expansion the only evidence of a compact dimension is the winding term α′wσ . The
zero mode q0 is not present here. For the record, we give the standard linear combinations
of derivatives of X :

Ẋ + X ′ = 2X L
′(τ + σ) = √

2α′
∑
n∈Z

ᾱn e−in(τ+σ) ,

Ẋ − X ′ = 2X R
′(τ − σ) = √

2α′
∑
n∈Z

αne−in(τ−σ) . (17.33)

17.4 Quantization and commutation relations

In this section we will derive the commutation relations for the modes of the string
coordinate X . We will then discuss the spectrum of the operators p and w.
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The starting point is the familiar set of canonical commutators. The commutator between
the string coordinate X and the string momentum Pτ is taken to be[

X (τ, σ ) , Pτ (τ, σ ′)
] = i δ(σ − σ ′) . (17.34)

In addition, the commutators that involve two coordinates or two momenta are presumed
to vanish. Since the quantization of all the extended coordinates exactly follows the dis-
cussion in Chapter 13, we only need to consider the compact direction. But even for this
coordinate X the situation is not so different.

First consider the commutators that do not involve x0. When we computed these com-
mutators in Chapter 13, the key to the calculation was (13.28). This equation was simple
to deal with because the linear combinations of derivatives of X I that appear in it took the
compact form recorded in (13.26). These combinations of derivatives of X , recorded in
(17.3), presently take the same form except for two minor differences: there is no super-
script index, and α0 and ᾱ0 are not the same. It follows that equation (13.29) applies also
to the modes of the string coordinate X , and therefore

[ᾱm , ᾱn] = [αm , αn] = m δm+n,0 , [αm , ᾱn] = 0 , (17.35)

for all integers m and n. Of particular interest are the commutators involving α0 and ᾱ0.
We have [α0, ᾱ0] = 0, so on account of (17.3) we find

[ p, w ] = 0 . (17.36)

Since both α0 and ᾱ0 commute with all the oscillators αn and ᾱn , so too do p and w:

[ p , ᾱn] = [ p , αn] = [w , ᾱn] = [w , αn] = 0 . (17.37)

All that remains is to determine the commutation relations of x0 with the other operators.
The strategy is to use

[ X (τ, σ ), (Ẋ ± X ′)(τ, σ ′)] = 2πα′ i δ(σ − σ ′) , (17.38)

which is derived by combining (17.34) and the σ ′ derivative of [X (τ, σ ), X (τ, σ ′)] = 0.
Glancing at (17.32), we see that the terms including p and w do not contribute, since p
and w commute with all the αn and ᾱn operators. Integrating over σ ∈ [0, 2π ], we find[

x0 , (Ẋ ± X ′)(τ, σ ′)
] = α′ i . (17.39)

It follows from this equation and the expansions (17.3) that x0 commutes with all the αn

and ᾱn operators of nonzero label, and that

[ x0 , α0] = [ x0 , ᾱ0] = i

√
α′
2

. (17.40)

Comparing with (17.3), we see that

[ x0 , p ] = i , [ x0 , w ] = 0. (17.41)

This completes our analysis of the commutation relations. There is one surprising point
worth noticing: every operator that appears in X commutes with the winding w. The most
conservative interpretation of this result is to say that w is a constant number. This would



385 17.4 Quantization and commutation relations
�

mean that the above quantization is only able to describe the set of closed strings that have
some particular fixed winding. Different windings would correspond to different sectors of
the full closed string theory. This interpretation treats p and w in quite different ways. A
more intriguing interpretation is that w is an operator, just like p is, and that the eigenvalues
of w correspond to the various possible windings. This will turn out to be the more natural
interpretation, and, as we will see in Section 17.8, it is possible to identify the coordinate
zero mode q0 as the coordinate conjugate to the momentum w.

Because we have compactified the x dimension, the zero mode x0 is a coordinate that lives
on a circle. The momentum operator p along the x direction is the momentum conjugate to
x0, so by a familiar result in quantum mechanics, the possible values of the p-momentum
carried by the states are quantized. To derive this quantization condition consider the oper-
ator e−iap that translates states along the x direction by an amount a. Since x0 lives on a
circle of radius R, the translation operator that translates by 2π R has no effect on the states
of the theory. Thus e−i 2π Rp behaves like the unit operator. From this we conclude that the
states of the theory have momentum along x that is quantized to take the values

p = n

R
, n ∈ Z . (17.42)

It should be noted that x0 is not a well defined operator: its eigenvalues are ambigu-
ous because of the identification x0 ∼ x0 + 2π R. As a result, the commutation relation
[x0, p] = i is in fact a formal statement without a precise meaning. The simplest form of
the uncertainty principle, which states that for momentum eigenstates the position uncer-
tainty is infinite, does not apply: in a circle the maximum position uncertainty is 2π R. We
can use x0 to construct the well defined operators

ei�x0/R , � ∈ Z , (17.43)

which are invariant under the shift of x0 by any multiple of 2π R. We then have

e−i�x0/R p ei�x0/R = p + �

R
. (17.44)

This operator equation is a precise statement. It is easily derived using [x0, p] = i . It is
in this sense that the naive relation [x0, p] = i can be used to derive unambiguous results.
Similar remarks actually apply to (17.34) since X is not a well defined operator either. The
operators in (17.43) have a well defined action on the state space, described in terms of
momentum eigenstates |p〉.

Quick calculation 17.1 Show that ei�x0/R |p〉 is a state of momentum p + (�/R). Note that
this momentum is properly quantized.

There is another quantization condition in play. Recalling the periodicity condition (17.17),
we demand that

X (τ, σ + 2π) = X (τ, σ )+ m(2π R) (17.45)
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acting on the allowed states of the theory. On account of (17.32), this requires that the
operator w has eigenvalues satisfying

α′w(2π) = m(2π R) −→ w = m R

α′
, m ∈ Z . (17.46)

Thus both p and w have discrete spectra.

There is an interesting double strike mechanism at work here. The identification x ∼
x + 2π R had two effects, or strikes. First, we lost some states. Without the circle, the
momentum operator has a continuous spectrum. After the circle is created, the momentum
is quantized, so we lost the states that do not satisfy the quantization condition. Second, we
gained some new states. These are the winding states that wrap around the newly created
circle. Thus we both lost some states and gained some states! It is interesting to note that
for particle states, as opposed to string states, we only lose states when we turn a line into
a circle. The particle cannot wrap around the circle to give us new states. Another example
of the double strike mechanism is provided by the quantization of closed strings on an orb-
ifold. The quantization of closed strings on the R

1/Z2 orbifold was studied in Chapter 13.
There we lost the states that are not invariant under X →−X , and we gained a sector of
twisted states.

17.5 Constraint and mass formula

In our earlier study of light-cone closed strings, the constraint α−0 = ᾱ−0 led to the require-
ment that L⊥0 − L̄⊥0 annihilates the states of the theory. This is still true in the current
situation, because x− is not compactified and, as a result, its left-moving and right-moving
momenta remain equal. There is one difference, though: this time the fact that L⊥0 − L̄⊥0
vanishes does not imply that N⊥ − N̄⊥ vanishes. To see this, we need explicit expres-
sions for L⊥0 and L̄⊥0 . These are readily obtained after considering equations (13.37) and
(13.42). The modifications are minor. The sums over I split into a sum over i and another
term which corresponds to the compact dimension. We find

L̄⊥0 = 1

2
ᾱ I

0 ᾱ I
0 + N̄⊥ = α′

4
pi pi + 1

2
ᾱ0ᾱ0 + N̄⊥ ,

L⊥0 = 1

2
α I

0α I
0 + N⊥ = α′

4
pi pi + 1

2
α0α0 + N⊥ . (17.47)

The operators N⊥ and N̄⊥ include contributions from all the oscillators: those with
superscript i and those corresponding to the string coordinate X . We can now calculate

L⊥0 − L̄⊥0 = 1

2
(α0α0 − ᾱ0ᾱ0)+ N⊥ − N̄⊥

= −α′ pw + N⊥ − N̄⊥ , (17.48)
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where we made use of (17.3). It follows that the constraint on physical states takes the
form

N⊥ − N̄⊥ = α′ pw . (17.49)

On states that have either zero momentum or zero winding, the number of left-moving and
the number of right-moving excitations must agree. But on states that have both nonzero
momentum and nonzero winding N⊥ − N̄⊥ cannot vanish. It must equal α′ pw. Since both
N⊥ and N̄⊥ are operators with integer eigenvalues, the left-hand side of (17.49) always
takes integer values. Because of the quantization conditions (17.42) and (17.46),

α′ pw = α′ · n

R
· m R

α′
= nm , (17.50)

so the right-hand side of (17.49) also takes integer values. In terms of these integers, (17.49)
takes the simple form

N⊥ − N̄⊥ = nm . (17.51)

An important tool that we have used to study the string spectrum is the formula for the
mass-squared of states. To obtain such a formula we take the viewpoint of an observer
that lives in the 25-dimensional Minkowski spacetime that does not include the compact
dimension. For this observer M2 = −p2, where p is the 25-dimensional momentum of
the states. This momentum vector has components p+, p−, and pi ; it does not include the
component of momentum that is along the compact dimension. We therefore have

M2 = 2p+ p− − pi pi = 2

α′
(L⊥0 + L̄⊥0 − 2)− pi pi , (17.52)

where we used equation (13.46) to write p− in terms of Virasoro operators. Replacing the
values of L⊥0 and L̄⊥0 from (17.5) we find

M2 = 1

α′
(α0α0 + ᾱ0ᾱ0)+ 2

α′
(N⊥ + N̄⊥ − 2) . (17.53)

Our last step makes use of (17.3) to give

M2 = p2 + w2 + 2

α′
(N⊥ + N̄⊥ − 2) . (17.54)

This is our result for the mass-squared operator. Here p and w are the quantized momen-
tum and winding associated with the compact dimension. The last term is familiar from
the case of closed strings in Minkowski space.

Consider the contribution of the momentum p to M2, setting for the moment all other terms
to zero. This momentum then gives a rest mass, or rest energy, of M = |p|. The internal
momentum therefore contributes to the rest energy of the string in the same way as the
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momentum of a massless particle contributes to its energy. Consider now the contribution
of the winding w to M2, setting again all other terms to zero. In this case M = |w|, and we
can provide a simple interpretation. Consider a string state that is wound |m| times around
the compact dimension. The length of such a string is |m|2π R, and since the string tension
is 1/2πα′, the rest energy of the string is equal to

M = 1

2πα′
|m|2π R = |m|R

α′
= |w| . (17.55)

Thus the contribution of the winding to the mass is naturally understood as the energy
associated with the stretching that is required to wrap the string around the compactified
dimension.

When a string has both nonzero momentum p and winding w, their contributions to
the rest energy of the state do not simply add. They must be added in quadrature. The
number operators contribute linearly to the square of the rest energy. In some sense a state
with momentum, winding, and oscillator excitations can be viewed as a bound state that
is composed of various building blocks which interact to give a total rest energy that is
smaller than the sum of the energies of the separate constituents.

Quick calculation 17.2 Show that the Hamiltonian of the closed string theory under study
is given by

H = α′

2
(pi pi + p2 + w2)+ N⊥ + N̄⊥ − 2 . (17.56)

17.6 State space of compactified closed strings

We now construct explicitly the state space of the quantum closed string we have been
studying. Let us begin with the states that have no oscillator excitations. These states have
the familiar momentum labels that are associated with the 25-dimensional Minkowski
space, but they also carry additional labels that specify the momentum and the winding
along the compact dimension. Since the momentum is quantized as p = n/R, we can
use the integer n as an alternative label for the momentum of the state. Similarly, with
w = m R/α′, we can use the integer m as a label for the winding of the state. Letting �pT

denote the vector with components pi , for i = 2, . . ., 24, we have

ground states: | p+, �pT ; n, m〉 , n, m ∈ Z . (17.57)

Although we refer to these as “ground states,” this does not actually mean that they are
all allowed states in our theory. Indeed, since N⊥ = N̄⊥ = 0 for all of these states, the
constraint (17.51) tells us that allowed ground states must have either n or m, or both,
equal to zero. We call these “ground states” only to emphasize the fact that each of them is
killed by all of the annihilation operators of the theory. Note also that although those states
in (17.57) that have both n and m nonzero are not allowed, by themselves, to be states in
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our theory, they can be acted upon by appropriate combinations of creation operators in
order to produce allowed states.

A basis for the state space is constructed by applying creation operators to the above
states. The general candidate basis state of the theory is

[ ∞∏
r=1

24∏
i=2

(
ai

r
†
)λi,r

][ ∞∏
s=1

24∏
j=2

(
a j

s
†)λ̄ j,s][ ∞∏

k=1

(
ak

†
)λk

][ ∞∏
l=1

(
ā†

l

)λ̄l
]
| p+, �pT ; n, m〉 .

(17.58)
We separated out the oscillators that arise from the compact dimension because they carry
no 25-dimensional Lorentz index. The number operators N⊥ and N̄⊥ act on the above
state to give

N⊥ =
∞∑

r=1

24∑
i=2

rλi,r +
∞∑

k=1

kλk , N̄⊥ =
∞∑

s=1

24∑
j=2

sλ̄ j,s +
∞∑

l=1

lλ̄l . (17.59)

The candidate state (17.58) is a member of the state space if and only if it satisfies the
constraint (17.51):

N⊥ − N̄⊥ = nm . (17.60)

The mass-squared of the state is given by (17.54):

M2 =
( n

R

)2 +
(m R

α′
)2 + 2

α′
(N⊥ + N̄⊥ − 2) . (17.61)

In order to familiarize ourselves with the spectrum we now examine some of the closed
string states in more detail.

States with m = n = 0 These states have neither momentum nor winding in the compact
dimension. One such string might be string (a) in Figure 17.1 provided, of course, that it
has no net momentum along the x axis. Equation (17.60) tells us that N⊥ = N̄⊥, so we
must be sure to match the number of left-moving and right-moving oscillators that act on
the state. The vacuum state is simply

|p+, �pT ; 0, 0〉 , M2 = − 4

α′
. (17.62)

This is the closed string tachyon state. Next come the massless states that arise when N⊥ =
N̄⊥ = 1. Since in both the left and right sectors we have two kinds of oscillators (those that
belong to the compact direction and those that do not) there are four ways we can combine
the oscillators to form massless states:

a†
1 ā†

1 |p+, �pT ; 0, 0〉 ,
a†

1 ā i†
1 |p+, �pT ; 0, 0〉 ,

ai†
1 ā†

1 |p+, �pT ; 0, 0〉 ,
ai

1
†
ā j†

1 |p+, �pT ; 0, 0〉 . (17.63)
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The first line contains only one state. Since it carries no 25-dimensional index, this is a
state of a massless scalar field. The states in the second and third line each carry the index
i , which is a complete light-cone index for the 25-dimensional spacetime. As a result,
these are photon states, and each set of states corresponds to a Maxwell field. So we get a
total of two Maxwell fields. This is interesting, since ordinary closed strings in Minkowski
space did not even give rise to a single Maxwell field, let alone two! Finally, the states
in the fourth line have exactly the same structure as the massless closed string states of
Minkowski space, except that the dimensionality is now reduced to 25. Therefore these
states comprise a gravity field, a Kalb–Ramond field, and a dilaton, all of them living in
25 spacetime dimensions.

If you look at the above states, you can see that all that has really happened is that the
compactification reorganized the various massless states of the original 26-dimensional
theory. The states now organize themselves into 25-dimensional Lorentz tensors. The num-
ber of oscillators has not changed, but since we now have one index that is inert under
25-dimensional Lorentz transformations, the types of fields have changed.

This reorganization of states upon compactification has been known in particle physics
since the early work of Kaluza and Klein, who in the early 1920s attempted to build a
four-dimensional unified theory of gravitation and electromagnetism by compactification
of a purely gravitational theory in five dimensions. It is possible to understand heuris-
tically what happens in this case. Let gμν , where μ and ν are five-dimensional indices,
represent the gravity field in five dimensions. Suppose that the dimension we are going to
compactify is the fifth dimension, and let m and n be four-dimensional indices that run
along the extended spacetime. As a matrix, gμν can be decomposed into a matrix gmn ,
which represents the four-dimensional gravity field, a vector gm5, which represents a four-
dimensional Maxwell field (g5m is not a new field since the original metric is symmetric),
and a single component g55, which represents a four-dimensional scalar. This is the main
result of Kaluza and Klein: a five-dimensional gravity theory, after compactifying down
to four dimensions, produces a gravity theory that is coupled to a Maxwell field and to a
massless scalar.

How is it that Kaluza and Klein were only able to produce one Maxwell field from their
compactified theory of gravity, while our list in (17.6) gave two? This is possible because
string theory is more than simply a theory of gravity. The second Maxwell field arises from
the higher-dimensional Kalb–Ramond field. So, even in string theory, only one Maxwell
field arises from the gravitational field. It is just that now the compactification affects other
fields in addition to gravity. If Bμν denotes a five-dimensional Kalb–Ramond field, then,
upon compactification, Bm5 represents a four-dimensional Maxwell field. Indeed, forming
linear combinations of the states in the second and third lines of (17.6) we have(

a†
1 āi†

1 + ai†
1 ā†

1

)
|p+, �pT ; 0, 0〉 ,(

a†
1 āi†

1 − ai†
1 ā†

1

)
|p+, �pT ; 0, 0〉 . (17.64)

The states in the first line correspond to photon states that arise from the 26-dimensional
graviton states. The states in the second line correspond to photon states that arise from the
26-dimensional Kalb–Ramond states.
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States with n = 0 or with m = 0 Since these states have either nonzero momentum or
winding, but not both, they must still satisfy N⊥ = N̄⊥. The ground states are

|p+, �pT ; n, 0〉 , M2 = n2

R2
− 4

α′
,

|p+, �pT ; 0, m〉 , M2 = m2 R2

α′2
− 4

α′
. (17.65)

Because they have no 25-dimensional Lorentz indices, both sets of states correspond to
scalar fields. For any fixed n or m, the states may be tachyonic, massless, or massive,
depending on the value of the radius R. Acting with oscillators on these vacua produces
heavier states. Such states have N⊥ + N̄⊥ ≥ 2 and, as a result, they are massive for all
values of the radius R. It is therefore impossible to find massless vectors in this sector of
the state space.

States with n = m = ±1 or n = −m = ±1 These states have both momentum and
winding, so N⊥ and N̄⊥ must be different. The two situations we consider are

n = m = ±1 −→ N⊥ − N̄⊥ = 1 ,

n = −m = ±1 −→ N⊥ − N̄⊥ = −1 . (17.66)

The lowest-mass solutions of N⊥ − N̄⊥ = 1 arise when N⊥ = 1 and N̄⊥ = 0. There are
two kinds of states satisfying this condition:

a†
1 |p+, �pT ,±1,±1〉 ,

ai†
1 |p+, �pT ,±1,±1〉 . (17.67)

Similarly, the lowest-mass solutions of N⊥ − N̄⊥ = −1 arise when N⊥ = 0 and N̄⊥ = 1,
so these are

ā†
1 |p+, �pT ;±1,∓1〉 ,

āi†
1 |p+, �pT ;±1,∓1〉 . (17.68)

Both groups of states above have mass

M2(R) = 1

R2
+ R2

α′2
− 2

α′
=
( 1

R
− R

α′
)2

. (17.69)

It is interesting to note that there is a particular radius R∗ at which M2(R∗) = 0, so that all
of the states are massless:

1

R∗
= R∗

α′
→ R∗ = √

α′ . (17.70)

R∗ is precisely the string length. At this radius, which is called the self-dual radius (for rea-
sons that will become clear later), the interpretation of the above states is simple. The states
in the first rows of (17.67) and (17.68) comprise a total of four massless scalars. The states
in the second rows of (17.67) and (17.68) comprise a total of four massless gauge fields.
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Since all of these states have nonzero winding, they are truly “stringy” states that could not
arise in a theory of particles.

Quick calculation 17.3 Prove that in the sector of states with n 	= 0 and m 	= 0 there are
no additional states that can ever become massless.

Previously, we identified two Maxwell fields in the sector where momentum and winding
are both zero (see (17.6)). These two U (1) fields (using the language introduced in Section
15.3) arise from the gravity and Kalb–Ramond fields in the 26-dimensional theory via a
mechanism that applies both in particle theory and in string theory. Now we have obtained
four additional gauge fields, all of them massless at the self-dual radius and all of them truly
“stringy.” Something interesting now occurs, whose description uses the two physically
equivalent U (1) fields corresponding to the sum and differences of the states (17.6). Each
of these latter U (1) fields happens to combine with two of the stringy gauge fields to form a
set of three gauge bosons that interact in a way described by an SU (2) Yang–Mills theory.
More explicitly, the combinations are

a†
1 ā i†

1 |p+, �pT ; 0, 0〉 with āi†
1 |p+, �pT ;±1,∓1〉 ,

ai†
1 ā†

1 |p+, �pT ; 0, 0〉 with ai†
1 |p+, �pT ,±1,±1〉 . (17.71)

In the compactification of a particle theory of gravity and Kalb–Ramond fields the resulting
theory would have a U (1)×U (1) gauge group. In string theory, the U (1)×U (1) gauge
group gets enhanced to an SU (2)× SU (2) symmetry at the self-dual radius. We have pre-
viously seen how Yang–Mills theories arise on the world-volume of coincident D-branes.
Now we see one way in which Yang–Mills theories can appear in closed string theory.

17.7 A striking spectrum coincidence

We have already seen that the mass spectrum of the compactified string is very much
dependent on the radius of compactification. At the self-dual radius R∗, for example, we
get some additional massless gauge fields. Now we will discover a surprising property of
the spectrum. To bring this property out into the open, we must look into equations (17.61)
and (17.60), which read

M2 = n2

R2
+ m2 R2

α′2
+ 2

α′
(N⊥ + N̄⊥ − 2) , N⊥ − N̄⊥ = nm . (17.72)

Now here is the remarkable property: the closed string spectrum for a compactification
with radius R is identical to the closed string spectrum for a compactification with radius
R̃ = α′/R. We will verify this property shortly, but it turns out that even more is true:
the two compactifications are physically indistinguishable. This is the T-duality of closed
string theory. Note that this means that, in closed string theory, a compactification with
extremely large radius is equivalent to a compactification with extremely small radius! The
radii R and α′/R are called dual radii:
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R ←→ α′

R
≡ R̃ . (17.73)

To verify the coincidence of the spectrum, let us write an expression for the mass-squared
for each of these radii:

M2
(

R; n, m
)
= n2

R2
+ m2 R2

α
′2 + 2

α′
(N⊥ + N̄⊥ − 2) ,

M2
(

R̃; n, m
)
= n2 R2

α
′2 + m2

R2
+ 2

α′
(N⊥ + N̄⊥ − 2) . (17.74)

These do not look the same, but the difference is merely superficial. As n and m run over
all possible integers, the lists of masses that result are the same. More explicitly, for all
n, m ∈ Z,

M2
(

R; n, m
)
= M2

(
R̃; m, n

)
. (17.75)

In writing this equality, of course, we are comparing states with identical oscillator struc-
ture, otherwise the contributions from the number operators would not agree. Note also that
the exchange of n and m does not affect the constraint in (17.72). This proves that the mass
spectra of theories with dual radii are identical. The key to this equality is the opposite
dependences on the radius of the contributions to the mass-squared from the momentum
and the winding. The exchange of n and m in (17.75) is just the exchange of winding and
momentum quantum numbers.

In the following section we will give evidence that dual radii are actually physically
indistinguishable. This is a property of string theory that has been proven beyond doubt.
The special radius R∗ in (17.70) is the unique radius that is mapped to itself under the
transformation in (17.73). The duality then implies that each radius smaller than R∗ is
equivalent to some radius larger than R∗. In this sense, the radius R∗ represents the minimal
radius that can be attained in toroidal compactification.

In the present analysis the value of the radius of the circle is adjustable. The theory did
not select for us a particular radius the way it selected, for example, a particular space-
time dimension. The radius of the circle must be viewed as a parameter of a particular
class of compactified spacetimes that allows a consistent definition of string theory. The
compactification radius is not a parameter of string theory itself, but rather a parameter of
a spacetime allowed in string theory. It is an adjustable parameter. Such parameters are
sometimes called moduli, and the set of values the parameters can take is called the moduli
space. What we learn from T-duality is that the moduli space of compactifications into a
circle can be taken to include only radii larger than or equal to R∗.

To appreciate how a very small circle can appear to be very large, consider the follow-
ing heuristic argument. On a circle of radius R momentum is quantized in units of 1/R.
If R is very large the spacing between momentum eigenvalues is very small and the spec-
trum is almost continuous. When the radius is very small, the momentum eigenvalues are
largely spaced. In standard particle theory, this is a signal of a small circle. In string theory
the situation is different. The winding eigenvalues are quantized in units of R/α′, and as
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the radius R becomes very small, the winding spectrum becomes almost continuous. An
observer seeing this continuum might conclude that the compact dimension is very large.

17.8 Duality as a full quantum symmetry

We have seen that T-duality is a symmetry of the mass spectrum of compactified closed
string theory. This result, by itself, does not imply that the physics is identical at dual radii.
In this section we will prove that the full theory of free closed strings is T-duality invariant.
It can be proven that T-duality holds even when interactions between strings are included,
but we will not attempt to do so in this book.

How do we go about showing the equivalence of the dual theories? We will first bring
out into the open some additional structure that exists in compactified string theory. We
then explain the equivalence of dual theories in two related ways. In the first we show
that T-duality arises as an interpretative ambiguity of a single theory: one possible choice
of string coordinate suggests that the radius of the circle is R, while another, physically
equivalent choice, suggests that the radius of the circle is α′/R. In the second, T-duality is
exhibited as an equivalence between two distinct theories. We consider a theory at radius
R and a theory at radius α′/R. We then find a one-to-one correspondence between the
operators of these theories that preserves all the commutation relations and takes one
Hamiltonian into the other. This is the same strategy that we used to demonstrate the dual-
ity symmetry of the harmonic oscillator back in Section 17.1.

The additional structure of compactified string theory is related to the coordinate zero
mode q0 that appeared both in X L and in X R but did not appear in the full coordinate X =
X L + X R (see (17.3)). Recall that the winding operator w had a vanishing commutator
with all the operators that appear in X . It is natural to make (q0, w) into a conjugate pair
of variables. To this end, we now introduce a dual “coordinate” operator, defined by

X̃(τ, σ ) ≡ X L(τ + σ)− X R(τ − σ) . (17.76)

Making use of (17.3), we find that this coordinate takes the form

X̃(τ, σ ) = q0 + α′ w τ + α′ p σ + i

√
α′
2

∑
n 	=0

e−inτ

n
(ᾱne−inσ − αneinσ ). (17.77)

This coordinate is interesting because in it p multiplies σ and w multiplies τ , which
reverses the familiar pairings in X . Moreover, q0 appears in place of x0. It follows that
the momentum associated with the coordinate q0 is w (since it appears with τ ), and the
winding associated with q0 is p (since it appears with σ ). The coordinate X̃ brings q0 into
play. The precise meaning of q0 will be explained below.

We can now define a momentum P̃τ conjugate to the coordinate X̃ :

P̃τ ≡ 1

2πα′
∂τ X̃ = 1

2πα′
(Ẋ L − Ẋ R) . (17.78)
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We postulate the commutator

[ X̃(τ, σ ) , P̃τ (τ, σ ′) ] = iδ(σ − σ ′) (17.79)

and demand that the commutator between two coordinates or between two momenta van-
ishes. You may be concerned because these commutators involve the same oscillators that
we encountered before, so that their commutation relations are already determined. This is
true, but the same commutation relations emerge, because the only difference between the
pairs (X,Pτ ) and (X̃ , P̃τ ) is that the sign of X R is reversed. As you can see from (17.3),
this sign reversal is implemented by changing the sign of all the αn oscillators, exchanging
x0 and q0, and exchanging p and q. These changes do not affect the commutators (17.35),
which are therefore reproduced. The pair (q0, w) appears in X̃ just as the pair (x0, p)

appears in X , so we find

[ q0, w] = i , (17.80)

as well as

[q0, p] = [q0, αn] = [q0, ᾱn] = 0 , n 	= 0 . (17.81)

We know that x0 is a coordinate that lives on a circle of radius R, because the associated
canonical momentum p is quantized with eigenvalues n/R. Similarly, from the quantiza-
tion w = m R/α′ of the winding momentum, we infer that the associated coordinate q0

lives on a circle of radius R̃ = α′/R. Thus the string coordinate X̃ itself is a coordinate on
a circle of radius α′/R. The relation [q0, w] = i is formal in the same way that [x0, p] = i
is. Well defined operators analogous to (17.43) are given by

ei�q0/R̃ , � ∈ Z. (17.82)

We also have

e−i�q0/R̃ w ei�q0/R̃ = w + �

R̃
. (17.83)

The operators (17.82) have a well defined action on the spectrum.

Quick calculation 17.4 Verify that acting on a state with winding number m, the operator
ei�q0/R̃ gives a state with winding number m + �.

The only commutator that is not fixed is that of x0 with q0. In terms of well defined
operators we declare [

e−i�x0/R , e−imq0/R̃
]
= 0 , �, m ∈ Z . (17.84)

This is consistent with our understanding that the two kinds of operators involved here
simply act on momentum or winding labels independently of each other. Naively, we write
[x0, q0] = 0.

The Hamiltonian derived from (X̃ , P̃τ ) coincides with the one derived from (X ,Pτ ).
This is clear from equation (17.56): the exchange of p and w has no effect, and the minus
sign in the αn oscillators does not affect the number operators. T-duality emerges as an
interpretative ambiguity. We began with a theory that used the coordinate X to describe a
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radius R compactification. When the operator content of the theory is examined, we find
a different coordinate X̃ which gives an equally compelling interpretation of the theory as
one for which the compactification radius is α′/R. In both interpretations we get the same
Hamiltonian. In summary, duality arises because of the possibility of replacing X with X̃ :

T-duality: X = X L + X R −→ X̃ = X L − X R . (17.85)

This expression for the coordinate X̃ dual to X will be helpful when we discuss open
strings in Chapter 18.

To describe duality as a map between two theories, we attempt to formulate the passage
from (X ,Pτ ) operators to (X̃ , P̃τ ) operators as a map:

(X ,Pτ ) −→ (X̃ , P̃τ ) . (17.86)

It is clear from (17.34) and (17.79) that the commutation relations are preserved. From our
earlier comments, (17.86) is equivalent to the map

(X L , X R) → (X L ,−X R) . (17.87)

Finally, by inspection of (17.3), we see that this map is implemented by the following map
of oscillators and zero modes:{

x0→q0

q0→x0

} {
p→w

w→ p

} {
αn→−αn

ᾱn→ ᾱn

}
. (17.88)

This is not a map between two theories, but it will help us to construct one.

To find such a map, we now consider two distinct theories: one for which the familiar
interpretation is that the compactification radius is R and another for which the familiar
interpretation is that the compactification radius is α′/R. Our task is then to produce a map
between the operators of the two theories that is consistent with the commutation relations
and takes one Hamiltonian into the other. One important point to be aware of is that the
map must respect the operator quantization conditions.

In Table 17.1 we have recorded the operators, quantization conditions, and commutation
relations for a theory with radius R. Similarly, in Table 17.2 we have recorded the opera-
tors, quantization conditions, and commutation relations for a theory with radius α′/R. In
this table we have placed a tilde over all of the operators in order to distinguish them from
the operators of the other theory. The requisite operator map is suggested by (17.88) but
now takes the form{

x0→ q̃0

q0→ x̃0

} {
p→w̃

w→ p̃

} {
αn→−α̃n

ᾱn→ ˜̄αn

}
. (17.89)

For all operators associated with the 25-dimensional spacetime the map is the identity map.
The transformations (17.89) respect the commutation relations and map one Hamiltonian
into the other. Moreover, we see explicitly that they map operators to others that live on
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�Table 17.1
A theory where the X coordinate lives on a circle of radius R; listed are the

Hamiltonian, the zero modes, and a list of commutation relations

Theory with radius R

H(R) = 1
2α′ pi pi + 1

2α′(p2 + w2)+ N⊥ + N̄⊥ − 2

x0 lives on a circle of radius R
p has eigenvalues n/R

q0 lives on a circle of radius α′/R
w has eigenvalues m R/α′
[x0, p] = [q0, w] = i

[ᾱm , ᾱn] = [αm , αn] = mδm+n,0
[αm , ᾱn] = 0

�Table 17.2
A theory where the X coordinate lives on a circle of radius α′/R; listed are

the Hamiltonian, the zero modes, and a list of commutation relations

Theory with radius R̃ = α′/R

H̃(R̃) = 1
2α′ pi pi + 1

2α′( p̃2 + w̃2)+ Ñ⊥ + ˜̄N⊥ − 2

x̃0 lives on a circle of radius α′/R
p̃ has eigenvalues m R/α′
q̃0 lives on a circle of radius R
w̃ has eigenvalues n/R

[x̃0, p̃] = [q̃0, w̃] = i

[ ˜̄αm , ˜̄αn] = [α̃m , α̃n] = mδm+n,0
[α̃m , ˜̄αn] = 0

similar spaces and have identical spectra. Both x0 and q̃0, for example, live on identical
circles. Both p and w̃ have the same spectrum. The map of oscillators includes a sign factor
that does not affect N⊥. This map establishes the physical equivalence of the theories under
consideration, and it proves that T-duality is an exact symmetry of free closed string theory
compactified on a circle.

Problems

Problem 17.1 Zero mode Hamiltonian.

We can use an action like (12.81) to study the dynamics of the compact coordinate X :

S = 1

4πα′

∫
dτ

∫ 2π

0
dσ
(

Ẋ Ẋ − X ′ X ′) .
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Consider now the zero mode expansion of the string coordinate in the sector of winding
number m:

X (τ, σ ) = x(τ )+ m Rσ .

Find the action for x(τ ). Calculate the Hamiltonian, and show that you recover the
contributions to (17.56) arising from the compact dimension.

Problem 17.2 Counting massless gauge fields.

Consider a string compactification where k coordinates are made into circles of critical
radius. Describe the candidate ground states of this theory, and give the expression for the
Hamiltonian. Find the number of massless vector fields that arise in the lower-dimensional
spacetime. Give the explicit list of states corresponding to these fields.

Problem 17.3 Charge carried by winding strings.

The zero mode description of a string with winding number � is given by

Xm(τ, σ ) = xm(τ ) , X (τ, σ ) = �Rσ , (1)

where the index m is used to denote all string coordinates except for X25 ≡ X . Consider
the coupling term (16.3) of the Kalb–Ramond field to the string:

S = −
∫

dτdσ
∂ Xμ

∂τ

∂ Xν

∂σ
Bμν (X) .

Calculate the terms in S that couple Bm,25 = −B25,m to the string trajectory xα(τ ). The
field Bm,25 plays the role of a Maxwell field in the 25-dimensional space, as explained in
Section 17.6. Conclude that the winding string state described by (1) carries an electric
charge proportional to �.

Problem 17.4 Compactification on T 2 with a constant Kalb–Ramond field.

Assume that x2 and x3 are each compactified into a circle of radius R. The corresponding
string coordinates are called Xr , with r = 2, 3. Moreover, there is a nonvanishing Kalb–
Ramond field with expectation value

B23 ≡ 1

2πα′
b , (1)

where b is a dimensionless constant. All other components of Bμν vanish.

(a) Build an action for the Xr (τ, σ ) by adding an action of the type used in Problem 17.1
to the action in Problem 17.3.

(b) Consider the following expansion for the zero mode part of the coordinates:

Xr = xr (τ )+ mr R σ , r = 2, 3. (2)

Show that the Lagrangian for xr (τ ) is

L = 1

2α′
(
(ẋ2)2 + (ẋ3)2

)
− α′

2

(
(w2)

2 + (w3)
2
)
− b

(
ẋ2w3 − ẋ3w2

)
. (3)
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Here wr = mr R/α′, as usual. The last term in (3) is a total derivative, but it is important
in the quantum theory, as you will see.

(c) Define momenta canonical to xr , compute the Hamiltonian, and show that it takes
the form

H = α′

2

(
(p2 + bw3)

2 + (p3 − bw2)
2 + w2

2 + w2
3

)
. (4)

Verify that the Hamiltonian generates the correct equations of motion. Note that the
quantization conditions on the momenta are pr = nr/R.

(d) While we have only looked explicitly at the zero modes, the oscillator expansion of the
coordinates works just as before. Write the appropriate expansions for the coordinates
X2(τ, σ ) and X3(τ, σ ) along the lines of equation (17.32). Explain why the mass-
squared operator takes the form

M2 =
(n2

R
+ b

m3 R

α′
)2 +

(n3

R
− b

m2 R

α′
)2

+
(m2 R

α′
)2 +

(m3 R

α′
)2 + 2

α′
(

N⊥ + N̄⊥ − 2
)

. (5)

(e) Show that the constraint L⊥0 − L̄⊥0 = 0 yields

N⊥ − N̄⊥ = n2m2 + n3m3 . (6)

Problem 17.5 Dualities in the T 2 compactification with Kalb–Ramond field.

In Problem 17.4 you obtained equations (5) and (6), which define the spectrum of
a compactification on a square torus T 2 with radius R and with Kalb–Ramond field
B23 = b/(2πα′). Show that the spectrum is unchanged under the following duality
transformations on the background parameters R and b.

(a) The value of b is changed as

b → b′ = b + �
α′

R2
, � ∈ Z , (1)

while R is left unchanged. Equation (1) states that b is a periodic variable. Let A
denote the area of the torus. Use (1) to show that the “flux” parameter fB = B23 A is
an angle variable (i.e., fB ∼ fB + 2π ). To prove that the spectrum is unchanged, you
must find an appropriate compensating change in the quantum numbers, as in (17.75),
for example. [Hint: n2 → n2 − �m3 is one needed change.]

(b) The values of R and b are changed as

R → R′ = α′

R

1√
1 + b2

, b → b′ = −b . (2)

When b = 0 this is the familiar T-duality transformation of the radius. The compen-
sating change here is the expected nr ↔ mr . [Hint: the algebra is easier if you first
expand (5).]

(c) b →−b, with R unchanged. Use mr →−mr as the compensating change of quantum
numbers. What additional change must be done regarding oscillators to make (6) work?

The identifications in (1) and (2) are given a geometrical interpretation in Problem 26.3.



18 T-duality of open strings

T-duality relates a world in which a spatial coordinate on a Dp-brane is stretched
around a circle to a different looking, but equivalent, world in which a D(p − 1)-
brane has a fixed position on a circle of dual radius. In the first world open strings
can have momentum along the circle but cannot wind around it, while in the sec-
ond world they have no momentum along the dual circle but, as we will see,
they can in fact wind around it. We use Maxwell gauge transformations to show
that, on a circle, the values of the gauge field line integral

∮
Adx are period-

ically identified. The holonomy of the gauge field along a Dp-brane direction
that is wrapped on a circle is related by T-duality to the angular position of a
D(p − 1)-brane on the dual circle.

18.1 T-duality and D-branes

Let us consider the propagation of open strings in a spacetime in which one spatial dimen-
sion has been curled up into a circle. Assume that we have a space-filling D25-brane, so
that the open string endpoints are free to move all over space. As before, we choose the
x25 dimension to be compactified:

x25 ∼ x25 + 2π R. (18.1)

All open string coordinates, including X25, satisfy Neumann boundary conditions at both
endpoints, so they are all of NN type. In the presence of a compact dimension, closed
strings exhibit fundamentally new states: closed strings can wrap around the compact
dimension so that they cannot be shrunk to a point. Open strings on a space-filling D-brane
have endpoints that are free to move anywhere, so open strings can always be shrunk away.
Open strings exhibit no fundamentally new states in the presence of a compact dimension.
The open string momentum in the x25 direction is quantized: p25 = n/R. This contributes
an amount n2/R2 to the mass-squared of the string. There is no winding number w25.

Now consider an open string in a related spacetime, which also has a space-filling D25-
brane and a compactified x25, but in which the radius of compactification is R̃ = α′/R.
T-duality of closed strings tells us that the physics of these two spacetimes is indistinguish-
able as far as closed strings are concerned. In this new spacetime, however, open strings
have their momentum quantized as p25 = n R/α′, and therefore the mass-squared gets a
contribution equal to n2 R2/α′2. It is clear that the spectrum of this open string theory does
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x 
25

D24-brane
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1,x 

2, ..., x 
24  

�Fig. 18.1 A D24-brane, represented schematically, with x25 a normal direction that is curled up into
a circle. The open string shown to the left wraps around the compact direction and is
non-contractible since its endpoints must remain fixed on the D24-brane. The open string
to the right can be contracted.

not coincide with that of the original open string theory on a circle of radius R. This implies
that open strings on a D25-brane can tell the difference between a compactification with
radius R and another with radius R̃ = α′/R. The inclusion of open strings seems to throw
a monkey-wrench into the idea of T-duality.

But there is a solution that preserves T-duality, even in the presence of open strings. We will
see that T-duality relates the spacetime with compactification radius R and a D25-brane to a
spacetime with compactification radius R̃ = α′/R and a D24-brane! The physics is equiv-
alent for both open and closed strings if the D25-brane in the original world is replaced
by a D24-brane in the dual world. In the dual world, x25 is the Dirichlet direction for the
D24-brane, and the corresponding open string coordinate is of DD type. By convention,
we set x25 = 0 to be the position of the brane along the compact direction.

In the dual world all open string endpoints must remain attached to points with x25 = 0.
As a result, there are new open string configurations that cannot be contracted away. An
open string that stretches from x25 = 0 up to x25 = 2π R̃, for example, winds around the
compact direction once. This string cannot be contracted because the endpoints are not
free to move along the compact dimension (see Figure 18.1). Open strings can wind any
number of times, just as closed strings do. Winding open strings resemble closed strings,
but they are not closed: the open string endpoints need not coincide. They typically lie on
different points on the D24-brane.

When we had a D25-brane and an x25 circle of radius R, the open string had quantized
momentum p25 but no winding. After the duality transformation we have a D24-brane and
an x25 circle of radius R̃. The Dirichlet boundary condition imposes a zero momentum
constraint, but the open string now has winding. The open string spectrum of the two
theories coincide when R̃ = α′/R, because the momentum states contribute to M2 in the
first theory in the same way as the open string winding states contribute to M2 in the second
theory. By allowing the duality transformation to modify the D-brane, we can preserve
T-duality in the presence of open strings. In summary,

T-duality along x25: (
D25 ; R

) −→ (
D24 ; R̃ = α′/R

)
. (18.2)
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Since the closed string spectrum is not affected by the D-branes, we have a complete
physical equivalence.

To show how this works explicitly, we begin by recalling the expansion (12.32) of an
NN-type open string coordinate. For X25(τ, σ ) ≡ X (τ, σ ), we write

X (τ, σ ) = x0 +
√

2α′ α0τ + i
√

2α′
∑
n 	=0

1

n
αn cos nσ e−inτ . (18.3)

We also have

α0 =
√

2α′ p = √
2α′ n

R
, (18.4)

since the momentum on the circle is quantized. The Hamiltonian for this open string is

H = L⊥0 − 1 = 1

2
α I

0α I
0 + N⊥ − 1 = α′ pi pi + 1

2
α0α0 + N⊥ − 1, (18.5)

where i = 2, . . ., 24, and N⊥ includes the contribution from the oscillators αi
n and αn . We

now separate the string coordinate X into left-moving and right-moving components:

X (τ, σ ) = X L(τ + σ)+ X R(τ − σ), (18.6)

where

X L = 1

2
(x0 + q0)+

√
α′
2

α0(τ + σ)+ i

2

√
2α′

∑
n 	=0

1

n
αne−inτ e−inσ ,

X R = 1

2
(x0 − q0)+

√
α′
2

α0(τ − σ)+ i

2

√
2α′

∑
n 	=0

1

n
αne−inτ e+inσ . (18.7)

The constant q0 is arbitrary. Inspired by closed string T-duality, where we reversed the sign
of the right movers in (17.85), we now define

X̃(τ, σ ) ≡ X L − X R, (18.8)

and then find

X̃(τ, σ ) = q0 +
√

2α′ α0 σ +√
2α′

∑
n 	=0

1

n
αne−inτ sin nσ . (18.9)

This is, in fact, the expansion for a string that stretches from one D-brane to another. We
recall equations (15.45) and (15.47), which give:

Xa(τ, σ ) = x̄a
1 +

√
2α′ αa

0 σ +√
2α′

∑
n 	=0

1

n
αa

n e−inτ sin nσ, (18.10)

together with
√

2α′αa
0 =

1

π
(x̄a

2 − x̄a
1 ). (18.11)

The coordinate difference x̄a
2 − x̄a

1 is the separation between the D-branes in the
a-direction. Equations (18.9) and (18.10) are in full correspondence. If we delete
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the superscript a from (18.10) and identify the constants x̄1 and q0, we recover the
expansion in (18.9).

Before giving the physical interpretation of the new coordinate X̃ , we explain why the
duality X → X̃ is a symmetry of the open string theory. Our work with Xa and Pa in
Section 15.3 proves that X̃ and P̃ = ∂τ X̃/(2πα′) satisfy the canonical commutation rela-
tions. Therefore the duality transformation does not alter the commutation relations. In
addition, the Hamiltonian is unchanged. The Hamiltonian for the sector including Xa is
obtained from (15.49):

H = 2α′ p+ p− = α′ pi pi + 1

2
αa

0 αa
0 +

∞∑
n=1

[
αi−n αi

n + αa−n αa
n

]
− 1. (18.12)

If we delete the superscript a, the correspondence implies that this is the Hamiltonian that
arises from X̃ and P̃ together with the other string coordinates. It is then clear that the
Hamiltonian coincides with the one given earlier in (18.5).

We can now turn to the physical interpretation. The string coordinate X̃ is of DD type,
since the endpoints are fixed: ∂τ X̃ = 0 for σ = 0 and σ = π . When σ goes from 0 to π ,
the open string stretches an interval

X̃(τ, π)− X̃(τ, 0) = √
2α′ α0 (π − 0) = 2πα′ p = 2π

α′

R
n = 2π R̃ n. (18.13)

Since n can take all possible integer values, the picture that emerges is that of an infinite
collection of D24-branes with a uniform spacing 2π R̃ along the x25 direction. Such a
configuration is indeed physically equivalent to a single D24-brane at some fixed position
on a circle of radius R̃.

It is interesting to note that duality interchanges boundary conditions. We have

∂σ X = X ′
L(τ + σ)− X ′

R(τ − σ) = ∂τ X̃ , (18.14)

and similarly

∂τ X = X ′
L(τ + σ)+ X ′

R(τ − σ) = ∂σ X̃ . (18.15)

This makes it clear that N and D boundary conditions are exchanged by T-duality. Indeed,
X is of NN type, and X̃ is of DD type. We summarize our facts on open string T-duality by

X = X L + X R , X̃ = X L − X R,

∂σ X = ∂τ X̃ , ∂τ X = ∂σ X̃ . (18.16)

The differential relations in (18.1) can be used to prove again, more conceptually, that
in the dual spacetime the open string winds around the compactified dimension:

X̃(τ, π)− X̃(τ, 0) =
∫ π

0
dσ∂σ X̃ =

∫ π

0
dσ∂τ X = 2πα′

∫ π

0
dσ Pτ = 2πα′ p,

in agreement with (18.13).
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The present considerations extend trivially to cases in which more than one dimension
is compactified. Consider a D25-brane in a world where k spatial dimensions are curled
up into circles. A simultaneous T-duality transformation on each circle gives a physically
equivalent world where we have a D(25 − k)-brane and each circle is replaced by a circle
with the dual radius. There is also no need to start with a D25-brane. If we curl up one circle
only and wrap one direction of a D3-brane around it, a T-duality along the circle will give
a D2-brane on a spacetime with a circle of dual radius. In general, if a Dp-brane stretches
around a compact dimension, T-duality along this direction will give a D(p − 1)-brane at
some fixed point on a circle of dual radius. All of these results hold trivially because a
T-duality along a given direction does not affect the open string coordinates corresponding
to other directions.

Since we use the light-cone gauge throughout, the T-duality that takes a Dp-brane into
a D(p − 1)-brane has only been established for p ≥ 2. Indeed, two or more spatial coor-
dinates must be Neumann: X1, to form together with X0 the light-cone coordinates X±,
and X along the compact direction. It is nevertheless true that T-duality holds for p = 1.
If we have a D1-brane wrapped around a circle, the equivalent T-dual configuration has a
D0-brane at some point on a circle of dual radius. This result can be proven using covariant
quantization of open strings.

18.2 U(1) gauge transformations

In this section we will examine Maxwell gauge transformations in detail. Gauge field
configurations related by gauge transformations are physically equivalent. It is therefore
necessary to understand gauge transformations in order to find the possible inequivalent
gauge field configurations. This is interesting because, just as D-branes change type under
T-duality, gauge field configurations on a D-brane also change in a dramatic way under T-
duality. Our previous understanding of gauge transformations does not suffice because of
two complicating factors. First, we will deal with compact dimensions, where topological
effects become important. Second, we include the effects of charges. Indeed, we learned in
Section 16.3 that an open string endpoint lying on a D-brane is seen as a charged particle
by the Maxwell field that lives on the D-brane.

The analysis of gauge transformations in the presence of charges is easily done by con-
sidering the Schrödinger equation for a nonrelativistic charged particle. In natural units
(h̄ = c = 1), the Hamiltonian for a particle with mass m and charge q (Problem 5.4) is

H = 1

2m
( �p − q �A)2 + q�. (18.17)

Recall that the potentials have natural units of mass, or inverse length, and that the charge
q is dimensionless. The Schrödinger equation is then

i
∂ψ

∂t
= 1

2m

(∇
i
− q �A

)2
ψ + q�ψ. (18.18)
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To test the gauge invariance of the classical mechanics of a charged point particle (Section
16.3), we only had to vary the electromagnetic potentials Aμ. The Schrödinger equation,
however, is not invariant under just a change in the vector potential. A gauge transformation
in quantum mechanics involves changes in both the potentials and the wavefunction. The
content of the Schrödinger equation remains invariant when the following changes are
made simultaneously:

�A −→ �A′ = �A +∇χ,

� −→ �′ = �− ∂χ

∂t
,

ψ −→ ψ ′ = exp (iqχ) ψ.

(18.19)

Here χ(x) is a function of spacetime. One can readily show (Problem 18.1) that the
Schrödinger equation for the primed variables,

i
∂ψ ′

∂t
= 1

2m

(∇
i
− q �A′

)2
ψ ′ + q�′ψ ′, (18.20)

is equivalent to the original Schrödinger equation (18.18). For future reference, let U (x)

denote the phase factor in the new wavefunction:

U (x) ≡ exp(iqχ(x)), ψ ′ = U ψ. (18.21)

Now comes the key shift in viewpoint. In the past (and in the first two lines of (18.19),
as well!), we have always written the vector potential gauge transformations as

A′μ = Aμ + ∂μχ, (18.22)

thinking of χ(x) as the gauge parameter. We will see that, in fact,

the gauge parameter is U (x). (18.23)

While this change is sometimes inconsequential, it has effects when there are compact
dimensions. If U is the gauge parameter, we must be able to write the gauge transformation
of Aμ in terms of U . The object (∂μU )U−1 is useful for this purpose, because

(∂μU )U−1 = (
∂μ exp(iqχ)

)
exp(−iqχ) = iq ∂μχ. (18.24)

It then follows that (18.22) is reproduced by

A′μ = Aμ − i

q
(∂μU )U−1. (18.25)

Maxwell theory is called a U (1) gauge theory, because the gauge parameter U (x) can
be viewed, for any fixed x , as an element of the group U (1). To understand this we must
explain what the U (1) group is and why it is relevant to gauge transformations.

The group U (1) is literally defined as the group of unitary matrices of size 1-by-1. A
1-by-1 matrix has just one entry u, and the unitarity condition, stating that the Hermitian
conjugate matrix equals the inverse matrix, gives u∗u = 1. We conclude that u is a complex
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number of unit norm: a phase factor u = exp(iθ). The set of complex numbers of unit
norm forms a group under multiplication: the multiplication of two complex numbers of
unit norm gives a complex number of unit norm, multiplication is associative, there is an
identity element u = 1 in the group, and any number exp(iθ) in the group has an inverse
exp(−iθ) in the group.

For any fixed spacetime point x , the gauge parameter U (x) is a phase factor; the possible
values of U (x) are therefore in one-to-one correspondence with the elements of the group
U (1). Since U is spacetime dependent, we have, in fact, a U (1)-group worth of possible
gauge parameters at each spacetime point. The gauge parameter U is best thought of as a
function from spacetime to the U (1) group; for each spacetime point we get a U (1) group
element.

The concept of a group is relevant to gauge theory because gauge transformations
performed in sequence combine according to the rule of group multiplication. We
claim that

a gauge transformation with parameter U2, followed by a gauge transformation
with parameter U1, is a gauge transformation with parameter U1U2.

This composition law is easily verified for the wavefunction ψ . Equation (18.21) implies
that the sequence of gauge transformations gives

ψ(x) −→ U2(x)ψ(x) −→ U1(x)(U2(x)ψ(x)) = (U1U2)(x) ψ(x). (18.26)

The gauge field Aμ transforms nontrivially under a gauge transformation only if U is not
a constant. The composition law also holds for the gauge field:

Aμ −→ Aμ − i

q
(∂μU2)U

−1
2 −→ Aμ − i

q
(∂μU2)U

−1
2 − i

q
(∂μU1)U

−1
1 , (18.27)

since the last two terms on the right-hand side are equal to

− i

q

(
∂μ (U1U2)

)
(U1U2)

−1. (18.28)

18.3 Wilson lines on circles

In this section we apply our discussion of gauge transformations to a world with a compact-
ified dimension. We will find gauge field configurations and effects that are reminiscent of
the classic Aharonov–Bohm effect. In the setup for the Aharonov–Bohm effect, there is a
solenoid which produces a magnetic field that is confined to its interior. Although a charged
particle that is moving outside the solenoid is moving in a region with �B = 0, the wave-
function of the particle is affected by the vector potential �A outside the solenoid. Since the
solenoid produces a nonzero magnetic field, the vector potential outside the solenoid can-
not vanish. In a simple gauge, for example, the vector potential goes around the solenoid.
The lesson of the Aharonov–Bohm effect is that in quantum mechanics there are magnetic
effects in regions of space that have zero magnetic field. This happens because the vector
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potential is nontrivial. In the Aharonov–Bohm effect, the physical source of the effect is
ultimately the magnetic field, since without it the interference effects would vanish. As
we will soon see, if we have a compact dimension, there are physical effects from vector
potentials even when the magnetic field vanishes everywhere.

Quick calculation 18.1 Show that, if a solenoid has magnetic flux � = ∫ �B · d�a, then∮ �A · d�l = � for a closed curve that surrounds the solenoid. How is this curve oriented?

Suppose the spatial dimension x is compactified into a circle. In addition, assume that the
vector potential �A vanishes except for a component Ax along the circle. In this case there
is no magnetic field anywhere! This may at first seem surprising, since a similar vector
potential wraps around a circular solenoid’s magnetic field. But because there is no space
“inside” the circular dimension, there is no magnetic field. As we will see, this vector
potential �A is not a gauge artifact; it affects the physics of particles just as if it were the
consequence of a magnetic field. In string theory, the analysis of such a setup is necessary
to understand how T-duality works for configurations of D-branes that do not coincide.

Consider a nonzero Ax that is a constant, independent of all coordinates, including the
compact dimension x . Can such a field exist? A field configuration can exist if it satisfies
the field equations of the theory. A constant Ax , with all other components of Aμ equal to
zero, gives zero Fμν , and this satisfies the source-free Maxwell equations. This solution can
be understood intuitively in three spatial dimensions. Consider a circular solenoid of radius
r0, whose axis coincides with the z axis. If the solenoid flux is � > 0, the vector potential
can be chosen to be in the azimuthal direction and to have a magnitude �/(2πρ), where
ρ is the distance to the axis of the solenoid. This configuration satisfies all equations of
motion outside the solenoid. Imagine now selecting a thin cylinder R < ρ < R + ε, where
R > r0 and ε is infinitesimal. The equations of motion are satisfied on this thin cylinder.
The solution that represents a constant �A which wraps around a compact dimension is
obtained by throwing away all the space inside and outside the cylinder and letting ε → 0.

Similar reasoning explains why a constant electric field can wrap around a compact
dimension. It is possible to have ∮

�

�E · d�l 	= 0 (18.29)

if � wraps around a compact dimension. Such an electrostatic field is not allowed in ordi-
nary space. For any closed curve � in ordinary space there is a surface S whose boundary
is �. Using Stokes’ theorem and the Maxwell equation ∇ × �E = 0, we then have∮

�

�E · d�l =
∫

S
(∇ × �E) · d�a = 0. (18.30)

If � wraps around a compact dimension, however, there is no surface for which � is the
boundary, and (18.30) then does not apply. Again, the existence of gauge potentials that
satisfy all relevant equations is the trustworthy guide. Since �E = −∂ �A/∂t , a constant Ex in
the x direction can be obtained with Ax = −Ex t . This gauge field satisfies all the relevant
field equations.
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So let us consider a vector potential Ax (x) along the compact dimension x . We will try
to classify the physically inequivalent configurations. Under a gauge transformation Ax

changes as (18.19)

Ax −→ Ax + ∂χ

∂x
. (18.31)

One might think that, since x and x + 2π R represent the same point, the parameter χ

should satisfy

χ(x + 2π R)
?= χ(x). (18.32)

To understand the implications of this candidate condition, we examine the line integral of
the vector potential around the circle:

w ≡ q
∮

dx Ax . (18.33)

Here we have defined the dimensionless quantity w associated with the gauge field along
the circle. We also define the holonomy W of the gauge field:

W ≡ exp(iw) = exp
(

iq
∮

dx Ax

)
. (18.34)

W is called a Wilson line. In our present context, the Wilson line associated with a closed
curve is simply the calculable phase factor that depends on the values of the gauge field
along the curve. After the gauge transformation (18.31) w is changed into w′:

w′ = q
∮

dx
(

Ax + ∂χ

∂x

)
= w + q

(
χ(x0 + 2π R)− χ(x0)

)
, (18.35)

where we used some arbitrary reference point x0 on the circle to do the integral. If we
assume the periodicity condition (18.32) then w′ = w. We will soon see that this is not the
correct picture.

Our analysis is flawed because of a failure of imagination, rather than a technical mis-
take. Equation (18.32) is sensible if χ(x) is the fundamental gauge parameter. But we
claimed in Section 18.2 that the gauge parameter is U (x). If U is the gauge parameter, it
must be periodic on the circle:

U (x + 2π R) = U (x). (18.36)

Since U = exp(iqχ), the above equation implies

q χ(x + 2π R) = q χ(x)+ 2πm, m ∈ Z, (18.37)

or, equivalently,

q
(
χ(x + 2π R)− χ(x)

) = 2πm. (18.38)

Note the dramatic change from (18.32). If U is the gauge parameter, χ(x) need only be
quasi-periodic! Moreover, looking back at equation (18.35), we see that

w′ = w + 2πm. (18.39)
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Therefore the physics does not change when we replace w by w + 2πm. We write w ∼
w + 2πm, or

q
∮

dx Ax ∼ q
∮

dx Ax + 2πm. (18.40)

As before, we interpret the above equation to mean that w lives on a unit circle, or that all
physically inequivalent values of w are represented on the fundamental domain

w = q
∮

dx Ax ∈ [ 0, 2π). (18.41)

The most natural interpretation is that w is really an angle. Thus we will write

θ ≡ w = q
∮

dx Ax . (18.42)

This is an important result. In the presence of compact dimensions, line integrals of the
vector potential are angular variables. Gauge transformations act as θ → θ + 2πm. We
will see that in string theory the abstract angle θ has a concrete physical interpretation. It
is worth noting that the Wilson line W = exp(iθ) is gauge invariant. Gauge equivalent θ

give the same holonomy W .
It is possible to write explicitly χ that are not single valued, but that, nevertheless,

lead to a single-valued U because they obey (18.38). There are infinitely many physically
equivalent choices, but the simplest one takes χ to be linear in the compact coordinate x :

q χ = (2πm)
x

2π R
= mx

R
. (18.43)

As x changes from 0 to 2π R, the quantity qχ changes by 2πm, as required in (18.38). For
this choice of χ , the gauge transformation changes the gauge field by a constant:

q Ax (x) −→ q Ax (x)+ m

R
. (18.44)

This gauge transformation implies that we can identify

q Ax ∼ q Ax + m

R
. (18.45)

The natural realization of a Wilson line is with constant Ax . In this case, (18.42) gives

q Ax = θ

2π R
. (18.46)

The presence of a Wilson line on a circle changes significantly the physics of a charged
particle. To see how this happens, we examine the Schrödinger equation

1

2m

(1

i

∂

∂x
− q Ax

)2
ψ = i

∂ψ

∂t
. (18.47)
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With Ax given in (18.46), energy eigenstates ψ(x, t) = e−i Etψ(x) satisfy

1

2m

(1

i

∂

∂x
− θ

2π R

)2
ψ(x) = Eψ(x). (18.48)

The wavefunction ψ(x) must be periodic: ψ(x + 2π R) = ψ(x). Therefore the solutions
take the form ψ�(x) ∼ exp(i�x/R), with � ∈ Z. The corresponding energy levels are

E� = 1

2m

( �

R
− θ

2π R

)2
. (18.49)

Note that the energy levels are shifted if θ 	= 0. In particular, the θ = 0 degeneracy between
±� energy levels is broken. Since θ is an angle variable the energy levels must remain
unchanged when we let θ → θ + 2π . Since � varies over all Z, we can easily see that
the set of energy levels is unchanged under this transformation. The shift θ → θ + 2π is
compensated by letting � → �+ 1. This confirmation that θ is naturally an angle variable
gives credence to our claim that U (x) is the fundamental gauge parameter. If χ had been
the gauge parameter all values of θ would be gauge inequivalent.

Quick calculation 18.2 Consider a gauge transformation with χ linear in x that takes θ →
θ + 2π . What does it do to ψ�?

18.4 Open strings and Wilson lines

We are now finally in a position to study the physics of open strings on D-branes that have
gauge fields characterized by holonomies. T-duality will provide a physical interpretation
for the angle variable that represents the gauge-field holonomy.

Consider a Dp-brane that wraps around a compact dimension x . This simply means that
one of the spatial directions along the Dp-brane is the x direction. A gauge field lives
on the world-volume of the Dp-brane. Let us now assume that this gauge field is such
that q

∮
Ax dx takes the value θ . What is the T-dual picture of this brane configuration?

We learned before that the dual world has a D(p − 1)-brane located at some position on
a circle of dual radius. But what does the parameter θ correspond to? The most obvious
guess is correct: θ parameterizes the position of the D(p − 1)-brane on the dual circle!
This gives a very concrete meaning to the formerly abstract angle variable. The situation is
illustrated in Figure 18.2.

What is the evidence for this interpretation of θ? First, the periodicity makes physical
sense since a D(p − 1)-brane at θ is the same as a D(p − 1)-brane at θ + 2π . Second, just
as the position of the D(p − 1)-brane on the circle does not affect the spectrum of open
strings that end on it, the Wilson line does not affect the spectrum of open strings with
endpoints on the Dp-brane. This is not readily apparent, given that charged particles are in
fact affected by Wilson lines. In the case of strings, however, the endpoints have opposite
charges so the string as a whole is neutral and the Wilson line has no effect. If a D-brane
wraps the compact dimension, the mass-squared for open string states is given as
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x

x

θ

Dp

D(p − 1) 

A

�Fig. 18.2 A Dp-brane wrapped on a circle, with a vector potential along the circle. In the T-dual
picture, the line integral of this gauge field becomes the angle that parameterizes the
position of the D(p− 1)-brane on the dual circle.

Dp

D(p − 1)

D(p − 1)

Dp

A1

A2

θ2

θ1

�Fig. 18.3 Two Dp-branes that wrap on a circle, one with parameter θ1 and the other with parameter
θ2. In the T-dual picture, we have two D(p− 1)-branes separated by an angle θ2 − θ1.

M2 = p2 + 1

α′
(N⊥ − 1), p = �

R
, (18.50)

where p is the quantized momentum in the compact direction, and N⊥ is the appropriate
number operator. For a particle, the addition of a Wilson line resulted in p changing into
p − q A in the Hamiltonian. This implied letting

�

R
→ �

R
− θ

2π R
, (18.51)

as we saw in (18.49). What happens with strings? Since strings have two endpoints with
opposite charges, if both endpoints lie on the same Dp-brane the effect is cancelled: p →
p − q A + q A = p. To give direct evidence for the interpretation of θ we need more than
one D(p − 1)-brane on the circle. In this case, the relative positions of the branes matter.

Consider therefore a string stretching between the two Dp-branes. The situation is
shown in Figure 18.3. Each D-brane has its own Maxwell field. Suppose the negatively
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charged endpoint lies on the first Dp-brane, with Wilson line parameter θ1, and the posi-
tively charged endpoint lies on the second Dp-brane, with Wilson line parameter θ2. The
momentum is then shifted from p to p + q A1 − q A2, and therefore

�

R
→ �

R
− θ2

2π R
+ θ1

2π R
. (18.52)

As a result, the mass-squared formula reads

M2 =
(2π�− (θ2 − θ1)

2π R

)2 + 1

α′
(N⊥ − 1), � ∈ Z. (18.53)

If θ1 = θ2 the effects of the holonomies cancel out. As we argued before, the same would
happen if both endpoints of the string were on the same brane.

The configuration T-dual to the two Dp-branes with different θ parameters consists of
two D(p − 1)-branes with different positions, corresponding to the two values of θ . We
can easily verify that the mass formulae are consistent. For example, consider the � = 0
states of the string that stretches between the two Dp-branes:

M2 =
(θ2 − θ1

2π R

)2 + 1

α′
(N⊥ − 1). (18.54)

If, as we claim, θ1 and θ2 are physical angles, then in the dual world there must be two
D(p − 1)-branes such that the angular difference between them is θ2 − θ1. The mass-
squared for a string that is stretched between these branes receives a contribution equal
to the length of the string multiplied by its tension, squared:

M2 =
(
(θ2 − θ1)R̃T0

)2 + 1

α′
(N⊥ − 1)

=
(
(θ2 − θ1)

α′

R

1

2πα′
)2 + 1

α′
(N⊥ − 1)

=
(θ2 − θ1

2π R

)2 + 1

α′
(N⊥ − 1), (18.55)

which exactly matches (18.54). This is strong evidence for our physical interpretation of
the θ parameter (18.42) as the angular position of D-branes in the T-dual configuration.

Two important points about T-duality are examined in the problems. The first concerns
the fact that the string coupling constant must change under a T-duality transformation
along a circle. We learned in Section 3.9 that Newton’s constant in the effective lower-
dimensional world is related to the higher-dimensional Newton constant and the volume
of the extra dimensions. This volume changes under T-duality since one circle changes its
radius. Moreover, the higher-dimensional Newton constant is set by the value of the string
coupling and α′ (see Section 13.4). If T-duality is a symmetry of the theory, then the lower-
dimensional Newton constant must be unchanged. After all, this constant is observable. If
the string coupling is g and the radius of the circle to be dualized is R, after T-duality the
value g̃ of the string coupling is (Problem 18.5)

g̃ =
√

α′
R

g. (18.56)
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The second point deals with the tension of D-branes (Problem 18.6). For a static string,
the tension multiplied by the length gives the mass. D-branes also have tension and mass.
For a static Dp-brane, the tension Tp of the brane multiplied by its volume Vp gives the
mass of the brane. Our work with D-branes has assumed that they are fixed hyperplanes,
or very heavy objects that are hardly affected by the open strings that are attached to them.
In fact, the tension Tp of a D-brane goes to infinity as the string coupling g → 0. The fact
that the mass of a wrapped D-brane must be unchanged under T-duality will allow you to
prove that

Tp(g) = τp

g
and Tp−1(g) = Tp(g) · 2π

√
α′. (18.57)

Here τp is a p-dependent, but g-independent constant that includes a suitable factor of
α′ to give the correct units to the tension. The second relation implies that the ten-
sions of all D-branes are related. It is conventional to choose the precise definition of
the string coupling (see (13.85)) in such a way that the tension of the D1-brane is
given by

T1(g) = 1

2πα′
1

g
. (18.58)

This formula is reminiscent of the string tension 1/(2πα′), which lacks the factor 1/g.
With the help of (18.57) the tensions of all D-branes are now determined. This formula
also gives the correct value for a D0-brane, whose tension is simply its mass.

Quick calculation 18.3 Find the explicit p-dependent expression of Tp(g). Confirm that
it has the correct units.

Problems

Problem 18.1 Gauge invariance of the Schrödinger equation.

To prove the gauge invariance of the Schrödinger equation it is useful to note that, for any
function M , and for U defined as in (18.21), we have(∇

i
− q �A − q∇χ

)
U M = U

(∇
i
− q �A

)
M.

Prove this result and use it to show that (18.20) is equivalent to (18.18).

Problem 18.2 Explicit T-duality of DN string coordinates.

Consider the expansion (15.72) for an ND string coordinate. Find the separate left-moving
and right-moving pieces, construct the dual string coordinate, and verify that it is of DN
type.
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Problem 18.3 T-duality invariance of the Hamiltonian.

Find the relations between Ẋ ± X ′ and ˙̃X ± X̃ ′. Use these relations, together with (15.8),
to explain why the string Hamiltonian is unchanged under T-duality.

Problem 18.4 T-duality of a Dp-brane with an electric field.

Assume we have a constant electric field Ex on the world-volume of a Dp-brane that is
wrapped around a circle of radius R in the x direction. Give the time-dependent Ax that
corresponds to this electric field. Using the T-dual of a Dp-brane with a holonomy, show
that the T-dual of the Dp-brane with an electric field is a D(p − 1)-brane on a circle of dual
radius, moving along the circle with a velocity vx = 2πα′Ex . As an additional consistency
check, use the original world of the Dp-brane with the electric field to calculate how long
the D(p − 1)-brane takes to go around the dual circle.

Problem 18.5 T-duality and the string coupling.

Consider a D-dimensional spacetime where p spatial dimensions have been curled up. One
of them is a circle of radius R, and the rest form a space of volume Vp−1. Let Ĝ denote
Newton’s constant in the (D − p)-dimensional effective spacetime. Write an expression
for Ĝ in terms of the string coupling g, α′, R, and Vp−1. Imagine now performing a T-
duality along the circle of radius R. Show that the invariance of Ĝ requires changing the
string coupling g into g̃, as given in (18.56).

Problem 18.6 D-brane tension and descent relations.

The tension Tp of a D-brane can be written in the form Tp = τp h(g), where g is the
string coupling, h is a function to be determined below, and τp is a p-dependent constant
that includes some suitable power of α′. Consider the setup of Problem 18.5, and imagine
wrapping a Dp-brane around the compact dimensions. The mass of this object, perceived
as a point particle by the lower-dimensional observer, must be unchanged under T -duality.
Use this condition to show that

τp h(g) 2π R = τp−1 h(g
√

α′/R).

Use this equation to prove (18.57). The first relation in (18.57) requires absorbing a p-
independent constant into the definition of τp.



19 Electromagnetic fields on D-branes

We now begin a study of D-branes that carry electric or magnetic fields on their
world-volume. Open strings couple to these electromagnetic fields at their end-
points. Using the tools of T-duality we show that a D-brane with an electric field
is physically equivalent to a moving D-brane with no electric field. The constraint
that a D-brane cannot move faster than light implies that the strength of an elec-
tric field cannot exceed a certain maximum value. We also show that a Dp-brane
with a magnetic field is T-duality equivalent to a tilted D(p − 1)-brane with no
magnetic field. Alternatively, the magnetic field on the Dp-brane can be thought
of as being created by a distribution of dissolved D(p − 2)-branes.

19.1 Maxwell fields coupling to open strings

Among the quantum states of open strings attached to a D-brane we found photon states
with polarizations and momentum along the D-brane directions. We thus deduced that a
Maxwell field lives on the world-volume of a D-brane. The existence of this Maxwell field
was in fact necessary to preserve the gauge invariance of the term that couples the Kalb–
Ramond field to the string in the presence of a D-brane. We also learned that the endpoints
of open strings carry Maxwell charge.

Since any D-brane has a Maxwell field, it is physically reasonable to expect that back-
ground electromagnetic fields can exist: there may be electric or magnetic fields that
permeate the D-brane. If the universe was the world-volume of a D-brane, an intergalactic
magnetic field would be an example of a background field. It is customary to think of back-
grounds as solutions of classical field equations. Historically, electromagnetism was first
studied using familiar backgrounds, such as the magnetic field of the earth, or the static
electric field of a charge. The study of these and other backgrounds led to a set of classi-
cal equations, Maxwell’s equations, which gave these backgrounds as classical solutions.
Eventually, physicists developed a quantum theory of electromagnetism, and this theory
predicts photon states. Note that our string theory discovery of electromagnetism ran com-
pletely in reverse. We found string quantum states that could be identified as photon states,
and through an analysis of the Schrödinger equations satisfied by the quantum states, we
recovered the classical equations of electromagnetism. Now, we want to study background
electromagnetic fields!
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Candidate background fields can be tested to see if they are consistent with string the-
ory. As we first discussed at the end of Section 16.1, to do so, we must re-quantize the
string, taking into account the effects of the candidate background fields. If the quantiza-
tion is successful then we may conclude that the candidate background fields are permitted
in string theory. After all, a successful quantization establishes that quantum string states
can consistently propagate on the given background. Although the quantizations we per-
formed previously only applied to strings in the absence of nontrivial background fields,
we already studied the effects of at least one background field. Our quantization of closed
strings gave rise to Kalb–Ramond states, and as closed strings are not confined to D-branes,
we concluded that Kalb–Ramond fields live on the full spacetime. Our previous discus-
sion was therefore an analysis of nontrivial Kalb–Ramond backgrounds. In that discussion
we introduced into the string action a new term, which couples the string to the Kalb–
Ramond background field (see (16.3)). We did not re-quantize the closed string with this
new term, except in the simple case considered in Problem 17.4. Rather, we examined the
implications of the new coupling for string motion and gauge invariance.

In this chapter we study the effects of electromagnetic backgrounds on open strings. We
will not embark on the details of the quantization; instead, we will assume that the quanti-
zation works out properly (as it does, for the backgrounds we will consider). In the present
section we derive the equations of motion for open strings in the presence of background
electromagnetic fields, and later we will use the tools of T-duality to gain new physical
insights. The discussion of electromagnetic fields on D-branes continues in Chapter 20,
where we will show that their dynamics is governed by the Born–Infeld theory of nonlinear
electrodynamics.

We learned in Chapter 16 how to describe the coupling of Maxwell fields to strings. The
string endpoints couple to the Maxwell potential Am in the same way as a charged particle
does. The coupling terms were given in equation (16.54); adding them to the string action
gives

S =
∫

dτdσ L(Ẋ , X ′)+
∫

dτ Am(X)
d Xm

dτ

∣∣∣
σ=π

−
∫

dτ Am(X)
d Xm

dτ

∣∣∣
σ=0

. (19.1)

Here L denotes the Nambu–Goto Lagrangian density. In our index convention μ, ν, . . . are
spacetime indices, which run from 0 to d, while m, n, . . . are brane world-indices, which
run from 0 to p. The index on the gauge potential Am , for example, is a brane world-index.
The indices i, j, . . . are spatial indices on the brane, which run from 1 to p, and a, b, . . .

are indices for directions normal to the brane, which run from p + 1 to d. We will only
consider backgrounds for which the electromagnetic field strength Fmn is a constant. If the
only nonvanishing entries are the F0i (= −Fi0) then the background is purely electric. If
the only nonvanishing entries are the Fi j then the background is purely magnetic. For a
constant Fmn the gauge potentials can be chosen to be

An(x) = 1

2
Fmn xm . (19.2)
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Quick calculation 19.1 Confirm that ∂m An − ∂n Am is equal to Fmn .

Making use of (19.2) the action S becomes

S =
∫

dτdσ L(Ẋ , X ′)+ 1

2

∫
dτ Fmn

(
Xm∂τ Xn |σ=π − Xm∂τ Xn |σ=0

)
. (19.3)

To find the equations of motion we use our earlier notation where Pτ
μ = ∂L/∂ Ẋμ and

Pσ
μ = ∂L/∂ Xμ′. Note that Pτ

μ is not the complete momentum conjugate to Xμ, since the
present L does not include the contributions from the endpoints and is therefore not the
complete Lagrangian density. Since the two endpoints enter into the string action almost
symmetrically, we calculate the variation of the action by focusing only on the σ = π

endpoint:

δS =
∫

dτdσ
(
Pτ

μ∂τ δXμ + Pσ
μ∂σ δXμ

)
+ 1

2

∫
dτ Fmn

(
δXm∂τ Xn + Xm∂τ δXn

)∣∣∣
σ=π

+· · ·, (19.4)

where the dots indicate terms contributed by the σ = 0 endpoint. The wave equation
∂τPτ

μ + ∂σPσ
μ = 0 continues to apply, but at the string endpoints there is a new constraint.

The only effect of electromagnetic fields is a change in the boundary conditions. We can
determine the boundary conditions by paying attention to the terms that involve variations
at the string endpoints. Since total τ derivatives are not relevant to the equations of motion,
the boundary terms that we should examine are

δS =
∫

dτdσ ∂σ (Pσ
μδXμ)+

∫
dτδXm Fmn∂τ Xn|σ=π + · · ·. (19.5)

For the coordinates normal to the brane, we have the usual Dirichlet boundary condition
δXa = 0. Focusing now on the variations δXm along the brane, we find

δS =
∫

dτ δXm
(
Pσ

m + Fmn∂τ Xn
)∣∣∣

σ=π
+· · ·. (19.6)

Since the Xm are coordinates on the brane, they carry free boundary conditions: no
constraint can be imposed on the variations δXm . As a result,

Pσ
m + Fmn∂τ Xn = 0, for σ = 0, π. (19.7)

Quick calculation 19.2 Convince yourself that (19.7) applies for σ = 0.

To simplify the boundary conditions we must choose a particular gauge. We impose the
orthonormality conditions

Ẋ · X ′ = 0, Ẋ2 + X ′2 = 0, (19.8)

which hold for both the static and light-cone gauges. We then have

Pσ
μ = − 1

2πα′
∂σ Xμ, (19.9)

and the boundary condition becomes
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∂σ Xm − 2πα′Fmn∂τ Xn = 0, σ = 0, π. (19.10)

Let us look briefly at the physics that is contained in this boundary condition in the case
of a pure magnetic field. Since F0i = 0, there is no change in the boundary condition for
X0 – it is still Neumann. On the other hand, for spatial directions along which there is a
magnetic field we get

∂σ Xi − 2πα′Fi j∂τ X j = 0, σ = 0, π. (19.11)

This boundary condition is of mixed type; it is neither Neumann nor Dirichlet. Suppose that
the only nonvanishing component of the magnetic field is F23 = −F32 ≡ B. The coordi-
nates X1 and Xi with i > 3 then satisfy Neumann boundary conditions, but X2 and X3

satisfy

∂σ X2 − 2πα′B ∂τ X3 = 0,
(19.12)

∂σ X3 + 2πα′B ∂τ X2 = 0.

If B is very large, then the first term in each equation is negligible when compared to the
second term. In this case the boundary conditions become, approximately,

∂τ X2 = ∂τ X3 = 0, σ = 0, π. (19.13)

As F23 = B becomes infinitely large, the motion of the string endpoints along the direc-
tions x2 and x3 of the brane is frozen! The string coordinates X2 and X3 have become
Dirichlet. It is as if the original Dp-brane is now filled with infinitely many D(p − 2)-
branes, one at each possible value of (x2, x3). The strings end on those D(p − 2)-branes
and cannot change their positions in the (x2, x3)-plane. If we begin with a D2-brane, the
motion of the string endpoints along the brane will be completely frozen. Although this
seems like a rather bizarre interpretation of the boundary condition, we will see later that
there is quantitative truth behind it.

19.2 D-branes with electric fields

In this section we will consider a D-brane with an electric field on its world-volume. We
will not examine the classical solutions that describe the motion of an open string in this
background (see, however, Problem 19.2); instead, our discussion will use T-duality to
learn about the physics of electric fields. We will assume that the electric field is constant
and points along a compact direction on the world-volume of a Dp-brane, and we will use
T-duality to relate this configuration to one in which a D(p − 1)-brane is moving along the
dual circle. This result was anticipated in Problem 18.4, but our analysis here will be more
general. The constraint that the velocity of the D(p − 1)-brane cannot exceed the velocity
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of light will imply that the value of the electric field in the Dp-brane cannot exceed a
critical value – electric fields on D-branes are bounded.

Our analysis will proceed in three steps. Our first step will be to find a user-friendly
way of writing the boundary conditions at the string endpoints. We will then use the same
language to express the equations that relate T-dual coordinates. Finally, applying a boost
and a T-duality transformation we will prove the above equivalence.

Consider a Dp-brane that wraps around a compact dimension x25 of radius R, and assume
that the brane carries an electric field along this direction:

F25,0 = E25 ≡ E . (19.14)

Let us look at the string boundary conditions. The only interesting directions are X0 and
X25, and from (19.10) we see that

∂σ X0 − 2πα′F0,25∂τ X25 = 0,

∂σ X25 − 2πα′F25,0∂τ X0 = 0. (19.15)

Using (19.14), X0 = −X0, and writing X25 ≡ X , we find

∂σ X0 − E ∂τ X = 0,

∂σ X − E ∂τ X0 = 0, (19.16)

where we define the dimensionless electric field E as

E ≡ 2πα′ E . (19.17)

Our next objective is to write the above boundary conditions in a more manageable
form. We fit the two dynamical variables X0 and X into a column vector and look for
boundary conditions that take the form of invertible linear relations between derivatives
of the column vector. The derivatives ∂τ and ∂σ are not appropriate for this. A Neumann
boundary condition, for example, simply requires that the σ derivative of the column vector
vanishes, and this is not an invertible linear relation between σ and τ derivatives of the
column vector. To obtain relations of the desired form we introduce new partial derivatives:

∂+ ≡ 1
2 (∂τ + ∂σ ), ∂− ≡ 1

2 (∂τ − ∂σ ). (19.18)

Solving for ∂τ and ∂σ , we obtain

∂τ = ∂+ + ∂−, ∂σ = ∂+ − ∂−. (19.19)

Rewriting the boundary conditions (19.16) in terms of ∂± and collecting the ∂+ and ∂−
derivatives on the left- and right-hand sides, respectively, we find

∂+X0 − E ∂+X = ∂−X0 + E ∂−X,

−E ∂+X0 + ∂+X = E ∂−X0 + ∂−X. (19.20)
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Solving for ∂+X0 and ∂+X gives

∂+
(

X0

X

)
=

⎛
⎜⎜⎜⎝

1 + E2

1 − E2

2E
1 − E2

2E
1 − E2

1 + E2

1 − E2

⎞
⎟⎟⎟⎠ ∂−

(
X0

X

)
. (19.21)

This is the desired form of the boundary conditions. These equations hold at the endpoints
σ = 0, π . Note that the matrix above has unit determinant. Moreover, the entries of the
matrix become singular when E = ±1.

Quick calculation 19.3 Prove equation (19.21).

We also need to express in this new language the Neumann and Dirichlet boundary con-
ditions, and the T-duality relations, as well. If a pair of coordinates X0 and X satisfy
Neumann boundary conditions ∂σ X0 = ∂σ X = 0, then in terms of ∂± these conditions
read

∂+X0 = ∂−X0,

∂+X = ∂−X, (19.22)

or, in matrix form,

∂+
(

X0

X

)
=
(

1 0
0 1

)
∂−

(
X0

X

)
for {X0, X} = {N, N}. (19.23)

Thus, in terms of our linear relations, Neumann boundary conditions lead to an identity
matrix. If X0 is of Neumann type and X̃ is of Dirichlet type, then ∂σ X0 = ∂τ X̃ = 0. In
terms of ∂+ and ∂−, then,

∂+X0 = ∂−X0,

∂+ X̃ = −∂− X̃ , (19.24)

or, in matrix form,

∂+
(

X0

X̃

)
=
(

1 0
0 −1

)
∂−

(
X0

X̃

)
for {X0, X̃} = {N, D}. (19.25)

As we studied before (see (18.1)), the T-dual coordinate X̃ is obtained by changing the sign
of the right movers in X :

X = X L(τ + σ)+ X R(τ − σ),

X̃ = X L(τ + σ)− X R(τ − σ). (19.26)

Simple relations then follow for the ∂± derivatives:

Duality relations: ∂+X = ∂+ X̃ , ∂−X = −∂− X̃ . (19.27)

Since T-duality exchanges Neumann and Dirichlet boundary conditions, (19.27) can be
used to obtain equations (19.23) and (19.25) from one another. Equations (19.27) hold for
all values of σ , including σ = 0 and σ = π .
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�Fig. 19.1 On the left is a Dp-brane wrapped on a circle of radius R. On the right is a D(p− 1)-brane on
the dual circle of radius R̃. The D(p− 1)-brane is at rest in the frame S′, which is boosted
with respect to the frame S.

We can now return to our present problem. We showed in Section 18.1 that a Dp-brane
with one direction wrapped around a circle of radius R is T-dual to a world in which a
D(p − 1)-brane is localized at some point on a circle of radius R̃ = α′/R. Our problem
is to find the dual description of a Dp-brane which, in addition to being wrapped around
a compact dimension, carries an electric field that points in this direction. The boundary
conditions for such a Dp-brane are given by (19.21). We claim that the dual description
of this configuration is a D(p − 1)-brane moving with constant velocity around the dual
compact dimension. Our strategy will be to show that the T-dual of this moving brane
configuration is described by boundary conditions that coincide with those in (19.21).

Let S be the frame which is at rest on the circle along which the D(p − 1)-brane is moving,
and let S′ be the rest frame of the D(p − 1)-brane (see Figure 19.1). The S′ frame is boosted
relative to the S frame by the boost parameter β = v/c, where v is the speed of the brane.
In the S′ frame the D(p − 1)-brane is at rest, so we can express the boundary conditions
for strings ending on the D-brane in terms of the S′ string coordinates. Let X ′0 and X̃ ′
denote the string coordinates in the S′ frame (primes are not σ derivatives!). Since X ′0 is
Neumann and X̃ ′ is Dirichlet, we can use equation (19.25) to write

∂+
(

X ′0
X̃ ′

)
=
(

1 0
0 −1

)
∂−

(
X ′0
X̃ ′

)
. (19.28)

We need the boundary conditions in the S frame, since this is the frame in which we know
how to perform the T-duality transformation. To find them, we use the Lorentz boost

X ′0= γ (X0 − β X̃ ),

X̃ ′ = γ (−β X0 + X̃), (19.29)
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where X0 and X̃ are the string coordinates in the S frame and γ = (1 − β2)−1/2. In matrix
language: (

X ′0
X̃ ′

)
= γ

(
1 −β

−β 1

)(
X0

X̃

)
≡ M

(
X0

X̃

)
, (19.30)

where we defined the constant matrix M . Substituting (19.30) into (19.28), noting that M
commutes with the partial derivatives, and multiplying both sides of the equation by M−1,
we get

∂+
(

X0

X̃

)
= M−1

(
1 0
0 −1

)
M ∂−

(
X0

X̃

)
. (19.31)

This equation gives the string boundary conditions in the S frame.
Now we can perform a T-duality transformation on the X̃ coordinate. Using the duality

relations (19.27), we see that the X̃ on the left-hand side can be changed into X , and the X̃
on the right-hand side can be changed into (−X), if we include another matrix:

∂+
(

X0

X

)
= M−1

(
1 0
0 −1

)
M

(
1 0
0 −1

)
∂−

(
X0

X

)
. (19.32)

A small calculation now gives

∂+
(

X0

X

)
=

⎛
⎜⎜⎜⎝

1 + β2

1 − β2

2β

1 − β2

2β

1 − β2

1 + β2

1 − β2

⎞
⎟⎟⎟⎠ ∂−

(
X0

X

)
. (19.33)

These are the open string boundary conditions for the theory dual to the moving D(p − 1)-
brane. As promised, they coincide with those in (19.21), which were written for a Dp-brane
carrying an electric field, if we set

E = 2πα′E = β. (19.34)

Our main result can thus be summarized:

a D(p − 1)-brane that is moving with velocity parameter β on a circle is T-dual
to a Dp-brane that is wrapped on the dual circle and that carries an electric field
E = β along the direction of the circle.

Furthermore, since no object with a rest mass can reach the speed of light, β < 1, and
we discover that the electric field is bounded:

|E | = |β|
2πα′

<
1

2πα′
= Ecrit. (19.35)

Ecrit denotes the critical electric field, the maximum value of an electric field on a D-brane
(in the absence of magnetic fields). Interestingly, the critical electric field coincides with
the string tension:

Ecrit = T0. (19.36)
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�Fig. 19.2 A Dp-brane stretched on a cylinder of circumference 2π R̃3. By performing a T-duality
transformation on X̃ 3, we obtain a D(p− 1)-brane stretched along the axis of a dual cylinder.

We can give an intuitive explanation for this equality by considering the motion of an open
string in an electric field. As we have seen, an open string has charges of value ±1 at the
endpoints. Two forces that must cancel out act on each (zero mass) endpoint: the electric
force of magnitude E and the effective tension T0(1 − v2⊥)1/2 (see (7.15)). For E < T0 the
two forces can be balanced for a suitable endpoint velocity v⊥. When E = T0 the endpoints
must stop moving. Finally, for E > T0 the forces at the endpoints cannot be balanced. This
discussion is nicely illustrated in the detailed analysis of Problem 19.2.

19.3 D-branes with magnetic fields

We will now explore the properties of D-branes that carry magnetic fields on their world-
volume. Again, our main tool will be T-duality, and we will gain considerable insight by
constructing the T-dual version of a D-brane that is carrying a background magnetic field.
The motion of open strings in a background magnetic field is of interest, but this subject
is relegated to Problem 19.5. There you will show that an open string develops an electric
dipole moment in a direction orthogonal to the motion; the magnitude of the electric dipole
is proportional to both the magnetic field and the momentum of the string.

Consider a Dp-brane for which two directions of its world-volume lie on the (x2, x̃3)

plane. Assume that the dimension x̃3 is compactified into a circle of radius R̃3, so that x2

and x̃3 together define a cylinder of circumference 2π R̃3 (see Figure 19.2). The open string
coordinates will be denoted by X2 and X̃3, and both of them are Neumann. If we perform
a T-duality transformation on the string coordinate X̃3, then the dual coordinate X3 will
live on a circle of radius R3 = α′/R̃3. The coordinate X3 is Dirichlet, and we now have a
D(p − 1)-brane stretching along x2 at a fixed position x3 = 0. This dual picture is shown
on the right side of Figure 19.2. On the dual cylinder, the D(p − 1)-brane appears as a line
that runs parallel to the axis of the cylinder.

Now suppose that there is a nonvanishing magnetic field F23 = B on the Dp-brane.
What happens in the dual world? It turns out that the D(p − 1)-brane tilts by an angle.
Electric fields appear as boosts in the dual world; magnetic fields appear as rotations! To
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�Fig. 19.3 The D-brane lies along the rotated axis x′2. �x 2 is the distance that one must move along
the length of the cylinder for the D-brane to have wrapped once along the compact vertical
direction. The rotation angle α is related to the magnetic field on the T-dual D-brane.

demonstrate this, we begin by writing the boundary conditions for open strings that end on
the Dp-brane that carries the magnetic field. From (19.12) we have

∂σ X2 − B∂τ X̃3 = 0,

∂σ X̃3 + B∂τ X2 = 0, (19.37)

where we define the dimensionless magnetic field B as

B ≡ 2πα′ B. (19.38)

In terms of ∂+ and ∂− the boundary conditions take the form

∂+
(

X2

X̃3

)
=

⎛
⎜⎜⎜⎝

1 − B2

1 + B2

2B
1 + B2

− 2B
1 + B2

1 − B2

1 + B2

⎞
⎟⎟⎟⎠ ∂−

(
X2

X̃3

)
. (19.39)

These boundary conditions encode all the effects of the magnetic field. The equations of
motion for the string coordinates are the usual wave equations, which are unchanged by
the presence of the magnetic field.

Quick calculation 19.4 Show that (19.39) follows from (19.3).

Consider now a D(p − 1)-brane that is tilted on the cylinder, as illustrated in Figure 19.3.
This brane wraps around the cylinder as it advances along its length. If x3 were not com-
pactified, then a tilted brane would be physically equivalent to a horizontal brane. But with
the compactification of x3 the tilting of the D-brane has consequences. Assume that the
tilting angle is α when the magnetic field is B. Our goal is to calculate α as a function of
B. The boundary conditions for the tilted D-brane are easily expressed in terms of a coor-
dinate system x ′2, x ′3 that is rotated by the angle α. In this frame the D-brane coincides
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with the x ′2 axis. Since X ′2 and X ′3 are Neumann and Dirichlet, respectively, equation
(19.25) applies:

∂+
(

X ′2
X ′3

)
=
(

1 0
0 −1

)
∂−

(
X ′2
X ′3

)
. (19.40)

Now we perform a rotation in order to change coordinates to the unprimed frame. It is easy
to figure out the proper rotation matrix from the geometry of the problem:(

X ′2
X ′3

)
=
(

cos α sin α

− sin α cos α

)(
X2

X3

)
≡ R

(
X2

X3

)
, (19.41)

where we defined the rotation matrix R. Back in (19.40) we then find

∂+
(

X2

X3

)
= R−1

(
1 0
0 −1

)
R ∂−

(
X2

X3

)
. (19.42)

We now perform the duality transformation that takes X3 to X̃3. This is done by including
an additional matrix in the right-hand side above:

∂+
(

X2

X̃3

)
= R−1

(
1 0
0 −1

)
R

(
1 0
0 −1

)
∂−

(
X2

X̃3

)
. (19.43)

Multiplying the matrices together, we finally get

∂+
(

X2

X̃3

)
=
(

cos 2α − sin 2α

sin 2α cos 2α

)
∂−

(
X2

X̃3

)
. (19.44)

Now we can compare this result with (19.39). There is a clear similarity between the two
matrices: in both cases the two terms on the diagonal are the same, and the off-diagonal
terms differ by only a sign. Let us solve for B using the diagonal terms, and then we will
check that for this solution the off-diagonal terms are correct. We have

1 − B2

1 + B2
= cos 2α, (19.45)

which gives

B2 = 1 − cos 2α

1 + cos 2α
= 1 − (1 − 2 sin2 α)

1 + (2 cos2 α − 1)
= tan2 α, (19.46)

and thus we have B = ± tan α. We will check below that the negative sign is the correct
one, so

B = 2πα′B = − tan α. (19.47)

A zero magnetic field produces no rotation, and it requires an infinite magnetic field to
rotate the D-brane by an angle of ninety degrees. Finally, we can use the value of B in
(19.47) to confirm that the off-diagonal entries in the boundary conditions work out:

2B
1 + B2

= −2 tan α

sec2 α
= − sin 2α, (19.48)
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as expected, and confirming that we chose the correct sign in (19.47). Since the boundary
conditions match perfectly, we have proven that the tilted D-brane is the dual version of
the D-brane with the magnetic field. Moreover, we have found the precise relation between
the angle α and the magnetic field B.

To learn more from this problem, we now examine the vector potentials in the Dp-brane
picture. We must find potentials A2 and A3 that give F23 = ∂2 A3 − ∂3 A2 = B. Let us
choose

A2 = 0, A3 = B x2. (19.49)

We would have found the same B had we chosen instead A2 = −B x̃3 and A3 = 0, but we
would then have had some complications because x̃3 is not a well defined coordinate.

The potential A3 lies along a compact dimension and is therefore a periodic quantity
(see Section 18.3). Using (18.45) with q = 1, we see that

A3 ∼ A3 + n

R̃3
, n ∈ Z. (19.50)

This identification implies that a change in A3 will have no physical effect if this change
is quantized in units of the inverse radius R̃3. It follows that the linear growth of A3 along
x2 encodes some periodicity along the x2 direction. The configuration must be invariant
under any displacement �x2 that satisfies

�A3 = B�x2 = n

R̃3
. (19.51)

The interpretation of this periodicity is quite striking in the dual world. Using dual
variables, recalling (19.47), and letting n →−n for convenience, we see that

�x2 = −n R3

α′B
= −2πn R3

2πα′B
= 2πn R3

tan α
. (19.52)

It is convenient to rewrite this equation as

tan α = 2πn R3

�x2
, n ∈ Z. (19.53)

The smallest displacement �x2 which leads to repetition corresponds to n = 1:

tan α = 2π R3

�x2
. (19.54)

As you can see in Figure 19.3, since the D-brane is at an angle α, it completes a full wrap-
ping of the x3 direction precisely after moving a distance �x2. In this dual picture things
repeat explicitly each time the D-brane completes a wrapping of the compact dimension.
This provides a concrete realization of the periodicity property of the gauge potential in
the original picture.

Since the relevant physics repeats along the x2 axis, we can compactify this direction into
a circle of radius R2, where 2π R2 is the smallest repetition length:

2π R2 = �x2 = 2π R3

tan α
. (19.55)
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�Fig. 19.4 A D-brane wrapped around a torus of radii R 2 and R 3. The fundamental domain of the torus
is shaded. The D-brane is tilted at an angle α such that, as it goes around the x 2 circle, it
wraps three times around the x 3 circle.

This turns the cylinder around which the D-brane wraps into a torus with radii R2 and R3.
The D-brane, once infinitely long, is now of finite length. It wraps diagonally across the
fundamental domain of the torus, which is shown as shaded in Figure 19.3. Equivalently,
as it wraps once around x2, it also wraps once around x3. The Dp-brane world also has a
torus, with radii R2 – since we do not T-dualize in this direction – and R̃3.

Suppose now that on the torus where the D-brane wraps diagonally we change the angle
α in such a way that

tan α = n
2π R3

2π R2
= n

R3

R2
, (19.56)

with n > 1. In Figure 19.4 we show the case n = 3. Equation (19.56) represents the situ-
ation in which the D-brane wraps n times around the x3 direction as it wraps once around
the x2 direction. What is the significance of the integer n in the dual world with the mag-
netic field? To find out, we calculate the total magnetic flux � on the torus. The flux is
simply the magnetic field multiplied by the area of the fundamental domain:

� = B (2π R̃3) (2π R2). (19.57)

Using the value of the magnetic field (19.47), writing R̃3 in terms of R3, and using (19.56),
we can simplify the expression for the flux:

� = − tan α

2πα′
2πα′

R3
2π R2 = −2π

R2

R3
tan α = −2πn. (19.58)

This means that the magnetic flux is quantized! Since B is uniform, it must be quantized
as well. Geometrically, this quantization emerges because, on a given torus, a D-brane
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�Fig. 19.5 A D-brane wrapping three times around the short circle of a torus as it travels along the
long circle of the torus. In the limit that a → a′, b → b′, and c → c′, the figure becomes one
in which there are three D-branes wrapped around the short circle and one D-brane
wrapped around the long circle.

can only be tilted at specific angles if it is to close after one winding in the x2 direction.
Actually, one can derive the quantization of the magnetic flux on a torus directly (see
Problem 19.3), and there is no need to assume that the magnetic field is constant over the
torus. What happens in our context if the magnetic field is not constant? A nonconstant,
but static, magnetic field does not satisfy the relevant equations of electromagnetism, so
this makes the question about the T-dual configuration somewhat ambiguous. The T-dual
D-brane on the dual torus is not expected to appear as a straight line but rather as a curve.
Because of the brane tension, this configuration cannot be static either.

There is a sense in which a tilted D(p − 1)-brane that wraps n times around x3 as it
wraps once around x2 is in the same class as a configuration composed of one D(p − 1)-
brane that only wraps in the x2 direction and n D(p − 1)-branes that only wrap in the x3

direction:

D(p − 1)-brane (along x2) and n D(p − 1)-branes (along x3). (19.59)

Consider Figure 19.5, which shows the torus when n = 3. We have deformed the D-brane
so that it is no longer a straight line. Most of the D-brane trajectory is horizontal except
for the wrappings around x3, which now occur rapidly. Since we can achieve this config-
uration by a continuous deformation of the original straight D-brane, this must preserve
the quantized flux on the dual brane, although the B field would not be expected to remain
constant. In the limit that a → a′, b → b′, and c → c′, the D-brane turns into a single
horizontal D-brane and three vertical D-branes. In general, we have the set of branes indi-
cated in (19.59). The configuration in (19.59) may be static since the branes are once
again straight lines on the torus. The original tilted D-brane configuration and the final
configuration (19.59) are related by a deformation process. They are not physically equiv-
alent configurations; instead, they are deformation equivalent, meaning that they can be
deformed into each other. The precise mathematical statement is that the curves defining
the two brane configurations are homologically equivalent.

Now consider performing, once again, a T-duality transformation in the x3 direction.
Previously, T-duality turned the tilted D(p − 1)-brane into a Dp-brane with a magnetic
field. This time the result of T-duality on (19.59) is different. The D(p − 1)-brane along
x2 becomes a Dp-brane in the dual world. The n D(p − 1)-branes in the x3 direction,
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however, become n D(p − 2)-branes, located at certain fixed points on the torus. So in the
dual world we have one Dp-brane and n D(p − 2)-branes:

Dp-brane and n D(p − 2)-branes. (19.60)

This shows that the original Dp-brane with a constant magnetic field is deformation equiv-
alent to a Dp-brane with a number n of D(p − 2)-branes on its world-volume. A D2-brane
with a constant magnetic field of flux 2πn, for example, is deformation equivalent to a
D2-brane with n D0-branes on its world-volume. The deformation that takes the latter into
the former is the process where the D0-branes dissolve into the torus. The physical pic-
ture is clear: D0-branes on a D2-brane represent a magnetic field that vanishes everywhere
except at the positions of the D0-branes, where it has infinite magnitude but finite flux. A
constant magnetic field with the same flux is possible, and the spread-out magnetic field
represents the dissolved D0-branes. The technical implication of the word dissolved is that
the resulting configuration is a bound state: it has less energy than the total energy of the
constituent D2- and D0-branes taken separately. The energies actually add in quadrature,
as you will prove in Problem 19.4. An extremely strong magnetic field can be viewed as
a D2-brane with infinitely many dissolved D0-branes. This was the picture suggested by a
direct analysis of the boundary conditions at the end of Section 19.1.

Problems

Problem 19.1 Constant electromagnetic fields on D-branes from constant Bμν in
spacetime.

We would like to show that a Dp-brane with a constant electromagnetic background field
F̄mn is equivalent to a Dp-brane with Fmn = 0 but in a spacetime with a constant Kalb–
Ramond field Bmn = F̄mn . The indices m, n are brane indices.

(a) Refer to Section 16.3, and consider a situation where Bmn = F̄mn is a nonzero constant
and Fmn = 0. Find an explicit gauge parameter for which the transformed fields are
Bmn = 0 and Fmn = F̄mn . Note that, as expected, the gauge invariant field strength
Fmn is unchanged.

(b) Let Bmn be a constant Kalb–Ramond field. Consider the action (16.45), and show that
the integrand is a total derivative. Drop the total τ derivatives, and show that for open
strings the total σ derivatives contribute

SB = 1

2

∫
dτ Bmn

(
Xm∂τ Xn|σ=π − Xm∂τ Xn|σ=0

)
.

Compare with (19.3) and comment.

Problem 19.2 Motion of an open string in a constant electric field.

Consider the motion of an open string in the background of an electric field of magnitude
E = E/2πα′ that points in the x1 direction. When E → 0 the motion is rigid rotation in
the (x2, x3) plane. We use string coordinates Xμ = (X0, X1, �X) where �X = (X2, X3).
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All other coordinates are set equal to zero. The classical solution must satisfy the boundary
conditions

∂σ X0 − E ∂τ X1 = 0, ∂σ X1 − E ∂τ X0 = 0, ∂σ
�X = 0, (1)

as well as the wave equations and constraints:

(∂2
τ − ∂2

σ )Xμ = 0, Ẋ · X ′ = 0, Ẋ2 + X ′2 = 0. (2)

We look for a solution in which the string rotates around the x1 axis with angular frequency
ω but is not restricted to lie on the (x2, x3) plane. Construct the solution beginning with
the ansatz

(X0, X1, X2, X3) =
(
α τ, β(σ − π

2 ), γ cos σ cos τ, γ cos σ sin τ
)
. (3)

(a) Examine equations (1) and (2) and fix the constants α, β, and γ in terms of ω and E .
(b) Give �X(t, σ ), and show that the velocity of the endpoints is v = √

1 − E2. Show also
that the string is stretched along the x1 axis a total distance �X1 = πE/ω.

(c) Plot the string in the (x1, x2) plane at t = 0. Show that at the endpoints, the string
points in the direction of the electric field. Interpret this result by verifying that the
effective string tension cancels the electric force at the endpoints. Show that at the
origin

d X2

d X1

∣∣∣
X1=0

= −
√

1

E2
− 1. (4)

Does this make sense for 0 ≤ E ≤ 1? Describe the solution in the limit as E → 1 with
ω finite.

(d) Prove that the string energy U = ∫
T0ds(1 − v2⊥)−1/2 is equal to πT0/ω, for all values

of the electric field.

The front cover of the book shows three surfaces generated by the motion of open strings.
The surfaces are obtained for E = 0.3, 0.6, and 0.95. Construct the associated plot of the
three strings at t = 0 on the (x1, x2) plane, setting ω = 1. The back cover shows the strings
on the (x1, x2) plane at t = 0 and half a period later. The front cover shows the surfaces
generated by the motion of the strings.

Problem 19.3 Quantization of magnetic flux on two-tori.

In this problem you will show that the flux � of the magnetic field on a two-torus
is quantized: � = 2πn, with n ∈ Z. This quantization emerges when we try to con-
struct a consistent vector potential. We assume, of course, that the Maxwell gauge group
is U (1) and, as explained in Section 18.2, the gauge parameter is U = exp(iχ) (with
q = c= h̄= 1).

Consider a two-torus of length Lx along the x axis and length L y along the y axis. Let
F12 = ∂x Ay − ∂y Ax = B, where B is the value of the magnetic field.

(a) Assume the magnetic field B = B0 is constant. Take Ay(x, y) = B0x and Ax = 0.
Note that Ay(x + Lx , y) 	= Ay(x, y). Allow for Ay(x + Lx , y) to be gauge equivalent
to Ay(x, y). Show that the condition of having a well defined gauge parameter leads
to the desired quantization.
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(b) Consider the flux integral of the magnetic field (not necessarily a constant one), and use
Stokes’ theorem to relate it to a line integral of the vector potential around the four sides
of the rectangle 0 ≤ x ≤ Lx , 0 ≤ y ≤ L y . Use the gauge transformation properties of
gauge-field line integrals to argue that the magnetic flux is properly quantized.

Problem 19.4 Dissolved D(p − 2)-branes.

Consider a Dp-brane that is wrapped on a torus with radii R2 and R̃3 and carries a magnetic
field with flux |�| = 2πn (as in Section 19.3). The other p − 2 dimensions on the brane
are wrapped around a compact space of volume Vp−2. Assume that the string coupling
constant takes the value g. The energy E of this configuration is equal to the energy of
the T-dual configuration (dualized along R̃3) where a D(p − 1) brane wraps along the dual
torus. Show that

E = Tp−1(g̃) Vp−2

√
(2π R2)2 + (2π R3n)2, (1)

where g̃ is the string coupling in the dual configuration. Now rewrite E in terms of variables
in the original picture with the Dp-brane and the magnetic field, showing that

E =
√

M2
p + (nMp−2)2, (2)

where Mp is the mass of the Dp-brane and Mp−2 is the mass of a D(p − 2) brane. Explain
why this result shows that the energy E is smaller than the sum of the energies of the
Dp-brane and n D(p − 2)-branes. This justifies the description of the configuration as one
where n D(p − 2)-branes have dissolved inside the Dp-brane.

Problem 19.5 Motion of an open string in a constant magnetic field.

Consider the following expansion for a spatial open string coordinate on the world-volume
of a D-brane with a constant magnetic field:

Xi (τ, σ ) = xi + 2α′(piτ + 2πα′Fi j p jσ). (1)

The coordinates Xi clearly solve the wave equations. Moreover, assume that

X0 = 2α′ p0τ. (2)

(a) Prove that, for a calculable value of p0 that you should determine, the ansatz in (1)
and (2) satisfies: the boundary conditions (19.11), the constraint Ẋ · X ′ = 0, and the
constraint Ẋ2 + X ′2 = 0.

(b) Let �Xi = Xi (τ, π)− Xi (τ, 0) denote the “span” of the string. Verify that

�Xi = (2πα′)2 Fi j p j and pi�Xi = 0.

Since the electric dipole of an open string is a vector parallel to its span (why?), we
conclude that the dipole is perpendicular to the momentum.

(c) For motion in three space dimensions, we have Fi j = εi jk Bk . Show that

� �X = (2πα′)2 �p × �B.

The dipole moment is orthogonal to both �B and �p.
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(d) Let Bk = 2πα′Bk . Show that the velocity of the string is given by

�v = �n√
1 + �B · �B − ( �B · �n)2

,

where �n is a unit vector in the direction of the momentum. Note that when Bk → 0 we
have |�v| → 1, so that the string approaches the speed of light.

(e) In flat space the dot product of two vectors �a and �b is defined by �a · �b = ai b jηi j =
ai bi . Now introduce a new product ∗ defined by

�a ∗ �b = ai b j η̄i j , where η̄i j ≡ ηi j (1 + �B · �B)− BiB j .

Show that the mass-shell condition for the string can be written as

−(p0)2 + �p ∗ �p = 0.

Moreover, show that the velocity of the string satisfies

�v ∗ �v = 1.

The metric η̄i j is called the open string metric. It is a natural metric for the physics of
open strings in the presence of a magnetic field. In the open string metric, the motion
studied here shares the properties of free open string motion.



20 Nonlinear and Born−Infeld electrodynamics

We introduce nonlinear theories of electrodynamics, which generalize the linear
Maxwell theory. Born–Infeld electrodynamics is a specific theory of nonlinear
electrodynamics with particularly nice properties. It incorporates maximal elec-
tric fields, and in it point charges have finite electrostatic self-energy. We use
T-duality arguments to explain why electromagnetic fields on the world-volumes
of D-branes are governed by Born–Infeld theory.

20.1 The framework of nonlinear electrodynamics

Maxwell’s equations are both the basis for classical electromagnetism and the starting
point for the formulation of quantum electrodynamics, a theory that has been tested to a
high degree of accuracy. Maxwell’s equations are written in terms of electric and magnetic
fields, which in turn arise from gauge potentials. Charges and currents are the sources in
Maxwell’s equations.

A somewhat different version of Maxwell’s equations is used in the study of electro-
magnetic phenomena in the presence of materials. In this case, the materials contribute
polarization charges to the charge density and magnetization currents to the current den-
sity. The original Maxwell equations hold, but one must include these contributions to
the charges and currents. This is done efficiently by introducing, in addition to �E and �B,
the fields �D and �H . The equations of electromagnetism in the presence of materials then
take the form

∇ × �E = −1

c

∂ �B
∂t

,

∇ · �B = 0 , (20.1)

for the equations without sources, and

∇ · �D = ρ ,

∇ × �H = �j
c
+ 1

c

∂ �D
∂t

, (20.2)

for the equations with sources. Here ρ and �j are called free sources. This means that
they do not take into account polarization charges or magnetization currents. The free
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sources are charges and currents that are not bound to the materials. The contributions
of polarization and magnetization have been incorporated through the fields �D and �H . In
fact, given a material, there are phenomenological relations that express �D and �H in terms
of �E and �B:

�D = �D( �E, �B) , �H = �H( �E, �B) . (20.3)

Without these relations the two sets of equations in (20.1) and (20.2) would be unrelated.
Linear dielectrics, for example, obey �D = ε �E (and �H = �B), where the constant ε is the
electric permittivity. Linear magnetic materials obey �B = μ �H (and �D = �E), where the
constant μ is the magnetic permeability. For more complicated materials the relations need
not be linear. In such cases, equations (20.1), (20.2), and (20.3) define a nonlinear theory
of electrodynamics.

In introductory courses on electromagnetism the point is often made that the “funda-
mental” Maxwell equations are those in terms of �E and �B, together with the full charge
and current densities. The equations above are regarded to be of limited validity, as they
deal with materials, most of which do not generally lend themselves to exact analysis.
Born–Infeld and related nonlinear theories of electrodynamics in fact suggest that the
above equations are as fundamental as the original Maxwell equations, if not more so.
These theories do not aim to describe electromagnetism in the presence of materials but
rather electromagnetism in the vacuum. The point is that in nonlinear electrodynamics the
vacuum itself behaves as some kind of material. As we will show, general Lagrangians
lead directly to equations (20.2), together with nontrivial relationships between ( �D, �H)

and ( �E, �B).

In nonlinear electrodynamics the electromagnetic fields �E and �B are still encoded in the
field strength Fμν = ∂μ Aν − ∂ν Aμ, as shown in equation (3.20). Using spatial indices i, j ,
we write

Fi0 = Ei , Fi j = εi jk Bk . (20.4)

Equations (20.1) are automatically satisfied because �E and �B arise from potentials. How
do we write equations (20.2)? Recall that the similar looking equations in Maxwell theory
were written in (3.34): ∂ν Fμν = (1/c) jμ. It follows that (20.2) are given by

∂Gμν

∂xν
= 1

c
jμ , (20.5)

where Gμν = −Gνμ is obtained from Fμν by replacing �E by �D and �B by �H :

Gμν =

⎛
⎜⎜⎝

0 Dx Dy Dz

−Dx 0 Hz −Hy

−Dy −Hz 0 Hx

−Dz Hy −Hx 0

⎞
⎟⎟⎠ . (20.6)

Although the matrix Gμν written here applies only in four-dimensional spacetime, equa-
tions (20.5) make sense in any number of dimensions. Together with the definition of Fμν
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in terms of potentials, they form the equations of nonlinear electrodynamics in an arbitrary
number of dimensions. Of course, the relation between Gμν and Fμν must also be given.

We now show that equation (20.5) follows from the variation of an action. Moreover,
the definition of Gμν in terms of the field strength Fμν also arises. Consider the action S,
written for arbitrary spacetime dimensionality:

S =
∫

d Dx L (Fμν)+ 1

c

∫
d Dx Aμ jμ . (20.7)

For simplicity, the Lagrangian density L(Fμν) is assumed to depend only on the field
strength and not, for example, on its derivatives. Since the field strength is gauge invariant,
L is also gauge invariant. The Lagrangian density L is otherwise arbitrary; it need not
coincide with the Maxwell Lagrangian density. In order to perform the variation of the
action efficiently, we need to define partial derivatives with respect to field strengths.

For this purpose we first note that the variations δFμν are constrained by antisymmetry:
δFμν = −δFνμ. For any function M of the field strengths we then write

δM = 1

2

∂ M

∂ Fμν

δFμν . (20.8)

As usual, repeated indices are summed over. Since the variations δFμν are antisymmetric,
we can require that

∂ M

∂ Fμν

= − ∂ M

∂ Fνμ

. (20.9)

Equations (20.8) and (20.9) together define the partial derivatives ∂ M/∂ Fμν .

Quick calculation 20.1 Use M = F12 and the above equations to prove that ∂ F12/∂ F12 = 1
and that ∂ F12/∂ Fμν = 0 if (μ, ν) 	= (1, 2) and (μ, ν) 	= (2, 1).

It is also useful to learn how to use the chain rule. In order to calculate derivatives of M
with respect to some variable U we write

δM = 1

2

∂ M

∂ Fμν

∂ Fμν

∂U
δU ≡ ∂ M

∂U
δU , (20.10)

thus learning that

∂ M

∂U
= 1

2

∂ M

∂ Fμν

∂ Fμν

∂U
. (20.11)

We are now in a position to vary the action S. Using (20.8) with M set equal to L, the
variation of the first term in S gives

δ

∫
d Dx L =

∫
d Dx

1

2

∂L
∂ Fμν

δFμν =
∫

d Dx
1

2

∂L
∂ Fμν

(∂μδAν − ∂νδAμ) . (20.12)

Integrating by parts, relabeling indices, and using (20.9) we find

δ

∫
d Dx L =

∫
d Dx δAμ ∂ν

( ∂L
∂ Fμν

)
. (20.13)
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The variation of the whole action (20.7) then gives

δS =
∫

d Dx δAμ

[
∂ν

( ∂L
∂ Fμν

)
+ 1

c
jμ
]
. (20.14)

Equating this variation to zero, we find (20.5) if we identify

Gμν ≡ − ∂L
∂ Fμν

. (20.15)

The tensor Gμν is antisymmetric by construction. If the nonlinear Lagrangian is known,
(20.15) expresses Gμν as a function of the field strength Fμν . To illustrate this, let us calcu-
late �D. Equation (20.6) tells us that G0i = Di , and, for arbitrary spacetime dimensionality,
this is taken to be the definition of the vector �D. We begin by calculating the derivative
∂L/∂ Ei . Using the chain rule (20.11) and recalling that Ei = Fi0 = −F0i , we find

∂L
∂ Ei

= 1

2

∂L
∂ F0i

∂ F0i

∂ Ei
+ 1

2

∂L
∂ Fi0

∂ Fi0

∂ Ei
= − ∂L

∂ F0i
= G0i = Di . (20.16)

Therefore, we have shown that

�D = ∂L
∂ �E . (20.17)

In four-dimensional spacetime we can also write �H in terms of derivatives of L. For
example, since B1 = F23 = −F32, we have

∂L
∂ B1

= −1

2

∂L
∂ F32

+ 1

2

∂L
∂ F23

= G32 = −Hx . (20.18)

Working out the other two components, we find that the end result is

�H = − ∂L
∂ �B . (20.19)

If L( �E, �B) is known, equations (20.17) and (20.19) give us �D and �H . For Maxwell
electrodynamics, for example, the Lagrangian density is

LM = −1

4
Fμν Fμν = 1

2
(E2 − B2) . (20.20)

Here we defined E2 = �E · �E and E = | �E |, with similar definitions for �B, �H , and �D. It
follows from (20.20) that �D = �E and �H = �B.

�E is related to the time derivative of �A, so it may be viewed as a velocity. Equation
(20.17) then implies that �D is the canonical momentum associated with the velocity �E .
This suggests that the Hamiltonian, or energy functional, is given as
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H = �D · �E − L . (20.21)

This formula is clearly correct for Maxwell theory: since �D = �E , we find H = 1
2 (E2 +

B2), which is the familiar energy density of the electromagnetic field. In Problem 20.1
you will give a proof that H is indeed a conserved energy for arbitrary L. While some of
our results in this section are written in the language of four dimensions, the important
ideas work in all dimensions. In fact, all of the shaded equations are valid in any spacetime
dimension.

Let us conclude this section by considering some candidate Lagrangian densities in four-
dimensional spacetime. The density L in (20.7) must be both gauge invariant and Lorentz
invariant. Since it is built from field strengths it is clearly gauge invariant. To be Lorentz
invariant the field strengths must form objects with no free indices. There are two inde-
pendent nontrivial Lorentz invariant objects that we can build using Fμν and none of its
derivatives:

s ≡ −1

4
Fμν Fμν = 1

2
(E2 − B2),

p ≡ −1

4
F̃μν Fμν = �E · �B. (20.22)

In fact, it can be proven that s and p are the only independent invariants that can be built
from Fμν . The invariant p makes use of the dual field strength F̃μν , which is defined as

F̃μν ≡ 1

2
εμνρσ Fρσ . (20.23)

Here εμνρσ is a totally antisymmetric Lorentz tensor (more precisely, it is a pseudo-tensor).
This implies that F̃μν is antisymmetric. Just like ημν , the tensor εμνρσ takes the same
values in all Lorentz frames. In any frame ε0123 = 1, and εμνρσ vanishes if any index is
repeated. For example,

F̃01 = 1

2
ε01ρσ Fρσ = 1

2
(F23 − F32) = F23 = Bx . (20.24)

Calculating all the other entries, we have

F̃μν =

⎛
⎜⎜⎝

0 Bx By Bz

−Bx 0 −Ez Ey

−By Ez 0 −Ex

−Bz −Ey Ex 0

⎞
⎟⎟⎠ . (20.25)

Quick calculation 20.2 Calculate the other entries in the matrix F̃μν .

Quick calculation 20.3 Show that p takes the value quoted in (20.22).

In four dimensions, the most general Lorentz invariant Lagrangian density built out of Fμν

is an arbitrary function of s and p. The Maxwell Lagrangian density is simply s.
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20.2 Born−Infeld electrodynamics

In this section we will write the Lagrangian that turns out to describe the electromagnetic
fields that live on the world-volumes of D-branes. This is the Born–Infeld electromagnetic
Lagrangian. In Born–Infeld theory, as we shall see, the electrostatic self-energy of a point
charge is finite. This is an improvement over Maxwell theory, where the self-energy of a
point charge is infinite. The endpoints of open strings are point charges, so it is reassuring
to see that in string theory these do not carry infinite energy. In the following section we
will explain how T-duality gives direct evidence that the Born–Infeld Lagrangian governs
the dynamics of electromagnetic fields on D-branes.

We begin our work in four-dimensional spacetime. In addition to the natural requirements
of gauge and Lorentz invariance, we impose two constraints on the nonlinear Lagrangian.
First, it must reduce to the Maxwell Lagrangian for small �E and �B. Second, there should
be a maximal electric field when �B = 0. We showed in Section 19.2 that string the-
ory has a critical electric field Ecrit = 1/(2πα′) ≡ b. For the originators of nonlinear
electrodynamics, a maximal electric field was needed to obtain point charges with finite
self-energy.

How can we impose the existence of a maximal electric field on our Lagrangian? In
special relativity the maximal velocity is clearly evident in the point particle Lagrangian
(5.8): the argument of the square root must be positive, and this ensures that the particle
velocity cannot exceed the velocity of light. To impose E ≤ b we also use a square root.
There is a simple expression which uses only the Lorentz invariant s:

L = −b2

√
1 − (E2 − B2)

b2
+ b2 = −b2

√
1 − 2s

b2
+ b2 . (20.26)

As required, E ≤ b for B = 0. Moreover, for small fields we have s � b2, so

L = −b2
(

1 − s

b2

)
+ b2 +O(s2) = s +O(s2) . (20.27)

For small fields we recover the Maxwell Lagrangian. While (20.26) satisfies the two con-
ditions we requested, a somewhat more complicated Lagrangian has even nicer features.
Consider the Born–Infeld Lagrangian density

L = −b2

√
1 − E2 − B2

b2
− ( �E · �B)2

b4
+ b2 = −b2

√
1 − 2s

b2
− p2

b4
+ b2 . (20.28)

Since it is built from s and p, this density is also Lorentz invariant. For small fields where s
and p are comparable and both are much smaller than b2, the weak field approximation is
not changed: L ∼ s. In a generic theory of nonlinear electrodynamics, waves with differ-
ent polarizations propagate with different velocities through a background electromagnetic
field. In Born–Infeld theory the velocity is independent of the polarization. In all theories of
nonlinear electrodynamics, Born–Infeld included, there are nontrivial dispersion relations;
that is, waves of different frequencies travel with different velocities.
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The Born–Infeld Lagrangian density is special for yet another reason. It can be written
elegantly in terms of the square root of a determinant:

L = −b2

√
− det

(
ημν + 1

b
Fμν

)
+ b2 . (20.29)

As opposed to (20.28), this formula allows an obvious generalization to any number of
dimensions. A calculation is needed, however, to show that the two densities are the same
in four dimensions. The calculation is straightforward but a little long: one must simply
write the 4-by-4 matrix and calculate its determinant. It is more instructive to understand
why the equality is reasonable. To simplify the equations, we temporarily set b = 1 in
(20.29):

L = −
√
− det

(
ημν + Fμν

)+ 1 . (20.30)

The original Lagrangian density is recovered by letting Fμν → Fμν/b and L→ b2L. The
Lagrangian (20.28) is explicitly Lorentz invariant. How do we see the Lorentz invariance
of (20.30)? To show the Lorentz invariance of det(ημν + Fμν) we first note that the deter-
minant of an arbitrary matrix M with components Mμν is the same as the determinant of
the matrix M̄ with components Mμν . To see this, we first write

Mμν = ημρηνσ Mρσ = ημρ Mρσ ησν −→ M = ηM̄η , (20.31)

where η is the matrix with components ημν . Taking determinants of both sides of the
equation, we confirm that

det M = det(ηM̄η) = (det M̄)(det η)2 = det M̄ . (20.32)

Let η̄, F , and F̄ denote the matrices with entries ημν, Fμν , and Fμν , respectively. On
account of the result just established, we have

det(η + F) = det(η̄ + F̄) . (20.33)

It therefore suffices to prove the Lorentz invariance of det(η̄ + F̄).
Consider a Lorentz transformation x ′μ = Lμ

νxν , as written in (2.38). The matrix L , with
entries Lμ

ν (μ is the row index and ν is the column index), satisfies (det L)2 = 1. Since
both ημν and Fμν are Lorentz tensors of the same type, they transform under Lorentz
transformations in the same way. The tensors carry two indices, so the matrix L must be
applied to them twice:

η′μν + F ′μν = Lμ
ρ Lν

σ (ηρσ + Fρσ ) = Lμ
ρ(ηρσ + Fρσ )Lν

σ . (20.34)

In matrix notation,

η̄′ + F̄ ′ = L (η̄ + F̄) LT . (20.35)

Since det L = det LT and (det L)2 = 1, we can take determinants to conclude immediately
that

det ( η̄′ + F̄ ′ ) = det ( η̄ + F̄ ) . (20.36)
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This establishes the Lorentz invariance of the Born–Infeld Lagrangian density.

One additional fact is easily derived. Since the determinant of a matrix does not change
under transposition, we have

det
(
η + F

) = det
(
ηT + FT) = det

(
η − F

)
. (20.37)

We conclude that the Born–Infeld Lagrangian is an even function of F . The expression
for the argument of the square root in (20.30) can be simplified, using η = η−1 and
det η = −1:

− det
(
η + F

) = − det
(
η(1+ ηF)) = det(1 + ηF) . (20.38)

Explicitly, the matrix 1 + ηF is given by

1 + ηF =

⎛
⎜⎜⎜⎝

1 Ex Ey Ez

Ex 1 Bz −By

Ey −Bz 1 Bx

Ez By −Bx 1

⎞
⎟⎟⎟⎠ . (20.39)

Each term of the determinant expansion is a product of terms, each of which contains
precisely one element from each row and one element from each column. So the terms
which are quadratic in the fields contain two elements from the diagonal. There are six
ways of picking these two, and the corresponding terms give −E2 + B2, which is the
expected answer. The quartic terms take a little more work to write out completely. In this
case, one must not pick any term from the diagonal.

Our final topic in this section is the computation of the self-energy of a point charge in
Born–Infeld theory. For this problem we can set �B = 0 in (20.28) and use the simplified
Lagrangian density

L = −b2

√
1 − E2

b2
+ b2 . (20.40)

As a first step, we calculate �D:

�D = ∂L
∂ �E = �E√

1 − E2/b2
. (20.41)

We see that �E and �D point in the same direction. To solve for �E in terms of �D, we first
square the above equation and solve for E2:

D2 = E2

1 − E2/b2
→ E2 = D2

1 + D2/b2
. (20.42)

At this stage, by writing

E2 = b2
( D2

D2 + b2

)
= D2

( b2

b2 + D2

)
, (20.43)
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we immediately see that

E ≤ b , E ≤ D . (20.44)

As expected, the electric field is bounded by b. Moreover, the magnitude E of the electric
field is everywhere bounded by the magnitude D of �D. Note, however, that D can be
arbitrarily large. In fact, it requires infinitely large D in order to get E = b.

To obtain �E , we take the “square root” of (20.42) by writing

�E · �E = �D√
1 + D2/b2

· �D√
1 + D2/b2

. (20.45)

Since �E points in the same direction as �D, the unique solution is

�E = �D√
1 + D2/b2

. (20.46)

With �E( �D) at hand we are close to being able to calculate the energy density H( �D). As a
final ingredient, we need L written in terms of �D:

L = −b2

√
1 − D2

b2(1 + D2/b2)
+ b2 = −b2√

1 + D2/b2
+ b2 . (20.47)

The Hamiltonian is then

H = �E · �D − L = D2√
1 + D2/b2

+ b2√
1 + D2/b2

− b2 , (20.48)

and the final result is

H = b2

√
1 + D2

b2
− b2 . (20.49)

This is the Born–Infeld energy density when �B = �H = 0. You will confirm in Prob-
lem 20.4 that this result holds for Born–Infeld theory in an arbitrary number of dimensions.

Let us calculate the self-energy of a point charge in four-dimensional spacetime. In
Maxwell theory the infinite self-energy comes about because the energy density is pro-
portional to E D = E2, and E ∼ r−2, where r is the distance to the charge. As a result,
d3x E2 ∼ dr/r2, and the energy integral diverges for small r . In Born–Infeld theory we
also find D ∼ r−2, but for large D the energy density (20.49) becomes

H � bD = Ecrit D, as D →∞ . (20.50)

For large fields, the Maxwell energy density u = 1
2 E D is replaced in Born–Infeld theory

by u = Ecrit D. For large fields, the Born–Infeld energy grows linearly with D. As a result,
d3x Ecrit D ∼ d3x r−2 ∼ dr , and the integral will converge. Let us now examine the details.

Suppose that we have a point charge Q. Because of spherical symmetry the field �D is
radial, and the equation ∇ · �D = ρ can be integrated over the volume bounded by a sphere
of radius r to give
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S

�D · d�a = Q −→ �D(�r) = Q

4πr2
�er , (20.51)

where �er is the unit vector in the radial direction. We must check that our solution satisfies
∇ × �E = 0. Because of (20.46), we know that �E is of the form �E = f (r)�r . Such an electric
field has zero curl:

Quick calculation 20.4 Show that ∇ × ( f (r) �r) = 0.

The energy UQ of the point charge can now be calculated. Making use of (20.49) and
(20.51), we write:

UQ =
∫

d3x H = b2
∫ ∞

0
4πr2dr

(√
1 +

( Q

4πbr2

)2 − 1
)

= 4π b2
∫ ∞

0
dr
(√

r4 +
( Q

4πb

)2 − r2
)

. (20.52)

Letting r = x
√

Q/4πb , we obtain

UQ =
√

b

4π
Q
√

Q
∫ ∞

0
dx(

√
1 + x4 − x2) . (20.53)

This integral converges. The short distance problem has disappeared: the integrand is reg-
ular around x = 0. We do not expect a problem at large x : the fields are small and the
Born–Infeld energy is approximately equal to the Maxwell energy, for which no problem
arises at large distances. Indeed,√

1 + x4 − x2 = 1√
1 + x4 + x2

<
1

2x2
, (20.54)

which is integrable around x = ∞. Doing the integral explicitly, one finds∫ ∞

0
dx(

√
1 + x4 − x2) = (�(1/4))2

6
√

π
� (3.6256)2

6(1.7725)
� 1.236 . (20.55)

Here �(x) is the gamma function (see (3.50)). Back in (20.53), we find our final answer
for the energy of a point charge in Born–Infeld theory:

UQ = 1

4π

1

3
(�(1/4))2 b1/2 Q3/2 � 1

4π
· 4.382 b1/2 Q3/2 . (20.56)

If b corresponds to the critical electric field in string theory, then b = 1/(2πα′). Moreover,√
α′ = �s , where �s is the string length. The self-energy of a point charge becomes

UQ = 1

4π

1√
2π

1

3
(�(1/4))2 Q2

�s
√

Q
� 1

4π
· 1.748

Q2

�s
√

Q
. (20.57)

To appreciate this answer better, we compare it with the electrostatic energy of a charge
distribution in Maxwell theory. If we assume that the charge is distributed uniformly over
the volume of a ball of radius a, then the energy U (Q) can be shown to be

U (Q) = 1

4π

3

5

Q2

a
. (20.58)
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As a → 0 the charge becomes point-like, and we obtain the expected infinite self-energy.
We can think of a as a small smearing parameter that is introduced to make the self-energy
finite. The classical electron radius, for example, is roughly the value of a for which U (e)
equals the rest energy of the electron. If we compare the Born–Infeld energy (20.57) with
the Maxwell energy, we see that �s

√
Q plays the role of the smearing parameter. This

quantity has the correct units because Q is dimensionless. It is interesting that the smearing
parameter grows with the value of Q. The Q3/2 dependence of the Born–Infeld energy UQ

is a sign of a nonlinear theory.

The above calculation of the self-energy of a static point charge does not seem to be directly
applicable in string theory. On a space-filling D-brane open string endpoints are charged,
but they also move. A tractable situation arises, however, when a semi-infinite open string
ends on a Dp-brane, as you may examine in Problems 20.6 and 20.7. The string can then
be static, and the Born–Infeld energy of the solution gives the energy associated with the
semi-infinite string!

20.3 Born−Infeld theory and T-duality

In this chapter we have studied Born–Infeld electrodynamics in some detail. We were moti-
vated by the existence of a critical electric field in string theory. In the present section we
will show that our work on the T-duality properties of electric and magnetic fields on D-
branes gives direct evidence that the dynamics of electromagnetic fields on D-branes is
described by Born–Infeld theory.

For a static Dp-brane the product of its tension Tp(g) and its volume gives the mass of the
brane. Consider a world with one dimension curled up into a circle of radius R and (p − 1)

dimensions curled up into some compact space of volume Vp−1. Now imagine a Dp-brane
that wraps around the full set of p compact dimensions. The mass of this Dp-brane is

Tp(g) (2π R) Vp−1 . (20.59)

Under a T-duality transformation along the circle of radius R we obtain a D(p − 1)-brane
placed at some point on the dual circle, while the other (p − 1) directions along the brane
world-volume still wrap around the compact space of volume Vp−1. The mass of this
D-brane is given by

Tp−1(g̃) Vp−1 , (20.60)

where g̃ is the string coupling in the dual picture (see (18.56)). Since T-duality is a physical
equivalence, the two masses obtained above must be equal. Indeed, each D-brane is seen
by a lower-dimensional observer as a point mass, and unless these masses are the same,
the observer can tell that the physics has changed. Equating the values of the two masses,
we find

Tp−1(g̃) = 2π R Tp(g) . (20.61)
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This is a relation between tensions of D-branes in dual pictures. Tp(g) is the tension of
a brane in the world with coupling constant g (the world with the circle of radius R),
while Tp−1(g̃) is the tension of a brane in the world with coupling constant g̃ (the world
with the circle of dual radius R̃). This relation between tensions holds generally, regardless
of which coordinates the branes wrap around. The different looking relation between D-
brane tensions in (18.57) compares tensions in the same picture, that is, with the same
string coupling.

Let us now reconsider the configuration discussed in Section 19.3. We had two compact
dimensions of radii R2 and R3 which formed a two-torus. One direction on the world-
volume of a D(p − 1)-brane was stretched along the diagonal of the torus. Assume, for
simplicity, that the other (p − 2) directions wrap around a compact space of volume Vp−2.
Let g̃ denote the string coupling in this picture. A T-duality transformation along the circle
of radius R3 gave us a Dp-brane with two directions wrapped around a torus with radii
R2, R̃3 and a magnetic field. The other (p − 2) directions on the brane also wrap the space
of volume Vp−2. Let g denote the string coupling in this picture. Since the circle that is
dualized in the Dp-brane world is of radius R̃3, equation (20.61) gives

Tp−1(g̃) = 2π R̃3 Tp(g) . (20.62)

For the static D(p − 1)-brane that stretches along the torus diagonal, the Lagrangian is
the negative of the brane rest energy. This energy is just the brane tension Tp−1(g̃) times
the brane volume. The volume, in turn, is Vp−2 times the length Ldiag along the diagonal,
so

L = −Vp−2Ldiag Tp−1(g̃) = −Vp−2

√
(2π R2)2 + (2π R3)2 Tp−1(g̃) . (20.63)

We showed in (19.47) that 2πα′B = − tan α, where α is the angle that the diagonal in the
torus makes with the horizontal direction. In fact, tan α = R3/R2, as indicated in (19.55).
Therefore, the magnetic field is related to the ratio of the radii by

2πα′B = − R3

R2
. (20.64)

Equations (20.62) and (20.64) allow us to rewrite (20.63) as follows:

L = −Vp−2 (2π R2)

√
1 + (2πα′B)2 (2π R̃3) Tp(g) . (20.65)

Since (2π R2)(2π R̃3) is the volume of the torus wrapped by the Dp-brane, we finally have

L = −Vp Tp(g)

√
1 + (2πα′B)2 . (20.66)

If B = 0, we recover the Lagrangian for a static Dp-brane.
To compare with the Born–Infeld Lagrangian, we consider (20.28), which for �E = 0

reduces to

L = −b2

√
1 + B2

b2
+ b2 . (20.67)
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Both the b2 multiplying the square root and the b2 added to L were introduced for reasons
that are no longer relevant. The additive contribution, for example, was originally included
to cancel the constant term in L. Now the constant term is needed to represent the rest
energy of the D-brane in the absence of electromagnetic fields. The b2 multiplying the
square root was originally included to give a standard normalization to the Maxwell action.
Now the overall normalization of the action is fixed in (20.66). We cannot even rescale
the gauge potentials. The normalization of the gauge field was fixed when we wrote the
coupling (16.54) to the open string endpoints.

As a result, the value b = 1/(2πα′), that we read by comparing the terms inside the
square roots in (20.66) and (20.67), is only to be used inside the square root. Therefore,
on account of (20.29), the D-brane Lagrangian (20.66) is consistent with the Born–Infeld
Lagrangian density

L = − Tp(g)

√
− det(ηmn + 2πα′Fmn) . (20.68)

Here m, n are indices on the world-volume of the Dp-brane. The volume factor Vp was
removed in order to write the density L. This Lagrangian density describes the behavior of
electromagnetic fields on D-branes.

Quick calculation 20.5 Assume that F23 = B is the only nonvanishing magnetic field
component. Evaluate the Lagrangian density (20.68) for an arbitrary Dp-brane (p ≥ 3),
and verify that your result is consistent with (20.66).

The Lagrangian density (20.68) allows us to calculate the electromagnetic fields that arise
from open string endpoints, which, in our conventions, carry charges of unit magnitude.
For a static oriented open string that ends at �x0, for example, the charge density is given by
ρ(�x) = δ(�x − �x0), where �x represents the spatial coordinate on the D-brane. The equation
for �D then reads

∇ · �D = δ(�x − �x0) , �D = ∂L
∂ �E . (20.69)

A particular version of this equation is solved in Problem 20.7. The solution describes a
string ending on a D-brane.

The T-duality analysis of electric fields in Section 19.2 supports the identification of
(20.68) as the Lagrangian density. There we had a circle of radius R̃ and a D(p − 1)-brane
moving with velocity v along this circle. How do we write a Lagrangian for such a D-
brane? For a point particle of mass m, the Lagrangian is (−m) times the relativistic factor√

1 − v2/c2, as shown in (5.8). For a string, the Lagrangian density is (minus) the rest
energy (−T0ds) of a piece of string times the analogous relativistic factor (see (6.89)). For
a moving D(p − 1)-brane we write

L = −Vp−1 Tp−1(g̃)

√
1 − v2

c2
. (20.70)
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We now re-express this Lagrangian in terms of the variables of the T-dual picture, where
we have a Dp-brane with an electric field along a circle of radius R and the string coupling
is g. The value of the electric field is related to the brane velocity by v/c = β = 2πα′E
(see (19.34)). We thus find

L = −Vp−1 (2π R) Tp(g)

√
1 − (2πα′E)2 , (20.71)

where we also made use of (20.61). Finally, the product of 2π R and Vp−1 gives the total
volume Vp of the Dp-brane:

L = −Vp Tp(g)

√
1 − (2πα′E)2 . (20.72)

This Lagrangian is correctly reproduced by (20.68) when we have a constant electric field
and zero magnetic field. This can be easily checked by letting F01 = −Ex be the only
nonvanishing electric field component. We have thus obtained further evidence for the
correctness of (20.68).

Problems

Problem 20.1 Energy functional in nonlinear electrodynamics.

(a) According to equation (20.21), the total energy U in a fixed volume V is

U =
∫

V

( �D · �E − L
)

d3x . (1)

Prove that, in four-dimensional spacetime,

dU

dt
=
∫

V

( �E · ∂ �D
∂t

+ �H · ∂ �B
∂t

)
d3x . (2)

(b) Use equations (20.1) and (20.2) to show that, in the absence of sources,

dU

dt
= −

∫
S
( �E × �H) · d�a , (3)

where S is the surface that bounds the volume V . This shows that U is constant if the
electromagnetic fields vanish at the boundary and thus carry no energy out of V . U is
a conserved energy. Indeed, you may recognize �E × �H as the Poynting vector, which
represents local energy flow per unit area per unit time.

Problem 20.2 Capacitance in Born–Infeld theory.

The capacitance C of a two-conductor configuration is defined as Q = CV , where the
conductors have charges Q and−Q, respectively, and V is the potential difference between
them.

(a) Let CM denote the capacitance in Maxwell theory. Explain why CM is a constant,
independent of Q and V .
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(b) Consider a two-conductor configuration, with charges Q and −Q, and let �EM(�x)

be the electric field between the conductors in Maxwell theory. Prove that when-
ever ∇E2

M points in the direction of �EM, the field �D(�x) in Born–Infeld the-
ory, for the same charged configuration, is given by �D(�x) = �EM(�x). Prove that
in such cases the Born–Infeld capacitance is always greater than the Maxwell
capacitance.

(c) Consider a parallel plate capacitor of area A and plate separation d. Show that the
Born–Infeld capacitance C(V ) is

C(V ) = CM√
1 − (V/Vc)2

,

where CM = A/d is the Maxwell capacitance and Vc = bd. What is the interpretation
of Vc?

Problem 20.3 Dual field strength and the Lorentz invariant p.

(a) Show that the replacement F̃μν → Fμν corresponds to �E →− �B and �B → �E . Verify
that these are the duality transformations of electromagnetism (Section 17.1).

(b) Show that the Lorentz invariant p = − 1
4 F̃μν Fμν can be written as a total derivative:

p = − 1
4∂μ(εμνρσ Fνρ Aσ ).

Problem 20.4 Electric fields and point charges in higher dimensions.

(a) Examine the Lagrangian density (20.29) when there is only an electric field,
F0i = −Ei , in a world with D = d + 1 spacetime dimensions. Calculate explic-
itly the determinant, and show that it takes the form given in (20.40), with E2 =
�E · �E .

(b) The calculation of the determinant in (a) can be simplified. We have proven the
Lorentz invariance of the Born–Infeld Lagrangian density and, therefore, its rota-
tional invariance. Imagine calculating the Lagrangian density at the origin, using
a set of axes for which �E is aligned along the first spatial coordinate. Show how
the almost trivial computation in this frame can be used to anticipate the answer
obtained in (a).

(c) The energy UQ of a point charge Q in a D-dimensional spacetime is proportional to
Qδ , where δ is a constant. Calculate δ.

Problem 20.5 Calculating the Born–Infeld Hamiltonian.

Consider the full Born–Infeld Lagrangian density L, with b = 1:

L = −
√

1 − E2 + B2 − ( �E · �B)2 + 1 . (1)

(a) Show that

�D = �E + ( �E · �B) �B√
1 + B2 − E2 − ( �E · �B)2

. (2)
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(b) Now the challenge is to solve for �E in terms of �D. This requires quite a bit of trickery
in vector algebra. As a first step note that equation (2) is of the form f ( �E, �B) �D =
�E + ( �E · �B) �B, where f is a scalar function. Show that

�E = f ( �E, �B)

1 + B2

( �D − ( �D × �B)× �B
)

. (3)

The function f contains the combination E2 + ( �E · �B)2. To write this combination in
terms of �D and �B, examine the values of D2 and ( �D × �B)2. Now prove that

�E = �D − ( �D × �B)× �B√
1 + B2 + D2 + ( �D × �B)2

. (4)

(c) As you are now equipped with the value of �E , the calculation of the Hamiltonian is
relatively simple. Use (20.21) to show that

H =
√

1 + B2 + D2 + ( �D × �B)2 − 1 . (4)

Problem 20.6 String ending on a D-brane in Born–Infeld theory: Part 1.

The dynamics of electromagnetic fields on a Dp-brane is governed by (20.68). But we
know that there are also (d − p) massless scalar fields living on the world-volume of a
Dp-brane, whose excitations represent transverse displacements of the brane (recall the
discussion below (15.37)). Consider the scalar field X associated with displacements along
an x axis normal to the brane. The Born–Infeld action can be generalized to describe both
the electromagnetic and X fields:

L = −Tp

√
−det (ηmn + 2πα′Fmn + ∂m X∂n X) . (1)

The field X here is a function of the coordinates xm on the brane (X is not a string
coordinate). The value X (xm) is the x coordinate of the point on the brane with
coordinates xm .

(a) Suppose there are no electromagnetic fields on the Dp-brane, but we let X = vt ,
attempting to represent the motion of the D-brane along the normal direction x with
velocity v. Show that L = −Tp

√
1 − v2/c2, which is the expected Lagrangian density

for a moving D-brane. This result supports the interpretation of X given above.

We want to evaluate the Lagrangian density (1) in the case where there is only an electric
field �E . For notational convenience introduce �E = 2πα′ �E .

(b) To simplify the evaluation of the determinant we use symmetry arguments, as in part
(b) of Problem 20.4. Choose a set of axes so that the electric field points along the
first direction: only E1 is nonzero. There is another vector in this problem: the gradient
∇X of the field X . We choose the axes in such a way that this vector lies in the plane
formed by the first and second directions, so that only (∇X)1 ≡ X1 and (∇X)2 ≡ X2

are nonzero. Show that under these conditions the determinant in (1) gives

det(ηmn + · · · ) = −1 + Ẋ2 − X2
1 − X2

2 + E2
1 + E2

1 X2
2 . (2)
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x(δ)

x

string

D-brane

δ

�Fig. 20.1 Problem 20.7: a string that ends on a D-brane is represented in Born–Infeld theory as a
solution in which the brane itself is deformed.

(c) The rotational invariance of the determinant implies that it can be written in terms of
dot products of the vectors �E and ∇X and in terms of the rotation scalar Ẋ . Use this
requirement to deduce that

L = − Tp

√
(1 − E2)(1 + (∇X)2)+ ( �E · ∇X)2 − Ẋ2 . (3)

Problem 20.7 String ending on a D-brane in Born–Infeld theory: Part 2.

The description of a string ending on a Dp-brane in Born–Infeld theory involves an electric
field on the brane, due to the charged endpoint, and an excitation of the scalar field X that
represents brane displacements in the direction along the stretched string (see Figure 20.1).
This direction is assumed to be normal to the brane. We can therefore use the Lagrangian
density (3), obtained in Problem 20.6:

L = − Tp

√
(1 − E2)(1 + (∇X)2)+ ( �E · ∇X)2 − Ẋ2 . (1)

Here the electric field is: �E = 2πα′ �E = ∇A0 − ∂t �A, where Aμ ≡ 2πα′Aμ.

(a) Explain why the equations of motion that follow from the variation of �A are satisfied
if all fields are time independent.

We will therefore assume that all fields are indeed time independent, and, moreover, we
will set �A = 0, which is consistent with our assumption that there are no magnetic fields
Fi j . In this case, the Lagrangian density becomes
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L = − Tp

√
(1 − (∇A0)2)(1 + (∇X)2)+ (∇A0 · ∇X)2 . (2)

(b) Derive the equations of motion that arise from the variations δX and δA0 of the action
associated with the Lagrangian density (2). Write them in the form∇ · [. . .] = 0. Show
that both equations are satisfied if

�E = ∇A0 = ±∇X , ∇2A0 = ∇2 X = 0 , (3)

for either choice of sign.
(c) Show that when �E = ∇A0 = ±∇X (equation (3)) holds we have

�D = 2πα′ Tp �E , (4)

and the energy U = ∫
d px( �D · �E − L) is given by

U = Tp

∫
d px

(
1 + �E · �E) . (5)

The first term in U represents the rest energy of the Dp-brane. The second term gives
the energy associated with the string ending on the D-brane, as we discuss next.

Let r denote radial distance on the D-brane. The solution for a string ending at r = 0 is
obtained solving∇ · �D = +δ(r) (see (20.69)). The solution for �D (and for �E) is spherically
symmetric; so is the solution for X , which is of the form X (r). Additionally, we assume that
p ≥ 3, in which case we can require that X (∞) = 0 (explain why!). The sign in �E = ±∇X
determines whether the string stretches along the positive x axis (as in the figure) or along
the negative x axis. Which sign do you need to get the option in the figure?

(d) Show that the energy Us = Tp
∫

d px �E · �E is infinite.
(e) To interpret the infinite value of Us , consider the region on the D-brane with r > δ,

and let Us(δ) denote the energy contained in this region. Show that

Us(δ) = Tp

∫
r>δ

d px ∇X · ∇X = Tp|X (δ)| · Flux of �E across S p−1(δ) , (6)

where S p−1(δ) denotes the (p − 1)-dimensional sphere of radius δ. Conclude finally
that

Us(δ) = 1

2πα′
|X (δ)| . (7)

Since 1/(2πα′) is the string tension, this confirms that Us(δ) is the energy of the piece
of string that stretches from x = 0 up to x = |X (δ)|. As δ → 0 the energy diverges
because this is the energy of an infinitely long string.
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Configurations of intersecting D6-branes in type IIA superstring theory define
string models of particle physics. Open string states supported at the intersec-
tion of the branes naturally give chiral fermions, a key ingredient of the Standard
Model. If orientifold planes are included, the models can display the massless
spectrum of gauge bosons and chiral fermions of the Standard Model. Compact-
ification moduli are adjustable parameters that give rise to undesirable massless
scalars and must be stabilized. Flux compactifications achieve moduli stabiliza-
tion and give rise to an extremely large landscape of string vacua. The existence
of vacua in which the vacuum energy matches the presently observed value
becomes statistically plausible.

21.1 Intersecting D6-branes

In this section we consider a D-brane configuration that has a set of features that make it
a good starting point for the construction of a string model of particle physics. Since we
need fermions, we use a ten-dimensional superstring theory. In this theory, six of the ten
dimensions, x4, . . ., x9, are taken to form a small compact space of finite volume. This
is necessary in order to have an effectively four-dimensional spacetime (with coordinates
x0, x1, x2, and x3). The compact space is as simple as possible: each dimension is turned
into a circle, so that the resulting space is a six-dimensional torus T 6. We will assume that
all circles have the same radius R, so we are taking xi ∼ xi + 2π R for i = 4, . . ., 9.

In order to obtain an effective four-dimensional Yang–Mills theory, we need D-branes
that have at least three spatial directions to stretch along the spatial coordinates x1, x2, and
x3 of the effective spacetime. Therefore, we will use Dp-branes with p ≥ 3. In fact, in this
section we will work with D6-branes in type IIA superstring theory. This is, of course, just
one choice among many that we could have made in order to construct a model. In addition,
we will let the D6-branes intersect. When two D-branes intersect, one discovers a sector of
open strings that stretch from one brane to the other and are localized near the intersection.
Under certain circumstances, such strings give rise to matter fields with the properties of
Standard Model fermions. We will examine this point in detail in Sections 21.3 and 21.4.
Our main goal in the present section is to understand the geometry of intersecting D-branes.
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Let us describe two D6-branes that intersect on the torus T 6 introduced above. For a D6-
brane, of the nine spatial directions in the ten-dimensional spacetime, three directions are
Dirichlet and six are Neumann. Three of the Neumann directions must be x1, x2, and x3, as
mentioned above, and the other three lie on T 6. The three Dirichlet directions are also on
T 6. The position of the D6-brane can be specified by giving the values of the coordinates
along the three Dirichlet directions. Thus, let the first D6-brane be defined by

D6-brane #1: x5 = x7 = x9 = 0, (21.1)

and the second D6-brane be defined by

D6-brane #2: x4 = x6 = x8 = 0. (21.2)

A point belongs to the intersection if it belongs to both D6-branes. The conditions (21.1)
must hold for a point to be on the first D6-brane, and the conditions (21.2) must hold for a
point to be on the second D6-brane. As a result, a point belongs to the intersection if

intersection conditions : x4 = x5 = x6 = x7 = x8 = x9 = 0. (21.3)

Since the torus T 6 is spanned by the above coordinates, the D6-branes intersect on a point
on the torus, the point (0, 0, 0, 0, 0, 0). On the spacetime, however, the intersection of the
D6-branes is the set of points

intersection set : (x0, x1, x2, x3, 0, 0, 0, 0, 0, 0), with x0, x1, x2, x3 ∈ R. (21.4)

The intersection of the D6-branes fills the effective four-dimensional spacetime.
A simple way to visualize the intersection of the D6-branes is to describe the six-torus

T 6 in terms of three square two-tori T 2. One writes T 6 = T 2 × T 2 × T 2, in the same
sense that one writes R

3 = R× R× R. Indeed, a six-torus is equivalent to a two-torus in
the x4 and x5 directions, a two-torus in the x6 and x7 directions, and a two-torus in the x8

and x9 directions. These three two-tori are shown in Figure 21.1. On each T 2, each brane
appears as a line; in fact, brane #1 appears as a horizontal line on account of (21.1), and
brane #2 appears as a vertical line on account of (21.2). On each T 2, these straight lines are
in fact circles because their endpoints are identified. The two D6-branes intersect at a point
on T 6 because these lines intersect at a point on each T 2. Note that the full intersection
is characterized by three intersection angles, one for each T 2. In the present case, these
angles are all equal to π/2. The figure also shows a string in the sector [12]. On each of the
T 2 we see a projection of the string as it stretches from the first brane to the second brane.

In the same way as we did for other D-brane configurations, we can use a table to describe
the two D-branes and the boundary conditions for the various open string sectors. The result
is given in Table 21.1. It is noteworthy that in the [12] and [21] sectors, the string coor-
dinates along the torus are of DN or ND types. This happens because the branes intersect
orthogonally on each T 2. We have chosen axes such that any coordinate on T 6 lies along
one brane and is orthogonal to the other one. For arbitrary intersection angles, the boundary
conditions for the string coordinates are slightly more complicated (Problem 15.7).

We are interested in D6-brane configurations obtained by allowing more general inter-
section angles between the lines that represent the D-branes on each T 2. For this purpose,
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�Table 21.1 A configuration of two intersecting D6-branes

Coordinate x1,2,3 x4 x5 x6 x7 x8 x9

D6 #1 – – • – • – •
D6 #2 – • – • – • –
Sector [1,1] NN NN DD NN DD NN DD
Sector [2,2] NN DD NN DD NN DD NN
Sector [1,2] NN ND DN ND DN ND DN
Sector [2,1] NN DN ND DN ND DN ND

Note: We denote by – coordinates along which the D-branes are stretched and
by • coordinates normal to the branes. The last four rows give the boundary
conditions for string coordinates in the four possible open string sectors.

x 
5 x 

7

#1 #1

#2#2

T 2 T 2

x 
4 x 

6

x 
9

#1

#2

T 2

x 
8

[12]

�Fig. 21.1 Two D6-branes on a x 6, which is presented as the product of three two-tori x 2. Brane #1
stretches along x 4, x 6, and x 8 and appears as a thick horizontal line. Brane #2 stretches
along x 5, x 7, and x 9 and appears as a thick vertical line. A string stretching from the first to
the second brane is also shown.

we must first understand how two lines intersect on a two-torus. The lines that we will
examine are in fact closed straight lines: the projections of the branes into the torus form
circles, or line segments with identified endpoints. This is physically reasonable, the ten-
sion of a brane forces them to be straight. Moreover, unless they are closed, they will have
infinite length, which requires infinite rest energy.

We can work with a torus defined on the (x, y) plane by the identifications x ∼ x + 1
and y ∼ y + 1, where by convention we have chosen the length between identified points
to equal unity. The torus can be viewed as the unit square 0 ≤ x, y ≤ 1 with boundary iden-
tifications. We can use two relatively prime integers (m, n) to describe an oriented closed
line on this torus: the line is constructed on the (x, y) plane as an oriented straight segment
from the origin (0, 0) up to the point (m, n). The identifications can then be used to exhibit
this segment fully on the square 0 ≤ x, y,≤ 1. Note that (m, n) ∼ (0, 0) under the identi-
fications, so the segment is a closed line on the torus. Since m and n are relatively prime,
the segment on the plane does not encounter a point with integer coordinates between its
endpoints. This means that the line on the torus does not close before the segment ends. If
m and n are not relatively prime, then their greatest common divisor represents the number
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�Fig. 21.2 The segment joining (0, 0) to (3, 1) and the corresponding closed line 
 = (3, 1) on the
(shaded) torus. The segment goes through three copies of the fundamental domain, so
it appears on the fundamental domain as three segments, denoted by a, b, and c.

of times that the line is wrapped on the torus. We will focus on lines for which m and n
are relatively prime. If one of the two integers is zero, then the other must be either plus
or minus one, otherwise the curve will be multiply wrapped. An example showing the line
(3, 1) is given in Figure 21.2.

Now consider a line �1 = (m1, n1) and a different line �2 = (m2, n2). The question is:
how many times do these lines intersect on the torus? The answer is simple to state (and
we will discuss its origins a little later on): the intersection number #(�1, �2) is

#(�1, �2) = m1n2 − m2n1 = det

(
m1 n1

m2 n2

)
. (21.5)

This intersection number can be interpreted as the z component of the vector cross product
of (m1, n1, 0) and (m2, n2, 0). This means that the magnitude of the intersection number
coincides with the area of the parallelogram defined by the vectors �1 and �2. As defined,
the intersection number is antisymmetric under the exchange of the two lines: #(�1, �2) =
−#(�2, �1). The sign associated with the intersection has a meaning because we are dealing
with oriented lines. When #(�1, �2) > 0, the oriented line �1 aligns with the oriented line �2

after a counterclockwise rotation with angle less than π . When #(�1, �2) < 0, the alignment
occurs after a clockwise rotation with angle less than π . For example, the intersection
number of �1 = (1, 0) with �2 = (0, 1) is equal to

#(�1, �2) = 1 × 1 − 0 × 0 = +1. (21.6)

Consistent with the plus sign, a counterclockwise rotation of �1 = (1, 0), with angle π/2,
gives �2 = (0, 1). Since we are dealing with straight lines, the intersection angle at each
intersection point is the same and the rotation needed to align the oriented lines is of the
same type.

Quick calculation 21.1 Consider �1 = (−1, 1) and �2 = (1, 1). Calculate #(�1, �2), iden-
tify the intersection points on the torus, and confirm that the sign of the intersection number
is in accord with expectations.
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�Fig. 21.3 The lines 
1 = (3, 2) and 
2 = (1, 2) intersect four times on the (shaded) two-torus. The cell
C spanned by 
1 and 
2 is a parallelogram with area four.

In Figure 21.3 we show the intersection of the lines �1 = (3, 2) and �2 = (1, 2). When
drawn on the square 0 ≤ x, y ≤ 1, the line �1 appears as four segments, and the line �2

appears as two segments. We find two intersection points in the interior of the square.
There is one intersection point on the horizontal sides (it is identified on the two sides).
And there is one intersection point at the corners, all of which are identified. This gives a
total of four intersection points. The intersection number can be calculated directly using
(21.5), and we get the expected answer: #(�1, �2) = 3 × 2 − 1 × 2 = 4.

The formula (21.5) for the intersection number gives zero for the intersection of a line
with itself. A line coincides fully with itself, so what is the meaning of the zero? The
meaning is topological: given two coincident lines on a torus, we can displace one of them
a little and obtain a situation in which the lines no longer intersect. Consider the line (1, 0),
for example. A slightly displaced version of this closed line is 0 ≤ x ≤ 1, y = ε, with ε

a small positive number. This new closed line has no point in common with the closed
line (1, 0). The intersection number is a topological quantity; roughly, the intersection
number of two lines does not change under small deformations of the lines. That is why
the intersection number of coincident lines is zero.
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Quick calculation 21.2 Display on a torus the line � = (1, 1) and a second line, parallel to
�, which is obtained by a small displacement of �.

We now briefly explain the origin of (21.5). Consider the (x, y) plane with the earlier unit
identifications x ∼ x + 1 and y ∼ y + 1, and think of the lattice of points with integer
coordinates. The unit cell in this lattice is spanned by the vectors (1, 0) and (0, 1). The
identifications on the unit cell give the unit torus. The cell C spanned by the vectors �1 and
�2 is a parallelogram with some integer area I . We can use C to construct a big torus Ĉ by
gluing together the parallel sides of C. If we denote by �x = (x, y) an arbitrary point on the
plane, the big torus Ĉ arises from the identifications �x ∼ �x + �1 and �x ∼ �x + �2. We want
to show that the area I of Ĉ is the number of times that the closed lines �1 and �2 intersect
on the unit torus. It is a known fact about lattices that the torus Ĉ contains I copies of each
point on the unit torus. Let us now count the total number of copies that arise from the set
of intersection points on the unit torus. For this we must find all the intersections between
all the copies of �1 and all the copies of �2. The torus Ĉ contains I copies of the line �1:
one copy is provided by the edge �1 of C (and the other parallel edge), and the other I − 1
copies are segments parallel to �1 that go through the interior of C. Similarly, Ĉ contains
I copies of the line �2. On Ĉ, each copy of �1 intersects once with each copy of �2, so we
have a total of I × I distinct intersection points on Ĉ. It follows that there are I 2/I = I
distinct intersection points on the unit torus. This is what we wanted to prove.

Quick calculation 21.3 Explain why the interior of C contains I − 1 points with integer
coordinates. Explain also why the copies of �1 and �2 on the interior of C go through the
points with integer coordinates.

Quick calculation 21.4 Find the coordinates of the intersection points between the lines
�1 = (3, 2) and �2 = (1, 2) (Figure 21.3). Express your answers using points on the unit
cell 0 ≤ x, y ≤ 1.

We can now return to our D6-branes, which have three directions wrapped on T 6. Each
wrapping is specified by three lines (�1, �2, �3). The line �i represents the direction of
the D-brane on the i th T 2. The first D6-brane in our earlier example is now described by
�1 = �2 = �3 = (1, 0). The second brane is described by �1 = �2 = �3 = (0, 1). When we
specify a D6-brane using three oriented lines, we are actually giving an orientation to the
three-dimensional subspace of the D6-brane that lies on the T 6. The orientation of a space
of dimension k is defined by a choice of an ordered set of k linearly independent tangent
vectors. The two-dimensional (x, y) plane, for example, can be oriented using the ordered
pair of tangent vectors ((1, 0), (0, 1)). Intuitively, this defines a circulation on the plane;
the circulation is the direction in which one must rotate the first vector (with an angle
smaller than π ) to align it with the second vector. In more elementary descriptions, the
orientation of a surface inside R

3 is defined by an oriented direction normal to the surface.
The two descriptions are related: the cross product of the ordered tangent vectors on the
surface points in the direction of the oriented normal. For the three-dimensional subspace
of a D6-brane lying on T 6, the set of ordered vectors is (�1, �2, �3).



457 21.2 D-branes and the Standard Model gauge group
�

Consider now a general situation where we have two D6-branes, a and b, each of which
has three directions wrapped around T 6. Such a configuration is specified by

D6-brane a: (�
(a)
1 , �

(a)
2 , �

(a)
3 ),

(21.7)
D6-brane b: (�

(b)
1 , �

(b)
2 , �

(b)
3 ).

How many times do these D6-branes intersect on T 6? They intersect a number of times
Iab equal to the product of the intersection numbers of the corresponding lines on each of
the three two-tori. Indeed, the general intersection point on T 6 is obtained by choosing one
intersection point from each of the three two-tori. We thus have

Iab = #(�
(a)
1 , �

(b)
1 ) · #(�

(a)
2 , �

(b)
2 ) · #(�

(a)
3 , �

(b)
3 ) =

3∏
i=1

#(�
(a)
i , �

(b)
i ). (21.8)

If we let �
(a)
i = (ma

i , na
i ) and �

(b)
i = (mb

i , nb
i ), then

Iab =
3∏

i=1

(ma
i nb

i − mb
i na

i ). (21.9)

The number Iab carries a sign, the interpretation of which is straightforward. Since we have
three intersections, there are three rotations that are needed to align brane a with brane b.
The sign of Iab is negative if the number of clockwise rotations is odd, and it is positive
if the number of clockwise rotations is even. Iab is the intersection number of the two
oriented D6-branes. In particle physics models constructed with intersecting D6-branes,
four-dimensional chiral fermions arise from open strings localized near each intersection.
Even more, the sign of the intersection number determines the orientation of the open
string which represents the chiral fermions. We will consider these matters in some detail
in Sections 21.3 and 21.4.

If Iab = 0, then at least one of the three intersection numbers #(�
(a)
i , �

(b)
i ), i = 1, 2, 3,

must be equal to zero. Suppose that the intersection number vanishes only for i = 1. Then
�
(a)
1 and �

(b)
1 must be either parallel or antiparallel. Since the lines we are considering are

defined by relatively prime integers, we must have �
(a)
1 = ±�

(b)
2 . The two D-branes then

coincide over a set of n circles: the circle is the common closed line on the first torus, and
n is the absolute value of the product of the intersection numbers on the second and third
tori. If �

(a)
1 is displaced a little so that it does not coincide with �

(b)
1 , then the two D-branes

will also have no common points. With this understanding, we say that two branes with
zero intersection number do not intersect.

21.2 D-branes and the Standard Model gauge group

We have seen that on the world-volume of N coincident D-branes there are U (N ) gauge
fields, or gauge bosons, whose low energy dynamics is governed by a Yang–Mills theory
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�Fig. 21.4 Three D-branes that give rise to the gauge bosons of U(3). The branes are shown separate,
for convenience, but are supposed to be coincident. We show nine strings, each belonging to
one of the nine open string sectors.

with gauge group U (N ). The gauge bosons of the Standard Model – the gluons, the W±,

the Z , and the photon – are all described by Yang–Mills theories. In this section we will
examine the gauge group of the Standard Model, paying particular attention to the kind of
D-brane configurations from which they could arise.

Let us start with the gluons, the gauge bosons that transmit the strong color force. Glu-
ons are described by a four-dimensional SU (3) Yang–Mills theory. This theory is closely
related to the U (3) Yang–Mills theory which arises at low energies on the world-volume of
three coincident D3-branes (see Section 15.3). We will use the brane picture to understand
what SU (3) is. The D-brane configuration for U (3) is shown in Figure 21.4, where the
D-branes have been separated in order to be able to exhibit the various strings. There are
nine open string sectors; they are labeled by [i j], with i, j = 1, 2, 3. The figure shows one
string from each sector. Every sector contains a string state that represents a gauge field.

Each of the three D-branes carries its own Maxwell field. These three Maxwell fields A(i)μ

(i = 1, 2, 3) are associated with the states α−1|[i i]〉, which represent open strings that
begin and end on the same D-brane. In writing α−1|[i i]〉, we have suppressed both the
momentum labels of the states and the spacetime indices of the oscillators. With the help
of these gauge fields, we can build a general class of states:

3∑
i=1

A(i) α−1|[i i]〉, (21.10)

where we have suppressed the spacetime indices of the gauge fields, as well.
Let us now consider interactions, but restrict ourselves to low energies, where the string

interactions become those of the Yang–Mills theory. The Maxwell fields A(i) do not inter-
act with each other because the rule of combination of sectors (15.59) does not allow
it: the endpoints of the different strings are never on the same brane. They do not have
self-interactions, either, since Maxwell fields are free fields. The Maxwell fields A(i) do,
however, interact with any state that carries their charge. Of the nine gauge fields in the
D-brane configuration, the three Maxwell fields A(i) are on a special footing. Together,
they comprise the largest possible set of gauge fields that have no interactions among its
members.
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Any string state is characterized by the values q1, q2, and q3 of the charges that it carries
with respect to the Maxwell fields A(1), A(2), and A(3), respectively. The charges of a state
are collectively denoted by (q1, q2, q3). In our convention, an oriented open string carries a
unit negative charge at the σ = 0 endpoint and a unit positive charge at the σ = π endpoint.
A string in the [12] sector, for example, has charges (−1, 1, 0). Here q1 = −1 since the
string begins on the first brane, q2 = +1 since the string ends on the second brane, and
q3 = 0 since no endpoint lies on the third brane. For any string that is stretched from one
brane to a different one, one charge is plus one, one charge is minus one, and one charge
is zero. The sum of the three charges is zero. In fact, for a string beginning and ending on
the same D-brane all three charges are zero.

If we think of a string in the limit in which it becomes a point with spacetime coordinates
xμ, the existence of the three charges implies the following coupling of the trajectory to
the Maxwell fields:

3∑
i=1

qi

∫
A(i)dx =

∫ ( 3∑
i=1

A(i)qi

)
dx . (21.11)

Because of (21.10), a change of basis in the space of states spanned by the α−1|[i i]〉 implies
a linear redefinition of the Maxwell fields. On the other hand, (21.11) implies that a linear
redefinition of the Maxwell fields results in a linear redefinition of the charges.

Since the idea of redefining fields and charges may be unfamiliar, let us give an example.
Consider two Maxwell fields A1 and A2, and let (q1, q2) denote the charges of a given
particle with respect to these Maxwell fields. The claim is that this physical system can be
described using a different set of Maxwell fields, for which the charges are also different.
To show this, we introduce new fields A± = (A1 ± A2)/

√
2 built from the original fields

A1 and A2. In this setup, the sum on the right-hand side of (21.11) involves two terms only,
and it can be rewritten as

A1q1 + A2q2 = A1 + A2√
2

q1 + q2√
2

+ A1 − A2√
2

q1 − q2√
2

= A+q+ + A−q−, (21.12)

where we defined q± = (q1 ± q2)/
√

2. The physics, we claim, can be described using
Maxwell fields A+ and A− and particles that carry charges [q+, q−]. Imagine, for exam-
ple, two charged particles. In the first description (using A1 and A2), the first particle has
charges (1, 0), and the second particle has charges (0, 1). It is clear that these particles do
not experience an electrostatic force: the second particle carries no A1 charge, and the first
particle carries no A2 charge. Now we describe the same two particles using fields A+
and A−. The new charges are [1/

√
2, 1/

√
2] for the first particle, and [1/

√
2, −1/

√
2] for

the second particle. The force between the particles now has two contributions that cancel:
the two particles carry the same A+ charges, but they also carry A− charges of the same
magnitude but opposite signs. The net force is still zero. More generally, you can verify
that the electrostatic force between arbitrarily charged particles does not change.

Quick calculation 21.5 Consider two particles with charges (q1, q2) and (q ′1, q ′2), respec-
tively. The electrostatic force between them is proportional to q1q ′1 + q2q ′2. Let the
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redefined charges of the two particles be [q+, q−] and [q ′+, q ′−], respectively. Show that
q+q ′+ + q−q ′− = q1q ′1 + q2q ′2.

Returning to our brane configuration, we now claim that the nine gauge fields can be split
into two sets, such that the gauge fields in one set have no interactions with the gauge fields
in the other set. One set has eight gauge fields, and the other set has one gauge field. That
special gauge field is the Maxwell field Ā(3) associated with the state

|s3〉 ≡ 1√
3

(α−1|[11]〉 + α−1|[22]〉 + α−1|[33]〉) . (21.13)

Since Maxwell fields only interact with charged objects, it suffices to show that no gauge
field carries its charge. In fact, we assert that the charge q̄3 associated with Ā(3) is given by

q̄3 = 1√
3

(q1 + q2 + q3) . (21.14)

If this is true, our claim holds; we have seen that the sum of the three charges is equal to
zero for any string fully contained in the D-brane configuration.

To prove these claims, consider a change of basis states implemented by a general
invertible linear transformation:

|si 〉 =
3∑

j=1

Mi j α−1|[ j j]〉, i = 1, 2, 3. (21.15)

We can use matrix notation to write this equation as

s = M v. (21.16)

Here s denotes the column vector with entries |si 〉, v denotes the column vector with entries
α−1|[i i]〉, and M is the invertible matrix with components Mi j . Letting A denote the row
vector with entries A(i), we see that the general state in (21.10) can be rewritten as a dot
product:

A · v = A · M−1 Mv = AM−1 · s ≡ Ā · s, (21.17)

where Ā = AM−1 denotes the Maxwell fields associated with the new basis states. Equa-
tion (21.11) can now be used to find the new charges, which are the linear combinations
of the old charges that multiply the new fields. Focusing on the pairing between fields and
charges and letting q denote the column vector of charges qi , we have

3∑
i=1

A(i)qi = A · q = AM−1 · Mq = Ā · Mq ≡ Ā · q. (21.18)

Here the new charges q̄ are given in terms of the old charges q by

q̄ = Mq. (21.19)

We see that the matrix M that defines the new states (21.16) also defines the new charges.
This is reasonable, since equations (21.10) and (21.11) show that states and charges couple
to the fields in the same way. Our result proves that (21.13) implies (21.14). This is what we



461 21.2 D-branes and the Standard Model gauge group
�

had to establish in order to conclude that Ā(3) decouples from the other eight gauge fields
in the D-brane configuration. It can be proven that the other eight gauge fields cannot be
split further into sets of fields that are mutually noninteracting.

There is one minor point that should also be addressed. In order to be able to read out
charges correctly, the normalization of the F2 terms in the action for the Maxwell fields
must be preserved. Let F and F̄ denote the row vectors of field strengths obtained from
the row vector gauge fields A and Ā, respectively. The relation A = ĀM then implies that
F = F̄M . The sum of F2 terms is simply F · F, where the entry to the right of the dot must
be understood as a column vector, obtained by transposition from the row vector which is
denoted with the same symbol. As a result, we have

F · F = F̄M · MT F̄ = F̄ · M MTF̄. (21.20)

In order to obtain F̄2 terms with the same normalization as that of the F2 terms, we
need M MT = 1 – the matrix M must be orthogonal. This is not a severe constraint; an
orthogonal M is obtained if we supplement (21.13) with the states

|s1〉 ≡ 1√
6

(α−1|[11]〉 + α−1|[22]〉 − 2α−1|[33]〉) ,

|s2〉 ≡ 1√
2

(−α−1|[11]〉 + α−1|[22]〉) . (21.21)

Quick calculation 21.6 Write out the matrix M explicitly and verify that it is orthogonal.

It is interesting to note that the decoupled gauge field is obtained by adding up similar
states from each of the three D-branes. We can also consider the state

αa
−1|[11]〉 + αa

−1|[22]〉 + αa
−1|[33]〉, (21.22)

where the index a represents a direction normal to the D-branes. This state is associated
with a displacement of the full collection of D-branes in the xa direction (see the dis-
cussion below (15.37)). Just as the gauge field on a D-brane has massless scalar partners
representing motion, the states above are partners of the decoupled gauge field.

We have mentioned before that the theory of a Maxwell gauge field is a U (1) Yang–Mills
theory. We have shown above that the U (3) Yang–Mills theory of nine interacting gauge
fields on three coincident D-branes contains a decoupled U (1) theory, which we have iden-
tified explicitly. The remaining eight interacting gauge fields define the so-called SU (3)

gauge theory. This is the theory that governs the dynamics of the eight massless gluons of
quantum chromodynamics (QCD). As groups, U (3) is the group of 3-by-3 unitary matri-
ces and SU (3) is a subgroup of U (3) obtained by considering only unitary matrices that
have unit determinant. The relationship between the group U (3) and the groups SU (3) and
U (1) is written as

U (3) = SU (3)×U (1), (21.23)

where the product notation is used for groups that act independently. Equation (21.23)
describes a local relation between groups which are also manifolds; it ignores topological
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issues. Our physical analysis does not fully justify this notation, but it does show that the
two factors correspond to gauge theories whose gauge fields do not interact with each
other. The color force is described by SU (3), so in order to obtain this theory from a
configuration with three coincident D-branes we must understand the role of the additional
Maxwell field. We will discuss this matter further in the following section. In general,

U (N ) = SU (N )×U (1), (21.24)

where U (N ) is a theory with N 2 gauge fields and SU (N ) is a theory with N 2 − 1 gauge
fields. As we have noted before, U (N ) gauge fields arise on the world-volume of N
coincident D-branes.

The full set of Standard Model gauge bosons is described by the Yang–Mills theory with
gauge group

SU (3)c × SU (2)w ×U (1)Y . (21.25)

The subscript c is for color, w is for weak, and Y is for hypercharge. The SU (2)w ×U (1)Y

factors define the electroweak Yang–Mills theory. In SU (2)w, there are 22 − 1 = 3 gauge
bosons. To realize SU (2)w with D-branes we need two additional coincident D-branes.
This pair of D-branes should not coincide with the three color D-branes needed to obtain
SU (3)c, otherwise we would get a U (5) Yang–Mills theory. If the two sets of branes are
kept separate, the gauge group that emerges is

U (3)×U (2) = SU (3)× SU (2)×U (1)×U (1), (21.26)

where we applied (21.24) twice and noted that the order of group factors has no signifi-
cance. It is natural to ask if one of the U (1) factors, or a combination of the two, can be
identified with the hypercharge factor in (21.25). If we only cared about gauge bosons,
the answer would be yes. In the Standard Model, however, we must also give the correct
hypercharges to the fermions. This cannot be done with the U (1)s in (21.26). At least
two additional D-branes appear to be necessary. We will discuss this matter further in the
following section.

A process of symmetry breaking is necessary to reduce the gauge group in (21.25) to
the one observed at low energies. When (21.25) applies, we get twelve massless gauge
fields. At low energies, however, some of the Standard Model gauge fields are known to be
massive. Indeed, three of the four gauge fields in SU (2)w ×U (1)Y acquire mass through
symmetry breaking, giving us the W+, the W−, and the Z0. The fourth gauge field remains
massless; it is the photon, which arises as a linear combination of the hypercharge field and
one gauge field in the SU (2)w factor. After symmetry breaking, the gauge group is

SU (3)c ×U (1)em. (21.27)
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Symmetry breaking is triggered when certain charged scalar fields, the Higgs fields, acquire
expectation values. In this process not only gauge fields, but also fermions, acquire mass.
This brings us to the topic of fermions, which we discuss next.

21.3 Open strings and the Standard Model fermions

We have discussed the gauge bosons of the Standard Model, and we have begun to examine
the D-brane configurations that are needed to obtain them. In order to use string theory
to describe the full Standard Model, we must also learn about the matter particles and
the charges that they carry. This is the main subject of the present section. We will also
make preliminary observations regarding the representation of fermions as strings ending
on the D-brane configurations that carry the gauge bosons. A detailed discussion of the
embedding of the full Standard Model in a D-brane configuration is given in the following
section.

Let us begin by examining some of the basic properties of fermions in four-dimensional
spacetime. Consider for this purpose a prototype spin-1/2 fermion field; such a field repre-
sents a massive particle together with its (different) antiparticle. The classic example is the
Dirac electron field, which describes the electron e− and its antiparticle, the positron e+.
Imagine now a world where the mass of the electron and the mass of the positron are zero.
The particle states would then be characterized by their helicity, the spin angular momen-
tum along the direction of the motion. If the helicity takes the value +1/2 then the fermion
state is said to be right handed. If the helicity takes the value −1/2 then the fermion state
is said to be left handed. This is not altogether different from the way that we character-
ize photon states using a basis of right and left circularly polarized states; these are indeed
photons of definite helicity. Massive fermion states can also be characterized by their helic-
ity, but then the characterization is not Lorentz invariant. Imagine a massive fermion that
moves with velocity 0 < vx < c along the x axis of a Lorentz frame S and has spin angular
momentum that points along the positive x axis. This is a fermion with positive helicity.
In a Lorentz frame S′ boosted along the x axis with velocity v > vx , the particle moves in
the negative x ′ direction, but its angular momentum does not reverse direction. In the S′
frame the particle has negative helicity. If the particle is massless then it moves with the
speed of light, and we cannot reverse its helicity by changing the Lorentz frame. We will
be working with massless fermions.

Let f denote a fermionic particle and f̄ denote the antiparticle. In this notation, e− and
e+ correspond to f and f̄ , respectively. The quantum field theory which describes these
particles will then include creation and annihilation operators for both the left- and right-
handed states of the particle and for both the left- and right-handed states of the antiparticle.
The creation operators, for example, would be written as:

( f †
L , f †

R ), ( f̄ †
L , f̄ †

R ), (21.28)
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where L and R stand for left-handed and right-handed, respectively. The operator f †
L , for

example, creates a left-handed particle state when it acts on the vacuum, while f̄ †
R creates a

right-handed antiparticle state when it acts on the vacuum. The creation operators contain
other labels (such as momentum) that we are suppressing for simplicity.

Quantum field theory automatically incorporates an important property of fermions: if
we specify the charges of the left-handed particles, then the charges of the right-handed
antiparticles are determined; they are in fact opposite. If the charges are specified as elec-
tric charges for a set of noninteracting Maxwell fields, then opposite charges are simply
charges of opposite sign. Similarly, the charges of the right-handed particles and those of
the left-handed antiparticles are also opposite. To display these relationships, we write

f †
L ← opposite charge → f̄ †

R,

f †
R ← opposite charge → f̄ †

L ,
(21.29)

where we have omitted, for brevity, the vacuum states. All charges are determined if we
specify the charges of two states that do not appear on the same line. These charges can be
specified independently. It suffices, for example, to fix the charges of the particles f †

L and

f †
R to determine the charges of the antiparticles f̄ †

L and f̄ †
R , or vice versa. Alternatively,

we can fix the charges of the left-handed states f †
L and f̄ †

L , or the charges of the right-

handed states f †
R and f̄ †

R . We will generally specify fermion charges by listing those of the
left-handed states.

A central property of the Standard Model is that the spectrum of fermions is chiral. To
understand this property we first consider a simpler case. Assume we have a theory whose
entire fermion spectrum consists of the states in (21.29). The fermion is said to be chiral if
the left- and right-handed particle states f †

L and f †
R do not have the same charges:

if f †
L and f †

R do not have the same charges, the fermion is chiral. (21.30)

In fact, quantum field theory does not require both lines of (21.29) to exist in a theory.
A theory can be consistent with only the states on the first line, or only the states on the
second line. In such cases, unless the states are neutral, the fermion is automatically said
to be chiral.

Charge describes the response of a particle to gauge bosons, so the left- and right-handed
particle states of a chiral fermion respond differently to the same set of gauge bosons. Since
the particle and antiparticle charges are correlated (see (21.29)), the left- and right-handed
antiparticle states also respond differently to the same set of gauge bosons. The electron
is chiral: left-handed electrons and right-handed electrons respond differently to the weak
interactions, and so do left- and right-handed positrons. In fact, all the fermions in the
standard model are chiral. Chirality is a very powerful property: in a gauge theory with
chiral fermions, the fermions cannot acquire mass so long as the gauge symmetry that acts
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chirally remains unbroken. Thus the term chiral fermions is synonymous with massless
fermions. In the Standard Model, the electroweak interactions SU (2)w ×U (1)Y act chi-
rally. The Standard Model fermions remain massless until symmetry breaking reduces the
gauge group (21.25) down to SU (3)c ×U (1)em. Since neither the color force nor the elec-
tromagnetic force act chirally, the fermions can then acquire mass. The mass scale is set by
the mass parameter that appears in the symmetry breaking sector of the theory. This sector
is called the Higgs sector. As we mentioned earlier, the Higgs bosons are charged scalar
fields that trigger symmetry breaking when they acquire expectation values.

Quick calculation 21.7 Convince yourself that a fermion is chiral if the charges of the
left-handed particles and those of the left-handed antiparticles are not opposite.

Let us now describe the matter content of the Standard Model. The fermions of the Stan-
dard Model fall into three generations, or sets, all of which contain the same number of
particles with exactly the same charges. Once the fermions acquire masses, the three gener-
ations are no longer identical. There is a hierarchy of masses; the first generation contains
the lightest fermions and the third generation contains the heaviest fermions. Within each
generation we have quarks and leptons. Quarks feel both the strong interactions and the
electroweak interactions, while leptons feel only the electroweak interactions. Our discus-
sion will focus on charges, so it suffices to consider a single generation. We will give the
charges of all the left-handed states in one generation of quarks and leptons. In other words,
we will list the charges of all the left-handed particles and left-handed antiparticles.

Consider first the quarks. The quarks feel the SU (3) color force because they carry
color. Quarks come in three colors, which we will call red (r), blue (b), and green (g). The
left-handed states qL of a quark are therefore of three types:

qLr, qLb, and qLg. (21.31)

The collection of these three states is said to form the representation 3 of the group SU (3).
One writes qL ∼ 3. Under an SU (3) gauge transformation, the three states are rotated by
an SU (3) matrix. Since the color force does not act chirally, the left-handed antiquarks
q̄L carry the opposite color charges. These are called anti-red (a-r), anti-blue (a-b), and
anti-green (a-g):

q̄La-r, q̄La-b, and q̄La-g. (21.32)

One writes q̄L ∼ 3, the bar included to mean opposite. In group theory, the 3 and the 3 are
said to be conjugate representations. When the states (21.31) are acted upon by an SU (3)

matrix M , the states (21.32) are acted upon by the complex conjugate matrix M∗.

This discussion about quarks and SU (3) representations can be made more intuitive using
D-branes and the open strings that can represent the quarks. We have seen that SU (3)c

requires three coincident D-branes. The key insight is that quarks are simply open strings
that have one endpoint on one of these three branes (recall that gluons have both endpoints
on the collection of branes). We can use the labels red, blue, and green to refer to the first,
second, and third brane, respectively. An open string that ends on the red brane is a left-
handed red quark, a string that ends on the blue brane is a left-handed blue quark, and a
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�Fig. 21.5 The left-handed red, blue, and green quarks are open strings that end on the color D-branes.
The left-handed anti-red, anti-blue, and anti-green antiquarks are open strings that begin
on the color D-branes.

string that ends on the green brane is a left-handed green quark. The orientation of these
strings points into the branes, or, equivalently, the endpoints on the brane are the σ = π

endpoints. How do the left-handed antiquarks arise? They are simply oppositely oriented
open strings. An open string starting on the red brane, for example, would be a left-handed
anti-red antiquark. All these strings are shown in Figure 21.5. We will refer to the three
branes of SU (3)c as color branes, or baryonic branes. The name baryonic comes from
baryon, a particle that is composed of three quarks.

We can also describe the SU (3) charges of the quarks as follows. Recall that we char-
acterize string states by their charges (q1, q2, q3) with respect to the Maxwell fields
that live on the branes. These three charges in fact define the U (3) charge of a state.
The charge for the decoupled U (1) is proportional to (q1 + q2 + q3). We can label the
SU (3) charges using any two linear combinations of the charges that, together with (q1 +
q2 + q3), define a linearly independent set. It is convenient to employ the pair (a1, a2)

defined by

(a1, a2) ≡ ( q1 − q2, q2 − q3 ). (21.33)

The three left-handed quarks in (21.31), which comprise the representation 3 of SU (3), are
therefore characterized by

3 : (1, 0), (−1, 1), (0,−1). (21.34)

For the three left-handed antiquarks in (21.32) we have

3 : (−1, 0), (1,−1), (0, 1). (21.35)

In the language of representation theory, a pair (a1, a2) is called a weight vector, and the
entries a1 and a2 are the Dynkin labels of the weight vector. The 3 and the 3 representations
have three weight vectors.

Quick calculation 21.8 Give the eight weight vectors corresponding to the gauge field
states in SU (3). These states define the representation 8, and the weights are the gluon
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charges. Each of the three gluons that begin and end on the same brane has weight
(0, 0) (why?). Only two of these belong to 8, since one of them corresponds to the
decoupled U (1).

Only one endpoint of any open string that represents a quark lies on a color D-brane,
so it is natural to ask: where does the other endpoint lie? For the left-handed quarks, we
can find the answer by looking into their SU (2)w charges. Quark states fall into SU (2)

representations. The representations of SU (2) are familiar from their role in the quantum
mechanics of spin angular momentum. The SU (2)w of weak interactions has no relation to
angular momentum, so one speaks of isospin instead of spin. The representation of isospin
I = 1/2, for example, has two states, one with I3 = 1/2 and the other with I3 = −1/2,
where I3 denotes a third component of isospin.

Left-handed quark states fall into I = 1/2 representations of the weak interactions. New
labels, called flavor labels, are needed to characterize the various types of quarks. For any
fixed color, the left-handed u-quark is a state with I3 = 1/2, and the (same color) left-
handed d-quark is a state with I3 = −1/2. Appropriately, the u and d stand for up and
down, respectively. Thus uL and dL are members of an SU (2)w doublet, which we denote
by 2. Since quarks come in three colors, there are three SU (2) doublets. Let us now think
in terms of D-branes. We can build a U (2) = SU (2)w ×U (1) theory with two coincident
D-branes. The left-handed u-quarks are strings that begin on one of these D-branes, call it
the first brane, and end on one of the color branes. The left-handed d-quarks are strings that
begin on the other D-brane, call it the second brane, and end on one of the color branes.
The two D-branes we have introduced are called left branes. Left-handed quarks are open
strings that begin on a left brane and end on a color brane.

The states of SU (2) representations which arise from strings that have an endpoint on
the left branes can also be characterized by charges. This time we have two charges q̄1

and q̄2 associated with the Maxwell fields living on brane one and brane two, respectively.
As usual, in our convention q̄i = +1 for a string that ends on the brane i , and q̄i = −1
for a string that begins on the brane i . The charges q̄1 and q̄2 define the U (2) charge of
a state. The charge for the decoupled U (1) is proportional to (q̄1 + q̄2). We can label the
SU (2) charge using any combination of the charges that is independent from (q̄1 + q̄2). It
is convenient to use a Dynkin label

a1 ≡ q̄1 − q̄2. (21.36)

A string that begins on brane one has charges (−1, 0), so a1 = −1. Since this is a u-quark,
which has I3 = 1/2, we deduce a linear relation between the third component of isospin
and the Dynkin label a1:

I3 = −a1/2. (21.37)

This relation also works for the d-quark: a string that begins on brane two has charges
(0,−1), which gives a1 = 1 and I3 = −1/2. Equation (21.37) illustrates how the quantum
numbers of the states in a representation are related to the charges of the states.

Let us now try to visualize the full configuration of three coincident color branes and two
coincident left branes. Whether or not the two sets of D-branes coincide, as long as they
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are parallel, the quark states stretching from one group of branes into the other fail to
correspond to the Standard Model quarks in a dramatic way: they are not chiral. It can be
shown that the spectrum contains left-handed quarks and right-handed quarks, with exactly
the same charges. In a configuration with parallel D-branes, all states in (21.29) are in fact
produced, and the left-handed and right-handed particles carry the same charges. The lack
of chirality is manifest when the sets of D-branes are parallel and separate: the stretched
strings are massive, and masses are not allowed for chiral fermions.

A physical situation is obtained if the coincident color D-branes intersect the coincident
left D-branes. What we have in mind here is a configuration of intersecting D-branes of
the type considered in Section 21.1. If the two sets of D-branes intersect, the fermion
fields represented by strings that stretch from one set to the other will be localized near the
intersection. Imagine beginning with coincident and parallel branes, where open strings
can move in all the spatial directions along the branes. As the intersection angle grows
away from zero, it is as if compactification had occurred: some directions of motion are
lost. Some states that are massless at zero angle become massive. In fact, under suitable
conditions, only the states in one line of (21.29) remain massless. We get a chiral fermion
precisely because only one of the pairs is produced at the intersection: either a left-handed
particle and its partner, or a left-handed antiparticle and its partner. If one pair is produced,
the other pair may or may not be produced elsewhere on the D-brane configuration. There
will be no reason for their charges to be correlated, if it is produced. This is why brane-
intersection models naturally give a chiral fermion spectrum. In order to decide if a fermion
spectrum is actually chiral, we must find all the fermion states that arise from the complete
brane configuration.

We can now use Figure 21.6 to give a partial description of the situation. The color branes
are shown horizontally, and the left branes are shown vertically. The three left-handed u-
quarks and the three left-handed d-quarks are shown as stretched strings. The oppositely
oriented strings (not shown) correspond to the oppositely charged right-handed antiquarks.
The I3 labels on the left branes indicate the values of I3 for a string that ends on the branes.

The specification of charges for the left-handed quarks is completed by stating the values
of the hypercharge Y . All three uL quarks and all three dL quarks are states of Y = 1/6.
The information about representations and charges of fermions in the Standard Model is
usually summarized using the notation

(
color, isospin

)
Y . (21.38)

Here color and isospin stand for the representations of SU (3) and SU (2), respectively.
Y is simply the value of the hypercharge. This notation describes representations of the
full Standard Model gauge group SU (3)× SU (2)×U (1), since it specifies the represen-
tations with respect to each of the group factors. To illustrate the use of this notation,
consider the states (

uLr uLb uLg

dLr dLb dLg

)
, (21.39)
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�Fig. 21.6 The left-handed quarks are strings that stretch from the left branes to the baryonic branes.
The three left-handed u-quarks are open strings that begin on the first left brane and end on
a baryonic brane. The three left-handed d-quarks are open strings that begin on the second
left brane and end on a baryonic brane.

which comprise the left-handed up and down quarks of all possible colors. The states can
be viewed as a triplet of SU (2) doublets (the three columns of the matrix) or, equivalently,
as a doublet of SU (3) triplets (the two rows of the matrix). In the notation of (21.38), the
six states are denoted by

(3, 2)1/6 . (21.40)

Since the labels for the color and isospin representations are actually equal to the number
of states in the representations, the product 3 × 2 = 6 is the number of states in the full
representation. All six states have the same hypercharge.

How do we calculate the hypercharge of states from the D-brane configuration? It
turns out that the hypercharge receives contributions from both the decoupled U (1) of
the baryonic branes and the decoupled U (1) of the left branes. Let us define conve-
niently normalized U (1) charges Q1 and Q2, associated with the color and left branes,
respectively:

Q1 = q1 + q2 + q3, Q2 = q̄1 + q̄2. (21.41)

Any string that begins and ends on baryonic branes or that begins and ends on left branes
has both Q1 and Q2 equal to zero. On the other hand, a left-handed quark is a string that
begins on a left brane and ends on a color brane. Any such string has Q1 = 1 and Q2 = −1.
The hypercharge of the left-handed quarks is obtained if we take

Y = − 1
3 Q1 − 1

2 Q2 − · · ·, (21.42)
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where the dots represent contributions from additional D-branes, to be included later.
Since the left-handed quarks have no endpoints on these extra branes, Y = −(1/3)× 1 −
(1/2)× (−1) = 1/6.

We must now consider the left-handed antiquarks, ūL and d̄L . At this point, we encounter
the chirality of the electroweak interactions. Had the electroweak interactions been non-
chiral, these antiquarks would form a doublet with charges opposite to those of the left-
handed u and d quarks; they would be seen as strings ending on the left branes. It turns
out, however, that the left-handed antiquarks ūL and d̄L are each SU (2) singlets (with
representation denoted by 1). The corresponding strings cannot then have endpoints on the
left branes. Moreover, ūL has Y = −2/3 and d̄L has Y = 1/3. A nonchiral coupling would
have required Y = −1/6 for both of them. It follows from this and our earlier analysis of
color that the left-handed antiquarks are in the representations

ūL ∼
(

3, 1
)
−2/3

and d̄L ∼
(

3, 1
)

1/3
. (21.43)

Here we have suppressed the color labels; thus ūL , for example, stands for the three anti-
quarks of different colors. The representations of the left-handed quarks and antiquarks are
then summarized as

(
uL

dL

)
∼ (3, 2)1/6 , ūL ∼

(
3, 1

)
−2/3

and d̄L ∼
(

3, 1
)

1/3
. (21.44)

This is the set of left-handed quark and antiquark states in the first generation of the
Standard Model. The generation also includes the corresponding right-handed states.

The ūL antiquarks are strings that begin on a color brane. Since they cannot end on a left
brane (they are SU (2)w singlets), they must end on a new D-brane. If we let Q3 denote the
electric charge that couples to the Maxwell field on this D-brane, we find that (21.42) must
be changed to

Y = − 1
3 Q1 − 1

2 Q2 − Q3 − · · ·. (21.45)

The hypercharge Y = −2/3 of the ūL states emerges because Q1 = −1, Q2 = 0, and
Q3 = 1. The d̄L antiquarks are also strings that begin on a color brane and cannot end on
a left brane. Their hypercharge Y = 1/3 is correctly reproduced by (21.45) with Q1 = −1
and Q2 = 0, if the strings end on a D-brane that does not contribute to Y . We will discuss
such additional D-branes in the next section.

Let us now describe the left-handed leptons in the first generation. These are the left-
handed electron-neutrino and the left-handed electron, together with the left-handed anti-
neutrino and the left-handed positron. None of the leptons carries color; they are all color
singlets, and their SU (3) representation is denoted by 1. The left-handed neutrinos and
the left-handed electrons form an SU (2) doublet with hypercharge Y = −1/2. Again, we
have chirality. Both the left-handed positron and the left-handed anti-neutrino are SU (2)
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singlets, and their hypercharges are one and zero, respectively. The lepton charges are
summarized by

(
νeL

e−L

)
∼ (1, 2)−1/2 , e+L ∼ (1, 1)1 , and ν̄eL ∼ (1, 1)0 . (21.46)

Note that the left-handed anti-neutrinos are color, weak, and hypercharge singlets. These
states have not been detected directly, but they are likely to exist because neutrinos appear
to have mass. The states in (21.44) and (21.46), together with the corresponding right-
handed states, comprise the matter states in the first family of the Standard Model. As you
have probably already realized, the open strings that represent leptons cannot end on color
D-branes. The left-handed neutrino and the left-handed electron arise from strings that
have one endpoint on a left brane and another endpoint on some other brane. Neither the
left-handed positron nor the left-handed anti-neutrino have an endpoint on a color brane or
a left brane.

The full set of left-handed states in a generation is obtained by listing the states in (21.44)
together with those in (21.46). Suppressing the names of the states, and using the+ symbol
to collect the representations together, we have

(3, 2)1/6 +
(

3, 1
)
−2/3

+
(

3, 1
)

1/3
+ (1, 2)−1/2 + (1, 1)1 + (1, 1)0 . (21.47)

As we have learned, charge reversal exchanges the 3 and 3 of SU (3) and reverses the sign
of the hypercharge. Under charge reversal all singlets 1 remain unchanged, because they
represent states with zero charge. For SU (2), charge reversal exchanges the 2 and 2, but it
turns out that the 2 is a representation that is equivalent to the 2. So charge reversal leaves
the 2 of SU (2) unchanged.

On account of the comments below (21.29), we can list the states in a generation in
alternative ways.

Quick calculation 21.9 List the right-handed states in a generation, together with their
corresponding charges.

Quick calculation 21.10 Describe the matter states in a generation by listing the left- and
right-handed particle states, together with their corresponding charges.

In the Standard Model, the electric charge Qem arises from a linear combination of the
hypercharge Y and the third component I3 of isospin:

Qem = Y + I3. (21.48)

If we apply this formula to the uL and dL states, we find

Qem(uL) = Y (uL)+ I3(uL) = 1
6 + 1

2 = + 2
3 ,

Qem(dL) = Y (dL)+ I3(dL) = 1
6 − 1

2 = − 1
3 . (21.49)
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These are indeed the correct values. The proton is made up of two up quarks and one down
quark. Its electric charge equals 2 × 2

3 − 1
3 = 1.

Quick calculation 21.11 Find the electric charges of the left-handed antiquarks, and verify
that they are opposite to those of the left-handed quarks. Show that (21.48) gives zero elec-
tric charge to the left-handed neutrino and anti-neutrino states, electric charge minus one
to the left-handed electron states, and electric charge plus one to the left-handed positron
states. Conclude that electromagnetism does not couple chirally.

As far as states and charges are concerned, the other two generations of the Standard Model
are copies of the first generation. The quark flavors in the second generation are called
charm and strange, and denoted by c and s respectively. The leptons in the second gener-
ation are the muon-neutrino νμ and the muon μ−. In the third generation we have a top
quark t and a bottom quark b, as well as a tau-neutrino ντ and a tau τ−. The full set of
left-handed states in the Standard Model consists of three copies of the states in (21.47):

3 ×
[
(3, 2)1/6 +

(
3, 1

)
−2/3

+
(

3, 1
)

1/3
+ (1, 2)−1/2 + (1, 1)1 + (1, 1)0

]
.

(21.50)

We can now state precisely the chirality property of the fermion spectrum in the Standard
Model. A spectrum is said to be nonchiral if the set of left-handed states can be split
into pairs of left-handed states with opposite charges (see Quick calculation 21.7). Thus,
given a list of charged left-handed states that defines a nonchiral spectrum, the operation
of reversing the charges of all the states must leave the list of states invariant. The fermion
spectrum of the standard model is chiral because the operation of reversing all charges in
the list (21.50) changes the list.

The gauge group and the matter content of the Standard Model may seem to you rather
intricate or perhaps even cumbersome. But this set of particles and interactions in fact pro-
vides a rather economical description of an extremely large number of experimental results
obtained over the past few decades. The Standard Model of particle physics is indeed a
magnificent achievement. It is not a final theory of particle physics, nor is it a complete
one, but it seems certain that the Standard Model must appear in the low energy limit of
any correct unified theory of all interactions. It is in this sense that the Standard Model of
particle physics has become a permanent part of our knowledge about the physical world.

21.4 The Standard Model on intersecting D6-branes

In the two previous sections we acquainted ourselves with some of the ingredients needed
to build a string theory model of elementary particles. In this section, we build a complete
string model that has many of the features of the Standard Model. The model involves
intersecting D6-branes wrapped on a T 6, in the framework of type IIA superstring theory.
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Before symmetry breaking, it has all the massless particles of the Standard Model, but it
also contains a few extra particles. It is in fact possible to construct a model with orientifold
O6-planes and D6-branes that gives precisely the particle content of the Standard Model.
An orientifold Op-plane is an extended object with p spatial dimensions. The basic prop-
erties of orientifold planes were studied earlier in a series of problems (13.6, 15.1, 15.3,
15.4, and 15.5). We will introduce some of the features of this second model, relegating
most of the analysis to the problems at the end of the chapter.

One key property of the Standard Model matter content is its replication: there are three
generations that contain fermionic matter states with identical charges. How do we explain
such replication in terms of D-branes? We explain it in terms of multiple intersections.
We found the left-handed u and d quarks at the intersection of the coincident baryonic
branes with the coincident left branes. If these sets of branes wrap around the T 6 in such
a way that they intersect three times, then the second intersection will give left-handed c
and s quarks, and the third intersection will give left-handed t and b quarks. We learned
in Section 21.1 that general classes of D6-branes wrapped on T 6 = T 2 × T 2 × T 2 are
characterized by three lines �1, �2, and �3, each of which is, in turn, characterized by two
integers. Moreover, we found the formula (21.9), which gives the number of times that two
D6-branes intersect.

Let N1 = 3 denote the number of baryonic branes, and let N2 = 2 denote the number of
left branes. Moreover, let them be wrapped on T 6 as follows:

N1 = 3: �
(1)
1 = (1, 2), �

(1)
2 = (1,−1), �

(1)
3 = ( 1,−2),

N2 = 2: �
(2)
1 = (1, 1), �

(2)
2 = (1,−2), �

(2)
3 = (−1, 5).

(21.51)

The intersection number I12 between a single baryonic brane and a single left brane is then

I12 =
(
1 × 1 − 1 × 2

) · (1 × (−2)− 1 × (−1)
) · (1 × 5 − (−1)× (−2)

) = 3. (21.52)

The intersection number is the desired one. Of course, the constraint I12 = 3 does not
determine the wrappings in (21.51). These wrapping numbers are one of many possibilities
that work.

We found that the left-handed quarks are obtained as strings that stretch from the N2

branes to the N1 branes. The orientation of these strings is correlated with the sign of Iab.
Let Iab denote the intersection number for a D6-brane a and a D6-brane b. The precise
rule that gives the number of fermions and specifies how they are represented by strings is
given as follows.

There are |Iab| left-handed fermions at the intersection set of brane a and
brane b, one left-handed fermion at each intersection point. If Iab > 0, the
left-handed states are strings that stretch from brane b to brane a. If Iab < 0,
the left-handed states are strings that stretch from brane a to brane b.

The orientation of the strings determines the charges of the left-handed states. The states
produced at an intersection are chiral in the sense discussed below (21.30): only the min-
imal set of states is produced. The oppositely oriented strings at the intersection represent
the oppositely charged right-handed antiparticles that must necessarily accompany the
left-handed particle states.



474 String theory and particle physics
�

�Fig. 21.7 The brane configuration consisting of N1 = 3 baryonic branes, N2 = 2 left branes,
N3 = N6 = 1 right branes, and N4 = N5 = 1 leptonic branes. The values of Y indicate the
contribution to the hypercharge for a string that ends on the brane. At the intersections we
give the intersection numbers Iab with a < b. The name right branes is used because
right-handed particles are attached to them (we actually show the left-handed
antiparticles).

For the three generations of left-handed quarks obtained above, the value Y = 1/6 of the
hypercharge is correctly given by (21.42). The picture of the branes is that of Figure 21.6,
with the understanding that the displayed intersection actually occurs two additional times.
To indicate this on the diagram, we insert a +3 at the intersection, as shown in Figure 21.7.
We now try to obtain the three generations of left-handed antiquarks. Consider first the
left-handed u-antiquark and its two copies (the left-handed c and t antiquarks). The open
string that represents this quark begins on a baryonic brane, but it cannot end on a left brane
because the state is an SU (2) singlet. We thus need a new D-brane. Let N3 = 1 represent
another D-brane. According to the rule above, we need I13 = −3, since the open strings
must start on the baryonic branes. Additionally, the contribution to the hypercharge from
the charge Q3 on this brane must be such that Y (ūL) = −2/3. This requires that (21.42)
be replaced by

Y = − 1
3 Q1 − 1

2 Q2 − Q3 − · · ·. (21.53)

We then find Y (ūL) = −(1/3)(−1)− (1/2)(0)− 1 = −2/3, as desired. We fix the wrap-
ping of the brane on T 6 by

N3 = 1: �
(3)
1 = (1, 1), �

(3)
2 = (1, 0), �

(3)
3 = (−1, 5). (21.54)

Including the result in (21.52), we then find

I12 = 3, I13 = −3, I23 = 0. (21.55)

We see that the N3 brane does not intersect the left branes. The N3 brane is shown in
Figure 21.7 as a vertical brane, placed to the right of the left branes. The equation Y = −1
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is added to the label of the brane to indicate that a string that ends on this brane receives a
contribution to the hypercharge equal to minus one (this number is equal to the coefficient
of Q3 in (21.53)). Similar labels are attached to the baryonic and to the left branes. The N3

brane is called a right brane because right-handed quark states are attached to it. Indeed,
instead of the ūL antiquark shown in the figure, we could have exhibited the oppositely
oriented string which gives the right-handed quark state u R .

In this model we still have to add three additional D-branes: another right brane to obtain
the left-handed d̄L antiquarks (and its copies) and two separate leptonic branes to obtain
the leptons. Since we are not in a position to derive the wrappings of the D-branes, let us
simply state them. Together with the

N4 = 1: �
(4)
1 = (1, 2), �

(4)
2 = (−1, 1), �

(4)
3 = ( 1, 1),

N5 = 1: �
(5)
1 = (1, 2), �

(5)
2 = (−1, 1), �

(5)
3 = ( 2,−7),

N6 = 1: �
(6)
1 = (1, 1), �

(6)
2 = (3,−4), �

(6)
3 = (1,−5). (21.56)

Both the N4 and the N6 branes are declared not to contribute to the hypercharge, but the
N5 brane is declared to contribute minus one unit. So the final formula for the hypercharge
reads

Y = − 1
3 Q1 − 1

2 Q2 − Q3 − Q5. (21.57)

The remaining intersection numbers are easily calculated and the complete list is

I12 = 3, I13 = −3 , I23 = 0,

I14 = 0, I15 = 0 , I16 = −3,

I24 = 6, I25 = 3 , I26 = 0,

I34 = −6, I35 = −3, I36 = 0,

I45 = 0, I46 = 6, I56 = 3. (21.58)

Since Iab = −Iba , we have only listed intersection numbers Iab with a < b. Those are the
values exhibited at the intersections in Figure 21.7.

Quick calculation 21.12 Confirm the values of all the intersection numbers in (21.4), and
check that they are correctly recorded in the figure. Check also that the strings shown in
the figure have the orientation required by the rule for left-handed states.

We can organize the list of intersections using the horizontal branes on the figure, all
of which intersect with the two coincident left branes and the two right branes. The
intersections on the baryonic branes give

3 (3, 2)1/6︸ ︷︷ ︸
[12]

+ 3
(

3, 1
)
−2/3︸ ︷︷ ︸

[13]

+ 3
(

3, 1
)

1/3︸ ︷︷ ︸
[16]

, (21.59)

where the [ab] labels under the representations indicate that the corresponding fermions
arise from the Iab intersection. The above representations are precisely three copies of a
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single generation of quarks, as you can see by comparing with (21.44). The intersections
on the leptonic brane N4 give

6 (1, 2)−1/2︸ ︷︷ ︸
[24]

+ 6 (1, 1)1︸ ︷︷ ︸
[34]

+ 6 (1, 1)0︸ ︷︷ ︸
[46]

. (21.60)

This result justifies the name leptonic. The above representations are six copies of a single
generation of leptons, as you can see by comparing with (21.46). This is more than the
three copies that we needed, but there is even more. The intersections on the leptonic N5

brane give us

3 (1, 2)1/2︸ ︷︷ ︸
[25]

+ 3 (1, 1)0︸ ︷︷ ︸
[35]

+ 3 (1, 1)−1︸ ︷︷ ︸
[56]

. (21.61)

Quick calculation 21.13 Use (21.57) and the picture of the strings in Figure 21.7 to
confirm that the hypercharge assignments in (21.60) and in (21.61) are correct.

We found more leptons than we wanted, but this is unavoidable in consistent models that
only have D6-branes. There is a simple rule that must be obeyed.

Rule: the set of left-handed states that end on any collection of D-branes
must contain equal numbers of incoming and outgoing strings. (21.62)

We will not derive this rule, but we can check that it holds for Figure 21.7. Consider the
left branes, for example. There are nine outgoing quark doublets (three colors and three
families). But there are also six incoming doublets from N4 and three incoming doublets
from N5. This shows that we cannot obtain only three leptonic doublets.

Quick calculation 21.14 Verify that the numbers of ingoing and outgoing left-handed
states are equal on each of the two right branes and on each of the two leptonic branes.

We can also state a general consistency condition that must be satisfied by the model. The
condition has a topological character. Consider a point charge q at the origin of the (x, y)

plane. In this two-dimensional world, the electric field lines extend radially from the charge
all the way to infinity. On the other hand, if the plane is turned into a two-sphere of finite
size, we have a problem with our charge: the field lines have nowhere to go. If the charge
is at the north pole of the sphere, then the field lines will tend to go to the south pole.
The solution is clear. Consistency requires a charge (−q) at the south pole. The general
conclusion is that the total charge in a compact space without boundary must be zero. This
is easily derived.

Quick calculation 21.15 Consider the Maxwell equation ∇ · �E = ρ, and integrate both
sides of the equation over a compact space that has no boundary. Use the divergence
theorem to show that the total charge must vanish.

In our present configuration we have D6-branes, which are objects that carry Ramond–
Ramond (R–R) charge. Moreover, they wrap a boundaryless compact space T 6. So there
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is a requirement of zero total charge. The formulation of the condition goes as follows.
Introduce three pairs of formal variables: (x1, y1), (x2, y2), and (x3, y3). For any D6-brane
a specified by

�
(a)
1 = (ma

1, na
1), �

(a)
2 = (ma

2, na
2), �

(a)
3 = (ma

3, na
3), (21.63)

we construct the following polynomial of the six formal variables:

�a(xi , yi ) ≡ (ma
1 x1 + na

1 y1) (ma
2 x2 + na

2 y2) (ma
3 x3 + na

3 y3). (21.64)

The polynomial �a encodes the R–R charges of the D6-brane of type a. If we expand
the product, the polynomial consists of eight independent monomials. The consistency
condition simply states that the result of adding the polynomials associated with each of
the D6-branes in the configuration must be zero. If Na denotes the number of D6-branes
of type a, the consistency condition takes the form∑

a

Na �a(xi , yi ) = 0. (21.65)

This gives a total of eight consistency conditions on the numbers Na and on the windings
of the various D6-branes. For example, the vanishing of the coefficient of x1x2x3 gives∑

a

Na ma
1 ma

2 ma
3 = 0. (21.66)

This equation is easily tested using (21.51), (21.54), and (21.4). We find that it requires the
vanishing of N1 − N2 − N3 − N4 − 2N5 + 3N6. Indeed, this quantity vanishes: 3 − 2 −
1 − 1 − 2 + 3 = 0. In fact, the rule (21.4) is a consequence of (21.65), as you will show in
Problem 21.2.

In order to build a string model with the particle content of the Standard Model, one needs
to introduce orientifold planes, which effectively introduce image D6-branes. Remarkably,
it is possible to build a configuration of branes and orientifolds so that (1) the gauge group
is the Standard Model gauge group (21.25) and all additional U (1) factors disappear, and
(2) the set of chiral fermions is precisely that of the Standard Model (21.50). Intersecting
D6-brane models are the first string theory models that have given precisely the particle
content of the Standard Model. A qualification is necessary: the closed string sector of the
theory may contain additional unobserved particles and interactions.

We will not discuss these models in full detail, but in order to satisfy your curiosity
we will show the brane configuration and make a few remarks (a number of consistency
checks have been relegated to Problem 21.3). The set of intersecting branes is shown in
Figure 21.8. Comparing with the model in Figure 21.7, we see that there are still N1 = 3
baryonic branes and N2 = 2 left branes, but there is only one right brane N3 = 1 and only
one leptonic brane N4 = 1. The orientifolds introduce image D-branes, which are denoted
by affixing an asterisk to the brane labels and are shown as dashed lines. The configuration
is chosen such that no brane intersects with its own image.

The main purpose of this construction is to avoid the extra leptonic doublets that we
obtained above. In this model the left-handed quark doublets arise in a new way. The
doublet in the first generation appears at the intersection I12 = 1 of the baryonic branes and
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�Fig. 21.8 The brane configuration that leads to a Standard Model gauge group and matter content.
There are N1 = 3 baryonic branes, N2 = 2 left branes, N3 = 1 right branes and N4 = 1
leptonic branes. The image D-branes created by the orientifolds are shown in dashed lines.
Intersections framed by a square are mirrors of previously accounted intersections and do
not give new particles.

the left branes. The other two doublets appear at the intersection I12∗ = 2 of the baryonic
branes and the image of the left branes (top right of the figure). Equivalently, the rules of
orientifolds allow us to view these two doublets as appearing at the intersection I1∗2 = −2
of the left branes with the images of the baryonic branes (bottom left of the figure). Rule
(21.4) continues to hold for the left branes: three quark doublets and three lepton doublets
are outgoing, and six quark doublets are incoming.

We have implicitly been working with supersymmetric type IIA superstring theory; we are
using stable D6-branes in a ten-dimensional spacetime. The branes and their intersections
break all the supersymmetry. This had to be so, since we obtained the Standard Model
spectrum, which does not have supersymmetry (the bosons and fermions do not appear
in pairs of equal mass). In models without supersymmetry it is typically assumed that
the string scale is low, perhaps on the order of a few TeV. This requires some large extra
dimensions, otherwise the four-dimensional Planck length cannot be reproduced. In models
with a low string scale, the lifetime of the proton can turn out to be too short. No proton
decay has yet been observed, and the proton lifetime certainly exceeds 4× 1033 years. In
intersecting brane models the proton cannot decay by conventional processes where open
strings join or split (see Problem 25.8), so proton decay appears to be safely suppressed.

You may ask: can we declare victory and state that the Standard Model has emerged from
string theory? Not quite. The model must still do a lot more to be realistic. In particular,
electroweak symmetry breaking must work out correctly. Recall that symmetry breaking
is the process by which the Standard Model gauge group is reduced to (21.27), and the
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fermions acquire mass. Moreover, the brane configuration is not fixed uniquely by the
requirement that the Standard Model spectrum emerges; there are discrete choices to be
made in selecting the brane wrapping numbers. In addition, there are other choices that
must be made. For example, the positions of some D-branes on T 6 can be adjusted without
altering the massless spectrum. The sizes of the tori are not automatically fixed either. If
no choices had been possible, we would have a single candidate for the Standard Model
within this class of brane configurations.

In intersecting D-brane models, electroweak symmetry breaking happens through a pro-
cess of brane recombination. For certain values of the intersection angles between two
branes, tachyon states appear in the spectrum of open strings that stretch between them.
These tachyons indicate an instability that can cause the intersecting branes to combine at
the intersection and produce a single brane. With fewer branes present, the gauge group
is reduced. Moreover, the total number of intersections will be reduced and, consequently,
the number of massless fermions will be reduced, as well (Problem 21.4). It is not clear
whether any of these models will be able to produce the expected spectrum after sym-
metry breaking. This is not easy: a large number of mass parameters and other couplings
must work out correctly. If this were possible, it would be a truly exciting result. There
is a lot more that one can say about intersecting brane models and the more recent work
that focuses on models that incorporate supersymmetry. It is now time, however, to discuss
briefly other ways in which the Standard Model may appear in string theory.

21.5 String theory models of particle physics

Intersecting brane models are particularly attractive, but they are by no means the only
avenues that have been investigated in order to construct string models of particle physics.
We had a detailed look at the intersecting brane models because they are simple enough and
can be understood very concretely. Past and present-day attempts to obtain the Standard
Model follow several lines of attack, which can be organized by the starting points of the
constructions. These possible starting points are the five supersymmetric string theories and
M-theory (see Section 14.1). Each of these theories can be used to investigate how the Stan-
dard Model could emerge. The intersecting brane models that we discussed, for example,
use type IIA superstrings as the starting point. Since the various supersymmetric strings and
M-theory are different limits of a single theory, the various approaches are no doubt related
at some level. Nevertheless, each starting point gives somewhat different insights into the
various phenomenological questions that arise in the process of constructing a model.

The early attempts to do string phenomenology were based on the heterotic E8 × E8

superstring theory. In this theory, six of the nine spatial dimensions are curled up into a
small six-dimensional compact space with rather special properties: a Calabi–Yau space.
Calabi–Yau spaces have both discrete and continuous parameters, which determine the
details of the four-dimensional theory that arises upon compactification. For all Calabi–Yau
spaces the minimal amount of supersymmetry survives the compactification; the resulting
four-dimensional theory is said to be N = 1 supersymmetric. If supersymmetry is present,
it must be minimal for chiral fermions to exist. The compactification also allows one to
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break the original gauge symmetry E8 × E8 down to E6 × E8. One then views the E8

factor as part of a hidden sector that has only indirect effects on our visible sector. The
gauge group E6 appears in the visible sector as the gauge group of a grand unified theory.
The number of generations of chiral fermions depends on the topology of the Calabi–
Yau space, and models with three generations can be obtained. The group E6 contains
SU (3)× SU (2)×U (1) as a subgroup, so the Standard Model gauge group can arise upon
further symmetry breaking. Calabi–Yau compactification of heterotic strings gave the first
string models with semi-realistic particle physics. Since Calabi–Yau spaces are quite com-
plicated, it turned out to be difficult to make progress with the questions of symmetry
breaking and supersymmetry breaking.

The technical complications that must be faced with Calabi–Yau spaces prompted physi-
cists to search for alternative six-dimensional spaces to compactify the heterotic string. If
one simply uses a six-torus T 6, more than minimal supersymmetry survives and it becomes
impossible to construct realistic models. Orbifolds provide a nice middle ground between
Calabi–Yau spaces and tori. Orbifolds built from tori, for example, are much easier to ana-
lyze than general Calabi–Yau spaces, but they can still give N = 1 supersymmetric theories
in four dimensions. It is possible to obtain semi-realistic models from orbifold compactifi-
cations of the heterotic string. Orbifolds also play an important role in the compactifications
of other string theories.

More recently, physicists have been vigorously investigating the phenomenological pos-
sibilities of type II and type I superstring theories. One important class of models uses
intersecting D-branes and orientifolds, as we considered in the previous section. Variations
exist: one can use branes of different dimensionalities, or one can attempt to preserve some
supersymmetry. A popular approach breaks the problem of constructing a fully consistent
model into problems that can be analyzed separately.

One considers, for example, a type II string theory where the six extra dimensions form
an infinite volume space that is everywhere flat except for a singularity at the origin. As
you can imagine, flat extra dimensions with infinite volume cannot possibly give a realistic
model: the extra dimensions would be visible. This complication, however, is ignored in
the first part of the analysis. An example of such space is provided by the orbifold C

3/Z3.
Here C

3 is six-dimensional flat space, viewed as the product of three copies of the com-
plex plane, and Z3 describes the character of the identification that creates a singularity at
the origin. Additionally, D3-branes are placed at the singularity. All the spatial directions
on the branes lie along the four-dimensional space. It turns out that D-branes at orbifold
singularities can give rise to gauge fields and chiral fermions. Models with a Standard
Model-like spectrum do exist.

The second part of the analysis is a study of how to modify the non-compact six-
dimensional space away from the singularity in order to turn it into a compact space of
finite volume. If this is done in a way that leaves the region near the singularity unchanged,
then the earlier results are preserved. Closing off the non-compact space may typically
require the addition of other D-branes and/or orientifolds. A type II theory with D-branes
and orientifolds can be analyzed alternatively as a type I superstring with D-branes. A
type I superstring is a theory of unoriented open and closed strings. It can be viewed as
the result of introducing a space-filling orientifold into type IIB string theory, which trun-
cates the spectrum down to the subspace of states that are invariant under string orientation
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reversal. While this truncation does not give a consistent string theory, the inconsistencies
can be cured by adding open string degrees of freedom. The result is type I superstrings.
The perspective of type I theory can be quite valuable in model building.

Finally, there are models based on M-theory. These are sometimes closely related to mod-
els built with type IIA superstrings, because M-theory compactified on a circle is type IIA
superstring theory with some finite value for the string coupling. In fact, intersecting D6-
brane models are closely related to M-theory models. From the viewpoint of M-theory,
which is a theory in eleven dimensions, realistic physics requires compactification on
a seven-dimensional manifold. In order to obtain four-dimensional theories with N = 1
supersymmetry, the seven-dimensional manifold must have G2 holonomy, a geometrical
property that is effectively a constraint on the curvature of the space. Chiral fermions and
a reasonable gauge group can appear if the seven-dimensional space has singularities. The
M-theory approach may give valuable insight into the effects of finite string coupling.
Another popular approach that gives semi-realistic models uses a Calabi–Yau space to
reduce the spacetime dimensionality to five. The fifth dimension is then turned into a finite
segment, a space that can be viewed as an orbifold (Problem 2.5). This is called the het-
erotic M-theory approach, because the compactification of M-theory on a segment has been
shown to give the heterotic E8 × E8 superstring.

In summary, while a fully realistic model of particle physics has not yet been built in string
theory, consistent progress towards this goal has been made. As we have seen, there are
string models on D-branes whose open strings yield the particle content of the Standard
Model. The significance of this development will depend on the ultimate success or failure
of the models and what we learn from them. The intersecting brane models are not fully
realistic. Symmetry breaking, for example, remains to be worked out. It would be a major
accomplishment to achieve correct electroweak symmetry breaking in any string model.

If symmetry breaking works out in detail in some consistent string model, we would
have shown that the Standard Model in its full glory can occur as a solution of string
theory. Such a string model (or models?) might make interesting predictions that can be
tested by new experiments. We would not be done, however. String theory is a theory of
all the interactions, and it includes gravity. Quite a few other features have to work out.
One notorious problem is that of stabilization of closed string moduli. Another is that
of the cosmological constant. Finally, we need to make sure that the Standard Model is
embedded into a consistent cosmology, which presumably includes inflation. We turn now
our attention to these issues, where there has been some interesting progress.

21.6 Moduli stabilization and the landscape

In our study of T-duality of closed strings we encountered the simplest example of a moduli
space of compactifications. One spatial coordinate was curled up into a circle whose radius
R was arbitrary. The moduli space is simply the space of possible choices of the modulus
R. The fact that the parameter R is a modulus means that the potential V (R) for R vanishes
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and, consequently, no particular value of R is selected. We can certainly choose a value of
R and work with it but there is a complication. The theory in the reduced spacetime con-
tains a massless scalar associated with fluctuations in the value of R. If we let x denote the
coordinates of the reduced spacetime, the radius R(x) of the circle at x is a massless field
because the potential V (R(x)), constrained to vanish for constant R(x), cannot contain a
mass term 1

2 m2 R2(x). Unless its interactions are unnaturally small, a massless scalar field
is inconsistent with observation. It follows that realistic compactifications of string theory
must have no moduli.

By choosing a physical setup in which nontrivial potentials arise for would-be moduli,
we can force them to acquire specific values. Fluctuations around those values now cost
energy and thus represent allowed massive scalars. In a typical setup, would-be moduli
include parameters of the compact space, positions of D-branes, and the value of the closed
string dilaton. The goal of moduli stabilization is to provide potentials that fix the values of
all moduli so that we have an admissible string background or, as is usually called, a string
vacuum. While this seemed extremely difficult to achieve for a long time, developments in
the period 2002–2005 led to the construction of flux compactifications in which all moduli
are stabilized. Fluxes, to be described below, allow the stabilization of moduli but lead to
an extremely large number of vacua. This landscape of vacua is so vast that it becomes
plausible that in some of them the cosmological constant takes the value that we observe in
nature – an extraordinarily small value in Planckian units. Flux compactification has also
allowed some exploration of cosmology, in particular, the identification of mechanisms
that would implement an inflationary period.

To develop insight into the issue of moduli stabilization let us discuss a six-dimensional
theory of Einstein’s gravity and electromagnetism. In this theory we curl up two spatial
dimensions into a compact space so that we get a reduced four-dimensional spacetime M4.
We can consider metrics of the form

− ds2 = gμν(x) dxμdxν + R2(x) ḡab(y)dyadyb. (21.67)

The first term on the right-hand side is the metric on M4, with μ, ν = 0, . . ., 3. The sec-
ond term represents the metric of the compact two-dimensional space with coordinates y1

and y2 – the indices a, b can take values one and two. In this metric we separated out a
scale factor R(x) that depends only on M4 and a fixed metric ḡab(y) that depends only on
the coordinates of the two-dimensional space. The volume of the two dimensional space
is R2(x)V2 where V2 is the volume computed with the metric ḡab(y). We thus see that
the ansatz (21.67) represents correctly a compact space whose volume can fluctuate in the
reduced spacetime. Deriving the potential V (R) associated with R is a straightforward but
technical calculation in Einstein’s general relativity. We will only motivate the result. The
potential is proportional to a topological invariant of the two-dimensional manifold: the
Euler number χ = 2 − 2g, where g is a non-negative integer called the genus. The two-
sphere S2, for example, has genus zero and Euler number two. A two-dimensional torus
has genus one and Euler number zero. The genus of a compact two-dimensional surface
is g if the surface is topologically a sphere with g holes. The potential V (R) is not just
a constant but it also has some R dependence. This dependence arises in the process of
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disentangling the dynamics of gravity from that of R. As we have seen before, the dimen-
sionally reduced gravitational constant G is equal to the higher-dimensional gravitational
constant G(6) divided by the volume of the compact space. Since this volume can fluctuate,
we seem to reach the paradoxical situation that G is not constant. Restoring a constant G
requires a redefinition of the four-dimensional metric that introduces a factor of 1/R4 into
the potential we are after. All in all, one obtains:

V (R) = −ag
χ

R4
, χ = 2 − 2g, (21.68)

where ag > 0 is a constant. For a two-sphere g = 0 and the potential is negative definite
V ∼ −1/R4. This means that left to its own devices a sphere will shrink to zero size.
For a two-torus g = 1, the potential vanishes and R is a modulus. This is consistent with
our experience with string theory T-duality where it is possible to curl up coordinates into
circles of arbitrary radii; the space formed by two circles is a torus. For a space of g > 1,
we have V (R) ∼ 1/R4 and left to its own devices the space will expand without limit.
A compact space of genus zero has net positive curvature, a compact space of genus one
has zero net curvature, and a compact space of genus greater than one has net negative
curvature (this will be discussed further in §22.4). We thus see that positive net curvature
induces collapse, negative net curvature induces blow up and zero net curvature gives us a
modulus. None of these three situations is satisfactory, so we must consider extra elements
that can help us stabilize the radius R.

If gravity is coupled to electromagnetism we can use magnetic flux to stabilize the radius.
The magnetic flux on a torus is in fact quantized, as we learned in Section 19.3 and Prob-
lem 19.3. Assuming flux � = 2πn, with n integer, we can easily estimate the contribution
to the potential due to the magnetic field. If the characteristic area of the two dimensional
space with the flux is R2 the magnetic field magnitude goes like B ∼ n/R2. Since mag-
netic energy density is proportional to B2 we get a total potential energy that goes like
R2 B2 ∼ n2/R2. With fixed flux the energy is reduced by making the space larger thus
giving the space a tendency to expand. Due to the gravitational subtlety discussed above
(21.68), the factor of 1/R4 also affects this contribution and the potential energy from the
flux contributes to V (R) a term that goes like n2/R6. We thus have

V (R) = −ag
χ

R4
+ a f

n2

R6
, (21.69)

where a f > 0 is a constant. It is now clear that magnetic flux can stabilize a sphere: for
χ = 2 the potential above has a stable minimum for some R > 0. For different values n of
the magnetic flux, we get different values of the critical radius. We have thus obtained an
infinite family of stable solutions.

Quick calculation 21.16 Sketch the potential (21.69) for χ = 2, determine the critical
value of R, and confirm that it yields the minimum of the potential.

If we had wanted to fix R when it is a modulus (χ = 0) and the first term in the potential
(21.69) vanishes, in addition to magnetic flux we would need a negative contribution to
V (R). In string theory such negative contributions can arise from orientifolds. In a more
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complete superstring compactification the extra dimensions form a six-dimensional space
and we would have contributions to the potential from orientifolds, D-branes, and fluxes. If
we take, for example, type IIB superstrings, the NS-NS field Bμν and the RR field Aμν have
three-index field strengths that can provide fluxes. Just like magnetic fluxes are integrals
of two-index field strengths. Fi j over two-dimensional manifolds, NS-NS and RR fluxes
are integrals of three-index field strengths over three-dimensional manifolds. A typical
six-dimensional Calabi–Yau space used for compactification can easily have hundreds of
independent, non-contractible, three-dimensional submanifolds. Each one can support a
flux characterized by an integer. As a result the fluxes on the Calabi–Yau can generate a
potential that depends on hundreds of integers. A compactification of six dimensions into
a Calabi–Yau with fluxes is an example of a flux compactification.

Faced with potentials arising from many fluxes, statistical considerations can help under-
stand the space of possible vacua. As a very simplified but still illustrative example, we
consider a potential for a single field φ characterized by two integers m and n:

Vm,n(φ) = nφ + 1

2
mφ2, m, n ∈ Z. (21.70)

As m and n vary we get a set of potentials. In order to analyze this set concretely we limit
the possible integers by the conditions

n2 + m2 ≤ L , m > 0. (21.71)

The first constraint, with L a large integer, makes the set of potentials finite. The second
constraint, m > 0, guarantees that the potentials have a stable minimum by making them
bounded from below. Indeed, the critical point φ∗ of (21.70) occurs at

0 = dVm,n

dφ
= n + mφ∗ → φ∗ = − n

m
. (21.72)

The value of φ∗ represents the vacuum state in the potential Vm,n . We can also check that
in this vacuum state the vacuum energy �m,n is

�m,n = Vm,n(φ∗) = −1

2

n2

m
. (21.73)

If we consider the set of all integers m, n allowed by (21.71), we can ask what is the
approximate distribution of vacua φ∗ in the set. We write

dN = ρ(φ∗) dφ∗, (21.74)

where dN is the number of critical points in the interval (φ∗, φ∗ + dφ∗) and ρ(φ∗) is the
distribution function we are after. We can represent the set of potentials as a set of points
with integer coordinates on the (x, y) plane; each point (m, n) represents the potential
Vm,n(φ) and the associated vacuum state φ∗ (Figure 21.9). Because of (21.71) the allowed
points lie to the right of the vertical axis and within a circle of radius

√
L centered at the

origin. For large L the total number of points, or total number N of vacua, is approximately
equal to the area of the allowed region: N � 1

2π L . We also note that |φ∗| = |n|
m <

√
L

since m ≥ 1, and n <
√

L .
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θ

�Fig. 21.9 A set of potentials Vm,n(φ) defined by two integers m, n, with m > 0.

To determine the distribution of vacua, we note that φ∗ = − n
m implies that points on a

fixed radial line give the same vacuum value. In fact

φ∗ = − tan θ or θ = − tan−1 φ∗, (21.75)

where θ is the angle that the radial line makes with respect to the positive x-axis. The
number of vacua dN in the small sector (θ, θ + dθ) is equal to the area

dN = L

2
|dθ | = L

2

1

1 + φ2∗
|dφ∗| → ρ(φ∗) = L

2

1

1 + φ2∗
, (21.76)

where we used (21.75) to relate dθ to dφ∗ and (21.74) to read the value of ρ(φ∗).
The distribution has the expected property ρ(−φ∗) = ρ(φ∗), which arises because with
φ∗ = −n/m, for each critical point with a given n = n0 there is another with n = −n0.
On the given set, the distribution ρ(φ∗) applies for |φ∗| <

√
L . The shape of ρ indicates

that the density of vacua peaks at φ∗ = 0. In the limit of very large L we confirm that the
number N of vacua is

N = L

2

∫ √
L

−√L

dφ∗
1 + φ2∗

� L

2

∫ ∞

−∞
dφ∗

1 + φ2∗
= 1

2
π L . (21.77)

Another interesting distribution is that of vacuum energies (21.73). Letting dN denote
the number of vacua with energy in the interval (�,�+ d�) we write

dN = ρ(�) |d�|, (21.78)

where ρ(�) is the associated distribution function. A calculation (Problem 21.6) gives

ρ(�) = 4

3

1√
2|�|

[√
�2 + L − |�|

]3/2
. (21.79)
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Since all vacuum energies in this example are negative (see (21.73)), the above distribution
must be supplemented with ρ(�) = 0 for � > 0. We note that ρ(�) grows as � → 0. For
further discussion see Problem 21.6.

Statistical considerations are relevant when we discuss how string theory compactifications
could reproduce the observed value of the so-called dark energy of the universe. This dark
energy is the present value of the vacuum energy and, most likely, can be identified with
a cosmological constant. While vacuum energy presently dominates the energy density of
the universe, it is extremely small in Planckian units. To see this explicitly we first note
that assuming that the Hubble expansion parameter takes the value H0 = 73.5 km/s/Mpc,
the present critical energy density ρc of the universe is

ρc = 3H2
0

8πG
= 1.015 × 10−29 g/cm3. (21.80)

This density is equivalent to that of about six protons per cubic meter.

Quick calculation 21.17 Consider the natural Planckian mass density ρP = mP/�3
P. Show

that ρP = 5.20 × 1093 g/cm3.

Current experimental evidence indicates that the energy density of the universe is very
close to the critical density and, apparently, vacuum energy contributes as much as 76% of
it. We therefore find that the vacuum energy density is

ρvac � 0.76 ρc = 0.771 × 10−29 g

cm3
= 1.48 × 10−123 ρP. (21.81)

The present vacuum energy is about 123 orders of magnitude smaller than the natural value
in Planckian units! Following conventional string theory notation, we use the symbol � to
denote vacuum energy density. We do not follow the notation in general relativity where �

is the “cosmological constant,” a quantity obtained by multiplying the vacuum energy by
8πG/c4. We thus write (21.81) as

�obs � 1.48 × 10−123 �P. (21.82)

Since string units are usually assumed to be only a couple of orders of magnitude different
from Planckian units, the emergence of an extraordinarily small vacuum energy is a puzzle.
Even in scenarios with large extra dimensions, �obs would still be many orders of magni-
tude smaller than the natural string value. In string theory compactifications one expects
vacuum energies in the range (−�P, �P). If only a small number of string vacua existed,
it would seem very unlikely that any of them would have an energy equal to ∼ 10−123�P.
As we will argue now, in a flux compactification with many fluxes the number of vacua
is so large that it becomes possible to find a sizable number of vacua with energy in the
experimentally allowed window. Consider then the potential for a set of moduli represented
by a vector �φ in a theory with J fluxes characterized by integers n1, n2, . . . , n J :

V ( �φ ) = V0( �φ )+
J∑

i=1

mi ( �φ ) n2
i . (21.83)
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Here V0( �φ) is the part of the potential created by effects other than fluxes. It is the ana-
log of the first term on the right-hand side of (21.69). The second term in (21.83) is the
contribution from the fluxes and involves calculable functions mi ( �φ). This term is the ana-
log of the second term on the right-hand side of (21.69). When the number of moduli and
the number J of fluxes are both large it becomes difficult to find the critical points of the
potential. Following a strategy that was vindicated by more detailed analysis, we simply
freeze the moduli �φ at some typical value �φ0 and skip the minimization process. Both V0

and the functions mi in (21.83) become just constants. Writing � = V and �0 = V0 we
then find,

� = �0 +
J∑

i=1

q2
i n2

i . (21.84)

We have written mi = q2
i to make it manifest that fluxes contribute positively to the energy

density. Moreover, as in typical compactifications, �0 will be taken to be a negative,
Planckian size energy density:

�0 ∼ −�P. (21.85)

We want to understand if there is a reasonable number of vacua for which the total vacuum
energy is in the observational window, say between zero and �� where

�� � �obs � 10−123�P. (21.86)

For the vacua in this interval we have

0 ≤ �0 +
J∑

i=1

q2
i n2

i ≤ ��. (21.87)

Since �0 is negative we write this as

|�0| ≤
J∑

i=1

q2
i n2

i ≤ |�0| +��. (21.88)

We want to know how many vacua satisfy this inequality. The number would be large if the
q2

i were small compared to ��. The problem is that the q2
i are many orders of magnitude

larger than ��. They are, in fact, Planckian, so at best a few orders of magnitude smaller
than |�0|.

If a vacuum characterized by nonvanishing integers (n1, n2, . . ., n J ) satisfies (21.88),
we have at least 2J degenerate vacua (±n1,±n2, . . .,±n J ) that do. If the qi satisfy special
relations further degeneracies can occur: if qi = q j , for example, the exchange of ni with
n j yields additional degenerate vacua. We will call d(J ) � 2J , the degeneracy of vacua.

To analyze the constraint (21.88) efficiently we introduce Cartesian coordinates

xi = qi ni , (21.89)



488 String theory and particle physics
�

so that vacua become lattice points in x-space. Since lattice points are separated by
distances qi along xi , the cells that contain a single lattice point have a volume

volcell =
J∏

i=1

qi . (21.90)

In x-space the constraint (21.88) becomes

|�0| ≤
J∑

i=1

x2
i ≤ |�0| +��. (21.91)

This is a spherical shell in x-space. To find the thickness d R of the shell we write |�0| =
R2

0 and |�0| +�� = (R0 + d R)2 from which we find

d R = ��

2
√|�0| . (21.92)

The x-volume of the shell is equal to the volume of the sphere S J−1 of radius R0 = √|�0|
times the thickness d R:

volshell = vol(S J−1)
√|�0|J−1 ��

2
√|�0| , vol(S J−1) = π J/2

�(J/2)
, (21.93)

where we recalled (3.52). Since vacua are d(J )-fold degenerate, we have vacua in the shell
if the number of lattice points in the shell, divided by d(J ), is greater than or equal to one:

1

d(J )

volshell

volcell
= vol(S J−1)

2d(J )

√|�0|J−1 ��√|�0|
1∏J

i=1 qi
≥ 1. (21.94)

A rearrangement gives

��

2|�0| ≥
d(J )

vol(S J−1)

J∏
i=1

qi√|�0| . (21.95)

We want the ratio to the left of the inequality to be about 10−124. For J = 1, ignoring the
order one prefactor gives the unnaturally small q ∼ 10−124√|�0|. For large J we need to
pay some attention to the prefactor, which gets large. Indeed, d(J ) � 2J grows with J and
vol(S J−1) becomes smaller with J .

Quick calculation 21.18 Verify that the volume vol(Sk) reaches a maximum for k = 6 and
decreases monotonically for larger k.

In order to perform the large J analysis of (21.95) we use the asymptotic expansion

vol(S J−1) �
(2πe

J

)J/2
, J →∞. (21.96)

Moreover, we set the left-hand side of (21.95) equal to 10−124, write
∏J

i=1 qi = q J ,
introducing an effective q, and set d(J ) = 2J . This gives

10−124 ≥
(2πe

J

)−J/2( 2q√|�0|
)J

. (21.97)
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and leads to

2q√|�0| � 10−
124

J

√
2πe

J
≡ f (J ). (21.98)

For J = 124, for example, one gets f (J ) = 0.037, a number that shows that qs just a little
smaller than the natural Planckian value suffice to get string vacua in the experimentally
allowed window.

Quick calculation 21.19 Use �(x) ∼ xx−1
√

2πx e−x (1 +O(1/x)) to prove (21.96).

Quick calculation 21.20 The function f (J ) attains a maximum for J near six-hundred.
Determine the critical J and the corresponding value of f (J ).

We have produced, via flux compactification, a sizable number of vacua with energies
in the observable window. Of course, there are many more vacua with unacceptably large
energies. The argument does not tell us why the vacuum energy is so small, it just shows
that it can be that small. If string theory incorporates inflation an unusual kind of expla-
nation has been offered. Inflation, as presently understood, is eternal into the future. With
eternal inflation, bubble universes nucleate forever and, most likely, all vacua in the land-
scape are eventually realized as physical bubble universes. This includes universes like
ours, in which the vacuum energy is small. We find ourselves in such universe, it is said,
because had the vacuum energy been substantially larger, galaxies and stars could not have
formed and life could not exist. However outrageous this argument seems, it has had some
success. Before its experimental discovery in 1999, most theoreticians believed that the
vacuum energy was exactly zero. Every attempt to use theories to prove it had to be zero,
however, had failed. Weinberg showed that structure formation in the universe gave an
upper bound on the vacuum energy. He also argued that if no principle guaranteed a van-
ishing vacuum energy it would probably turn out to have a value smaller than the bound,
but not dramatically smaller. This turned out to be correct.

Since the experimental evidence for a period of inflation has become much stronger in
the last few years, one can ask if inflation occurs in string theory. Most investigations have
been done using flux compactifications since moduli must be stabilized. Typically, one
imagines a Calabi–Yau space with an elongation that has an anti-D-brane at its tip. A D-
brane slowly moving along the elongation towards the anti-D-brane may produce inflation.
It is too early to tell if these efforts will lead to complete models.

As one contemplates the current efforts to show that string theory describes the real world
one cannot fail to experience mixed feelings. On the one hand, string models and flux com-
pactifications are evidence that string theory is promising, after all, central features of the
real world can emerge from the theory. On the other hand, the constructions seem contrived,
at least in the sense that they are engineered to give the physics that we observe, rather than
obtained naturally as the simplest solutions of string theory. The Standard Model of parti-
cle physics and the Standard Cosmological Model are intricate constructs, and present-day
attempts to describe them within string theory do not result in simplification. Despite this
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complexity, you need not react as Alfonso X (the Wise, 1221–1284) appears to have done
when faced with Ptolemy’s astronomy:1

Had I been present at the creation, I would have given some useful hints for
the better ordering of the universe.

It is conceivable that the landscape idea is correct and our universe is just one out of a
gigantic number of possibilities, one that is not especially natural. This would explain why
the string constructions do not seem natural. At this stage, however, it may be more con-
structive to continue to explore the facts and the models, looking for naturalness to emerge
as our understanding improves. This is based on the hope that, as stated by Maimonides
(1135–1204) in The Guide for the Perplexed (1190),

In the realm of Nature there is nothing purposeless, trivial, or unnecessary.

Problems

Problem 21.1 Oblique tori and orientifold action.

Consider the (x, y) plane with an orientifold line along the x axis. The orientifolding sym-
metry operation reverses string orientation (this will not play a role here) and acts on the
plane by sending every point (x, y) into its image (x,−y). The action is well defined
because it takes points on the plane to points on the plane. The orientifold line is a line
which is fixed under the orientifold action.

A two-torus is obtained by implementing two identifications on the (x, y) plane. If
the identifications are those in (2.101) and (2.102) the result is a square torus. To get a
rectangular torus we simply use

(x, y) ∼ (x + a, y), (x, y) ∼ (x, y + b), a, b > 0. (1)

The fundamental domain of the identifications together with its boundary can be taken to
be the region whose points (x, y) satisfy 0 ≤ x ≤ a and 0 ≤ y ≤ b. This is a rectangle
with sides a and b. Draw a picture illustrating the situation.

(a) Convince yourself that the orientifold action (x, y) → (x,−y) is well defined on the
torus (1). On the torus, the line 0 ≤ x ≤ a, y = 0 is a fixed line. There is another fixed
line on the torus. Find it. Show that the orientifold action on the torus can be viewed as
a reflection about either one of the two fixed lines. So, there are really two orientifold
lines on the torus!

Consider now the class of oblique two-tori that are obtained by implementing the
identifications

(x, y) ∼ (x + a1, y + a2), (x, y) ∼ (x, y + b), a1, a2, b > 0. (2)

1 I am grateful to J. Goldstone for providing this quote from Bartlett’s Familiar Quotations (1919). Alfonso
X was Spanish king of Castile and Leon. Moses Maimonides was born in Cordova, Spain. The intersecting
D6-brane models we examined in Section 21.4 were developed by the “Spanish group.”
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The fundamental domain of the identifications together with its boundary can be taken to be
the parallelogram P with a vertex at the origin and sides defined by the vectors �a = (a1, a2)

and �b = (0, b). Let �x = (x, y), so that the identifications can be written as �x ∼ �x + �a and
�x ∼ �x + �b. Draw a picture showing the parallelogram P .

(b) Consider now the torus (2) when

a2 = b/2. (3)

Use an appropriate figure to convince yourself that the orientifold action (x, y) →
(x,−y) is well defined on the torus. Find the two fixed lines on P . Note that these
lines represent a single closed orientifold line on the torus.

(c) Let �a∗ ≡ (a1,−a2). Show that (3) implies that �a∗ = �a − �b. Note the significance of
this relation on your sketch. Let points be denoted by vectors t1�a + t2�b, with constants
t1 and t2. Show that the orientifold action takes

t1 �a + t2�b −→ t1 �a − (t1 + t2) �b. (4)

(d) A closed line � on the torus can be denoted by a pair of relatively prime integers
� = (m, n) with the understanding that the line is obtained from the straight segment
between the origin and the point m�a + n�b. Examine the argument that established
(21.5) for the intersection number on a square torus. Convince yourself that this for-
mula also holds for lines on oblique tori. It follows from (4) that after orientifold
action

� = (m, n) −→ �∗ = ( m, −m − n ). (5)

It is convenient to encode lines with another pair of numbers, one of which can be half-
integral:

� = (m, n) is represented by � = [m, n + m
2 ]. (6)

(e) Show that the orientifold action takes

� = [ r, s ] −→ �∗ = [ r,−s ]. (7)

(f) Show that the intersection number for two lines �1 = [r1, s1] and �2 = [r2, s2] is

#(�1, �2) = r1s2 − r2s1. (8)

Show that

#(�∗1, �∗2) = −#(�1, �2). (9)

(g) Orient the orientifold closed line on the torus from left to right. Show that it can be
described as a vector of the form t1�a + t2�b that is encoded as [2, 0].

Problem 21.2 Intersection numbers and formal variables.

In Section 21.4 we introduced formal variables xi , yi , i = 1, 2, 3 to describe a polynomial
� that encodes the charge of a D6-brane wrapped on a T 6. Consider now the following
rules for products of the formal variables:
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xi y j = y j xi , xi x j = x j xi , and yi y j = y j yi , for i 	= j

xi xi = yi yi = 0, and xi yi = −yi xi = 1, i not summed.
(1)

Moreover, assume that the product obeys the distributive law. Note that the product is not
commutative (the order of the factors matters) and that the above rules cannot be used to
simplify the polynomial � associated with a brane.

(a) Show that the product of the polynomials associated with two wrapped D6-branes
gives their intersection number: �a�b = Iab.

(b) Use (21.65) to derive the consistency condition
∑

a Na Iab = 0, for any fixed b.
Explain in detail why this condition gives the rule formulated in (21.62).

Problem 21.3 An intersecting brane model with the particle content of the Standard
Model.

To solve this problem you must first solve Problem 21.1, which deals with orientifolds on
oblique tori. The T 6 in the present brane model is composed of two rectangular tori (the
first and the second tori) and one oblique torus (the third torus). On the oblique torus, we
denote lines as [p, q].

On each rectangular torus, the wrapping of the two fixed orientifold lines is repre-
sented by (2, 0). On the oblique torus, the single orientifold line is represented by [2, 0]
(Problem 21.1, part (g)). As a result, the T 6 carries three of the spatial directions along
the O6-planes. The other three directions along the O6-planes coincide with the spatial
directions of the effective four-dimensional spacetime.

The four sets of D6-branes of the model are described by the lines

N1 = 3: �
(1)
1 = (1, 0), �

(1)
2 = (5, 1), �

(1)
3 = [ 1, 1/2],

N2 = 2: �
(2)
1 = (0,−1), �

(2)
2 = (1, 0), �

(2)
3 = [ 1, 3/2], (1)

N3 = 1: �
(3)
1 = (4, 3), �

(3)
2 = (1, 0), �

(3)
3 = [ 0, 1],

N4 = 1: �
(4)
1 = (1, 0), �

(4)
2 = (1, 1), �

(4)
3 = [1,−3/2].

The mirror image i∗ of a D6-brane i is obtained by changing the sign of the second entry
on each of the three lines that define the brane.

(a) Give the (m, n) values corresponding to the standard description of each of the four
lines on the third torus.

(b) Verify that Iii∗ = 0 for i = 1, 2, 3, and 4. This ensures that no D6-brane intersects its
own mirror image.

(c) Calculate all other intersection numbers Ii j and Ii j∗ , with i < j . Verify that

I12 = 1, I12∗ = 2 , I13 = −3, I13∗ = −3, I14 = I14∗ = 0,

I23 = I23∗ = 0, I24 = −3 , I24∗ = 0, I34 = 3, I34∗ = −3. (2)

Confirm that Figure 21.8 correctly represents the information encoded by the above
intersection numbers.
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(d) Since the orientifold wrappings are described by (2, 0), (2, 0), [2, 0], the polynomial
(21.64) takes the form �O6 = 8x1x2x3. Since the Ramond–Ramond charge of an ori-
entifold O6-plane is opposite to that of a D6-brane and four times larger, the condition
of vanishing total R–R charge on T 6 is

4∑
i=1

Ni (�i +�i∗)− 4 �O6 = 0. (3)

Verify that the wrapping numbers in (1) satisfy this constraint. Note: the last factor in
the polynomial � is built using the numbers in the [p, q] representation.

(e) In this model, one of the four U (1) factors remains massless. Its charge is proportional
to Q1 − 3(Q3 + Q4). Here Qi = +1 for a string ending on an i-brane or beginning on
an i∗-brane. Consider the states in Figure 21.8. Verify that, with suitable normalization,
the charge is precisely the hypercharge.

Problem 21.4 Symmetry breaking by recombination of intersecting branes.

In order to simplify our work, consider a pair of intersecting D4-branes. Each brane has
one spatial direction wrapped as a closed line on a square torus T 2 with coordinates x4 and
x5. The other three spatial directions on the world-volume of the branes stretch along the
spatial directions of the four-dimensional spacetime. The details of the compactification of
x6, . . ., x9 are not relevant.

Since we have a single T 2, the wrapping of each D4-brane can be specified by a single
line � = (m, n), where m and n are relatively prime. Given two D4-branes with lines �(1) =
(m1, n1) and �(2) = (m2, n2), the intersection number I12 which determines the number of
left-handed fermions at the intersection set is simply given by

I12 = #(�(1), �(2)) = m1n2 − m2n1.

The process of brane recombination can be described using the corresponding lines on
the torus. Take one of the branes, say the first one, and cut out an infinitesimal piece near
the endpoint of its line. The result is an open line on the torus beginning at (0, 0) and ending
near (0, 0). Take the second brane, and cut an infinitesimal piece near its beginning. The
result is an open line beginning near (0, 0) and ending at (0, 0). Now glue the end of the
first line with the beginning of the second. The result is a single closed line representing a
recombined D-brane.

(a) Use the representation of the defining lines on the plane (where the torus arises as
the unit square) to argue that the recombination of two D-branes �(1) = (m1, n1) and
�(2) = (m2, n2) gives a D-brane represented by a line that begins at (0, 0), ends at
(m1 + m2, n1 + n2), and has one corner (where?). The line can be deformed con-
tinuously into a straight line joining the endpoints. This line, which represents the
recombined D-brane �, is �� = (m1 + m2, n1 + n2). Explain why the final result of
recombination does not depend on the order in which the D-branes are glued together.

(b) Carry out explicitly the recombination procedure on the torus for the branes (1, 0) and
(0, 1). Show in a sequence of figures how the recombined branes can be continuously
deformed into the brane (1, 1).
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(c) When two branes recombine, the total number of branes decreases by one unit and,
as a result, the number of Maxwell fields decreases by one unit. Consider a D-brane i
which intersects each of the two branes, brane 1 and brane 2, that recombine into �.
Prove that

|Ii� | ≤ |Ii1| + |Ii2|.
This result shows that the number of (massless) chiral fermions obtained after brane
recombination is less than or equal to the total number of chiral fermions that were
present before recombination. We thus have the expected signs of symmetry breaking:
a number of Maxwell fields and a number of chiral fermions acquire mass.

Problem 21.5 Distribution of vacuum energies in toy model.

Derive the distribution ρ(�) given in (21.79). One possible approach is to consider the

continuous approximation in which (n, m) = (x, y) and thus � = − 1
2

y2

x on the allowed
space. Then calculate the area in between the curves associated with � and �+ d�.

What is the upper bound for |�| in the set of allowed vacua? Test the consistency of
(21.79) by using it to calculate the total number of vacua. Take L = 100 and estimate the
fraction of vacua that have |�| < 1.

Problem 21.6 Distribution of vacuum energies with large number of fluxes.

Consider equation (21.84) with
∏J

i=1 qi = q J and J is large so that (21.96) applies.

(a) Determine the number N (�) of vacua with vacuum energy less than or equal to �.
The answer depends on � and the parameters |�0|, q, and J .

(b) Use differentiation to write an equation of the form

dN = ρ(�)
d�

|�0| ,

and determine the distribution ρ(�). The distribution depends parametrically on
|�0|, q, and J .

(c) Assume J = 100 and q = 0.01
√|�0|. Determine the value of ρ(� = 0). Find the

value of �∗ (in terms of |�0|) for which ρ(�∗) differs from ρ(0) by 1%. Calculate the
ratio �∗/�obs. Your result must demonstrate that the distribution ρ(�) is accurately
constant over ranges of conceivable experimental relevance. How many string vacua
are there with � values within 1% of �obs?



22 String thermodynamics and black holes

The thermodynamics of strings is governed largely by the exponential growth of
the number of quantum states accessible to a string, as a function of its energy.
We estimate such growth rates by counting the number of partitions of large inte-
gers. The behavior of the entropy indicates that at high energies the temperature
approaches a finite constant, the Hagedorn temperature. The finite temperature
single-string partition function for open bosonic strings is calculated. We explain
how the counting of string states can be used to give a statistical mechanics
derivation of the entropy of black holes. The calculations give results in qualita-
tive agreement with the entropy of Schwarzschild black holes and in quantitative
agreement with the entropy of certain charged black holes.

22.1 A review of statistical mechanics

Our study of string thermodynamics will make use of both the microcanonical and canon-
ical ensembles. Recall that the microcanonical ensemble consists of a collection of copies
of a particular system A, one for each state accessible to A at a particular fixed energy E .
In the canonical ensemble we consider the system A in thermal contact with a reservoir at a
temperature T . This ensemble contains copies of the system A together with the reservoir,
one copy for each allowed state of the combined system. In the canonical ensemble the
energy of system A varies among members of the ensemble.

Let us begin with the microcanonical ensemble. The system A is imagined to be in
isolation and to have a fixed energy. We let �(E) denote the number of possible states of
the system A when it has energy E . The entropy S of the system is defined in terms of the
number of states as

S(E) = k ln �(E), (22.1)

where k is Boltzmann’s constant. The temperature T of the system is defined in terms of
the derivative of the entropy with respect to the energy:

1

T
= ∂S

∂ E
. (22.2)

It is sometimes easier to work with the canonical ensemble. Imagine a system A which
has a fixed volume and which is in thermal contact with a reservoir at temperature T . This
system could be a box full of strings, or it could be a box containing a single string. It is
not necessary to specify what the reservoir is. Suppose we know the quantum states {α} of
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the system and their associated energies {Eα}. Then the partition function Z for system A
is defined as

Z ≡
∑
α

e−βEα , β = 1

kT
. (22.3)

The partition function is useful because it can be used to calculate interesting quantities.
For instance, if system A is known to have temperature T , then, using Z , we can calculate
the probability that A is in a particular quantum state. By definition, the partition function
depends both on the temperature T and on the external parameters of the system. These
are the parameters that determine the energy levels of the system. The systems we will
consider have only one external parameter: the volume V occupied by the system. Thus
we will think of Z as Z(T, V ), or

Z = Z(β, V ). (22.4)

The probability Pα that the system, in contact with the reservoir at temperature T , is in the
state α is

Pα = e−βEα

Z
. (22.5)

Clearly
∑

α Pα = 1, as required by the interpretation of Pα as a probability. We can calcu-
late the average energy E of the system A in the ensemble by differentiation of the partition
function:

E =
∑
α

Pα Eα = −∂ ln Z

∂β
. (22.6)

The pressure p of the system can also be calculated from the partition function
(Problem 22.1). It is given by

p = 1

β

∂ ln Z

∂V
. (22.7)

Another useful quantity is the Helmholtz free energy F . Its basic properties can be
obtained in a few steps starting from the first law of thermodynamics. This law states
that the energy change d E in a system whose only external parameter is the volume V can
be written as

d E = T d S − pdV . (22.8)

Here T is the temperature of the system and p is the pressure. Moreover, T d S is
the heat transferred into the system, and (−pdV ) is the mechanical work done on the
system. Equation (22.8) implies that E should be viewed as a function E(S, V ) of S and
V , and,

T =
(∂ E

∂S

)
V

, p = −
(∂ E

∂V

)
S
. (22.9)

We can also write the change in energy in (22.8) as

d E = d(T S)− S dT − p dV, (22.10)
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which means that

d(E − T S) = −S dT − p dV . (22.11)

The free energy F is defined as

F ≡ E − T S, (22.12)

and therefore we have

d F = −S dT − p dV . (22.13)

We see that for processes at constant temperature the free energy represents the amount
of energy that can go into mechanical work. For a chemical reaction that releases energy,
for example, the entropy of the system typically decreases. Not all of the energy released
can then be used for work; only the free energy can. Since the total entropy can-
not decrease, the rest of the energy goes into heat, which increases the entropy of the
world. It follows from (22.13) that F should be viewed as a function F(T, V ) of T and
V , and,

S = −
(∂ F

∂T

)
V

, p = −
(∂ F

∂V

)
T
. (22.14)

The free energy can be calculated from the partition function (Problem 22.1). It is
given by

F = −kT ln Z . (22.15)

Our aim is to use the basic thermodynamic relations reviewed above to compute inter-
esting properties of the string. One central computation is that of the partition function for
a string. This problem is a bit complex, so we first consider simpler problems that will help
us build the necessary tools.

The first result we need is a formula for the number of partitions of large integers. We
will obtain this mathematical result using a physical method: the analysis of the high-
temperature behavior of a quantum nonrelativistic string, call it a “quantum violin string.”
With this result, we calculate the entropy/energy relation for an idealized quantum rela-
tivistic string, a string for which we ignore the momentum labels of the quantum states.
The Hagedorn temperature already emerges in this context. After a discussion of the par-
tition function for the relativistic point particle, we assemble all of our results to compute
the partition function of the relativistic string.

In the latter part of this chapter we discuss a significant success of string theory: a sta-
tistical mechanics derivation of the entropy of black holes. This entropy, first arrived at via
thermodynamical considerations, arises from the degeneracy of string states that have the
macroscopic properties of black holes. The agreement between the string calculations and
the thermodynamical expectation is only qualitative for the case of Schwarzschild black
holes, but it is quantitative for certain types of extremal black holes.
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22.2 Partitions and the quantum violin string

Consider a quantum mechanical nonrelativistic string with fixed endpoints: a quantum
violin string. This string, studied classically in Chapter 4, has an infinite set of vibrat-
ing frequencies, all multiples of a basic frequency ω0. Its idealization as a quantum string
is a collection of simple harmonic oscillators with frequencies ω0, 2ω0, 3ω0, and so on.
Each simple harmonic oscillator (SHO) has its own creation and annihilation operators, as
well as its own Hamiltonian:

SHOω0: (a1, a†
1) , H ω0 = h̄ω0 a†

1a1 ,

SHO2ω0: (a2, a†
2) , H2ω0 = 2 h̄ω0 a†

2a2 ,

SHO3ω0: (a3, a†
3) , H3ω0 = 3 h̄ω0 a†

3a3 ,

...
...

...
... (22.16)

Here we have discarded zero point energies, and all oscillators satisfy the conventional
commutation relations

[am, a†
n] = δmn . (22.17)

Since the quantum string is the union of all these oscillators, the Hamiltonian Ĥ is

Ĥ =
∞∑

�=1

H�ω0 = h̄ω0

∞∑
�=1

� a†
�a�. (22.18)

We recognize here the number operator N̂ :

Ĥ = h̄ω0 N̂ , N̂ =
∞∑

�=1

� a†
�a�. (22.19)

The vacuum state of the string is a state |�〉 such that

a�|�〉 = 0 , for all �. (22.20)

A quantum state |�〉 of this string is obtained by letting creation operators act on the
vacuum:

|�〉 = (a†
1)n1(a†

2)n2 · · · (a†
l )nl · · · |�〉 . (22.21)

The state is therefore specified by the set {n1, n2, n3, . . .} of occupation numbers. The
number operator acting on the state |�〉 gives us

N̂ |�〉 = N |�〉, (22.22)

where

N = n1 + 2n2 + 3n3 + · · · =
∞∑

�=1

�n�. (22.23)
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�Table 22.1
Counting states of fixed total number eigenvalue N ; p(N )

denotes the number of partitions of the integer N

N List of states p(N )

1 a†
1 1

2 a†
2 , (a†

1)2 2

3 a†
3 , a†

2a†
1 , (a†

1)3 3

4 a†
4 , a†

3a†
1 , (a†

2)2 , a†
2(a†

1)2 , (a†
1)4 5

It then follows from (22.19) that the energy E of |�〉 is given by

E = h̄ω0 N . (22.24)

A counting question arises naturally here. For a fixed positive integer N , how many states
are there with N̂ eigenvalue equal to N? This number, denoted by p(N ), is so important
that it has been given a name: the number of partitions of N . Before explaining the reason
for this terminology, let us determine p(N ) for N = 1, 2, 3, and 4. Shown in Table 22.1
are the states with those values of N . For brevity, we show only the oscillators, omitting
the vacuum state |�〉 that they act on. The fourth line, for example, shows that there are
five states with N̂ eigenvalue equal to four. Thus p(4) = 5.

It is appropriate to name the quantity p(N ) the number of partitions of N . A partition
of N is a set of positive integers that add up to N . The order of the elements in the set is
immaterial. Thus, for example, {3, 2} is a partition of 5, and so is {2, 1, 1, 1}. The partitions
of 4 are

{4} , {3, 1} , {2, 2} , {2, 1, 1} , {1, 1, 1, 1}. (22.25)

The number of states with N̂ eigenvalue equal to N coincides with the number of partitions
of N . Indeed, given a partition of N we can build a state by attaching each element of the
partition as a subscript to an oscillator a† and letting the resulting collection of oscillators
act on the vacuum. Note that this is exactly how the states in the last line of Table 22.1 are
built from the partitions of 4 given in (22.25). Conversely, given a state with number N ,
the set of subscripts of all the oscillators in the state gives a partition of N .

We would like to find a formula for p(N ), but our analysis will not give us that much. We
will derive an expression that describes ln p(N ) accurately for large N . A more refined
calculation gives the famous approximation for p(N ) found by Hardy and Ramanujan.

Our strategy will be as follows. We know that the entropy S is given as a function of the
energy E by (22.1). For a given E , N = E/(h̄ω0), and �(E) is simply p(N ). Therefore

S(E) = k ln p(N ) = k ln p
( E

h̄ω0

)
. (22.26)
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If we find S(E) then we will have found the function p(N ). To find S(E) we will calculate
the partition function Z for the quantum violin string. From Z , we will find the free energy
F . We will be able to evaluate the free energy explicitly only in the case of high tempera-
ture. It will then be easy to find the high energy behavior of the entropy S(E). This we will
use to find a large-N approximation for p(N ).

Let us now begin with the calculation of the partition function. We have

Z =
∑
α

exp

(
− Eα

kT

)
=

∑
n1,n2,n3,...

exp

[
− h̄ω0

kT
(n1 + 2n2 + 3n3 + · · · )

]
. (22.27)

In writing this equation we have recognized that the set of all states is labeled by the set
of occupation numbers. To sum over all states is to sum over all occupation numbers,
each of which ranges from zero to infinity. Since the exponential of a sum can be written
as a product of exponentials, the sums over different occupation numbers can be made
independently,

Z =
∑
n1

exp
[
− h̄ω0

kT
n1

]
·
∑
n2

exp
[
− h̄ω0

kT
2n2

]
· · ·. (22.28)

Therefore we have

Z =
∞∏

�=1

∞∑
n�=0

exp

(
− h̄ω0�n�

kT

)
. (22.29)

The sum over each n� is a geometric series, so we find

Z =
∞∏

�=1

[
1 − exp

(
− h̄ω0�

kT

)]−1

. (22.30)

Finally, the free energy F is found using (22.15):

F = −kT ln Z = kT
∞∑

�=1

ln
[
1 − exp

(
− h̄ω0�

kT

)]
. (22.31)

We cannot go any further unless we make some approximations. If the temperature T is
high enough so that

h̄ω0

kT
� 1, (22.32)

then each term in the sum (22.31) differs very little from the previous one. This allows us
to approximate the sum by an integral:

F � kT
∫ ∞

1
d� ln

[
1 − exp

(
− h̄ω0�

kT

)]
. (22.33)

The choice � = 1 for the lower limit of integration, as opposed to any other finite, small
number, plays no role. Indeed, changing the variable of integration to

x = h̄ω0

kT
�, (22.34)
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we find that the lower limit of integration becomes x = 0 in the high temperature limit. As
a result, we obtain

F � (kT )2

h̄ω0

∫ ∞

0
dx ln(1 − e−x ). (22.35)

Using the expansion

ln(1 − y) = −
(

y + 1

2
y2 + 1

3
y3 + 1

4
y4 + · · ·

)
, (22.36)

which is valid for any 0 ≤ y < 1, we have

F � − (kT )2

h̄ω0

∫ ∞

0
dx

(
e−x + 1

2
e−2x + 1

3
e−3x + 1

4
e−4x · · ·

)
(22.37)

� − (kT )2

h̄ω0

[
1 + 1

22
+ 1

32
+ 1

42
+ · · ·

]
.

The sum in brackets is a familiar one. It is, in fact, the zeta function (12.109) with an
argument of two:

ζ(2) = 1 + 1

22
+ 1

32
+ 1

42
+ · · · = π2

6
. (22.38)

Thus we finally obtain the high temperature approximation for the free energy:

F � − (kT )2

h̄ω0

π2

6
= − 1

h̄ω0

π2

6

1

β2
. (22.39)

Evidently, for this string the free energy has no volume dependence.
We can now calculate the entropy as a function of temperature. Using (22.14) we find

S = −∂ F

∂T
= k

π2

3

(
kT

h̄ω0

)
. (22.40)

Since we are interested in the entropy as a function of energy, we also compute the energy.
Making use of (22.6) we have

E = −∂ ln Z

∂β
= ∂

∂β
(βF) = −π2

6

1

h̄ω0

∂

∂β

(
1

β

)
, (22.41)

which gives

E = π2

6

1

h̄ω0

1

β2
= π2

6

(
kT

h̄ω0

)2

h̄ω0. (22.42)

Quick calculation 22.1 Verify that the energy E can also be calculated from F = E − T S.

Combining (22.40) and (22.42) yields

S(E) = kπ

√
2

3

E

h̄ω0
= k 2π

√
N

6
. (22.43)
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�Table 22.2
Comparing the exact values of p(N ) with the estimate p(N )est

provided by the Hardy–Ramanujan formula

N p(N ) p(N )est p(N )/pest(N )

5 7 8.94 0.7829
10 42 48.10 0.8731
100 190 569 292 199 281 893.25 0.9563
1000 2.406 × 1031 2.440 × 1031 0.9860

10 000 3.617 × 10106 3.633 × 10106 0.9956

Comparing with equation (22.26), we finally read

ln p(N ) � 2π

√
N

6
. (22.44)

This was our goal, an estimate of ln p(N ) for large N . Indeed, we must require large N
since

N = E

h̄ω0
= π2

6

(
kT

h̄ω0

)2

� 1, (22.45)

because of our high temperature assumption (22.32).
The result (22.44) is only the leading term of the celebrated Hardy–Ramanujan

asymptotic expansion of p(N ):

p(N ) � 1

4N
√

3
exp

(
2π

√
N

6

)
. (22.46)

This is not an exact formula either, but it is an accurate estimate of p(N ), as opposed to
our accurate estimate of the logarithm of p(N ). We will not give here a derivation of the
Hardy–Ramanujan result. It is fun, however, to test the accuracy of the Hardy–Ramanujan
formula. In Table 22.2 we compare the values of p(N ), as calculated exactly, with the
estimate pest(N ) provided by (22.46). The estimate gives an error of about one-half of one
percent for N = 10 000.

We now need a minor generalization of (22.46). Assume the string can vibrate in b
transverse directions. Then for each frequency �ω0 we have b harmonic oscillators that rep-
resent the possible polarizations of the motion. The associated occupation numbers need a
superscript to label the b polarizations:
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n(1)
1 n(2)

1 ... n(b)
1

n(1)
2 n(2)

2 ... n(b)
2

... ... ... ...

n(1)
� n(2)

� ... n(b)
�

... ... ... ...

(22.47)

In order to sum over all possible states in the new partition function Zb, we must sum
over all possible values of the occupation numbers n(q)

k , where k = 1, 2, . . . ,∞, and q =
1, 2, . . ., b. This gives

Zb =
∑

n(1)
k ,...,n(b)

k

exp
[
− h̄ω0

kT

∞∑
�=0

b∑
q=1

�n(q)
�

]
. (22.48)

The sums over the various n(q) factorize, so

Zb =
∑
n(1)

k

exp
[
− h̄ω0

kT

∞∑
�=0

�n(1)
�

]
· · ·

∑
n(b)

k

exp
[
− h̄ω0

kT

∞∑
�=0

�n(b)
�

]
. (22.49)

Each factor here is equal to the partition function Z calculated previously, so

Zb = (Z)b. (22.50)

The new free energy Fb is also easy to calculate:

Fb = −kT ln Zb = −kT b ln Z = bF. (22.51)

The entropy, obtained by differentiation of the free energy, also acquires a multiplicative
factor of b:

Sb = bS. (22.52)

For the energy Eb, the same multiplicative factor exists on account of (22.6):

Eb = bE . (22.53)

The four equations above are equalities of functions of temperature. For example, (22.52)
is Sb(T ) = b S(T ), where S(T ) is the entropy determined previously in (22.40). Since E
is the previously determined energy (as a function of temperature), S and E are related by
(22.43). Note that Eb is equal to h̄ω0 N , where N is now the total occupation number

Eb = bE = h̄ω0 N , N =
∑
�,q

�n(q)
� . (22.54)

Using (22.52), our earlier result for S(E) in (22.43), and (22.54) we find

Sb = b (k 2π)

√
1

6

E

h̄ω0
= k 2π

√
b

6

Eb

h̄ω0
= k 2π

√
Nb

6
. (22.55)

Let us call pb(N ) the number of partitions of N into integers that carry any of b labels.
This means, for example, that the partition {3, 2, 1} of 6 now gives rise to many partitions
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written as {3p1 , 2p2 , 1p3}, where the subscripts p1, p2, and p3 can take any value from
one to b. A partition with different subscripts is considered a different partition. We now
see that with b degenerate oscillators, the number of states with total number N is pb(N ).
Therefore Sb = k ln pb(N ), and comparing with (22.55) we conclude that for large N

ln pb(N ) � 2π

√
Nb

6
. (22.56)

The more accurate version of this result can be shown to be

pb(N ) � 1√
2

( b

24

)(b+1)/4
N−(b+3)/4 exp

(
2π

√
Nb

6

)
. (22.57)

You can see that for b = 1 this reduces to p(N ), as given in (22.46). For b = 24, the
number of transverse light-cone directions in the bosonic string, the expression simplifies
a little:

p24(N ) � 1√
2

N−27/4 exp
(

4π
√

N
)
. (22.58)

Quick calculation 22.2 Show that for large N

p24(N + 1)

p24(N )
� exp

( 2π√
N

)
. (22.59)

This means that the fractional change in the number of partitions when the argument is
increased by one unit goes down to zero as N →∞.

Quick calculation 22.3 Use direct counting to confirm that p24(1) = 24, p24(2) = 324,
p24(3) = 3200, and p24(4) = 25 650.

It is also interesting to count other types of partitions. Consider, for example, partitions of
integers into unequal parts. The possible partitions of 6 into unequal integers are

{6}, {5, 1}, {4, 2}, {3, 2, 1}. (22.60)

We denote by q(N ) the number of partitions of N into unequal parts, so q(6), for example,
is equal to four. We can use a fermionic version of the violin string to determine the large-
N behavior of q(N ). The frequencies of the oscillators are not changed, but this time we
demand that each occupation number can only be equal to zero or to one. Since no creation
operator can be used more than once, the total number N of any state is effectively split
into contributions all of whose parts are unequal. Creation operators that cannot be used
more than once create fermionic excitations. We call such oscillators fermionic. With a
little abuse of language, the numbers that enter a partition into unequal parts are called
fermionic numbers. You will show in Problem 22.2 that, for large N ,

ln q(N ) ∼ 2π

√
N

12
. (22.61)
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We extended the earlier counting of p(N ) to the case in which the elements of a partition
can carry any of b labels. If the elements of an unequal partition can carry any of f labels,
then the number q f (N ) of partitions is obtained from (22.61) by replacing N → N f . In
such partitions a fermionic number can appear more than once if it carries a different label
each time. This counting corresponds to a system with f species of fermionic oscillators.

A final generalization is also useful. We consider partitions of N into both ordinary and
fermionic numbers, with b labels for the ordinary numbers and f labels for the fermionic
numbers. In this case (Problem 22.4) we find that the large-N leading behavior of the
number P(N ; b, f ) of such partitions is

ln P(N ; b, f ) � 2π

√
N

6

(
b + f

2

)
. (22.62)

As an example, let us calculate P(2; 1, 2), the number of partitions of 2 into ordinary
and fermionic numbers, with the latter having two possible labels. The list of partitions is
obtained by labeling the numbers in the ordinary partitions ({2} and {1, 1}) in all possible
ways. We find

{2} , {21} , {22} , {1 , 1 } , {11 , 1 } , {12 , 1 } , {11 , 12 }. (22.63)

The labels on the fermionic numbers are shown as subscripts. We count P(2; 1, 2) = 7.
Equation (22.62) is useful for calculations in superstring theories, where the states are

built with both bosonic and fermionic creation operators. An application to a supersym-
metric black hole will be considered in Section 22.7.

22.3 Hagedorn temperature

Let us now return to the subject of relativistic strings. We will consider open strings that
carry no spatial momentum. This will happen, for example, if the open string endpoints end
on a D0-brane. With zero spatial momentum, the string has energy levels that are simply
given by the rest masses of its quantum states. The mass-squared of a given state can be
expressed in terms of the number operator N⊥ (12.164):

M2 = 1

α′
(N⊥ − 1) � N⊥

α′
, (22.64)

in the approximation of large N⊥. It follows that the energy E = M is related to the number
operator by the simple equality √

N⊥ = √
α′ E . (22.65)

In the microcanonical ensemble, the number of states �(E) equals p24(N⊥), because we
have 24 transverse light-cone directions, and consequently 24 oscillator labels for each
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mode number. As a result, S(E) = k ln p24(N⊥). For large energy, N⊥ is also large, and
using equation (22.56) we find

S(E) = k 2π

√
N⊥ · 24

6
= k 4π

√
N⊥. (22.66)

Making use of the number–energy relation in (22.65) we find

S = k 4π
√

α′ E . (22.67)

This is the entropy–energy relation at high energy. An entropy proportional to the energy
is unusual because it leads to a constant temperature:

1

kT
= 1

k

∂S

∂ E
= 4π

√
α′. (22.68)

This temperature is called the Hagedorn temperature TH:

1

βH
= kTH = 1

4π
√

α′
. (22.69)

Here kTH is the thermal energy associated with the Hagedorn temperature. In the high
energy approximation we are working with, we can arbitrarily increase the energy of
the strings, and their temperature will remain fixed at the Hagedorn temperature. It is
interesting to compare the energy kTH to the rest mass of the particles found in the
first massive level of the open string. This corresponds to N⊥ = 2 in (22.64) and gives
E = M = 1/

√
α′. The ratio of the Hagedorn thermal energy to this rest energy is

kTH(
1/
√

α′
) = 1

4π
� 1

12.6
. (22.70)

This shows that the Hagedorn thermal energy is small compared with the rest energy of
almost any particle state of the string. This is an important result that will play a role in our
later work in this chapter.

The entropy–energy relation in (22.67) also holds for closed strings with no spatial
momentum. Recalling (13.48), we find

M2 = 2

α′
(N⊥ + N̄⊥ − 2) � 4

α′
N⊥, (22.71)

since closed string states satisfy N⊥ = N̄⊥. It follows that the energy E = M is related to
the number operator as

2
√

N⊥ = √
α′ E . (22.72)
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This time, the number of states �(E) is equal to the product of available states in the
left-moving and in the right-moving sectors:

�(E) = p24

(
N⊥) p24

(
N̄⊥) = (

p24(N⊥)
)2

. (22.73)

As a result, the entropy S is precisely twice that indicated in (22.66):

S(E) = k 4π (2
√

N⊥) = k 4π
√

α′E . (22.74)

This is the same entropy–energy relation we had for open strings. We conclude that the
temperature TH is also the approximate temperature of highly energetic closed strings.

22.4 Relativistic particle partition function

As a warmup for our computation of the partition function for a string, we compute here
the partition function for a particle. We will work with a relativistic particle of mass m
that lives in a D-dimensional spacetime, or equivalently, in d = D − 1 space dimensions.
Moreover, we assume that this particle is confined to a box of volume V :

V = L1L2 . . . Ld . (22.75)

This box is in thermal contact with a reservoir at temperature T . As usual, the energy and
the momentum of the particle are related by

E( �p) =
√
�p2 + m2. (22.76)

The quantum states of the particle in the box are labeled by the momenta �p, which are
quantized. The partition function Z(m2) is given by

Z(m2) =
∑
�p

exp(−βE( �p )). (22.77)

The volume dependence of this partition function arises because the quantized values of the
momenta depend on the dimensions of the box. The quantum wavefunctions with momen-
tum �p = h̄�k have a spatial dependence exp(i �k · �x). The periodicity of these wavefunctions
in the box requires that for each spatial direction i

ki Li = 2πni , i = 1, 2, . . ., d , ni ∈ Z. (22.78)

Equivalently, in terms of momenta,

ni = pi
Li

(2π h̄)
. (22.79)

It follows that summing over the various momenta is the same as summing over the various
ni . For an arbitrary smooth function f [E] of the energy we can thus write∑

�p
f [E( �p)] =

∑
�n

f [E( �p(�n))] �
∫

dn1dn2 . . . dnd f [E( �p (�n))], (22.80)
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where the approximation by an integral is allowed because, for large boxes, the momenta
change very little when a counter ni shifts by one unit. Using (22.79) and (22.75) we obtain∑

�p
f [E( �p )] � V

∫
dd �p

(2π h̄)d
f [E( �p )]. (22.81)

This is the general prescription for dealing with sums over momenta. Applied to our case
of interest (22.77) it gives

Z(m2) = V
∫

dd �p
(2π h̄)d

exp
(
−β

√
�p2 + m2

)
. (22.82)

This is the integral representation of the partition function for a relativistic point particle
of rest mass m. The temperature and volume arguments of Z are implicit. Working with
h̄ = 1, and changing variables of integration by letting �p = m �u, we find

Z(m2) = V md
∫

dd �u
(2π)d

exp
(
−βm

√
1 + �u 2

)
. (22.83)

This integral is not elementary, but it can be written in terms of derivatives of modified
Bessel functions with argument βm (Problem 22.6). Rather than doing so, we will examine
the integral in the domain of interest. For our string theory applications, the thermal energy
is much smaller than the rest energy of the particle. Indeed, as we saw earlier, for tempera-
tures below the Hagedorn temperature, almost all string states satisfy this condition. Thus
we consider the situation where

βm � 1 , low temperature. (22.84)

We now claim that the leading approximation to the integral can be found by expand-
ing the square root in (22.83) for �u 2 small. This is explained as follows. Using spherical
coordinates and letting �u 2 = u2, we note that dd �u ∼ ud−1du (recall the familiar cases of
d = 2, 3). As a plain one-dimensional integral, the integrand in (22.83) is thus of the form

Integrand ∼ ud−1 e−βm
√

1+u2
. (22.85)

This integrand vanishes at u = 0 and u = ∞, and it peaks somewhere in between, giving
the largest contribution to the integral. The maximum of the integrand can be found by
setting the u derivative of (22.85) equal to zero. This gives the condition

d − 1

βm
= u2

√
1 + u2

. (22.86)

Since βm is large, the left-hand side is small, and u2 must also be small. We can therefore
neglect the u2 in the square root, and we find that the integrand is largest for

u2 � d − 1

βm
� 1. (22.87)

We are therefore allowed to expand the square root in (22.83) to write

Z(m2) � V mde−βm
∫

dd �u
(2π)d

exp
(
−1

2
βm �u2

)
. (22.88)
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The integral is now Gaussian and is readily evaluated:

Z(m2) � V e−βm
( m

2πβ

) d
2
. (22.89)

This is our final form for the partition function of a relativistic particle in the low tem-
perature limit. One can verify that this partition function is dimensionless, as it should
be. Except for the additional factor e−βm , this partition function coincides with the exact
partition function for a nonrelativistic particle. The exponential factor accounts for the
contribution of the rest energy to the energy of the relativistic particle.

22.5 Single string partition function

We are now ready to evaluate the partition function for a single open string placed in a box
of volume V . In order to calculate this, we must enumerate the quantum states of the string.
The states are obtained by acting with the light-cone creation operators on the momentum
eigenstates. A set of basis states is written as in (12.162):

|λ, p〉 =
∞∏

n=1

25∏
I=2

(aI †
n )λn,I |p+, �pT 〉, (22.90)

where the notation |λ, p〉 emphasizes that the momentum components as well as the occu-
pation numbers λn,I are labels of the string states. The d components (p+, �pT ) listed in
the momentum eigenstate specify the light-cone energy p− via the on-shell condition:

M2({λn,I }) = −p2 = 2p+ p− − pI pI , (22.91)

where

M2({λn,I }) = 1

α′
(N⊥ − 1) , N⊥ =

∑
n,I

n λn,I . (22.92)

Since both the spatial momentum and the energy are determined for the above states,
we can label the string states with the set {λn,I } of occupation numbers and the spatial
momentum �p. We then write

E({λn,I }, �p ) =
√

M2({λn,I })+ �p2. (22.93)

To find the partition function Zstr of a single string, we must sum over all states |λ, p〉, or
equivalently, over all spatial momenta �p and all values of the occupation numbers λn,I :

Zstr =
∑
α

exp(−βEα) =
∑
λn,I

∑
�p

exp
[
−β

√
M2({λn,I })+ �p2

]
. (22.94)

The momentum sum simply gives the partition function Z for a relativistic particle of
mass-squared M2({λn,I }). We thus write

Zstr =
∑
λn,I

Z (M2({λn,I })). (22.95)
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Since the mass M2 depends only on N⊥, the sum over occupation numbers {λn,I } can be
traded for a sum over N⊥ ≡ N , as long as we keep in mind that there are p24(N ) states
with number eigenvalue N :

Zstr =
∞∑

N=0

p24(N ) Z(M2(N )). (22.96)

So far, no approximations have been made, and the above result is exact.
Let N0 denote an integer for which p24(N ), with N ≥ N0, is reasonably approximated

by (22.58). Moreover, let Z0 denote the sum

Z0 ≡
N0−1∑
N=0

p24(N ) Z(M2(N )). (22.97)

This definition allows us to rewrite Zstr in (22.96) as

Zstr = Z0 +
∞∑

N=N0

p24(N ) Z(M2(N )). (22.98)

It is quite difficult to calculate Z0 accurately. Our strategy will be to work in a regime where
Z0 is negligible compared to the second term on the right-hand side of (22.98). It will
become clear below that this happens when the temperature T approaches the Hagedorn
temperature. A few facts about Z0 should be noted. The contribution from the tachyon
states is problematic: equation (22.82) tells us that Z is a complex number if m2 < 0.
By neglecting Z0 we are ignoring the tachyon instability in the theory. At any rate, Z0 is a
finite number for any value of the temperature, and its contribution to Zstr will be negligible
when the second term on the right-hand side of (22.98) becomes very large.

To proceed further we approximate the sum in (22.98) by an integral. For N ≥ N0 we
view p24(N ) as the continuous function of N defined by the approximate relation (22.58).
We then write

Zstr � Z0 +
∫ ∞

N0

d N p24(N ) Z(M2(N )). (22.99)

It is customary to define a density of states ρ(M) as a function of the mass M and to use
the mass as the variable of integration. This is done using the relation

p24(N )d N = ρ(M)d M. (22.100)

We express the left-hand side in terms of mass by using α′M2 � N :

d N = 2α′Md M = 2(
√

α′M) d(
√

α′M). (22.101)

Moreover, using (22.58) and (22.69) we find

p24(N ) � 1√
2
(
√

α′M)−27/2 exp(βH M). (22.102)

Substituting these two equations back into (22.100) gives

ρ(M)d M = √
2 (
√

α′M)−25/2 exp(βH M) d(
√

α′M). (22.103)
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Note incidentally that

ρ(M) ∼ M−25/2 exp(βH M), (22.104)

which shows that the exponential growth in the density of states is controlled by the Hage-
dorn temperature. As we will see shortly, the partition function does not converge for
temperatures higher than the Hagedorn temperature.

With (22.103) and (22.100), the partition function in (22.99) becomes

Zstr � Z0 +
√

2
∫ ∞

M0

(
√

α′M)−25/2 exp(βH M) Z(M2) d(
√

α′M), (22.105)

where α′M2
0 = N0. It only remains to write the particle partition function (22.89) in terms

of M and kTH. With the help of

M

2πβ
= 2(

√
α′M) kT kTH , βM = 4π(

√
α′M)

TH

T
, (22.106)

we find

Z(M2) � 225/2 V (kT kTH)25/2 (
√

α′M)25/2 exp
(
−4π

√
α′M TH

T

)
. (22.107)

Substituting this result into (22.105), the string partition function becomes

Zstr � Z0 + 213 V (kT kTH)25/2
∫ ∞

M0

d(
√

α′M) exp
(
−4π

√
α′M

[TH

T
− 1

])
. (22.108)

Notice that the powers of M in the integrand cancelled out. Setting x = √
α′M , the above

expression turns into

Zstr � Z0 + 213 V (kT kTH)25/2
∫ ∞
√

N0

dx exp
(
−4πx

[TH

T
− 1

])
. (22.109)

The integral only converges for T < TH, where we have

Zstr � Z0 + 211

π
V (kT kTH)25/2

( T

TH − T

)
exp

(
−4π

√
N0

[TH

T
− 1

])
. (22.110)

In the limit when T → TH from below, the argument of the exponential goes to zero and as
a result, the exponential goes to one. In addition, the factor which multiplies the exponential
grows without limit and becomes much larger than Z0. It follows that for T sufficiently
close to TH, the partition function Zstr is well approximated by

Zstr � 211

π
V (kTH)25

( TH

TH − T

)
, T → TH. (22.111)

In writing this formula we replaced T by TH in all places where it is possible to do so. This
is our final expression for the approximate partition function of a single open string that is
enclosed in a box of volume V and is in thermal contact with a reservoir at a temperature
T very close to TH.
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We can use this result to calculate the average energy of a string near the Hagedorn
temperature. In view of (22.6), we need only the β dependence of ln Zstr. Using β � βH,
the result is

ln Zstr � − ln(β − βH)+ · · · , (22.112)

where the dots represent terms without β dependence. It now follows that the average
energy Estr of the string is

Estr = −∂ ln Zstr

∂β
� 1

β − βH
� kTH

( TH

TH − T

)
. (22.113)

The energy Estr grows without bound as the temperature approaches the Hagedorn
temperature.

String thermodynamics is not yet well understood. Some of the complications arise
because in string theory the relation between the canonical and microcanonical ensem-
bles is not familiar. In general, if we let �(E)d E be the number of states in the energy
interval d E , the canonical partition function Z is defined as

Z(β) =
∫ ∞

0
d E e−βE �(E). (22.114)

The microcanonical distribution �(E) determines an energy–temperature relation E(T )

via the relation

β = ∂ ln �

∂ E
, (22.115)

as you recall from (22.2). In the canonical ensemble, this energy–temperature relation is
roughly reproduced whenever the integral (22.114) is dominated by a saddle point. The
saddle point arises at the maximum of the integrand, and it is determined by the condition

d

d E
(e−βE �(E)) =

(
−β�(E)+ ∂�

∂ E

)
e−βE = 0. (22.116)

As you can see, the vanishing condition reproduces (22.115). If the integral is dominated by
this saddle point, the average energy Ē(T ) calculated from Z turns out to be approximately
equal to E(T ). In familiar systems �(E) ∼ Eγ , with γ > 0. In this case a saddle point
exists, and the two ensembles give approximately equal results. On the other hand, in string
theory �(E) ∼ exp(βH E), and the integrand is then proportional to exp([−β + βH]E),
which is a function of energy that has no critical point. As a consequence, there is no
guarantee that the two ensembles give the same results. It becomes important to decide
physically which ensemble is relevant for each specific problem. Some refined computa-
tions using the microcanonical ensemble are examined in Problem 22.7. The results are
surprising.
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22.6 Black holes and entropy

A black hole is a gravitationally collapsed object that is formed when the mass of an object
is increased while its size remains fixed, or when the size of an object is reduced while
its mass is kept constant. Black holes were initially predicted by theoreticians before there
were any observational data to support their existence, but it has now become an experi-
mental fact that they exist in our universe. The presence of a supermassive black hole at the
center of our galaxy has been established convincingly. Most likely, there are millions of
black holes in every galaxy. They are the remnants of ordinary stars that were a few times
more massive than the sun.

Black holes pose very significant theoretical challenges. In Einstein’s theory of general
relativity they appear as classical solutions which represent matter that has collapsed down
to a point with infinite density: a singularity. Although dealing with classical singularities
is already a theoretical challenge, the real puzzles of black holes arise at the quantum
level. Quantum mechanically, black holes radiate energy. They also have thermodynamical
temperature and entropy, but these properties are difficult to understand at the fundamental
level of statistical mechanics, where they should be derived from a counting of degrees of
freedom. String theory has had some impressive success in understanding the entropy of
black holes. In this section we review basic features of black holes and use string theory
to discuss the entropy of four-dimensional Schwarzschild black holes. In the following
section we will examine a particular five-dimensional black hole for which the entropy can
be calculated exactly in string theory.

The simplest black holes are Schwarzschild black holes. These black holes are spherically
symmetric static solutions of Einstein’s equations that represent the gravitational field of
a point mass M . For such a black hole, the point singularity is separated from the outside
world by what is known as an event horizon. This is a mathematical two-sphere centered at
the singularity, whose radius R is called the Schwarzschild radius, or simply the radius of
the black hole. If any object ventures inside the event horizon it will fall irrevocably into the
singularity. Classically, nothing can escape from the region enclosed by the event horizon.
The value R of the Schwarzschild radius can be estimated by assuming that the total energy
of any particle at the horizon is equal to zero. For a particle of mass m, this energy includes
the rest energy mc2 and the gravitational potential energy −G Mm/R. Setting the sum of
these two equal to zero, we find

mc2 − G Mm

R
= 0 −→ R � G M

c2
. (22.117)

The exact radius is calculated in general relativity and the answer is

R = 2G M

c2
. (22.118)

Physicists often speak of the Schwarzschild radius associated with a mass, meaning by
this the radius of a black hole carrying such mass. The Schwarzschild radius of the sun is
about three kilometers. The Schwarzschild radius of the earth is about one centimeter. The
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Schwarzschild radius of a billion-ton asteroid is of the order of 10−15 m. It is possible to
use the Newtonian laws of gravitation to estimate the gravitational field at the horizon:

|�g| = G M

R2
= c4

4G M
. (22.119)

This gravitational field becomes small for very massive black holes. A massive object is a
black hole if it is enclosed by a sphere that has its Schwarzschild radius.

Quick calculation 22.4 Show that a spherical object of uniform mass density ρ is a black
hole if its radius is larger than c/

√
8πGρ/3 .

If we believe the second law of thermodynamics, then the existence of black holes leads
to some surprising conclusions. Assume that a certain amount of hot gas falls into a black
hole, so that the black hole now has a slightly higher mass. Since the total entropy of the
system consisting of the gas and the black hole cannot decrease, the black hole must have
acquired at least as much entropy as was carried by the gas. We are thus led to believe
that black holes have entropy. You know that a system has entropy when there are many
microscopic states of the system that are consistent with its macroscopic properties. On the
other hand, if the black hole is simply a point mass singularity, it is hard to see what are
the microstates that give rise to the entropy.

Black holes emit thermal radiation with a well defined temperature: a Hawking temper-
ature T̄H that is proportional to the gravitational field at the horizon and, consequently,
inversely proportional to the mass of the hole (do not confuse T̄H with the Hagedorn
temperature TH). This proportionality is reasonable since the radiation from the black
hole emerges from the near-horizon region, and is controlled by the intensity of grav-
ity. In natural units the Hawking temperature of a black hole of mass M turns out
to be kT̄H = 1/(8π M), so by inserting back the factors of h̄, c, and G (Problem 3.7)
we find

kT̄H = h̄c3

8πG M
. (22.120)

This equation allows us to calculate the Bekenstein entropy SB of the black hole. Using
E = Mc2 for the energy of the black hole and the first law of thermodynamics d E =
T̄Hd SB, we write

d E = c2d M = T̄Hd SB = h̄c3

8πG M

1

k
d SB. (22.121)

A little rearrangement yields

1

k
d SB = 4πG

h̄c
d M2. (22.122)

Integrating this equation, and assuming that the entropy of a zero-mass black hole is zero,
we find

SB

k
= 4πG

h̄c
M2. (22.123)
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The entropy of the black hole is proportional to the square of its mass. A useful alternative
expression for the entropy uses the area A of the event horizon. With A = 4π R2 and R
given by (22.118), one readily obtains

SB

k
= 1

4

c3

h̄G
A = A

4�2
P

, (22.124)

where �P is the Planck length. The right-hand side in this equation has a simple inter-
pretation: the Bekenstein entropy SB is one-fourth of the area of the horizon expressed
in units of Planck-length squared. Given that �2

P is a remarkably small area, the entropy
of any astrophysical-size black hole is extremely large. The entropy of a black hole
is roughly reproduced if one imagines having a degree of freedom with a finite num-
ber of states for each horizon element of area �2

P. String theory provides candidate
degrees of freedom for black holes, but they do not relate directly to the horizon
area.

Quick calculation 22.5 Show that a photon of energy kT̄H has a wavelength which is
approximately 80 times the radius of the black hole.

In string theory, we attempt to relate a stationary Schwarzschild black hole to a string with
a high degree of excitation but zero momentum. In the microcanonical ensemble, a string
state with energy E has an entropy (22.67). This is true both for open and for closed strings
(see (22.74)). Identifying E = M and working henceforth with h̄ = c = 1, we have

Sstr

k
= 4π

√
α′ M, (22.125)

where we have added the subscript “str” to refer to the entropy of the string. This result
should be compared to the black hole entropy (22.123):

SB

k
= 4πG M2. (22.126)

The disagreement appears to be clear: the entropy of a black hole goes like the mass-
squared, while the entropy of a string goes like the mass. We will soon show, however, that
the apparent disagreement was to be expected. When they are properly understood, these
equations display a surprising level of agreement. The linear dependence of the string
entropy on the mass M of the string is not surprising. Entropy is an extensive quantity, and
for a string the mass M is roughly proportional to its length L . The black hole entropy, on
the other hand, exhibits a surprising feature: it is not proportional to the volume enclosed by
the event horizon, but rather, to the area enclosed by the horizon. This failure of extensivity
is a feature of gravitational physics.

Before considering the relation between equations (22.125) and (22.126), let us give a
heuristic derivation of the string entropy. For this, we consider a string of mass M and
estimate its length L to be roughly given by

M ∼ T0L ∼ 1

α′
L , (22.127)
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where T0 ∼ 1/α′ is the string tension. We now imagine a string built by joining together
bits of string, each of which is of length �s =

√
α′. Each string bit can point in any of n

possible directions. The number n may be equal to the number of spatial dimensions, but
since our arguments are rough, we will not be specific. Since the number of string bits is
L/
√

α′, the number of ways � that we can build this string is roughly

� ∼ nL/
√

α′ ∼ nM
√

α′ ∼ eM
√

α′ ln n . (22.128)

The entropy of the string is obtained by taking the logarithm of �:

Sstr

k
∼ M

√
α′ ∼ M �s, (22.129)

where we discarded the ln n factor, in keeping with the accuracy of the estimate. This result
is consistent with the expression given in (22.125).

Equations (22.125) and (22.126) disagree because the black hole entropy SB was cal-
culated in a regime where interactions are necessary, while the string entropy Sstr was
calculated for free strings. We should not have expected agreement, unless for some reason
interactions did not affect the calculation of the entropy of strings.

Interactions are necessary in the black hole entropy calculation because Newton’s con-
stant G vanishes if the string coupling constant g is set to zero. Indeed, we recall (13.83),
which states that

G ∼ g2 α′ = g2�2
s . (22.130)

The black hole entropy and the black hole radius are then given by

SB

k
∼ G M2 ∼ g2�2

s M2,

R ∼ G M ∼ g2�2
s M. (22.131)

While they incorporate the string coupling dependence via Newton’s constant, the above
results use classical general relativity, where, for example, the concept of a horizon makes
sense. We are allowed to neglect string theory corrections to general relativity as long as
black holes are much larger than the string length.

Consider now a large black hole with Bekenstein entropy S0, mass M0, and radius R0 �
�s . Fix also the string coupling to some finite value g0. Equations (22.6) then give us

S0

k
∼ g2

0 �2
s M2

0 ,

R0 ∼ g2
0 �2

s M0 . (22.132)

Since the calculation of the string entropy is valid for zero, and possibly small, string
coupling, imagine now the process of dialing down the value of the string coupling. This
is done by changing the expectation value of the dilaton, as explained in Section 13.4. It
is reasonable to assume that this process can be carried out reversibly, so we can expect
the black hole entropy to remain unchanged. On the other hand, as we dial down the string
coupling g, the mass of the black hole must increase like 1/g to keep the entropy constant
in (22.6). The mass is not increasing, however, if it is measured in units of Planck mass,
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since G ∼ 1/m2
P. The radius R of the black hole decreases, as follows from the second

relation in (22.13) bearing in mind that M ∼ 1/g.
Let g∗, R∗, and M∗ denote the final values of the string coupling, black hole radius,

and black hole mass, respectively. The constancy of the entropy and the formula for the
radius give

S0

k
∼ g2

0 �2
s M2

0 = g2∗ �2
s M2∗ ,

R∗ ∼ g2∗ �2
s M∗. (22.133)

We do not expect these results to hold when the black hole becomes smaller than the string
length, so let us fix R∗ = �s as the minimum radius for which equations (22.133) can be
trusted. The condition R∗ = �s tells us that

g2∗ �2
s M∗ ∼ �s −→ M∗ ∼ 1

g2∗ �s
. (22.134)

Back in the expression for the entropy S0 we find

S0

k
∼ 1

g2∗
. (22.135)

The coupling g∗ is clearly very small since S0 was assumed to be very large. At such weak
coupling we can reasonably trust the free string theory expression (22.129) for the entropy.
Since the black hole we are comparing with has mass M∗, we consider a string of mass
M∗. The entropy is then given by

Sstr

k
∼ M∗ �s ∼

( 1

g2∗�s

)
�s ∼ 1

g2∗
, (22.136)

where we made use of (22.134). Comparing with (22.135), we see that Sstr ∼ S0. This
agreement is evidence for the hypothesis that a Schwarzschild black hole is the strong
coupling version of a string with a very high degree of excitation. It is far from a proof,
however. As you have seen, we have only written approximate relations, and we have made
a series of assumptions about the ranges of validity of certain results. A proof remains to
be found at this time. Nevertheless, there is additional circumstantial evidence that this
picture is at least roughly correct. It is possible to estimate the “size” of a string using the
picture of string bits and assuming that the string is a random walk. One can then show that
for any fixed coupling g there is a mass beyond which any excited string state is smaller
than its Schwarzschild radius (Problem 22.9). This suggests that very heavy string states
will form black holes.

22.7 Counting states of a black hole

Our computation of the entropy of strings can be done in the limit when we neglect the
effects of interactions. Since a black hole can only exist once interactions are turned on, an
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exact computation of the entropy of a black hole in string theory requires that the counting
of states done with string coupling g = 0 remains valid when g 	= 0.

For the Schwarzschild black holes considered in the previous section this does not hap-
pen. As a result, we could only confirm qualitative agreement over a narrow range of
couplings for which the gravity computation and the free string theory computation could
both hold. In this section we wish to consider a particular five-dimensional black hole that
appears in superstring theory. For this black hole, as we will explain below, the counting
of states at zero string coupling will remain valid when the coupling becomes nonzero. It
is the simplest known black hole with this property. Four-dimensional black holes with the
same property are known, but they are are slightly more complicated. This is why we focus
here on the five-dimensional black hole.

The remarkable property is due to supersymmetry. As long as supersymmetry is present,
certain quantities can be calculated at zero coupling, and the results remain valid for all
values of the coupling. Superstrings living in ten-dimensional Minkowski spacetime have
supersymmetry. It is a challenge to compactify spacetime and preserve supersymmetry, but
this happens if we curl up dimensions into circles. If we now include a black hole in the
spacetime, supersymmetry can be lost. The black hole we are interested in is special: even
when it is included some supersymmetry survives.

The starting point is ten-dimensional type IIB closed superstring theory. One can search
for black hole solutions in the regime where the string theory is well approximated by a
field theory of gravity, Kalb–Ramond fields, and other fields, including fermions. Such a
theory is called type IIB supergravity. We curl up five of the spatial dimensions into circles.
Let us denote these dimensions by x5, x6, x7, x8, and x9. The black hole is a spherically
symmetric configuration in the uncompactified effective spacetime M5 defined by the coor-
dinates x0, x1, x2, x3, and x4. We cannot discuss here the full construction of the black
hole, so we will simply summarize the results that are obtained.

(1) The black hole carries three different electric charges with respect to three Maxwell-
like gauge fields that live on M5. These charges are denoted by the integers

Q1, Q5, and N . (22.137)

A specific black hole is obtained by choosing these three integers.
(2) The black hole is extremal: it has the minimal mass that is compatible with its charges.

It does not radiate, since radiation would reduce its mass without the necessary
change of charge. The black hole has zero temperature. In addition, its presence pre-
serves a large part of the original supersymmetry of the IIB theory in ten-dimensional
Minkowski spacetime.

(3) The black hole horizon is a three-sphere with finite volume AH. The thermodynamical
black hole entropy Sbh is calculated using the five-dimensional analog of (22.124):

Sbh

k
= AH

4G(5)
= 2π

√
N Q1 Q5. (22.138)

Here G(5) is the five-dimensional Newton constant and we have set h̄ = c = 1. Inter-
estingly, the entropy only depends on the charges carried by the black hole and not
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on other parameters, such as the string coupling or the size of the circles used for the
compactification.

The goal is to use string theory to reproduce the entropy (22.138) by counting states.
String theory must explain how this black hole can be constructed in many possible ways.
We know how to count states in string theory when there are no interactions. This time,
however, the black hole respects supersymmetry and this guarantees that the zero coupling
counting continues to hold for nonzero coupling.

At zero coupling the black hole is constructed using type IIB superstring theory, with the
five coordinates x5, . . ., x9 curled up into circles. The charges Q1 and Q5 are generated by
wrapping a number Q1 of D1-branes around the circle x5 and a number Q5 of D5-branes
around the five circles. These charges arise by the mechanism discussed in Section 16.4.
Since a D5-brane has five spatial dimensions, the D5-branes wrap completely around the
compact extra dimensions. How does this look to the five-dimensional observer in M5?
Since all spatial directions along M5 are Dirichlet for the D5-branes, the D5-branes have
fixed spatial coordinates on M5. They appear, for all times, as a collection of static points.
The same is true for the D1-branes. In the configuration we are trying to build, we require
that all these points coincide. Thus all D-branes are coincident, and they are seen by the
observer as a single point in space. This point is the center of the black hole that forms
when the coupling is turned on. So far, this configuration of D-branes cannot be built in
different ways that preserve supersymmetry. A few discrete choices are possible; we can
choose, for example, another coordinate to wrap all of the D1-branes. But any number of
choices that happens to be independent of the charges cannot give us the correct entropy.
So, where does the entropy come from?

Recall that the macroscopic black hole had an additional charge N . What does this cor-
respond to in the brane construction? It is a momentum quantum number. The momentum
around the circle x5 must equal

p5 = N

R
, (22.139)

where R is the radius of the circle. This momentum cannot be carried by the D-branes since
they are translationally invariant along the x5 direction. The momentum is carried by open
strings attached to the D-branes! We can now see how it is possible to get many states: there
are many kinds of strings stretching between the Q1 D1-branes and the Q5 D5-branes. We
have (1,1) strings going from D1-branes to D1-branes. We have (5,5) strings going from
D5-branes to D5-branes. Finally, we have (1,5) and (5,1) strings, going from D1-branes to
D5-branes and vice versa, respectively. Moreover, the total momentum quantum number
N can be split between many open strings. Supersymmetry, however, makes one extra
demand: all of the open strings must carry momentum in the same direction along x5.

To proceed further, we need some known facts about the combined system of coincident
D1- and D5-branes.

(1) The D1/D5-brane system is a bound state. Open strings of type (1,1) and (5,5) become
massive and do not become excited in the configuration we are interested in. These
strings can be dropped from the counting.
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(2) The total number of ground states of a (1,5) string and the oppositely oriented (5,1)
string is eight: four bosonic ground states and four fermionic ground states.

(3) The Q1 D1-branes may join to form a single D1-brane wrapped Q1 times around the
circle. Similarly, the Q5 D5-branes can join to form a single D5-brane wrapped Q5

times around the full compact space. If this happens, the charges are not changed.

Bearing this information in mind, we see that the momentum number N must be split
among open strings that stretch between D1-branes and D5-branes. We need a partition
of N , but of which kind? Let us assume, for the time being, that N � Q1 Q5 and do a
preliminary counting that will work but is not generally valid.

We have to partition N , and, for each element of each partition, we have to tell what kind
of state is carrying the momentum quantum number. There are Q1 Q5 ways of picking
a D1-brane and a D5-brane. Moreover, there are four additional ways to pick a bosonic
excitation or, alternatively, four ways to pick a fermionic excitation (see (2) above). As a
result, we have b = 4Q1 Q5 bosonic labels and f = 4Q1 Q5 fermionic labels. Making use
of (22.62), the entropy is then

Sstr

k
= ln P

(
N ; 4Q1 Q5, 4Q1 Q5

) ∼ 2π

√
N

6
(4Q1 Q5)

3

2
= 2π

√
N Q1 Q5, (22.140)

in perfect agreement with (22.138). This is very nice, but it is not general enough. The
restriction N � Q1 Q5 is needed because in (22.62) N must be much larger than both b
and f . It can be shown that if N , Q1, and Q5 all grow large simultaneously then ln P fails
to give the expected entropy. This means that we have not quite yet identified the general
counting that gives the entropy.

The clue is given in item (3) of the list above. Imagine the D1-brane wrapped Q1 times
around the circle x5. Consider then a (1,1) string moving along the D1-brane. How is the
momentum of the string quantized? For such a string the circle has effectively become
Q1 times longer: (2π R)Q1 is the distance the string must travel to return to its original
starting point on the D1-brane. Accordingly, the string momentum is quantized in units
of 1/(Q1 R). This is true with one proviso. The individual open strings can have their
momentum quantized with this finer unit, but the total momentum of all the open strings
must still be quantized in units of 1/R. This is because the system of the D1-brane and
the attached open strings must be invariant under a translation by 2π R along the circle. As
a result, the total momentum of the system must be quantized in units of 1/R. Since the
D1-brane has no momentum, the claim follows.

We must focus, however, on the strings stretching between D1-branes and D5-branes.
Imagine now that the D5-branes are also wrapped. For simplicity, assume that Q1 and Q5

are relatively prime (we will relax this assumption shortly). Consider now a (1,5) string.
How many times must it go around the x5 circle so that both of its endpoints return to their
original positions? After Q1 turns the first endpoint does, but not the second. After Q5

turns the second endpoint returns to its starting point, but the first does not. It takes Q1 Q5

turns to have both endpoints return to their original positions on the respective branes.
As a result, the momentum of (1,5) and (5,1) strings is quantized with the even finer unit
of 1/(Q1 Q5 R)! This can be arranged to be approximately true even if Q1 and Q5 are
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not relatively prime. Take, for example Q1 = Q5 = 100. We can take the D1-brane and
split off one turn to get a system with Q′

1 = 99 plus one extra D1-brane. Since Q′
1 and

Q5 are relatively prime, the momentum of most open strings is then quantized in units of
1/(Q′

1 Q5 R), which is approximately equal to 1/(Q1 Q5 R). In general, for large Q1 and
Q5 we can find relatively prime numbers Q′

1 < Q1 and Q′
5 < Q5 such that Q′

1 ∼ Q1 and
Q′

5 ∼ Q5.
With this finer unit of quantization, the total momentum in (22.139) is suggestively

written as

p5 = N Q1 Q5

Q1 Q5 R
. (22.141)

This time we must partition the number N Q1 Q5. Since we just have one long D1-brane
and one D5-brane, there is only one kind of string stretching between the branes. Therefore
the labels on the elements of a partition are either four bosonic ones or four fermionic ones:
b = f = 4. As a result, the entropy is given by

Sstr

k
= ln P (N Q1 Q5; 4, 4) ∼ 2π

√
N Q1 Q5

6
(4)

3

2
= 2π

√
N Q1 Q5. (22.142)

The agreement with the black hole entropy is now complete and holds generally.
The statistical mechanical derivation of black hole entropy is a significant accomplish-

ment of string theory. Moreover, good progress has been made in extending the set of black
holes for which the entropy is calculable. Still, much work remains to be done in string the-
ory to understand black holes fully. Schwarzschild black holes are not under any precise
control, and there are puzzles associated with the fate of the information that falls into a
black hole.

String theory gives a clear picture of the zero-coupling degrees of freedom of a con-
figuration that turns into a black hole for nonzero coupling. Moreover, we know that the
counting continues to hold for nonzero coupling. We would like to know how these degrees
of freedom look by the time the black hole is formed. Many mysteries remain.

Problems

Problem 22.1 Review of statistical mechanics.

(a) Prove equation (22.7). [Hint: the energy levels Eα(V ) of the system depend on the
volume. As the volume changes quasistatically, the change in mean energy is calcu-
lated using the equilibrium distribution of states. The change in mean energy can be
interpreted as due to work against the pressure.]

(b) Prove equation (22.15). [Hint: consider the differential d ln Z(T, V ).]

Problem 22.2 Fermionic violin string and counting unequal partitions.

Consider a system of simple harmonic oscillators with frequencies ω0, 2ω0, . . . identical
to those of the bosonic violin string oscillators of Section 22.2. This time, however, each
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occupation number n� can only take the value 0 or 1. Oscillators with this property are said
to be fermionic oscillators.

(a) Calculate the free energy of such a string in the high temperature limit. The answer
involves the sum

1 − 1

22
+ 1

32
− 1

42
+ 1

52
− · · · ,

which can be calculated using (22.38).
(b) Let q(N ) denote the number of partitions of N into unequal pieces. Use your result in

(a) above to show that the large-N behavior of ln q(N ) is given by (22.61).
(c) Now assume this string is relativistic, with the energy related to the mode number as

in (22.65):
√

N = √
α′E . What is the Hagedorn temperature for such a string?

Problem 22.3 Generating functions for partitions.

A particularly simple infinite product provides a generating function for the partitions p(n):
∞∏

n=1

1

(1 − xn)
=

∞∑
n=0

p(n)xn .

Here p(0) ≡ 1. To evaluate the left-hand side, each factor is expanded as an infinite Taylor
series around x = 0. Test this formula for n ≤ 4, and explain (in words) why it works
in general. Find a generating function for unequal partitions q(n), and test it for low
values of n.

Problem 22.4 Counting of generalized partitions.

Prove the formula (22.62) for the partitions P(N ; b, f ) of N into ordinary integers with
b labels and fermionic integers with f labels. Calling Z the partition function of ordinary
oscillators and Z ′ the partition function of Problem 22.2, begin your derivation by explain-
ing why the partition function ZT for the composite system of bosonic and fermionic
labeled oscillators is given by

ZT = (Z)b (Z ′) f .

Problem 22.5 Open superstring Hagedorn temperature.

Consider the open superstring theory described in Section 14.1.

(a) Show that the total number of states (NS and R sectors) with number N⊥ is
16P(N⊥; 8,8). [Hint: one of the two sectors is easier to count; then use supersym-
metry.]

(b) Following the method of Section 22.3, calculate the Hagedorn temperature for an open
superstring. Show that it is a factor of

√
2 larger than the Hagedorn temperature of the

bosonic string.

Problem 22.6 Partition function of the relativistic particle.

Evaluate exactly the partition function (22.83) for the relativistic point particle in terms
of modified Bessel functions (and derivatives thereof), making use of the integral
representation
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Kν(z) =
√

π
(

1
2 z
)ν

�
(
ν + 1

2

) ∫ ∞

0
e−z cosh t sinh2ν t dt .

Use the asymptotic expansion

Kν(z) ∼ e−z
√

π

2z

[
1 + 4ν2 − 1

8z
+ · · ·

]
,

which is valid for large z, to confirm our low temperature result in (22.89). Calculate the
first nontrivial correction to this result.

Problem 22.7 Corrections to the temperature/energy relation in the microcanonical
ensemble.

We found the Hagedorn temperature in the idealized string model by computing the
entropy–energy relation in the high energy approximation where ln p24(N ) ∼ 4π

√
N . Use

the more accurate expression for the partitions p24(N ) as given in (22.58) to find the cor-
rections to the temperature–energy relation. You will find the surprising result that as the
energy goes to infinity the temperature goes to TH from above! Plot T (E), and calculate
the (negative!) specific heat C in the high energy regime.

The above computations were done using S = k ln p24(N ) and the relation between
E and N . In conventional systems with continuous energies one defines S = k ln �(E),
where �(E)d E is the number of states in the energy interval d E . Use the relation
�(E)d E = p24(N )d N to calculate �(E), and show that the resulting entropy S(E)

differs slightly from the one calculated before.
The negative specific heat obtained for the idealized string is not atypical. For open

strings on a Dq-brane one can prove that

�(E) � E−γ exp(4π
√

α′E) , with γ = (25 − q)/2.

Use the continuous energy formulation to calculate the specific heat C in the high energy
regime. Give your answer in terms of γ , E , and kTH.

Problem 22.8 Long strings are entropically favored.

The general approximate formula for partitions pb(N ) takes the form

pb(N ) ∼ βN−γ exp(δ
√

N ),

where β, γ , and δ are positive, b-dependent constants. Consider an open bosonic string
with large excitation number N⊥ = N0 and energy E0 related by α′E2

0 � N0. Assume
zero momentum for all strings.

(a) Find the ratio of the number of states available to the string and the number of states
available when the string breaks into two (distinguishable) strings, each carrying half
the energy. Express your answer in terms of N0 and the constants in the problem. What
is the change in entropy �S/k during the process in which the two half-strings join
to make the original string? Show that this change is positive when N0 is sufficiently
large. Which constant out of β, γ , and δ is the one responsible for this effect?
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(b) Show that, in general, the combination of two open strings with large excitation
numbers into a single open string is a process that increases the entropy.

(c) Since the above results are valid for large N0, it is of some interest to test them for
smaller N0. How many times are the number of available states increased when a
string with N0 = 9 is formed from two strings, each of which has the same energy?
What is the change of entropy �S/k? Use the exact formula α′E2 = N − 1 for all
cases. (A little help: p24(9) = 143 184 000.)

Problem 22.9 Estimating the size of a string state.

We used the heuristic picture of a string made out of string bits to estimate correctly the
entropy (22.129) of a string. We now want to use this picture to estimate the size of an
open string state. Assume that each string bit can point randomly in any of d orthogonal
directions. The string can then be viewed as a random walk with a number of steps equal
to the number of bits.

(a) Use the random walk formula for the average value of the square of the displacement
to show that the “size” Rstr of a string of mass M is

Rstr(M) ∼ M1/2 �
3/2
s ∼ N 1/4�s, (1)

where N is the number eigenvalue associated with the mass M . Note that the size
grows like the square root of the mass, while the length of the string grows like the
mass. Rstr is the size of the string at zero string coupling.

(b) Show that the (zero string coupling) size Rstr of a string of mass M is smaller than the
Schwarzschild radius of a mass M in a theory with coupling g, when M > M̄ where

M̄ ∼ 1

g4�s
∼ mP

g3
. (2)

This result suggests that the sufficiently massive strings could form a black hole. Show
that for M̄ the radius of the hole is �s/g2, so for couplings that are small, the size of the
hole is too large to trust the string model. Show that the value of N for a zero coupling
string of mass M̄ is N ∼ 1/g8. Give a rough estimate of M̄ in kg when g ∼ 0.01.

(c) Consider a very large black hole of mass M and Schwarzschild radius R in a string
theory at some finite coupling g. Assume now that the coupling is slowly dialed down
to zero. Calculate the value of N that characterizes the zero coupling string that is
obtained (write your answer in terms of M and mP). Show that the size Rstr of this
string is equal to R/g. How much bigger is the length of the string?

The mass of the black hole at the center of our galaxy is approximately 2.6 mil-
lion solar masses. Estimate the value of N for the corresponding zero coupling string.
(Answer: N ∼ 10177.)

The random walk model of string states applies to strings with little or no angular
momentum (recall that the size of a rigidly rotating open string is proportional to the
mass). In this model the size of the string is much smaller than its length. The effect of
string interactions appears to reduce further the size of the strings.



23 Strong interactions and AdS/CFT

String theory offers a number of insights into the theory of strong interactions.
The quantum states of a rotating open string have key properties of hadronic exci-
tations. The energy of a stretched string matches quite well the potential energy
of a separated quark–antiquark pair. More surprisingly, certain strongly interact-
ing gauge theories are physically equivalent to closed string theories. The closed
strings propagate on a space whose boundary is roughly the space where the
gauge theory lives. The prime example of this equivalence is the AdS/CFT cor-
respondence, which states that supersymmetric four-dimensional SU (N ) gauge
theory is fully described by type IIB closed superstrings in a spacetime that
includes the five-dimensional anti-de Sitter space AdS5. We motivate this corre-
spondence and examine in detail the geometry of anti-de Sitter space and related
hyperbolic spaces. The correspondence suggests that properties of the recently
discovered quark–gluon plasma are related to properties of black holes in anti-de
Sitter space.

23.1 Introduction

String theory was discovered in the attempts to understand the dynamics of strongly inter-
acting hadrons. It had been noted that the plot of the angular momentum J of hadronic
excitations against their energy-squared falls roughly into lines J = α′E2 called Regge
trajectories. String theory seemed to be a reasonable candidate for a theory of strong inter-
actions because this relationship between J and E2 emerges naturally from a rotating
classical open string, as we discussed in Section 8.6. Quantization picks discrete values for
the angular momentum and modifies the linear relation between J and E2 by the addition
of a constant. Both changes are needed for agreement with the data.

Despite these encouraging indications, the early attempts to use relativistic strings to
describe hadrons faced many problems. Among them was the presence of unwanted mass-
less vectors and massless tensors, precisely the particles needed to make string theory a
candidate for a unified theory of physics. The string theory approach to strong interactions
was abandoned and quantum chromodynamics, or QCD, was adopted. QCD postulates that
the basic constituents of hadrons are quarks and gluons. QCD is a quantum field theory, in
fact, an SU (3) Yang–Mills theory.

In QCD, a meson is viewed as a pair of quarks held together by gluons. The string
picture, however, remains a useful approximate description. In this picture, a meson is a
pair of quarks held at the ends of an open string that represents a thin tube of color flux
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q

�Fig. 23.1 A meson as a quark–antiquark pair held together by color field lines. When the quark and
antiquark are separated the color field lines form a thin flux tube that can be viewed as
a string.

lines (Figure 23.1). The confinement of quarks, that is, the fact that quarks are never seen in
isolation, also has a simple explanation in the string picture. Since the tension of the string
joining the quarks is independent of its length, it takes infinite energy to separate fully a
pair of quarks. The potential energy between a quark and an antiquark has been the subject
of much analytic and numerical work in QCD. As we will see, key features of this potential
follow from a simple string model.

In the above string picture a meson is a string. When we discussed the Standard Model
on a configuration of D6-branes, the quarks and leptons were the strings. There is no con-
tradiction: a superstring may describe elementary particles and at the same time another
string theory, perhaps an effective one, may describe the composite hadrons. In fact, it was
a long-held belief that there should be some exact string theory description of QCD. While
this string theory is not yet known, a surprising development has come tantalizingly close
to achieving this objective.

As it turns out, certain strongly interacting gauge theories have an exact string picture,
but the strings do not propagate in the spacetime where the strongly interacting theory
lives. Roughly, the gauge theory lives on the boundary of the spacetime where the strings
propagate. The equivalence of a gauge theory and a string theory was first exhibited in the
AdS/CFT correspondence. In this correspondence, a maximally supersymmetric SU (N )

Yang–Mills theory in four-dimensional Minkowski spacetime is claimed to be equivalent
to a type IIB closed superstring theory. The ten-dimensional spacetime in this superstring
theory takes a particular form: five dimensions form a sphere S5 and the other five dimen-
sions form a noncompact anti-de Sitter spacetime, briefly denoted by AdS5. One can view
the Minkowski spacetime of the field theory as the boundary of the AdS5 space. The max-
imally supersymmetric SU (N ) Yang–Mills theory has as much supersymmetry as a gauge
theory can have. It is a conformal field theory (CFT), a type of theory that has no dimen-
sionful parameters. In the AdS/CFT acronym, AdS stands for anti-de Sitter space and CFT
stands for the gauge theory. After a discussion of the correspondence, we examine a variant
that describes a “hot” gauge theory – the quark–gluon plasma – using strings moving on
an AdS space that contains a black hole.

23.2 Mesons and quantum rotating strings

The classical linear relation J = α′M2 between angular momentum and mass-squared of a
rotating open string suggests that the Regge trajectories of mesonic excitations could have
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�Fig. 23.2 Frautschi–Regge trajectory for the rho-mesons ρ(776), a2(1320), ρ3(1690), a4(2040), and
ρ5(2350). The line was fit to go through the ρ(776) and the a2(1320).

a string theory explanation. Let us examine a particular meson and the Regge trajectory
associated with it. We choose the rho-meson.

The rho-meson ρ(776), of mass 776 MeV, is in fact a triplet of mesons (ρ+, ρ0, ρ−),
two of them charged and one uncharged. The rho-mesons are heavy analogs of the pions
(π+, π0, π−). Just like the pions, they are made of u and d quarks as well as antiquarks.
As opposed to the pions, which are spin-zero combination of quarks, the rho-mesons have
spin angular momentum S equal to one. With zero orbital angular momentum L , their
total angular momentum is J = 1. The rho-mesons are unstable and decay mostly to a pair
of pions, with lifetimes of about 10−23s. The ρ(776) belongs to a trajectory of mesons
with S = 1 and higher values of L . Writing the masses (in MeV) inside parenthesis, we
have the a2(1320) with J = 2, the ρ3(1690) with J = 3, the a4(2040) with J = 4, and the
ρ5(2350) with J = 5. These five mesons are plotted in Figure 23.2.

To get a sense of the accuracy of the linear trajectory we fit a line through the lowest two
mesons. We write

J = α′M2 + β ′ , (23.1)

and determine the constants α′ and β ′ so that M2 = (0.776 GeV)2 gives J = 1 and M2 =
(1.320 GeV)2 gives J = 2. This gives

J = 0.877 02 (GeV)−2 M2 + 0.471 88 . (23.2)

This is the line shown in Figure 23.2. Using this fit one predicts a J = 3 meson of mass
1699 MeV, a J = 4 meson of mass 2006 MeV and a J = 5 meson of mass 2272 MeV. The
errors in the masses are really small: 0.5%, 1.7%, and 3.3%, respectively.

Having seen that (23.1) is needed to fit the data, let us see how the classical relation J =
α′M2 is modified in the quantum theory. Let us assume that the open string rotates in
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the (x2, x3) plane and has zero momentum in this plane. The relevant angular momentum
operator J = M23 is read from (12.147):

J = M23 = −i
∞∑

n=1

1

n

(
α

(2)
−nα(3)

n − α
(3)
−nα(2)

n

)
. (23.3)

Naturally, the terms on the above right-hand side mix the oscillators from the two spatial
coordinates. It is useful to define new oscillators αn and ᾱn :

αn ≡ 1√
2
(α(2)

n + iα(3)
n ) , ᾱn ≡ 1√

2
(α(2)

n − iα(3)
n ) . (23.4)

Note that (αn)† = ᾱ−n . A short calculation shows that the commutation relations for the
new oscillators are

[αm, ᾱn] = m δm+n,0 , [αm, αn] = [ᾱm, ᾱn] = 0 . (23.5)

Note that the first relation implies that [ᾱm, αn] = mδm+n,0. In terms of the new oscillators
the angular momentum operator is given by

J =
∞∑

n=1

1

n
{α−nᾱn − ᾱ−nαn} . (23.6)

The first term in the above sum counts the number of α oscillators in a state. The second
term, up to a sign, counts the number of ᾱ oscillators in a state. The convenience of the
new basis is now apparent.

Quick calculation 23.1 Verify equation (23.6), and convince yourself of the claims that
follow this equation.

Using the new oscillators we write states in the form

|λ〉 = . . .

∞∏
k=1

(α−k)
λk (ᾱ−k)

λ̄k |p+, �pT 〉 , (23.7)

where λk ≥ 0 and λ̄k ≥ 0 are integers and the dots represent products of oscillators in
directions other than x2 and x3. Acting on |λ〉

J has eigenvalue J =
∞∑

k=1

(λk − λ̄k) . (23.8)

Is it thus easy to build states with arbitrary values of the angular momentum.
Since we want to find the mass-squared values of states with definite angular momentum

we consider the mass-squared relation (12.164) and write it as:

α′M2 + 1 = N⊥ = N23 + N ′ , (23.9)

where

N23 =
∞∑

n=1

(
α

(2)
−nα(2)

n + α
(3)
−nα(3)

n

)
(23.10)
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denotes the contribution to N⊥ from the x2 and x3 directions and N ′ denotes the contribu-
tion to N⊥ from the other transverse directions. One readily finds that in terms of the new
oscillators

N23 =
∞∑

n=1

(α−nᾱn + ᾱ−nαn) , (23.11)

and this implies that on the general states (23.7)

N23 has eigenvalue N23 =
∞∑

k=1

k(λk + λ̄k) . (23.12)

Since λk , λ̄k ≥ 0 and k ≥ 1, we have

N23 =
∞∑

k=1

k(λk + λ̄k) ≥
∞∑

k=1

λk +
∞∑

k=1

λ̄k ≥
∣∣∣ ∞∑
k=1

λk −
∞∑

k=1

λ̄k

∣∣∣ = |J | , (23.13)

where we used (23.8) and noted that for any two numbers b1 ≥ 0 and b2 ≥ 0, one has
b1 + b2 ≥ |b1 − b2|. The inequality we have obtained is

N23 ≥ |J | . (23.14)

Noting that the eigenvalues of N ′ are greater than or equal to zero, equation (23.9) gives
the inequality 1 + α′M2 ≥ N23, where M2 is the eigenvalue of M2. Finally, combining
this inequality with (23.14) we obtain

|J | ≤ 1 + α′M2 . (23.15)

This inequality holds for arbitrary states in (23.7). It is the quantum version of the classical
equation J = α′M2. For states that saturate the inequality we have J = α′M2 + 1, an
equation of the type (23.1). While α′ must be determined by fitting the data, β ′ is predicted.
The value β ′ = 1, from bosonic string theory, does not fit the rho-meson trajectory well.
While most Regge trajectories give rather similar values of α′, the values of β ′ vary more
widely.

Let us examine states that saturate the inequality (23.15). For a state of the form
(α−1)

N |p+, �pT 〉 we have λ1 = N , all other λs and λ̄s = 0, and N ′ = 0. So

J = N , 1 + α′M2 = N23 = 1 · λ1 = N = J , (23.16)

and the inequality is saturated. The state (α−1)
N |p+, �pT 〉 is said to belong to the Regge

trajectory with maximal angular momentum per unit mass-squared.

The quantum states |ψN 〉 ∼ (α−1)
N |p+, �pT 〉 resemble the classical rotating string: their

angular momentum and mass-squared eigenvalues are related roughly like in the classical
theory. In order to compute well defined expectation values the states must be normalized,
and this requires delta functions for the momenta, as indicated in (12.171). In order to
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keep the notation simple and avoid working with superpositions of states we just write
〈p+, �pT |p+, �pT 〉 = 1 instead of delta functions of zero argument.

Perhaps surprisingly, the expectation values 〈ψN |X I (τ, σ )|ψN 〉 do not behave at all like
the classical coordinates X I (τ, σ ) of a rotating string. We find

〈ψN |X I (τ, σ )|ψN 〉 = 〈x I
0 〉 + 2α′ pI τ , (23.17)

because the oscillators in the mode expansion of X I (τ, σ ) cannot contribute: adding a
single oscillator to a nonvanishing expectation value makes it vanish. According to the
expectation value (23.17) the string propagates as if it were a point. One can see evi-
dence that the string is extended by computing the expectation values of squares of the
coordinates (see Problem 23.1).

There are, however, coherent states for which the expectation values of the coordinates
follow the classically expected trajectory. Take, for example,

|�〉 = eA|p+, �0〉 , with A = v (ᾱ1 − α−1) , (23.18)

where v is a real constant. Since A† = −A, we have 〈�|�〉 = 1, up to the caveat discussed
above. Let us first confirm that the expectation values of J and M2 are the familiar ones.
The expectation value of J is readily computed:

〈J 〉 = 〈�|J |�〉 = 〈�|(α−1ᾱ1 − ᾱ−1α1)|�〉 , (23.19)

since all other terms in (23.6) commute with eA and annihilate the vacuum states to the
right. In fact, α1 also commutes with A and therefore the second term above does not
contribute either. We then have

〈J 〉 = 〈�|α−1ᾱ1 eA|p+, �0〉 = 〈�|α−1 [ᾱ1 , eA ]|p+, �0〉
= 〈�|α−1 [ᾱ1 ,A ]eA|p+, �0〉 = −v〈�|α−1 eA|p+, �0〉 . (23.20)

Given that 〈�| eAα−1|p+, �0〉 = 〈p+, �0|α−1|p+, �0〉 = 0 we have

〈J 〉 = −v〈�| [α−1 , eA] |p+, �0〉 = −v〈�|[α−1 ,A]eA|p+, �0〉 = v2 . (23.21)

Since the computation of N23 involves exactly the same term α−1ᾱ1 used for the
computation of 〈J 〉, we have, all in all:

〈J 〉 = 〈N23〉 = v2 , 〈α′M2〉 = v2 − 1 → 〈J 〉 = 〈(α′M2 + 1)〉 , (23.22)

as expected for a rotating string. Let us now consider the expectation values of the
coordinates. A short computation using the oscillator expansion (12.66) gives

〈(X2 + i X3)(τ, σ )〉 = 〈x2
0 + i x3

0 〉 + 2i
√

α′〈(α1e−iτ − α−1eiτ )〉 cos σ . (23.23)

Noting that 〈α1〉 = 0 and 〈α−1〉 = −v and assuming 〈x2
0 〉 = 〈x3

0 〉 = 0, we find

〈(X2 + i X3)(τ, σ )〉 = 2iv
√

α′eiτ cos σ . (23.24)
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Separating real and imaginary parts we indeed obtain the classical limit of a rotating string:

〈X2(τ, σ )〉 = −2v
√

α′ sin τ cos σ ,

〈X3(τ, σ )〉 = 2v
√

α′ cos τ cos σ . (23.25)

The parameter v can be related to familiar constants of the motion. The length � of the
above string is � = 4v

√
α′. Moreover, since spatial momenta are zero, M2 = 2p+ p− =

2(p+)2. From this and (23.22) we find

p+ = 1√
2α′

√
v2 − 1 . (23.26)

In the classical limit v is large and

p+ � v√
2α′

= �

4
√

2 α′
. (23.27)

This is the classical relation between p+ and the length of a rotating string. Indeed, using
(7.60), which states that the energy E of such string is π

2 T0�,

p+ = 1√
2

E = 1√
2

π

2
T0� = 1√

2

π

2

1

2πα′
� = �

4
√

2α′
. (23.28)

We have thus verified that the expectation values of the coordinates describe a rotat-
ing string of the correct size. The use of coherent states to describe quantum states
with semiclassical limits is familiar from the simple harmonic oscillator, as reviewed in
Problem 23.2.

23.3 The energy of a stretched effective string

The classical potential energy of a static stretched string is equal to the tension T0 times
its length �. If we imagine a quark and an antiquark fixed at the ends of the string, this
energy would represent the quark–antiquark potential V (�) evaluated at a separation �.
The classical limit suggests that for large r one has V (r) ∼ T0r .

How do we use quantum string theory to obtain information about V (r)? We look into
the calculation of the mass-squared of a string stretched between two parallel D-branes.
The D-branes are not good representations for the quarks, but they certainly hold the string
stretched, and we are after the energy of the string, which we assume defines the potential
V (r). For D-branes separated a distance L we obtained (14.51), that written in terms of the
string tension and an arbitrary spacetime dimension D reads:

M2 = (
T0L

)2 + 1

α′
(

N⊥ − 1

24
(D − 2)

)
. (23.29)

In order to represent a string without excitations we assume N⊥ = 0. Moreover, since the
string is static we can identify M2 with the potential energy squared. We thus write, using
r for the length of the string,
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(
V (r))2 = (T0 r)2 − 1

α′
(D − 2)

24
. (23.30)

At this stage we reach a significant complication. We would like to determine the quark–
antiquark potential in four spacetime dimensions. We are tempted to set D = 4 in the
above equation, but the quantum consistency of the Nambu–Goto action requires D = 26.
We cannot justify using this equation for other values of D.

There is evidence, however, that a variant of the Nambu–Goto action exists that can
be formulated with both Lorentz and translational symmetry in spacetimes of arbitrary
dimensionality D. The theory is complicated and the action contains an infinite number
of additional terms. The quantization of a stretched string in this theory gives a potential
that roughly agrees with (23.30): it reproduces the first few terms in the large r expansion
of V (r).

Thus reassured, we proceed to explore (23.30) for arbitrary D. It is customary to
introduce the Luscher coefficient

γD ≡ − π

24
(D − 2) , (23.31)

whose values in D = 4 and D = 3 are

γ4 = − π

12
= −0.262, γ3 = − π

24
= −0.1309 . (23.32)

We can then write (23.30) as

V (r) =
√

(T0r)2 + 2T0γD . (23.33)

Expanding the above right-hand side for large r ,

V (r) = T0 r + γD · 1

r
+O(1/r3) . (23.34)

The above gives the leading quantum correction to the classical potential V (r) = T0r for
large r . The tension T (r) on the string is the magnitude of the force associated with the
potential:

T (r) = ∂V

∂r
= T0 − γD · 1

r2
+O(1/r4) . (23.35)

The tension T (r) is equal to T0, up to a correction linear in 1/r2. Since γD < 0 for D > 2,
T (r) > T0 in three or four spacetime dimensions. The Luscher coefficient can be extracted
through derivatives of the force:

C(r) ≡ 1

2
r3 ∂T

∂r
= γD +O(1/r2) . (23.36)

Note that C(r) ∼ γD , with small corrections for large r . The quantity C(r) can be
determined numerically in the lattice approximation. The computations evaluate the quark–
antiquark potential in the prototypical SU (3) gauge theory. The results give strong
evidence that as r is increased C(r) approaches the predicted values (23.32) of γD both for
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D = 4 and for D = 3. This indicates that the string picture captures not only the leading
term T0r of the quark–antiquark potential but also the first nontrivial correction!

23.4 A large-N limit of a gauge theory

We now begin our study of the ideas relevant to the AdS/CFT correspondence. This cor-
respondence of gauge theory with gravity is clearest when the gauge theory has a large
number of degrees of freedom. We will thus examine an SU (N ) gauge theory with a large
value of N . This theory has a dimensionless coupling constant gYM which controls the
strength of the interactions between gauge bosons. More concretely, each time a gauge
boson turns into two gauge bosons, or two gauge bosons turn into one, the amplitude for
the process must include a factor of gYM. The key result we want to demonstrate is the
following: there is a controllable N →∞ limit in which the physically relevant coupling
is not gYM but rather the ’t Hooft coupling λ = g2

YM N that is kept finite.

To show this we consider a system of N coincident branes. The strength of the interactions
between the open strings is controlled by the open string coupling constant go: each time
an open string splits into two strings, or two strings join to form a single one, the amplitude
for the process must include a factor of go. In the low energy limit we find the SU (N )

gauge theory and a decoupled U (1) theory that we can ignore. Since the gauge bosons
are simply massless open strings, the coupling constant gYM of the resulting gauge the-
ory coincides with the open string coupling go. In the argument that follows we use open
strings to derive a result in the gauge theory. Accordingly, we will simply write gYM for
the open string coupling constant.

We examine the propagation of an open string whose ends lie on the i and j branes, with
i 	= j . To find the quantum-mechanical amplitude for propagation of this string from some
initial to some final conditions we must sum over all possible intermediate states that are
consistent with beginning and ending with the [i j] string. This sum, of course, is very
complicated to do explicitly, but we are only going to determine the gYM and N dependence
of the various contributions. The result will apply to the amplitude of propagation of a
gauge boson in the SU (N ) gauge theory.

The various contributions can be organized with diagrams where we show the evolution
of the string. The simplest diagram is one where the string does nothing – it just propagates
freely from the initial to the final condition. Figure 23.3(a) shows the strip produced by the
motion of the open string, with the edges labeled by the branes i and j . This diagram has
no interactions and no N -dependence. We associate to it an amplitude

A0 = c0 , (23.37)

where c0 is some constant independent of gYM and N .
The next diagram includes interactions. The simplest possibility is that the string splits

and rejoins, as shown in Figure 23.3(b). The two interactions, indicated by the heavy dots,
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�Fig. 23.3 (a) Strip created by the free evolution of an [ij] string. (b) Diagram produced when the
[ij] string splits and then rejoins at the kth brane.

j

j

j

(a) (b)

j j

i

i

i

i

i

j

�Fig. 23.4 Two diagrams, each with four interaction points, obtained by adding a strip to diagram
(b) in Figure. 23.3.

give a factor (gYM)2. The inner boundary of the diagram has a label k, indicating that the
string has split on the kth brane. Since that brane can be any of the N branes available and
we must sum over all possibilities, the diagram also has a factor of N . Including a constant
c1, we write

A1 = c1g2
YM N . (23.38)

A pattern emerges: each boundary that is a closed line contributes a factor of N , since it
represents an open string endpoint that can be at any of the N branes. Suppose we add
another strip to the diagram of Figure 23.3 (b). One simple way to do that will introduce
two new interaction points and create one new boundary, as shown by the two diagrams of
Figure 23.4. If this happens we get an extra factor of g2

YM N in the amplitude. We thus have

A2 = c2(g
2
YM N )2 . (23.39)

As long as we keep adding strips that create a new boundary we get amplitudes of the form

Ap = cp(g
2
YM N )p . (23.40)

The amplitude A obtained by adding all of the above contributions is

A =
∞∑

n=0

An =
∞∑

n=0

cn(g2
YM N )n . (23.41)

We see here the emergence of the ’t Hooft coupling constant λ defined by

λ ≡ g2
YM N . (23.42)
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�Fig. 23.5 A non-planar diagram obtained by adding a strip to any one of the two diagrams in
Figure 23.4. Note that there is just one internal boundary.

The ’t Hooft coupling controls the convergence of (23.41). We write

A =
∞∑

n=0

cnλn = f0(λ) . (23.43)

To find the complete amplitude we must add to A the contributions that arise when we
add strips that do not create a new boundary. The simplest example involves adding a strip
to any of the two diagrams of Figure 23.4 to obtain the diagram in Figure 23.5. We have
introduced two new interactions, as usual, but the number of boundaries has been reduced
by one. The two internal boundaries have become a single one, as you can check by moving
the tip of a pencil along the boundary. This graph is actually non-planar: it cannot be drawn
on the plane without making the strips cross. In fact a new strip will either increase the
number of boundaries by one or decrease the number of boundaries by one. Each time we
add a strip that decreases the number of boundaries we get an extra factor of g2

YM/N or,
equivalently, a factor of λ/N 2. Adding to A the contributions from diagrams that include
all possible numbers of boundary-decreasing strips we find the full amplitude A:

A = f0(λ)+ f2(λ) · 1

N 2
+ f4(λ) · 1

N 4
+ · · · . (23.44)

When N is large and λ is fixed, the above is an expansion of the amplitude in powers of
the small parameter 1/N 2. The coefficient of N−2k , with k = 0, 1, 2, . . ., is controlled by
the value of λ. If λ is small, each coefficient has an expansion in powers of λ. The limit
N →∞with λ = g2

YM N fixed requires gYM → 0 in a controlled fashion. In this limit only
the first term of the series contributes. The ’t Hooft coupling λ fully controls the theory in
the N →∞ limit.

23.5 Gravitational effects of massive sources

We examined a large-N gauge theory using open strings on N D-branes. We now ask:
when are the gravitational effects of these D-branes important? After all, D-branes have
energy (due to their tension) and must curve spacetime. More generally, we can ask: at
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what distance scales are the gravitational effects of massive objects important? After we
discuss this point, we focus on the case of branes wrapped around extra dimensions.

The relevant quantity to consider is the gravitational potential energy per unit mass, that
is, the gravitational potential V created by a mass M at a distance r from the mass:

V � −G(D)M

r D−3
. (23.45)

Here D is the number of spacetime dimensions. Since V is dimensionless in natural units,
the numerator defines a characteristic length scale R:

RD−3 ≡ G(D)M . (23.46)

The scale R coincides, up to factors of order one, with the Schwarzschild radius of a mass
M black hole in arbitrary dimension D. Indeed, our derivation of the radius of a four-
dimensional black hole in Section 22.6 follows a similar logic. With R so defined, the
potential (23.45) can be written as

V � −
( R

r

)D−3
. (23.47)

We see that gravitational effects are negligible for r � R. Gravitational effects of point
masses are important at scales of order R. If R, however, is much smaller than the size of
the mass M , gravitational effects may be completely negligible. A billion ton asteroid, for
example, has R ∼ 10−15m. There are no significant gravitational effects at this scale nor
at larger scales.

Consider now a number N of Dp branes wrapped around a p-dimensional compact
space of volume Vp. The tension Tp of a Dp-brane is given by (18.57):

Tp � 1

g

1

(
√

α′)p+1
. (23.48)

The mass of the branes is therefore

M = N Tp · Vp � N · Vp

g(
√

α′)p+1
. (23.49)

The dimensionally reduced spacetime is D − p dimensional. Moreover, in this spacetime
the branes appear as a point source of mass M . Using (23.46) the characteristic size R of
the system is

RD−p−3 = G(D−p)M = G(D)

Vp
M � G(D)N · 1

g(
√

α′)p+1
. (23.50)

Note the cancellation of the volume factor Vp. We recall that G(D) ∼ g2(
√

α′)D−2

(Section 13.4), so we get

RD−p−3 � gN (
√

α′)(D−p−3) . (23.51)

We write this result as
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(
R√
α′

)D−p−3

� gN . (23.52)

As gN → 0 we have R → 0 and the gravitational effects of the N D-branes go to zero.
In fact, as R becomes smaller than the string length

√
α′ there is no scale at which the

gravitational effects are relevant. As g → 0 the mass (23.49) of the D-branes diverges like
1/g, but the gravitational coupling G goes to zero like g2. The overall effect, proportional
to G M , vanishes. Note also the independence of the estimate (23.52) on the volume Vp of
the compact dimensions. This suggests that the characteristic scale R is relevant even for
configurations of infinite D-branes. In that case, however, one need not get a black hole,
but rather some other geometry where R plays a significant role.

23.6 Motivating the AdS/CFT correspondence

In this section we motivate the AdS/CFT correspondence, a surprising equivalence between
a supersymmetric SU (N ) gauge theory that arises at low energies on a set of N coincident
D3-branes and a type IIB superstring theory in a background spacetime closely related to
the gravitational background created by the D3-branes.

Although gauge theories naturally arise as low-energy limits of open string theory, the
correspondence involves a closed string theory. Moreover, the closed strings do not live on
Minkowski space, the space where the gauge theory lives. In fact, Minkowski space is, in
some sense, the boundary of the space where the closed strings live. The correspondence is
sometimes called a duality because the same physics is described by two different looking
systems (the closed strings and the gauge theory). Since the SU (N ) gauge theory has
maximal supersymmetry, its physics is different from that of QCD, a gauge theory with no
supersymmetry. We are still lacking a string theory description of QCD, but the discovery
of the AdS/CFT correspondence has given strong evidence that such a description exists.

It should be emphasized that the correspondence has not yet been proven. Rather, it was
originally motivated by some heuristic arguments and has since been tested extensively.
There are no grounds to suspect that it fails to hold. The heuristic arguments fall into two
groups. They are either based on ideas of symmetry or they are based on a low energy
limit.

Let us first briefly consider the symmetry argument. A conformal field theory in four-
dimensional Minkowski space has a set of conformal symmetries that are generated by
fifteen operators. Ten of these generators are the familiar Lorentz generators (six of them)
and the spacetime translation generators (four of them). The other five include four that
generate the so-called special conformal transformations and one that generates scale
transformations. The fifteen operators define the four-dimensional conformal Lie algebra,
which includes the Lorentz algebra (11.81) as a subalgebra. The conformal symmetries act
on the field theory as a set of field transformations. These symmetries must also appear
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on the string theory side of the correspondence. Indeed, the AdS5 spacetime, which is
part of the closed string background, has the property that the isometries of the space (the
smooth, one-to-one maps of the space into itself that leave all distances invariant) are gen-
erated by fifteen operators that satisfy the same algebra as those that generate the conformal
symmetry of the field theory. There is also a reason for the S5 space: the supersymmetric
Yang–Mills theory in question has a set of scalar fields and a set of fermions, the elements
of which are rotated among each other by a set of symmetries that match the isometries of
S5. All in all, the AdS5 × S5 spacetime carries as isometries the symmetries of the field
theory, which provides some evidence for the correctness of the correspondence.

The argument based on a low energy limit is more direct. We will consider a set of N D3-
branes, with N fixed and large, and we will dial up the string coupling constant g so that
gN varies from very small gN � 1 to very large gN � 1. We will examine low energy
limits in both extremes and extract some conclusions.

Let us start then with N coincident D3-branes at zero coupling g in flat ten-dimensional
spacetime. We have free open strings on the branes and free type IIB closed strings on the
spacetime. There are no interactions at all. Imagine now a minuscule increase of g to a
fixed value such that gN � 1. Following our discussion in Section 23.5 we conclude that
gravitational effects are negligible and we may continue to treat the D3-branes as if they
were in flat space.

In a low energy limit we consider energies that are smaller than the string energy
scale 1/�s :

E � 1√
α′

. (23.53)

Another way to think of the low energy limit is to imagine keeping all energies bounded
while α′ → 0:

E ≤ E0 , α′ → 0 . (23.54)

For bounded energies, (23.53) holds for sufficiently small α′. In this limit, the massive
states of the open strings on the D-branes are not accessible, so the physics on the branes is
governed by the massless U (N ) Yang–Mills fields. As α′ → 0, the closed string fields that
propagate over the whole of the spacetime become free fields because the ten-dimensional
Newton constant G(10) ∼ g2(α′)4 that governs their interactions (see (13.80)) goes to zero.
Finally, the interactions between the spacetime fields and the U (N ) fields on the branes also
go to zero because they too are controlled by G(10). The result is (1) a system of decoupled
closed strings on the ten-dimensional Minkowski spacetime and (2) a supersymmetric four-
dimensional U (N ) Yang–Mills theory. We learned in Section 15.5 that in a U (N ) Yang–
Mills theory one gauge field actually decouples. The remaining, fully interacting gauge
theory is SU (N ) Yang–Mills.

Consider now increasing the string coupling in the D3-brane system. As long as we
consider low energy excitations, the excitations on the branes and the ones on the space-
time will continue to decouple. When gN � 1 gravitational effects are important. The
branes carry energy and Ramond–Ramond charge. As a consequence, the N D3-branes are
described by a nontrivial solution of the field equations for the massless fields of type IIB
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flat space

P P

throat geometry

throat diameter

D3' s

�Fig. 23.6 Left: the circumference of the circle surrounding the origin goes to zero as we approach the
origin. Right: in the throat geometry, the origin has moved an infinite distance down the
throat, and the circumferences of the circles which surround the origin approach a constant
value. For the D3-brane solution, the surface represents the six-dimensional space
transverse to the branes, and the circles on the throat represent five-spheres which surround
the branes. The radial direction in the transverse space is represented by the line starting at
P and going into the throat.

string theory, much in the same way that a charged black hole is described. The solution
which describes the D3-branes includes a horizon which lies at the end of an infinite throat.

To visualize such solution, consider first the origin of a flat world with two spatial dimen-
sions (left side of Figure 23.6). The geometry of flat space is such that, at a distance r
away from the origin, the circumference of the circle surrounding the origin is 2πr . As
we approach the origin, the circumference goes to zero. This changes dramatically if the
geometry is that of a throat (right side of Figure 23.6). The origin is now an infinite distance
down the throat. Moreover, down the throat, the circumference of a circle surrounding the
origin approaches a constant called the circumference of the throat. Asymptotically, the
throat becomes an infinite cylinder. The circle at the infinite “end” of the throat is called
the horizon. The horizon is an infinite distance away from any point on the plane.

We can now return to our coincident D3-branes, which stretch along x1, x2, and x3

but appear as a point along the six spatial coordinates x4, . . ., x9 transverse to the brane.
We need not focus on the longitudinal directions of the branes. In the transverse six-
dimensional space the branes are surrounded by five-dimensional spheres. These are
analogous to the circles that surround the origin in the two-dimensional example. A throat
geometry with a horizon emerges in the transverse space. It takes an infinite distance to
get to the horizon. The five-spheres that surround the horizon approach a constant vol-
ume as we travel down the throat. The radius R associated with this volume is called
the radius of the horizon. It is worth noting that the geometry of the D3-brane solu-
tion is quite different from the geometry of the Schwarzschild black hole. In the latter,
there is no infinite throat, and the horizon is a finite distance away from any point in the
space.

The near-horizon geometry can be read directly from the metric which represents the
gravitational solution: it turns out to be AdS5 × S5. The D3-branes do not appear anymore
in this geometry! The five-sphere was anticipated by our discussion of the throat geom-
etry; its radius is the horizon radius R. The five-dimensional space AdS5 arises from the
four spacetime dimensions parallel to the branes plus the radial direction on the transverse
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space. The five remaining transverse directions make up the sphere S5. This rearrangement
of the ten spacetime directions at the near horizon region is summarized as follows.

AdS5︷ ︸︸ ︷
x0 x1 x2 x3 r

S5︷ ︸︸ ︷
y1 y2 y3 y4 y5

x0 x1 x2 x3︸ ︷︷ ︸
D3 tangential

x4 x5 x6 x7 x8 x9︸ ︷︷ ︸
D3 transverse

(23.55)

In here the six directions transverse to the brane became r – that went into the AdS space –
and the five ys that make up the five-sphere.

A red-shift phenomenon that is familiar for black holes also occurs with the horizon. Finite
energy excitations near the horizon are perceived as excitations of vanishingly small energy
by an observer far away at infinity (the excitations are red shifted). As a result, low energy
excitations for the observer at infinity can be of two types: finite energy excitations that
emanate from the horizon or low energy (long wavelength) excitations far from the branes.
There is evidence that these two types of excitations decouple. The ones that are far away
are almost never captured by the horizon, which looks very small compared to the wave-
length of the excitations. The excitations near the horizon cannot escape to infinity. As a
result, the configuration is well approximated by two decoupled systems: (1) a system of
low energy closed strings on flat space representing the far-away region and (2) a system
of type IIB superstrings on the near-horizon AdS5 × S5 geometry.

We have described N D3-branes in two regimes, a first one for gN � 1 and a second one
for gN � 1. The two regimes are connected by dialing up g, since we imagine N fixed
and large. In the low energy limit each regime gave rise to two decoupled systems. In
fact, in the low energy limit decoupling occurs for all values of gN and one of the decou-
pled systems is free closed strings. When gN � 1 the other decoupled system is SU (N )

Yang–Mills. Since this theory makes sense for all values of gN it is reasonable to expect
that SU (N ) Yang–Mills is the other decoupled system for all values of the coupling gN .
Alternatively, for gN � 1 the other decoupled system is IIB superstrings on AdS5 × S5.
Since this theory makes sense for all values of gN it is reasonable to expect that IIB
superstrings on AdS5 × S5 is the other decoupled system for all values of gN . See the
diagramatic representation of the situation in Figure 23.7.

Consider first the decoupled system of closed strings in flat spacetime. As gN goes from
very small to very big, the closed string system from the gN � 1 regime goes into the
closed string system of the gN � 1 regime. If gN goes from very large to very small, the
closed string system of the gN � 1 regime goes into the closed string system of the gN �
1 regime going through the same set of theories. In fact, in the low energy limit the closed
strings are non-interacting for all finite g, so physically all these theories are the same.

Having matched one of the decoupled systems, we now look at the second one. As
we mentioned before, we have two candidates for the second decoupled system: SU (N )

Yang–Mills and IIB superstrings on AdS5 × S5. The simplest possibility is that they are the
same! Explicitly, as gN goes from very small to very big, the SU (N ) Yang–Mills theory
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�Fig. 23.7 A diagramatic representation of the decoupling limits of a system of N D3-branes. To the left
we have the branes with gN 
 1, and its two decoupled systems above. To the right we
have the branes with gN � 1, and its two decoupled systems above. If the two lines
connecting the left and right top boxes represent equivalent systems, as indicated by the
vertical identifications, one has the AdS/CFT correspondence.

traces a line of theories that takes it to a complicated strong coupling regime that is, in fact,
equivalent to the type IIB near horizon system that arises from the D3-branes at gN � 1.
As gN goes from very large to very small, that near horizon system traces a line of theories
that takes it to a complicated gravitational regime that is, in fact, equivalent to the weakly
coupled SU (N ) Yang–Mills system that arises from the D3-branes at gN � 1. Moreover,
the two lines of theories just discussed are in fact equivalent, as indicated by the vertical
identifications in the figure. If this plausible scenario is realized, for any value of g and N
there are two equivalent descriptions of the same physics, one using a gauge theory and
another using the near horizon system, that is, closed superstrings on AdS5 × S5. This is
the AdS/CFT correspondence.

23.7 Parameters in the AdS/CFT correspondence

Let us discuss the parameters of the two theories in the AdS/CFT correspondence. In an
SU (N ) Yang–Mills theory there are two dimensionless parameters: the coupling constant
gYM and the constant N . In IIB superstring theory on AdS5 × S5 there are also two dimen-
sionless parameters: the string coupling g and the radius R/

√
α′ of the S5 expressed in

units of the string length. In summary:

Yang–Mills: gYM, N ,

IIB strings: g, R/
√

α′. (23.56)

Out of these four parameters, two of them are well defined in the original string theory
system of D3-branes: the number N of D3-branes and the string coupling g. We need two
relations to connect gYM and R to g and N .

One relation is suggested from the limit gN � 1. We have stated earlier ((13.84)) that
the open string coupling go is related to the closed string coupling g by g2

o ∼ g. Since open
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strings give rise to the Yang–Mills bosons of SU (N ), these bosons interact with gYM ∼ go.
It follows that g2

YM ∼ g2
o ∼ g. With a precise definition of the various couplings one has

g2
YM = 4π g . (23.57)

The second relation is suggested from the region gN � 1. How is R, the horizon size,
determined by the number of branes N and the string coupling? We studied a closely
related question in Section 23.5, reaching the conclusion that the characteristic gravita-
tional size of a system of D-branes is given by (23.52). In fact, this relation applies, and
with D − p − 3 = 10 − 3 − 3 = 4 we get R4/α′2 � g N . The precise relation is

R4

α′2
= 4π g N . (23.58)

The two equations above determine the relations between the gravitational and gauge
parameters needed for the equivalence:

g = 1

4π
g2

YM and
R4

α′2
= g2

YM N . (23.59)

In terms of the ’t Hooft coupling λ = g2
YM N , the equations above can be rewritten as

g = λ

4π N
and

R√
α′
= λ1/4 . (23.60)

The string coupling is smaller than the ’t Hooft coupling by a factor of N . Moreover, in
units of string length, the radius of the S5 only depends on ’t Hooft coupling.

The first relation in (23.59) shows that weak Yang–Mills coupling implies weak string
coupling. Since theories are generally simpler to deal with at weak coupling, it may seem
that the correspondence should be easy to test: both theories could be examined at weak
coupling and the results compared. This argument is wrong on two accounts. First, the
’t Hooft coupling is the relevant gauge coupling for N large, so we need small λ for simple
gauge theory computations. Second, the ability to calculate and to make quantitative state-
ments in the string theory side requires both weak coupling and large R/

√
α′. If the sphere

S5 is large, its curvature is small and the superstring theory can be accurately approximated
by a supergravity theory in which calculations are simpler. Since R/

√
α′ = λ1/4 we have

a clash: tractable IIB requires a large left-hand side while tractable gauge theory requires a
small right-hand side.

Quick calculation 23.2 Let λ′ = α′2/R4 denote the string expansion parameter that must
be small to have a tractable IIB theory. How are λ and λ′ related? Consider a series like
(23.44) in the Yang–Mills side of the correspondence for λ fixed and N large. What is the
expansion parameter in the IIB side of the correspondence?

It is useful to bring in the precise value of the gravitational constant G(10) ∼ g2α′4 in
the superstring side of the correspondence:

16πG(10) = (2π)7 g2α′4 . (23.61)

We can now obtain a couple of interesting results:
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Quick calculation 23.3 Use the matching relations to show that

G(10) = π4 R8

2N 2
. (23.62)

Since G(10) = �8
P, where �P is the ten-dimensional Planck length, R/�P ∼ N 1/4. In

Planckian units the radius of the sphere S5 does not depend on the ’t Hooft parameter.

Quick calculation 23.4 Show that the five-dimensional gravitational constant G(5)

obtained after compactification on the S5 of radius R is

G(5) = π R3

2N 2
. (23.63)

Despite the challenges, many nontrivial tests of the AdS/CFT correspondence have been
carried out. The set of fields living on the gravitational side, for example, has been matched
with the set of field operators that exist in the Yang–Mills theory. Supersymmetry is of help
because it results in the existence of λ-independent quantities, known as protected observ-
ables. These can be calculated at zero coupling on the gauge theory side and compared
with the gravitational predictions. Several such quantities have been compared success-
fully, and some new protected observables have been discovered. If we declare ourselves
convinced that the AdS/CFT correspondence is correct, then the difficulty in testing it
becomes a virtue: large-λ effects that are extremely difficult to compute in the gauge theory
are calculable in the ten-dimensional supergravity theory!

Much of the recent work on the AdS/CFT correspondence has dealt with situations
where the Yang–Mills theory has less, or no, supersymmetry. Such extensions are needed
to obtain a correspondence that could apply to QCD. In addition, much work has also been
devoted to develop other kinds of large-N limits, where the correspondence can be tested
directly at weak coupling.

23.8 Hyperbolic spaces and conformal boundary

In this section we begin our preparation for the study of the geometry of anti-de Sitter
spaces. We are already familiar with Minkowski space Mn+1, a flat space with one time
dimension and n space dimensions. Anti-de Sitter space AdSn+1 also has one time dimen-
sion and n space dimensions, but it is curved. In fact, it is a negatively curved spacetime.
De Sitter space dSn+1 has one time dimension and n space dimensions and is positively
curved. Curved spacetimes are challenging to visualize, so we begin by discussing curved
spaces that have no time direction. In such spaces the metric is positive definite and, con-
sequently, all vectors have positive length squared (they are spacelike). We will focus on
hyperbolic spaces, negatively curved spaces without a time direction. Hyperbolic spaces
will help us understand anti-de Sitter spacetimes.
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p

p

�Fig. 23.8 Left: a sphere, positively curved at p, with two lines that are shown to bend towards the
same side of the surface – the interior. Right: a manifold negatively curved at p, as implied
by the existence of two lines through p that bend to opposite sides of the surface.

The unit sphere S2 is the simplest example of a space of constant positive curvature. We
can visualize it inside R

3, with coordinates x1, x2, and x3, as the surface (x1)2 + (x2)2 +
(x3)2 = 1. This is an isometric embedding: the metric induced on the surface by the ambi-
ent metric (recall Section 6.2) is the familiar round metric on the sphere. It is generally
easy to tell by inspection if a two-dimensional surface embedded in R

3 is positively or
negatively curved at a point p. Consider a vector �n p normal to the surface at p and a plane
that contains �n p. The intersection of the plane with the surface defines a line through p. By
rotating the plane about the axis along �n p we get a family of lines that lie on the surface
and go through p in all possible directions. A surface has positive curvature at p if all
of the above lines bend towards the same side of the surface at p. A surface has negative
curvature if one can find two lines that bend towards opposite sides of the surface at p.
In Figure 23.8 we show a sphere and two lines through a point p. In fact, any line drawn
in the manner explained above is a circle centered at the center of the sphere, and they all
bend towards the interior of the sphere. We also show, to the right, a piece of a surface that
is negatively curved at p. The horizontal circle bends in while the vertical line bends out.

The classic example of a two-dimensional space with constant negative curvature is
hyperbolic space H2. It is actually a space with infinite volume and without a boundary.
The first complication with this space is that, as opposed to the sphere S2, it is not possible
to fully embed it isometrically in R

3. Certain portions of H2 can be embedded, and locally
they look like the surface shown on the right side of Figure 23.8. Just like R

2 and S2, the
space H2 is homogeneous: there are no special points, or equivalently, any point p can be
moved to any point q by an isometry. For R

2 the isometry is a translation and for S2 the
isometry is a rotation.

While H2 cannot be presented isometrically as a surface in R
3 it can be presented iso-

metrically as a surface in three-dimensional Minkowski space M3. This presentation is very
neat, but we lose perception of distances. Concretely, we have

ambient metric: ds2 = −(dz)2 + (dx1)2 + (dx2)2 ,

constraint: − z2 + (x1)2 + (x2)2 = −R2 . (23.64)

The first equation gives the metric of M3, showing that z is the time coordinate and that
x1 and x2 are the space coordinates. The second equation is the constraint that defines the
surface. Since we have one constraint on points in a three-dimensional space, the surface
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is two-dimensional. The constraint indicates that z2 ≥ R2, so the surface has two discon-
nected leafs: it exists for z ≥ R and for z ≤ −R. The space H2 includes only one leaf; we
can choose that to be the leaf z ≥ R.

Since we claim that the surface has no time direction, no tangent to the surface can be
timelike. This can be verified as follows. First note that the constraint equation implies
that the position vector vμ = (z, x1, x2) for a point on the surface is timelike. In fact,
vμvμ = v · v = −R2. A tangent is an infinitesimal vector δvμ such that vμ + δvμ still
belongs to the surface: (v + δv) · (v + δv) = −R2 +O(δv2). This means that v · δv = 0.
Since two timelike vectors cannot be orthogonal, the tangent vector δv must be spacelike.
This is what we wanted to show.

Quick calculation 23.5 Why is the dot product of two timelike vectors always different
from zero?

Quick calculation 23.6 Consider the point (z, x1, 0) on the hyperboloid. How are z and
x1 related? Exhibit two orthogonal (spacelike) tangents at the point. Note that this implies
that all tangent vectors are spacelike.

It is worth noting that for surfaces defined by vectors v with constant length, all tangents
δv at v satisfy v · δv = 0. This means that the vector v is orthogonal to the surface. More-
over, since v2 is nonvanishing, v cannot be a tangent at v. Since the normal to the surface
is timelike and the ambient space has no two orthogonal timelike directions, the surface
cannot have a timelike tangent vector.

Lorentz transformations preserve norm so acting on a vector that ends on the surface will
give another vector that ends on the surface. In fact, any two vectors v1 and v2 that end on
the surface can be mapped into each other by a Lorentz transformation: there are Lorentz
transformations L1 and L2 that take both v1 and v2 to the vector (R, �0), so L1v1 = L2v2

and v2 = (L2)
−1L1v1. Since Lorentz transformations preserve the ambient metric they act

on the surface as isometries. All in all, this means that the surface is a homogeneous space,
the surface has no special points.

Our next task is to determine the induced metric on the surface. Since this is not more
complicated with higher number of dimensions, let us consider the case of Hn , described
as a surface in Mn+1. Using an index i that runs from 1 to n, we write

ambient metric: ds2 = −(dz)2 + dxi dxi , i = 1, 2, . . ., n;
constraint: − z2 + xi xi = −R2 . (23.65)

As usual, repeated indices imply summation. Again, one selects the leaf z ≥ R. Points in
the ambient space are denoted by coordinates (z, x1, x2, . . ., xn) = (z, �x). It is amusing to
note that the mass-shell condition p2 = −(p0)2 + (p1)2 + (p2)2 + (p3)2 = −m2 defines
the hyperbolic space H3 embedded in four-dimensional momentum space.

A nice form of the metric on Hn arises by a stereographic projection that takes the whole
leaf z ≥ R to the interior of the ball Bn of radius R. The new coordinates are denoted by
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�Fig. 23.9 The projection of a point P on the hyperboloid to a point P′ on the screen z = 0. The ξ

coordinates of P are equal to the x coordinates of P′.

ξ i , with i = 1, . . ., n. We use the vector notation �ξ = (ξ1, ξ2, . . ., ξn), and r is defined to
be the radial coordinate in ξ variables:

r2 ≡ �ξ · �ξ = (ξ1)2 + (ξ2)2 + · · · + (ξn)2. (23.66)

For a given point P on the hyperboloid consider the line from P to the point Q = (−R, �0)

and the intersection P ′ of this line with the hyperplane z = 0, called the screen. We then
set ξ i (P) = xi (P ′), namely, the ξ coordinate of a point on the hyperboloid is declared
equal to the x coordinate of its image on the screen. The three-dimensional representation
in Figure 23.9 illustrates the construction for the case of H2. It follows from the projection
that �ξ is parallel to �x . Moreover, the ratio of their lengths is determined by the length r of
�ξ : all points in a circle of radius r on the screen come from points with the same value of
|�x |. We thus write

xi = ρ(r) ξ i → |�x | = ρ r , (23.67)

where ρ(r) is a function to be determined. Using the similar triangles QO P ′ and QM P
we have the relation

r

R
= ρ r

R + z
→ 1

R
= ρ

R +√
R2 + ρ2r2

, (23.68)

where we have used

z2 = R2 + �x · �x = R2 + ρ2r2 . (23.69)

Soving for ρ we find

ρ = 2R2

R2 − r2
= 2

1 − r2

R2

. (23.70)

Since ρ must be positive, the condition r2 < R2 guarantees that we get all possible values
of ρ and no negative ones. Back in (23.67) we have that xi and ξ i coordinates are related by

xi = 2R2

R2 − r2
ξ i . (23.71)
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To obtain the metric, we first calculate z as a function of r using (23.69) and (23.70).
We find

z = R
R2 + r2

R2 − r2
. (23.72)

Noting that dr2 = 2ξ i dξ i a short computation gives

dz = 4R3

(R2 − r2)2
ξ i dξ i . (23.73)

Taking differentials of (23.71) we obtain:

dxi = 2R2

R2 − r2
dξ i + 4R2

(R2 − r2)2
ξ iξ j dξ j . (23.74)

Squaring dxi and simplifying,

dxi dxi = 4R4

(R2 − r2)2
dξ i dξ i + 16R6

(R2 − r2)4
(ξ i dξ i )2 . (23.75)

Finally, we combine the results in (23.73) and (23.75) into ds2 = −dz2 + dxi dxi , and
immediately find

ds2 = 4 dξ i dξ i(
1 − r2

R2

)2
, (23.76)

where we recall that r = √
ξ iξ i < R. It is sometimes convenient to scale the disk to unit

radius. For this we simply let ξ i → Rξ i , which also gives r → R r . The metric then
becomes the standard

Hn metric : ds2 = 4R2 dξ i dξ i

(1 − r2)2
, i = 1, . . ., n, r =

√
ξ iξ i < 1 . (23.77)

In this presentation the ξ coordinates have no units, the length scale is provided by
the explicit factors of R, the radius of curvature of the space. Hyperbolic space has infinite
volume. In fact a line from r = 0 to r = 1 has infinite length. To check this consider a line
that goes from ξ1 = 0 to ξ1 = r̄ , with all other ξ i = 0. Then the length �(r̄) of this curve is

�(r̄) =
∫ r̄

0

2R dξ1

1 − (ξ1)2
= R ln

(1 + r̄

1 − r̄

)
. (23.78)

Indeed, as r̄ → 1 the length �(r̄) diverges.

It seems difficult to speak of the boundary r → 1 of Hn since it lies an infinite distance
away from any point. There is, however, the notion of a conformal boundary that can be
made precise and carries very interesting information. Given a metric ds2 we modify it by
multiplication by an extra factor �2 > 0 to obtain a new metric ds′2 = �2ds2. The factor
�2 is chosen so that in the new metric the distance from any point to all boundary points is
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finite. The conformal boundary is the boundary in the new metric ds′2. This boundary can
be examined clearly since it lies at a finite distance. The conformal boundary is only defined
up to additional multiplication by factors �′2 that keep all boundary points a finite distance
away. While statements about the precise length or volume of the conformal boundary are
meaningless, there is some invariant information. For some spaces the conformal boundary
is always a point. For some spaces the conformal boundary can have an extent. If we
are dealing with spacetimes with nontrivial conformal boundaries the character of tangent
vectors to the boundary (spacelike, timelike, or null) is invariant information since the sign
of the norm of a vector cannot be changed by multiplication by �2 > 0.

Let us consider, as a first example, two-dimensional flat space R
2 with coordi-

nates −∞ ≤ x, y ≤ ∞ and flat metric ds2 = (dx)2 + (dy)2 = (dr)2 + r2(dθ)2, where
r and θ are the standard polar coordinates. We produce a conformally related metric by
multiplication by the square of C(r, θ) > 0:

ds′2 = C2(r, θ)ds2 = C2(r, θ)
(
(dr)2 + r2(dθ)2) . (23.79)

If lines from the origin to infinity along constant θ have finite length on the new metric we
must have ∫ ∞

0
C(r, θ) dr < ∞ . (23.80)

Integrating over θ and exchanging the order of integration,∫ ∞

0

dr

r

∫ 2π

0
C(r, θ) rdθ < ∞ . (23.81)

Noting that the integral over θ gives precisely the length �(r) of the constant r circle, we
write ∫ ∞

0

dr

r
�(r) < ∞ . (23.82)

If �(r) has a nonzero limit as r →∞ the integral would diverge. So we have learned that
�(r) → 0 as r →∞ in any suitable conformal metric. The length of circles approaching
infinity goes to zero, and therefore the conformal boundary is just a point. The confor-
mally related space is a sphere with a missing point. In Section 22.6 we will examine
the construction of the “Riemann sphere” along related lines. One can also prove that the
conformal boundary of R

n with n > 2 is always a point.
We can now turn to hyperbolic space (23.77). It is clear that we can get something quite

simple by multiplication by the conformal factor (1 − r2)2/(4R2):

ds′2 = 1

4R2
(1 − r2)2 ds2 = dξ i dξ i . (23.83)

The conformally related space is just the interior ξ iξ i < 1 of the unit ball Bn with the flat
constant metric. The conformal boundary is the set ξ iξ i = 1, that is, the unit sphere Sn−1.
It is interesting that the conformal boundary of hyperbolic space is much more substantial
than that of flat space.
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23.9 Geometry of AdS and holography

In this section we examine in some detail the geometry of AdS spaces in order to appreciate
the holographic aspects of the AdS/CFT correspondence. In optics, a hologram is a two-
dimensional plate onto which an image of a three-dimensional object has been recorded. In
photography, one directly focuses the image of an object into the film. In holography, one
records an interference pattern between coherent light reflected from the object and coher-
ent light from a reference beam. This recorded interference pattern is still two-dimensional,
but it contains much more information than a photograph. It contains information about all
three dimensions of the object. The pattern allows you to view a three-dimensional image
that exhibits parallax: the image looks different depending on the direction of the observer.

In gravitational physics a system that extends over a macroscopic region of space is said
to be holographic if all of its physics can be represented by a theory that lives on the bound-
ary of this region. Moreover, one requires that the boundary theory should not contain more
than one degree of freedom (with a finite number of states) per Planck area. Holography
is motivated by the physics of black holes: the entropy of a black hole is not proportional
to the volume enclosed by its horizon but rather to the area of the horizon. Moreover, as
discussed previously (equation (22.124)), this entropy is reproduced by assuming that the
horizon carries a degree of freedom per horizon element of Planck area. The AdS/CFT
correspondence is a more concrete realization of holography. There is a precise sense in
which the four-dimensional space where the Yang–Mills theory lives can be viewed as a
boundary of AdS5. The SU (N ) theory, which captures all the physics of the interior of the
ten-dimensional spacetime, provides a holographic description of the gravitational world.
Moreover, one can roughly argue that the holographic bound on the degrees of freedom at
the boundary holds.

The space AdSn+1 is usually defined as a surface embedded in a flat space R
2,n with

two time coordinates u and v and n space coordinates xi :

ambient metric: ds2 = −(du)2 − (dv)2 + dxi dxi , i = 1, . . ., n;
constraint: − u2 − v2 + xi xi = −R2 .

(23.84)

On the space R
2,n there are generalized Lorentz transformations, linear transformations

that preserve the metric. The constraint states that a vector V = (u, v, �x) belongs to the
surface if V · V = −R2, where the dot product uses the ambient metric. The vector V is
timelike. The above equations are analogous to those that define hyperbolic space in (23.8),
except that now we have two time directions. Since V is defined by a length condition, it is
normal to the surface. Given that V is timelike and the ambient space has two orthogonal
timelike directions, the surface must contain one timelike direction. In fact, this direction
can be readily visualized. Fix a specific point (u0, v0, �x0) on the surface. Clearly,

u2
0 + v2

0 = R2 + �x0 · �x0 . (23.85)

Consider now the circle defined by all values of u and v that satisfy

u2 + v2 = R2 + �x0 · �x0 . (23.86)
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�Fig. 23.10 AdSn+1 space described as a two-dimensional surface in which each point represents half of
the S n−1(ρ) sphere. The horizontal axis has ρ increasing from zero to infinity both to the left
and to the right. The half spheres at points with equal values of u and v (shown in figure)
must be glued to form a single S n−1(ρ) sphere.

This circle lies on the surface and goes through the point (u0, v0, �x0). Moreover, the tangent
vectors to the circle are timelike everywhere since they are vectors with components only
along u and v.

Anti-de Sitter space is a homogeneous space: no point is special and any point can be
mapped into any other point by a transformation that is an isometry. Indeed, two vectors V1

and V2 that have the same norm V1 · V1 = V2 · V2 = −R2 can always be mapped into one
another by a generalized Lorentz transformation (you may enjoy proving this statement).
In order to convince yourself that the surface does not contain two independent timelike
directions anywhere it suffices to verify that two orthogonal timelike directions do not exist
at one point. This is readily done.

Quick calculation 23.7 Consider the point (R, 0, �0) on the surface. Show that the surface
does not contain two orthogonal timelike directions at this point.

We can visualize AdS space using a two-dimensional surface on which each point
represents a sphere. We write the constraint equation as

u2 + v2 = R2 + �x · �x (23.87)

and plot the space using axes for u, v, and ρ = √�x · �x . A point on the two-dimensional
surface shown in Figure 23.10 is determined by u and v, since then the value of ρ is fixed.
To see the whole AdS space we must include at each point on the surface the sphere Sn−1

defined by the points �x that satisfy: �x · �x = ρ2 = u2 + v2 − R2. As shown in the figure,
the surface extends both to the left and to the right, and in both regions ρ varies from 0 to
∞! Had we plotted the space as the region that only goes to the right, you may reach the
incorrect conclusion that the space has a boundary at ρ = 0, or equivalently on the circle
u2 + v2 = R2. This conclusion is suspect because on this circle the Sn−1 spheres have zero
radius. Since we represent the range of ρ twice, there are two points associated with each
value of the pair u, v. Consistency requires that on top of each of these two points we place
half of the Sn−1 sphere. We cut the sphere in two and place half of it on top of each point,
with the understanding that the halves are to be glued.



551 23.9 Geometry of AdS and holography
�

r

0

0

B
A

B

A

B
A

r

r

�Fig. 23.11 Top: a cigar as a collection of circles over the half-line r ≥ 0, with the radii of the circles
going to zero as r → 0. Bottom: the same space represented with an r that grows from zero
to infinity both to the right and to the left. Above each point there is now half a circle. The
two half circles at r are glued to form a full circle.

A lower-dimensional analog helps visualize the situation. Imagine a cigar represented
as a circle S1 over a semi-infinite line r ≥ 0, as shown in the top part of Figure 23.11. The
radius of the circle vanishes as r → 0, where the cigar ends. The cigar, however, has no
boundary at this point. A representation similar to the one we use for AdS, shown at the bot-
tom, represents r in both directions and places half of each circle S1 at symmetric points.

We identified a timelike direction on the AdS space, but in fact, we found something
strange: closed timelike curves. Indeed, the (u, v) circles in (23.86) have timelike tangents
everywhere and are closed. This is not the kind of space we want; in a universe with closed
timelike curves one could travel for a while and get back before one’s departure. What is
sometimes called the “complete” AdS space, but we will simply call AdS space, is a space
in which we unwrap the timelike circles in the space into open lines. The full AdS space
can be imagined as a space rolled over the surface in Figure 23.10 an infinite number of
times.

We now determine the metric on AdSn+1. We begin by making the time coordinate explicit
through the relations

u = z cos t , v = z sin t , (23.88)

where we trade u and v for the time t and an additional coordinate z. It follows from these
relations that

u2 + v2 = z2 , and (du)2 + (dv)2 = (dz)2 + z2(dt)2 . (23.89)

We can now use these equations in (23.84) to find that the ambient metric and the constraint
become

ambient metric: ds2 = −z2(dt)2 − (dz)2 + dxi dxi , i = 1, . . ., n ;
constraint: − z2 + xi xi = −R2 . (23.90)
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Apart from the extra −z2(dt)2 appearing in the metric, the above are exactly the equations
(23.8) for hyperbolic space. At any fixed time (dt = 0) the spatial geometry of the AdS
space is that of Hn . This is the way hyperbolic space appears in the anti-de Sitter geometry.

A little work remains now to find the full metric. As before we use ξ i coordinates and
write both xi and z in terms of them. The value of z was determined in (23.72) and the
portion −(dz)2 + dxi dxi of the metric was calculated in (23.76). We thus find that the
metric in (23.9) becomes

ds2 = − (R2 + r2)2

(R2 − r2)2
R2(dt)2 + 4R4 dξ i dξ i

(R2 − r2)2
. (23.91)

As a last step we let ξ i → Rξ i and obtain the metric on AdSn+1:

AdSn+1 metric : ds2 = R2

[
−
(1 + r2

1 − r2

)2
(dt)2 + 4 dξ i dξ i

(1 − r2)2

]
. (23.92)

Here, as before, r2 = ξ iξ i and i = 1, 2, . . ., n. We already know from our analysis of Hn

that at any fixed time, the distance from any point to the boundary r → 1 is infinite. What
is quite interesting is that it does not take infinite time for a light ray to reach the boundary.
Assuming the light-ray travels in the ξ1 direction, the condition ds2 = 0 gives

1 + r2

1 − r2
dt = 2dξ1

1 − r2
→ dξ1

1 + (ξ1)2
= 1

2
dt . (23.93)

Integrating with ξ1 = 0 for t = 0, we find ξ1 = tan(t/2), which shows that the boundary
point ξ1 = 1 is reached at t = π/2.

To understand the conformal properties of the space and its boundary we use the metric
(23.92) to define the conformally related

ds′2 = (1 − r2)2

4R2
ds2 = −

(1 + r2

2

)2
(dt)2 + dξ i dξ i . (23.94)

The metric ds′2 describes a spatial n-dimensional ball (the interior of ξ iξ i = 1) and a time
coordinate. Near r = 1 we have

ds′2 � −(dt)2 + dξ i dξ i , as r → 1 , (23.95)

and the conformal boundary takes the form R× Sn−1, the R factor for the time and the
Sn−1 factor for the boundary ξ iξ i = 1 of the hyperbolic spatial sections. For AdS3 the
boundary R× S1 is the surface of a cylinder, and the full spacetime is inside of it (see
Figure 23.12). It is a nontrivial fact that AdS spacetimes have a conformal boundary with
both time and space directions. The conformal boundary of Minkowski space, for example,
only contains null directions (see Problem 23.4).

For the AdS5 spacetime the boundary is R× S3. The gauge theory dual to the type
IIB superstring background lives on this boundary. The scale ambiguity of the conformal
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�Fig. 23.12 The conformal view of AdS3. The conformal boundary is the surface R× S1 of the cylinder,
where R is time and S1 is the conformal boundary of the spatial sections H2. The full AdS3
space is conformal to the interior of the cylinder.

boundary is consistent with the scale invariance of the field theory. The physics of the
gauge theory does not care about the radius of the three-sphere. If we take the radius to
infinity, the boundary is flat four-dimensional Minkowki spacetime.

We can obtain insight into AdS5 holography by focusing on its fixed-time spatial geometry,
which is that of H4. We calculate the volume and the boundary area of spherical subsets
S(r̄) of H4 that include all points with r ≤ r̄ . In the limit r̄ → 1 S(r̄) approaches the
full spatial section of AdS5. The area of the boundary of S(r̄) is the “area” A3(r̄) of the
three-sphere located at r = r̄ . The metric (23.92) tells us that physical length is obtained
by multiplying coordinate length by 2R/(1 − r2). It follows that

A3(r̄) =
[ 2R

1 − r̄2

]3
Vol(S3(r̄)) =

[ 2r̄ R

1 − r̄2

]3 · 2π2 . (23.96)

The volume V4(r̄) of S(r̄) is given by

V4(r̄) =
∫ r̄

0

[ 2R

1 − r2

]4
Vol(S3(r))dr = 2π2 (2R)4

∫ r̄

0

r3dr

(1 − r2)4
. (23.97)

The integral is readily evaluated and gives

V4(r̄) = 2π2 (2R)4 3r̄2 − 1

12(1 − r̄2)3
= R

6

3r̄2 − 1

r̄3

[ 2r̄ R

1 − r̄2

]3 · 2π2 . (23.98)

As expected, both the area A3(r̄) and the volume V4(r̄) diverge as r̄ → 1. Their ratio,
however, does not:

A3(r̄)

V4(r̄)
= 6

R

r̄3

3r̄2 − 1
→ lim

r̄→1

A3(r̄)

V4(r̄)
= 3

R
. (23.99)

As the subsets grow without bound to cover H4, the boundary area and the bulk volume
become proportional to one another! The constant of proportionality is the radius of cur-
vature R of the AdS space. In flat space, a four-dimensional region of characteristic size L
will have an area A3 ∼ L3 and a volume V4 ∼ L4. The ratio A3/V4 ∼ 1/L goes to zero as
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the size of the region grows without bound. This is why holography is hard to realize, the
boundary is too small to capture the physics of the bulk. Less so in AdS space, where the
area to volume ratio does not approach zero.

We can elaborate further if we introduce a regulator that makes both boundary areas
and number of degrees of freedom finite. Consider a small number δ � 1 and the sphere
r̄ = 1 − δ. It follows from (23.96) that the area Aδ

3 of this sphere is

Aδ
3 ≡ A3(1 − δ) � 2π2 R3

δ3
. (23.100)

Now let us consider the boundary theory at r̄ = 1. To estimate the number of degrees
of freedom Ndof on this theory we take δ to define a short distance cutoff. We imagine
having one degree of freedom per little cube of coordinate volume δ3. Since the boundary
has coordinate volume of order one, we have 1/δ3 degrees of freedom. The boundary
theory is made of SU (N ) fields, so we correct the estimate by multiplying by N 2; our final
result being N 2/δ3 degrees of freedom. We now verify that this number Ndof of degrees of
freedom matches the holographic expectation of a degree of freedom per piece of surface
of Planck size. We first note that

Ndof ∼ N 2

δ3
∼ N 2 Aδ

3

R3
. (23.101)

Recalling (23.63), which tells us that R3 ∼ G(5)N 2, we find

Ndof ∼ Aδ
3

G(5)
. (23.102)

This is the holographic expectation. If we take the total volume V of the space in the type
II theory to be given by V δ

4 = V4(1 − δ) times the volume V5 ∼ R5 of the S5, the number
of degrees of freedom per unit volume behaves as

Ndof

V
∼ Aδ

3

V δ
4

1

R5 G(5)
∼ 1

R

1

G(10)
. (23.103)

For large R the number of degrees of freedom per unit volume in the bulk is very small. If
we increase the number of branes, R increases and we can make the ratio Ndof/V arbitrar-
ily small. This bulk theory, with such small density of degrees of freedom, is string theory
with a fixed string length

√
α′.

23.10 AdS/CFT at finite temperature

The AdS5 space supports black holes in the same sense that Minkowski space supports
black holes: the geometry of the space is deformed by the presence of the hole but as
we move away from the hole the spacetime metric approaches the original metric. A
Schwarzschild black hole inside AdS5 is described by the metric

ds2 = −
(

1 + r2

R2
− r2

0

r2

)
(dt)2 +

(
1 + r2

R2
− r2

0

r2

)−1
(dr)2 + r2d�2

3 . (23.104)
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The above metric describes a space that is asymptotically AdS. That is, as r � r0

r � r0 : ds2 = −
(

1 + r2

R2

)
(dt)2 +

(
1 + r2

R2

)−1
(dr)2 + r2d�2

3 , (23.105)

which is the metric of an AdS5 space of radius R, written in a form different to the one
we considered before (see Problem 23.5). Thus, in (23.104), R denotes the radius of the
asymptotic AdS5. The length parameter r0 tells us that we have a black hole. One can
write r0 in terms of the mass M of the hole and the five-dimensional Newton’s constant:
r2

0 ∼ G(5)M . In fact, as R →∞ the metric (23.104) becomes that of a black hole in
five-dimensional Minkowski space with Schwarzschild radius r0. Finally, d�2

3 denotes the
metric on a three-sphere S3 of unit radius.

The Schwarzschild radius r+ of the AdS black hole is the value of r that makes the
coefficient of (dt)2 in the metric equal to zero:

1 + r2+
R2

− r2
0

r2+
= 0 . (23.106)

Solving for r2+ we find

r2+ = R2

2

(√
1 + 4r2

0

R2
− 1

)
. (23.107)

For a fixed AdS scale R, the Schwarzschild radius r+ is a function of r0 or, equivalently,
a function of the black hole mass. For r0 � R one can see that r+ ∼ r0 and for r0 � R
one finds r+ ∼ √

r0 R. In fact, r+ is always smaller than r0, as one can see by rewriting
(23.107) in the form

r2+
r2

0

= 2

1 +
√

1 + 4r2
0

R2

≤ 1 . (23.108)

The scale R of the asymptotic AdS space is not a limit for the size of the black hole. A
large black hole is one for which r+ � R. A small black hole is one for which r+ � R. A
plot of r+ as a function of r0 is shown in Figure 23.13.

R

r +

r02R√

�Fig. 23.13 The dependence of the Schwarzschild radius r+ of the AdS black hole on the mass of the
hole, encoded by r0.



556 Strong interactions and AdS/CFT
�

The black hole solution presented here has a Hawking temperature T̄H. A calculation of
this temperature gives:

T̄H = R2 + 2r2+
2πr+R2

. (23.109)

While a justification of this result requires tools beyond those assumed in this text, it is
worthwhile to know that this temperature emerges from a general formula as follows.

Quick calculation 23.8 Consider a metric ds2 = − f (r)(dt)2 + ( f (r))−1(dr)2 + · · ·
with f (r) a function of a radial coordinate that defines a horizon radius r+ via f (r+) = 0.
The Hawking temperature T̄H associated with this gravitational solution is given by
T̄H = f ′(r+)/(4π). Apply this result to (23.104) and derive (23.109).

The temperature (23.109) has interesting limits. For small black holes we find

T̄H � 1

2πr+
, for r+ � R . (23.110)

In Minkowski space the temperature of a black hole is inversely proportional to the
Schwarzschild radius (see (22.120)); small black holes are hot. We have recovered this
result in (23.110) because for small black holes the curvature of the AdS is a negligible
effect. More surprising is the behavior for large black holes. We then have:

T̄H � r+
π R2

, for r+ � R . (23.111)

This is unusual: once the black hole is large enough, its temperature grows with its size.
This is an important qualitative feature of black holes in AdS space. A sketch of the
temperature T̄H as a function of r+/R is shown in Figure 23.14.

Quick calculation 23.9 Show that for fixed radius of curvature R, all black holes have
temperature T̄H that satisfies

T̄H ≥ T0 =
√

2

π

1

R
, (23.112)

where the lower bound T0 is realized for r+/R = 1/
√

2. This information is displayed in
Figure 23.14.

It is reasonable to expect that the AdS/CFT correspondence extends to the case of a black
hole inside the now asymptotic AdS space. Indeed, there is an obvious candidate for the
dual gauge theory: SU (N ) Yang–Mills theory at finite temperature T̄H, the temperature of
the black hole. The metric (23.104) for fixed large r becomes

ds2 � r2

R2

[
−(dt)2 + R2d�2

3

]
. (23.113)

As in our discussion below (23.95) we see a boundary R× S3, where the sphere is of radius
R. While this radius is immaterial in the zero-temperature case, it is not immaterial now.
The radius R is the radius of the sphere where the field theory at temperature T̄H lives.
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�Fig. 23.14 The Hawking temperature T̄H of the AdS black hole (multiplied by the AdS radius R)
sketched as a function of the Schwarzschild radius r+ scaled down by R. For each value of
the Hawking temperature above T0 there are two black holes. The temperature T1 defines
the Hawking–Page transition.

One cannot rescale with impunity the time coordinate t in (23.113) because at non-zero
temperature the time coordinate carries information about temperature, which is an energy
scale. The conformal ambiguity of the above metric still remains: if we multiply the factor
in brackets by λ2 this has the effect of changing the radius to λR and, by scaling time
t → λt , changing the temperature to T̄H/λ. In the identification of the dual field theory the
product RT̄H of the radius and the temperature is the only invariant information.

As a test of the correspondence we calculate the entropy of the finite-temperature field
theory and compare it with the entropy of the (large) black hole, hoping for an equality.
Both of these numbers are finite (not infinite!). The field theory has a finite entropy density
and lives on a space of finite volume, and the black hole has a horizon of finite area. Let us
begin with the entropy SYM of the field theory. We first recall that the entropy density sγ

of a photon gas in ordinary three-space at temperature T is given by

sγ = 2

45
π2T 3 · 2 , (23.114)

where the last factor of two arises because the photon has two massless degrees of freedom.
In the SU (N ) field theory the total entropy is given by

SYM = 2

45
π2T̄ 3

H ·
(

8 + 8 · 7

8

)
N 2 · (2π2 R3) . (23.115)

The last factor is the volume of the three-sphere of radius R where the field theory lives.
In the limit of small ’t Hooft coupling the massless particles in the SU (N ) theory are very
weakly interacting and the total entropy is obtained by adding their separate contributions.
The spectrum of the theory includes eight bosonic degrees of freedom and eight fermionic
degrees of freedom, both repeated N 2 − 1 times, or just N 2 times, to the level of preci-
sion we need. Moreover, fermionic degrees of freedom contribute 7/8 of the entropy of
bosonic degrees of freedom. All these considerations explain the result given in (23.115).
Simplifying this expression, we get

SYM = 2

3
π2 N 2T̄ 3

H · (2π2 R3) , λ � 1 . (23.116)
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On the gravity side the entropy SBH of the black hole is given by the “area” of the horizon
divided by the five-dimensional Newton constant G(5):

SBH = Ahor

4G(5)
. (23.117)

The horizon is the locus of points with r = r+. The last term in the metric (23.104) shows
that the horizon is a three-sphere of radius r+, so Ahor = 2π2r3+. This, together with the
value of G(5) from (23.63) and the relation of r+ to T̄H in (23.111) gives

SBH = 2π2r3+
2π R3

N 2

= N 2 2π2 R3 r3+
2π R6

= 1

2
π2 N 2T̄ 3

H · (2π2 R3) , λ � 1 . (23.118)

The assumption of large λ is implicit whenever we use the black hole picture. The result
(23.118) is in qualitative agreement with the field theory estimate (23.116). The linear
growth of the temperature with the radius of the black hole was essential to the match.
Nevertheless, we got

SBH = 3

4
SYM , (23.119)

so the agreement is not exact. It did not have to be so: in the field theory we assumed
small ’t Hooft parameter λ, while in the gravity side we assumed large λ. It is hoped that an
exact calculation for arbitrary λ will show an entropy that decreases from the zero-coupling
value obtained easily in the field theory to the large-coupling value obtained easily from
the black hole.

There is an additional twist to the finite temperature correspondence. We have noted in
(23.112) that, in a given AdS space with fixed radius of curvature R, all black holes have
Hawking temperatures T̄H ≥ T0 (see Figure 23.14). Consider the SU (N ) gauge theory at
some strong coupling that is dual to AdS with radius of curvature R. For temperatures
smaller than T0 the field theory cannot have a black hole dual since there is no black hole.
The dual is then just thermal AdS, an AdS space filled with a gas of particles at the specified
temperature. The field theory at these low temperatures is in the analog of a confined phase:
the entropy of the theory is of O(N 0). For temperatures greater than T0 we have two black
holes: any horizontal line above T0 in Figure 23.14 cuts the curve at two values of r+/R,
one smaller than 1/

√
2 and one larger than 1/

√
2. Thermal AdS also remains a possible

gravitational background. It turns out that for temperatures T in the range

T0 ≤ T ≤ T1 , with T1 = 3

2π R
, (23.120)

thermal AdS remains the thermodynamically favored state – it has lower free energy than
either black hole background. The field theory remains confined for T ≤ T1. Note that T1

is only a bit larger than T0 (see Figure 23.14).

Quick calculation 23.10 What are the values of r+/R for the two black holes that exist
for temperature T1? Compare with Figure 23.14.
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As the temperature exceeds T1 the thermodynamically favored background ceases to be
thermal AdS and becomes the larger black hole – this is referred to as the Hawking–Page
transition. In fact, the smaller black hole is always least favored among the three options;
like black holes in Minkowski space it is unstable to evaporation. At the temperature T1

the large-N , strongly coupled gauge theory goes from confined to deconfined: the entropy
becomes of O(N 2), indicating liberation of elementary degrees of freedom. The dual of
the deconfined gauge theory is the (large) AdS black hole.

This finite temperature discussion, where the black hole spacetime is not exactly anti-de
Sitter, points to a more general statement of the AdS/CFT correspondence. The corre-
spondence can now be stated as the equivalence of four-dimensional, supersymmetric
SU (N ) gauge theory with type IIB superstrings in a space whose geometry is asymptoti-
cally AdS5 × S5. This statement clearly applies at zero and at finite temperatures. Further
examples of asymptotically AdS5 × S5 spaces that match with particular states of the field
theory have been found.

23.11 The quark–gluon plasma

Experiments at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Lab-
oratory have created, for very brief instants, a deconfined state of QCD. Physicists
accelerated and collided nuclei of gold against each other. In the center of mass frame
each nucleon packed an energy of about 100 GeV. With 197 nucleons, each gold nucleus at
collision carried an energy of about 20 TeV. The collision appears to create a quark–gluon
plasma (QGP), a strongly interacting system of deconfined quarks and gluons.

We pause to note the scales of energies and distances relevant to these collisions. Nuclei
are smaller by a factor of about 100 000 than atoms, which have sizes of about 10−10m.
The natural unit to describe a nucleus is therefore the femtometer (fm): 1 fm = 10−15m. An
approximate formula gives the radius r of a nucleus with A nucleons: r � r0 A1/3, where
r0 = 1.2 fm. It is convenient to measure time in femtometers too, using the speed of light
as a conversion unit. Thus, a time of 1fm is 1

3 × 10−23 s.

Quick calculation 23.11 Confirm that the estimate for the nuclear radius implies an energy
density of inside nuclei of about 0.13 GeV/fm3. Confirm that the radius of the gold nucleus
is about 7 fm.

Lattice calculations suggest that deconfinement in QCD occurs at a critical temperature
Tc � 175 MeV, with an uncertainty of about 10% due to systematic errors. This temper-
ature corresponds to about two trillion degrees Kelvin, the temperature of the universe
about 10−11 s after the Big Bang. At this temperature the energy density of the plasma is
0.7 GeV/fm3, about five to six times the nuclear energy density.

Since the colliding nuclei at RHIC have Lorentz factors γ ∼ 100, in the center of mass
frame they look like thin pancakes with thickness below 14 fm/100 = 0.14 fm. The QGP
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is created when the pancakes go through each other and is believed to attain thermal equi-
librium at times as early as 1 fm. The QGP lasts for no more than 15 fm, at which time the
quarks and gluons have recombined into hadrons that are later captured by the detectors.
By measuring the energies of these hadrons it is estimated that the energy density in the
QGP at time 1 fm is at least 5 GeV/fm3. For a head-on collision, at this time the plasma
extends over a cylinder of length 2 fm and radius equal to the gold nucleus radius.

Quick calculation 23.12 Calculate the energy in the QGP for a head-on collision and show
that it is about 4% of the energy available in the center-of-mass frame.

A temperature estimate is possible. Recalling that for a gas of massless particles the
energy density U ∼ T 4, we have

(TRHIC

Tc

)4 � 5 GeV/fm3

0.7 GeV/fm3
→ TRHIC � 1.6 Tc . (23.121)

This estimate suggests that at time equal to 1 fm the temperature is still comfortably above
the deconfinement temperature. At the Large Hadron Collider (LHC) in CERN one may
reach temperatures of about 5 Tc.

In general, collisions are non-central and the QGP is initially created in the approximate
shape of an ellipse defined by the overlap of two “pancakes” with offset centers. The direc-
tion of the impact parameter is along the short axis of the ellipse. Consider the particles
created by the collision with momenta orthogonal to the beam axis. One gets more parti-
cles along the direction of the short axis of the ellipse than along the direction of the long
axis of the ellipse. Numerical simulations indicate that this anisotropy is consistent with
the assumption that the QGP is a fluid with extraordinarily small viscosity. In a droplet of
fluid one has maximal pressure at the center and zero pressure at the edges. The pressure
gradient is larger along the shorter axis of the ellipse leading to a larger number of particles
emitted in this direction.

It is natural to wonder if the QGP can be studied using the finite temperature version
of the AdS/CFT correspondence. At first sight this seems unlikely since QCD, a non-
supersymmetric SU (3) gauge theory, is very different from supersymmetric SU (N ) gauge
theory. Nevertheless there are some facts that make the proposition less outrageous. First,
the QGP is strongly coupled: even with N = 3 one is likely to have a large ’t Hooft cou-
pling λ ∼ 20, as is needed for a calculable gravity side. Moreover, at finite temperature
supersymmetry is a broken symmetry and its effects are therefore somewhat hidden. It is
plausible that finite temperature QCD and finite temperature supersymmetric gauge theory
are not all that different.

It is striking that the general property of very small viscosity is a rather direct consequence
of the AdS/CFT correspondence. The viscosity η of a fluid tells how the force F transmitted
across fluid layers of area A depends on the velocity gradient |∇v|:

F

A
= η|∇v| . (23.122)
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The units of viscosity are [η] = M/(LT ). The entropy density s is another important prop-
erty of a fluid and has units [s] = [k]/L3, where k is the Boltzmann constant. It follows
that the η/s has units of h̄/k. The AdS/CFT correspondence suggests that

η

s
≥ h̄

4πk
� 0.08 · h̄

k
. (23.123)

Indeed, at strong coupling, the gravitational calculation of η/s gives the result that saturates
the above inequality. The viscosity η is related to the absorption cross section of the black
hole and the entropy density is the one following from (23.118). Analysis of the data at
RHIC is consistent with a value of η/s that is at most two or three times the bound. It
seems likely that the bound (23.123) applies to any known fluid or gas in nature. For
the case of a dilute gas the bound of η/s may be related to the Heisenberg uncertainty
principle (Problem 23.8).

Quick calculation 23.13 At 25 ◦C and a pressure of 1 atm, liquid water has a viscosity of
0.9 × 10−3 kg/(m · s) and a molar entropy of 70 J/K. Calculate the ratio η/s and confirm
that it exceeds the bound by a factor of nearly four hundred. (Useful constant: k = 1.38 ×
10−23 J/K.)

Another interesting discovery at RHIC is that very high energy quarks (jets) moving
through the QGP are stopped, or “quenched,” after traveling only a few femtometers. This
property of the QCD plasma is parameterized by a jet quenching parameter q̂ . The energy
loss �E of the jet is proportional to q̂ and, quite strikingly, to the square of the distance
L travelled in the plasma: �E ∼ q̂ L2. The above indicates that q̂ has units of energy
over length-squared. In natural units (h̄ = c = 1) this is equivalent to energy-squared over
length, and this is the way that q̂ is traditionally presented. The experimental value of q̂
is fairly uncertain since the QGP expands and cools and one only sees the effects of a
time-varying q̂ . At time 1 fm the value of q̂ appears to lie in the range 5 − 15 GeV2/fm.
The parameter q̂ of QCD can be given a natural gauge theory definition whose value in
strongly coupled, finite temperature, supersymmetric Yang–Mills can be calculated using
the dual black hole background. This result can be estimated at time 1 fm, using a ‘t Hooft
coupling λ ∼ 20, and the result is q̂ ∼ 4 GeV2/fm. Although the analytic result for super-
Yang–Mills gives a q̂ lower than the one for hot QCD, given the various theoretical and
experimental uncertainties this level of coincidence is encouraging. It seems likely that the
AdS/CFT will be a valuable tool to understand and perhaps predict properties of the QGP
to be measured at the higher energies of the LHC.

Problems

Problem 23.1 Length of a rotating string.

Consider the normalized string state that represents an open string rotating on the (x2, x3)

plane:

|ψN 〉 = 1√
N ! (α−1)

N |p+, �0〉 . (1)



562 Strong interactions and AdS/CFT
�

As discussed above (23.17), we write 〈p+, �0|p+, �0〉 = 1, instead of the correct but cum-
bersome delta function of zero argument. To estimate the length of the string state we will
evaluate the expectation value of a length-squared operator L2 defined by

L2(τ ) ≡ : (�X2(τ )�X2(τ )+�X3(τ )�X3(τ )) : . (2)

Here �X I (τ ) = X I (τ, π)− X I (τ, 0) is the difference of X I coordinates at the string end-
points and the colons denote normal ordering. Given a product of oscillators that includes
both creation and annihilation operators, normal ordering places all annihilators to the right
of the creators. Thus, for example, : αi

1α
j
−1: = α

j
−1α

i
1 and normal ordering does not affect

αi
−1α

j
−1 nor αi

1α
j
1 . Normal ordering is needed in (2) because otherwise L2 would have

infinite expectation value even on the ground states. It is useful to define string coordinates

X ≡ 1√
2
(X I + i X2) , X̄ ≡ 1√

2
(X I − i X2) .

Verify that L2(τ ) = : 2�X�X̄ : and use this expression to calculate the expectation value
〈L2〉 = 〈ψN |L2|ψN 〉. Show that for states with large N ,

√〈L2〉 gives the expected classical
value of the length of the string. To test further your result, verify that a rotating string of
M2 = 3/α′ has a length

√〈L2〉 equal to eight times the string length. [Hint: the expanded
out :2�X�X̄ : contains four kinds of terms, each with a different structure of α and ᾱ

oscillators. Only one contributes to the expectation value.]

Problem 23.2 Coherent states for quantum oscillator.

In order to understand better (23.18) we examine analogous coherent states

|z〉 ≡ eza†−z∗a |0〉 ,
of the simple harmonic oscillator. Here z∗ is the complex conjugate of the complex
number z. For the oscillator we use the Hamiltonian H = a†a with a = 1√

2
(x + i p).

(a) Explain why 〈z|z〉 = 1. Show that |z〉 = e− 1
2 |z|2eza† |0〉 .

(b) Show that the expectation values of x and p in the state |z〉 are encoded in the real and
imaginary parts of z via the relation 1√

2

(〈x〉 + i〈p〉) = z .

(c) Calculate the time-dependent physical state e−i Ht |z0〉, where z0 is an arbitrary com-
plex number. Find the corresponding time-dependent expectations values of x and p
in terms of the constants x0 and p0 defined by z0 ≡ 1√

2
(x0 + i p0).

(d) Confirm that the time-dependent expectation values of x and p satisfy the classical
equations of motion of the oscillator.

Problem 23.3 Isometric embedding of a portion of H2 in R
3 using the tractrix.

The metric (23.77) on H2 can be neatly written using a complex variable w = ξ1 + iξ2:

ds2 = R2 4 (dξ1dξ1 + dξ2dξ2)

(1 − (ξ1ξ1 + ξ2ξ2))2
= R2 4 dwdw̄

(1 − ww̄)2
. (1)

The complex variable w is constrained to lie within the unit disk: |w| < 1.
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y

dy

du

u

y 0

2π ρx

�Fig. 23.15 Problem 23.3. Left: a portion of H2 to be isometrically embedded in R
3. Right: The curve

u(ρ), rotated about the u axis, gives the embedded surface.

(a) It is more convenient to describe H2 using the upper-half plane (UHP), the part of
the complex plane above the real line. If we use a complex coordinate z = x + iy to
describe the complex plane, the conformal map

z = 1

i

w − 1

w + 1
, (2)

takes the region |w| < 1 to the region  (z) > 0 of the complex z-plane. To convince
yourself of this fact, show that the circle w = eiθ is mapped by (2) to the full real line
and give the resulting function x(θ). [Hint: the answer is a simple function of θ/2.]
Then verify that one point in the interior of the w-disk goes to a point above the real
axis on the z-plane.

(b) Prove that in z coordinates the metric (1) takes the form

ds2 = R2 dzdz̄

( (z))2
= R2 dx2 + dy2

y2
. (3)

It is possible to embed isometrically in R
3 a piece of the H2 surface. Consider Figure 23.15,

where we show a semi-infinite vertical strip of coordinate width �x = 2π� for some arbi-
trarily chosen positive number �. As we will see, the embedding of the strip works down
to y = y0, where y0 > 0 depends on �. It is convenient to turn the strip into a cylinder
by identifying the vertical edges. This identification is consistent with the metric, which
is manifestly invariant under horizontal translations x → x + c, y → y. The embedded
surface is the surface of revolution obtained by spinning the curve u(ρ), shown to the right
of the figure, about the u axis.

(c) Assume that the embedding is done with u increasing as y increases. It follows that
ρ decreases with increasing u (why?). Consider the little circular strip of coordinate
width dy shown to the left of the figure and the corresponding one of height du to the
right of the figure, after spinning the curve. By equating the length and areas of these
pieces of surface derive the following differential equation for u(ρ):

du

dρ
= −

√
R2 − ρ2

ρ
. (4)

Clearly, ρ ≤ R. Find the relation between y0 and �. The curve u(ρ) is a tractrix.
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(d) For any point P on the curve u(ρ) consider the point P ′ on the u axis such that the
segment P P ′ is tangent to the curve at P . Use the differential equation (4) (not its
solution!) to show that the distance between P and P ′ is always equal to R. This
property was used by Newton to define the tractrix. You can easily construct a tractrix
as follows. Attach to a small heavy object a piece of string of length R and place the
object on a table, a distance R away from a straight edge. If you drag the object by
sliding the end of the string along the edge of the table, the object will move along the
tractrix.

(e) Integrate (4) using u(R) = 0 and give the explicit form of u(ρ). If you get the correct
answer, ρ = 3

5 R should give u = R(− 4
5 + ln 3). Make a plot of u(ρ).

Problem 23.4 A conformal view of two-dimensional Minkowski space.

The metric of two-dimensional Minkowski space is −ds2 = −dt2 + dx2, where the coor-
dinates (x, t) take all possible real values: −∞ < t, x < ∞. Consider new coordinates
(x ′, t ′) defined by the two relations

tan(x ′ ± t ′) = x ± t .

(a) Show that in the new coordinates the metric takes the form

−ds2 = �2(t ′, x ′)(−dt ′2 + dx ′2) ,

and determine the function �2. Show that the full (x, t) plane is mapped to a finite
region of the (x ′, t ′) plane. Describe this region and sketch it.

(b) Consider light-rays that depart from x = 0 at times t = −1, 0, and 1, and move
towards x positive. Sketch the three light-rays in the (x ′, t ′) plane.

(c) Consider the timelike line x = αt with α a positive constant that satisfies α < 1 and
t ∈ [0,∞). Show that in the (x ′, t ′) plane the corresponding trajectory starts at the ori-
gin and eventually approaches the point (x ′, t ′) = (0, π/2). Moreover, near that point,
the trajectory follows the equation t ′ = π

2 − x ′
α

. Discuss the corresponding results for
spacelike lines x = αt with α > 1 and t ∈ [0,∞). You may find the following large u
expansions useful:

tan−1 u � ±π

2
− 1

u
, u →±∞ .

Problem 23.5 Another view of the full AdSn+1 space.

(a) Consider the ambient metric and constraint (23.9) and now set z = R cosh ρ, where
ρ ∈ [0,∞) is a new coordinate. Moreover, solve the constraint by letting

xi = R �i sinh ρ with �i�i = 1 . (1)

The constrained variables �i are coordinates on the unit sphere Sn−1. Note that
�i�i = 1 requires the differentials to satisfy �i d�i = 0. Show that the metric
becomes

ds2 = R2[−(cosh ρ)2 (dt)2 + (dρ)2 + (sinh ρ)2d�2
n−1

]
, (2)
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where d�2
n−1 ≡ d�i d�i , given the constraint �i�i = 1, is the metric on the unit

sphere Sn−1. Equation (2) is a useful form of the AdSn+1 metric.
(b) Consider the n-dimensional spatial region ρ ≤ ρ̄. Write an integral that gives its

volume V (ρ̄) and an expression for the area A(ρ̄) of its boundary. Show that

lim
ρ→∞

A(ρ̄)

V (ρ̄)
= cn

R
, (3)

where the constant cn that you will determine is consistent with (23.99). [Hint: the
leading divergent term in the integral is easy to compute, the rest does not contribute
in the limit.]

(c) In (2) introduce a new radial variable r ∈ [0,∞) by the relation r = R sinh ρ. Also let
t → t/R. Show that the metric becomes

ds2 = −
(

1 + r2

R2

)
(dt)2 +

(
1 + r2

R2

)−1
(dr)2 + r2d�2

n−1 . (4)

This is another useful form of the AdSn+1 metric. The simple modification indicated
in (23.104) gives the metric of the Schwarzschild black hole with asymptotically AdS
geometry.

Problem 23.6 A partial but simple view of AdSn+1 space.

Consider the ambient metric and constraint (23.84) written as

ambient metric: ds2 = −(du)2 +
n−1∑
i=1

dxi dxi + (dxn)2 − (dv)2 ,

constraint: − u2 +
n−1∑
i=1

xi xi + (xn)2 − v2 = −R2 .

(a) We now introduce coordinates z, t, and �y = (y1, . . ., yn−1) by the relations:

v + xn = R

z
, u = R

z
t , xi = R

z
yi , i = 1, . . ., n − 1 . (1)

Here t ∈ R, �y ∈ R
n−1, and z ∈ R

+. Since z is positive, so is xn + v and this presenta-
tion will not display the part of AdS space where xn + v is negative. Use the constraint
to determine the value of v − xn in terms of the new coordinates.

(b) Show that the metric on the AdSn+1 space takes the remarkably simple form

ds2 = R2

z2

(
dz2 − (dt)2 + (d �y)2

)
. (2)

[Hint: for the evaluation use (dxn)2 − (dv)2 = d(xn + v)d(xn − v).] The boundary
of the space is at z = 0, where the metric is conformal to −(dt)2 + (d �y)2, the n-
dimensional Minkowski metric. A related form is obtained letting z = R2/r :

ds2 = R2 dr2

r2
+ r2

R2

[− (dt)2 + (d �y)2 ] . (3)
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Problem 23.7 De Sitter spacetime.

The n-dimensional de Sitter spacetime dSn has positive curvature. Its definition is a vari-
ant of that for hyperbolic spaces: one can obtain de Sitter spacetime as a surface in a
Minkowski space of one higher dimension. This time, however, the normal to the surface
is spacelike so that the surface contains a time direction. Moreover, just like hyperbolic
spaces can describe spatial sections of AdS, spheres can be used to describe the spatial
sections of dS.

With i = 1, 2, . . ., n, the dSn spacetime and its metric are defined by

ambient metric: ds2 = −(dz)2 + dxi dxi ,

constraint: − z2 + xi xi = R2 .
(1)

(a) Explain in detail why the surface contains a timelike direction. Exhibit the timelike
tangent at points on the surface with z 	= 0 and at points with z = 0.

(b) To solve the constraint we set

z = R sinh t , xi = R �i cosh t , with �i�i = 1 . (2)

See Problem 23.5 for comments on the constrained variables �i . Show that the metric
on the dSn space takes the form

ds2 = R2[− (dt)2 + (cosh t)2d�2
n−1

]
, (3)

where d�2
n−1 ≡ d�i d�i is the metric on the unit sphere Sn−1. At any fixed time the

spatial section is a sphere of radius R cosh t . As time increases, the spatial section
contracts while t < 0 and expands while t > 0.

(c) We noted in Section 23.8 that the mass-shell for a massive particle is hyperbolic space.
What is the mass-shell for a tachyon?

Problem 23.8 Viscosity and entropy of a dilute gas.

Consider a container of volume V with N molecules of a gas. The gas molecules have mass
m, an average velocity v̄, and their mean free path is �. Assuming that the gas is dilute, the
viscosity of the gas is given roughly by

η = 1

3

N

V
v̄m� . (1)

For a monoatomic ideal gas the entropy density s given by

s

k
= 1

k

S

V
= N

V

[
ln
(V/N

λ3
th

)
+ 5

2

]
, λth = h√

2πmkT
. (2)

Here λth is the thermal de Broglie wavelength. You can find the derivation of the above
results for η and s in many textbooks on thermal physics.

(a) Use (2) to calculate the value of s/k per unit cm3 for monoatomic hydrogen at T =
25 ◦C and 1 atm. Compare with the molar entropy of 114.7 J/K quoted by chemical
tables.
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(b) Consult a textbook to find the Bose–Einstein condensation temperature TB. Show that
at this temperature the factor in brackets in (2) takes the approximate value 1.5397.
So, as long as we have a gas, s/k > (1.5397) N

V . Show that for temperatures below
one-thousand times TB, we have s/k < 11.901 N

V .
(c) Estimate the mean free path � in terms of N , V , and the molecular diameter d. Recall-

ing that v̄ ∼ √
kT/m conclude that η ∼ T 1/2 and is independent of the pressure or

the density. For a gas the viscosity increases with the temperature. For a liquid the
viscosity decreases with temperature.

(d) In a gas (v̄)2 � 〈v2〉. Use this to show that η = 2
3

N
V uτ , where u is the average energy

of a molecule and τ is the mean free time. Conclude that in the range of temperatures
considered in (b) one has

η

s
≥ η

smax
� 0.056

1

k
u τ . (3)

The energy/time form of the uncertainty principle suggests that uτ ≥ h̄, leading to η/s
bounded below by some fraction of h̄/k (compare with (23.123)). The estimate (3) is
rough; it does not incorporate the growth of η over the temperature range.



24 Covariant string quantization

In the Lorentz covariant quantization of string theory we treat all string coor-
dinates Xμ(τ, σ ) on the same footing. To select physical states we use the
constraints generated by a subset of the Virasoro operators. The states automati-
cally carry time labels, so the Hamiltonian does not generate time evolution. We
describe the Polyakov string action and show that it is classically equivalent to
the Nambu–Goto action.

24.1 Introduction

In this book, the quantization of strings was carried out using light-cone coordinates and
the light-cone gauge. String theory is a Lorentz invariant theory, but Lorentz symmetry is
not manifest in the light-cone quantum theory. Indeed, the choice of a particular coordinate
X+ for special treatment hides from plain view the Lorentz symmetry of the theory. While
hidden, the Lorentz symmetry is still a symmetry of the quantum theory, as we demon-
strated by the construction of the Lorentz generator M−I . This generator has the expected
properties when the spacetime has the critical dimension.

Since Lorentz symmetry is of central importance, it is natural to ask if we can quantize
strings preserving manifest Lorentz invariance. It is indeed possible to do so. The Lorentz
covariant quantization has some advantages over the light-cone quantization. Our light-
cone quantization of open strings did not apply to D0-branes because the light-cone gauge
requires that at least one spatial open string coordinate has Neumann boundary conditions.
Covariant quantization applies to D0-branes. The equations of motion for the fields that
arise in string theory are better understood in Lorentz covariant notation. The calculation
of tachyon potentials, alluded to in Section 12.8, appears to be possible only within the
Lorentz covariant quantization of strings.

Why then, have we waited so long to discuss the Lorentz covariant quantization of
strings? The covariant approach is very elegant but it is sometimes hard to extract the
physical content from its equations. Moreover, covariant quantization has a series of fea-
tures that are quite strange. We are accustomed to the idea that in quantum mechanics the
position of a particle becomes an operator while time remains a parameter. In a Lorentz
invariant quantization, all the coordinates xμ of a particle, including x0, become operators.
Similar remarks apply to the string coordinates Xμ. We will also see that the string Hamil-
tonian annihilates the physical states of the theory. Finally, in covariant quantization it is
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necessary to discuss states whose norm is not positive; this takes us out of the usual Hilbert
space postulates.

We chose to do the quantization of strings in the light-cone gauge because all of the
above features would have distracted us from the task of extracting the physical content of
the theory. The light-cone gauge has served us well, and it will continue to do so in the fol-
lowing chapters, where we use light-cone string diagrams to begin our discussion of string
interactions. The proper treatment of covariant quantization requires tools that go beyond
the level of this book. We will not be able to derive the critical dimension, for example.
While our treatment will not be complete, we will still gain some important insights into
the structure of the theory.

Let us begin our discussion by recalling some facts about parameterizations of the world-
sheet. In Chapter 9 we described a large class of gauges characterized by a vector nμ.
By choosing nμ appropriately we could produce the static or light-cone gauge. For open
strings the choice of nμ completely fixes the parameterization of the world-sheet. This is
almost true for closed strings as well, except that we are still free to shift the coordinate σ

rigidly along the strings. We showed that for any choice of nμ the string coordinates satisfy
the constraints

(Ẋ ± X ′)2 = 0 . (24.1)

Since any choice of nμ results in these constraints, the constraints by themselves do not
completely fix the parameterization of the world-sheet. In fact, as you may have seen in
Problem 12.10, many reparameterizations preserve these constraints.

We were able to show that the constraints (24.1) cause the equations of motion to become
simple wave equations:

Ẍμ − Xμ′′ = 0 . (24.2)

Furthermore, they imply that the momentum densities are given by

Pσμ = − 1

2πα′
X ′μ , Pτμ = 1

2πα′
Ẋμ . (24.3)

In the covariant formalism we use the constraints (24.1), and thus also (24.2) and (24.3),
but we do not fix completely the parameterization of the world-sheet. The constraints (24.1)
can be thought of as conditions for a partial gauge fixing. At the classical level, we solve
the wave equations and check that the constraints are satisfied. At the quantum level, the
constraints introduce subtle complications.

As you probably recall, we had to do plenty of work to get wave equations and sim-
ple momentum densities from the Nambu–Goto action. Is there an action for which these
results follow quickly? The answer is yes. In fact, for transverse light-cone coordinates,
such an action was given in (12.81). We used this action to give a more physical derivation
of the oscillator commutation relations. In the present case, the desired action is

S =
∫

dτdσL = 1

4πα′

∫
dτdσ

(
∂τ Xμ∂τ Xμ − ∂σ Xμ∂σ Xμ

)
. (24.4)

Note that this action, as opposed to the Nambu–Goto action, contains no square root. It
is quadratic in the dynamical variables Xμ. This action is useful because variation of Xμ
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immediately produces the wave equations (24.2). Moreover, the simple expressions for the
canonical momentum densities arise directly. For example,

Pτ
μ =

∂L
∂ Ẋμ

= 1

2πα′
Ẋμ . (24.5)

Even the classical Hamiltonian is easy to calculate. In terms of coordinates and momenta,
and dropping the τ superscript from Pτ

μ, we find

H =
∫

dσ(Pμ Ẋμ − L )

=
∫

dσ

(
Pμ Ẋμ − 1

4πα′
(
(2πα′P)2 − X ′2))

= πα′
∫

dσ

(
P · P + X ′ · X ′

(2πα′)2

)
. (24.6)

This Hamiltonian is analogous to the light-cone Hamiltonian (12.15), but here the index
contractions run over all spacetime dimensions. In the light-cone quantization we defined
Heisenberg operators X I (τ, σ ) and PI (τ, σ ) which had canonical commutation relations.
Using these we verified that the Hamiltonian generates the correct operator equations of
motion. In the covariant theory it is natural to introduce Heisenberg operators

Xμ(τ, σ ) and Pμ(τ, σ ) (24.7)

and to postulate the commutation relations[
Xμ(τ, σ ) , Pν(τ, σ ′)

] = i ημνδ(σ − σ ′) . (24.8)

Note that even X0 is a quantum operator. As usual, we set to zero the commutator of coor-
dinates with coordinates and the commutator of momenta with momenta. Computations
similar to those we performed using the light-cone gauge show that the quantum equations
of motion take the form (24.2). This is strong evidence that H is the correct Hamiltonian.

24.2 Open string Virasoro operators

In light-cone quantization the constraints were used to solve for X− in terms of the trans-
verse coordinates X I . The modes of the X− coordinate were identified as transverse
Virasoro operators. In the covariant approach the quantum constraints are not solved;
rather, they are imposed on the states of the theory. We now examine the quantum con-
straints for the open string.

The quantization of the generic open string coordinate Xμ is similar to the quantization of
the transverse light-cone coordinate X I . Recall the oscillator expansion (9.56):

Xμ(τ, σ ) = xμ
0 +√

2α′ αμ
0 τ + i

√
2α′

∑
n 	=0

1

n
αμ

n e−inτ cos nσ . (24.9)
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This expansion led to particularly simple expressions for the linear combinations of
derivatives in (9.59):

Ẋμ ± Xμ′ = √
2α′

∑
n∈Z

αμ
n e−in(τ±σ) . (24.10)

This time there are no gauge conditions that we can use to simplify particular coordinates.
The above expansions are to be used for all the string coordinates. The commutation rela-
tions (24.8), the expansions (24.10), and equation (24.5) together determine the oscillator
commutation relations. Since the computations are analogous to the ones we performed
in the light-cone gauge, the earlier results (12.45) and (12.64) are modified only by the
replacement of ηI J with ημν :

[αμ
m , αν

n ] = m ημνδm+n,0 , [ aμ
m , aν†

n ] = δm,n ημν. (24.11)

This time α
μ
0 = √

2α′ pμ, and the zero mode operators satisfy

[ xμ , pν ] = iημν . (24.12)

This equation should give us pause. We are familiar with the quantum mechanical proce-
dure by which the spatial coordinates and the spatial momenta of a particle are turned into
operators. In that scheme the spatial dependence of states is built-in, and the time depen-
dence is determined by the Schrödinger equation. In covariant quantization even the time
coordinate x0 is made into an operator. So the states have a built-in time dependence. This
means that the role of the Schrödinger equation must change. We will discuss this matter
in detail in Section 24.4.

We can now explore the constraints (24.1) explicitly. Again, the computations are
analogous to those of Chapter 9. By comparing with (9.79) we find

(Ẋ ± X ′)2 = 4α′
∑
n∈Z

Ln e−in(τ±σ) , Ln = 1

2

∑
p∈Z

α
μ
n−p αp,μ . (24.13)

The covariant Virasoro operators Ln differ from the transverse Virasoro operators L⊥n
because they include contributions from all the string coordinates. As before, the only
Virasoro operator which has an ambiguous ordering is L0. Again, we define L0 to be the
normal-ordered operator without any additional constant.

At the classical level, the constraint equations (Ẋ ± X ′)2 = 0 require

classically: Ln = 0 , n ∈ Z . (24.14)

Classically, we have L∗n = L−n , so that the constraints in (24.14) need only be checked for
n ≥ 0. At the quantum level we have L†

n = L−n . The analogous property for the transverse
Virasoro operators was proven below (12.112).

Quick calculation 24.1 Verify that, classically, L∗n = L−n .
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The quantum Virasoro operators have rather nontrivial commutation relations. We calcu-
lated these commutators for the transverse Virasoro operators, and the result was given
in (12.133). The central term was proportional to D − 2, the number of transverse coor-
dinates of string theory. Each transverse coordinate contributed the same amount to the
central term. In the covariant treatment, where the Virasoro operators involve a sum over
the full set of spacetime coordinates, that result becomes

[Lm, Ln] = (m − n)Lm+n + D

12
(m3 − m)δm+n,0 , (24.15)

where D = 26 is the full dimensionality of spacetime (we will not derive the critical dimen-
sion here). You may be wondering why the time coordinate, whose oscillators commute to
give a minus sign (see (24.11)), contributes to the central term in the same way as the space
coordinates. It does so because the central term arises from a commutator which involves
four oscillators, so the basic commutator is used twice and the sign cancels out.

In (12.139) we established that the action of the transverse Virasoro operators on the
string coordinates X I describes the effects of a certain class of world-sheet reparameteri-
zations. Exactly the same results hold for the action of the covariant Virasoro operators on
the string coordinates Xμ. The reparameterizations have a special property: they preserve
the constraints (Ẋ ± X ′)2 = 0, as shown in Problem 12.10. This result gives a physical
interpretation to the covariant Virasoro operators. These operators generate world-sheet
reparameterizations that preserve the gauge conditions of the Lorentz-covariant formalism.

24.3 Selecting the quantum constraints

The intuition inspired by the classical theory suggests that the physical states of the
quantum theory – the quantum analog of consistent classical string motions – should be
annihilated by all the Virasoro operators. But we will see that no states would survive the
imposition of all these Virasoro constraints.

It is absolutely clear, however, that some constraints must be imposed. In covariant quan-
tization we have 26 sets of oscillators available, so if we did not impose any constraint the
set of quantum states would be different from the set of quantum states we obtained earlier,
when we had only 24 sets of oscillators. Different quantization procedures should not give
different physical results. It is therefore reasonable to expect that at least some Virasoro
operators must annihilate the physical states.

Let us start by exploring the constraint that the Virasoro operator L0 would impose on
states. We have defined the quantum L0 as normal-ordered with no additional constant,
but there is no reason why this L0 should annihilate physical states. Rather, we expect
that (L0 + a), where a is some constant, should annihilate physical states. We investigated
a similar issue in the light-cone gauge. The light-cone energy p− turned out to be pro-
portional to L⊥0 − 1 rather than proportional to L⊥0 (see (12.157)). The same constant is
needed in the covariant formalism, so the quantum constraint is

(L0 − 1)|�〉 = 0 , (24.16)
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for any physical state |�〉. While we will not derive the ordering constant from first prin-
ciples, we will see below that it is necessary for the covariant spectrum to agree with the
one we obtained using the light-cone gauge. In the light-cone quantization, the relation
between p− and L⊥0 fixed the mass-squared of the states. The mass-squared is determined
in the covariant treatment by the constraint (24.16). Writing the L0 operator explicitly,
we have

L0 − 1 = 1

2
α

μ
0 α0,μ +

∞∑
p=1

α
μ
−p αp,μ − 1 = α′ p2 − 1 +

∞∑
n=1

n aμ†
n an,μ = 0 . (24.17)

Since M2 = −p2, we find

M2 = 1

α′
(
−1 + N

)
, N =

∞∑
n=1

n aμ†
n an,μ . (24.18)

This result takes the same form as the light-cone result, except that the number opera-
tor N⊥ is replaced by its covariant counterpart N . The eigenvalues of the light-cone
number operator N⊥ were manifestly non-negative, and this allowed us to conclude that
M2 ≥ −1/α′. Are the eigenvalues of the number operator N also non-negative? To find
out, we expand out the sum over μ in the formula for N . With due attention to the
Minkowski metric, we find

N =
∞∑

n=1

n
(
−a†

n,0 an,0 +
25∑

i=1

a†
n,i an,i

)
. (24.19)

In the classical theory the dagger represents complex conjugation, so the number opera-
tor N could be negative with appropriate contributions from the time components. In the
quantum theory the situation improves. Because the commutator of two timelike oscillators
carries a negative sign ([an,0, a†

n,0] = −1), we have

[−n a†
n,0 an,0 , a†

n,0 ] = + n a†
n,0 . (24.20)

So even the timelike oscillators contribute positively to N . Thus N is non-negative, and
M2 ≥ − 1/α′ continues to hold in covariant quantization. Even more, ground states in
the covariant theory have N = 0, and therefore M2 = −1/α′. This value agrees with the
mass-squared of the ground states that we obtained using the light-cone quantization. The
agreement justifies our selection of the ordering constant in (24.16).

There is a problem, however, which indicates that additional constraints must be
imposed: many states do not have positive norm! Consider an eigenstate |�〉 of N with
eigenvalue N0 and positive norm 〈�|�〉 > 0. We then have an,0|�〉 = 0 for n > N0. Now
consider the state |χ〉 = a†

n,0|�〉, with Hermitian conjugate 〈χ | = 〈�|an,0. The norm of
this state is

〈χ |χ〉 = 〈�|an,0 a†
n,0|�〉 = 〈�| [ an,0 , a†

n,0 ] |�〉 = −〈�|�〉 < 0 . (24.21)
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Since |χ〉 has negative norm, it is an unacceptable quantum state. We must impose extra
conditions to remove such physically impossible states from the spectrum. Recall that in
the light-cone gauge quantization all states have positive norm.

Let us therefore attempt to establish the full set of constraints. We cannot require that,
in addition to L0 − 1, all other Virasoro operators annihilate the physical states. We show
this by considering a simple example. We will prove that there are no nontrivial states
annihilated by the three operators L0 − 1, L2 and L−2. Consider therefore a general state
|�〉, and impose the conditions

(L0 − 1)|�〉 = 0 , L2|�〉 = 0 , and L−2|�〉 = 0 .

If these equations hold, then the commutator of L2 with L−2 must annihilate the state:

[L2, L−2]|�〉 = L2(L−2|�〉)− L−2(L2|�〉) = 0 . (24.22)

On the other hand, equation (24.15) tells us that

[L2, L−2] = 4L0 + D

2
. (24.23)

The left-hand side has been shown to annihilate |�〉, so the right-hand side must annihilate
|�〉, as well, (

4(L0 − 1)+ 4 + D

2

)
|�〉 =

(
4 + D

2

)
|�〉 = 0 . (24.24)

Since D is positive, we find |�〉 = 0. This confirms that we cannot impose all the Virasoro
conditions and expect to find nontrivial states.

Bearing this result in mind, we attempt to find a subset of the Virasoro constraints that can
be imposed without setting to zero the states. The fact that a subset of the original set of
constraints may suffice to define a consistent quantum theory is not obvious, but past expe-
rience suggests that it may. In the covariant quantization of electromagnetism, for example,
the Lorentz gauge condition ∂ · A = 0 appears as a quantum constraint. This condition can-
not be fully imposed on photon states. Instead, only “half” of the gauge condition needs
to be imposed on states in order for the theory to work properly. We will follow a similar
strategy here.

The complete set of operators that might annihilate physical states is given by

{. . ., L−3, L−2, L−1 , L0 − 1 , L1, L2, L3, . . .}. (24.25)

We have already seen that the constraint L0 − 1 = 0 is necessary to fix the mass spectrum
correctly. The simplest thing to try is to set to zero either all operators which have positive
mode number or all operators which have negative mode number. In other words, we will
impose the constraint

(L0 − 1)|�〉 = 0 (24.26)
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together with one of the following:

Ln|�〉 ?= 0, n > 0, (24.27)

L−n|�〉 ?= 0, n > 0. (24.28)

Only one of these choices works, even though they both have something in common. Both
choices result in

〈�|Ln|�〉 = 0, n 	= 0 . (24.29)

For instance, if we choose (24.27), then (24.29) holds for positive n because Ln kills the
state on its right. Furthermore, the Hermitian conjugate of (24.27) yields

〈�|L−n = 0 , for n > 0 , (24.30)

or, equivalently,

〈�|Ln = 0 , for n < 0 , (24.31)

showing that (24.29) holds for negative n as well. A similar argument can be used for the
choice (24.28). So both choices result in physical states for which the expectation values
of all the Ln with n 	= 0 are zero. The condition of vanishing expectation values is weaker
than the condition that requires that the Ln annihilate the states. Happily, imposing only
half of the constraints does provide a satisfactory theory. It has been proven that half of the
constraints suffices to remove the states with negative norms.

We still have to decide which set of conditions to impose. When we were working in light-
cone gauge we saw that the positively moded oscillators were the ones that functioned
as annihilation operators. The negatively moded oscillators functioned as creation opera-
tors. It is natural to associate annihilation with the positively moded Virasoro operators.
Therefore we declare the following.

All positively moded Virasoro operators must annihilate physical states. (24.32)

States annihilated by all the positively moded Virasoro operators are called Virasoro pri-
maries. We have learned that physical states are Virasoro primaries. Being a Virasoro
primary is necessary but not sufficient to guarantee that a state is truly physical. Two addi-
tional conditions are necessary. The first is already familiar: the state must be annihilated
by L0 − 1. We will call the states that are primary and satisfy this first condition admissible
states:

|�〉 is admissible ⇐⇒ (Ln − δn,0)|�〉 = 0 , n ≥ 0 . (24.33)
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The second condition, as we shall see below, has to do with a class of states that are
called Virasoro descendents. If a state is admissible and satisfies this additional condition it
will be called physical. This terminology is not standard: our admissible states are usually
called physical, and our physical states are usually called real physical states! (Here real is
synonymous of truly.)

It is interesting to note that for any fixed state all but a finite number of positively moded
Virasoro operators automatically annihilate the state without imposing any condition. Any
state |�0〉 with number eigenvalue N0 ≥ 0 automatically satisfies

Ln|�0〉 = 0 , for n > N0 . (24.34)

To see this, first note that L0 = α′ p2 + N implies

[N , Ln] = [L0 − α′ p2, Ln] = [L0, Ln] = −nLn . (24.35)

The mode number of the state Ln|�0〉 is therefore

N Ln|�0〉 = [N , Ln] |�0〉 + Ln N |�0〉 = (N0 − n)Ln|�0〉 . (24.36)

If n > N0, then Ln|�0〉 is a state of negative number eigenvalue. Since N only has non-
negative eigenvalues, the state must vanish.

A Virasoro descendent of a given primary is a state that can be written as a finite linear
combination of products of negatively moded Virasoro operators, acting on the primary
state. For example, if |p〉 denotes a primary state, the state L−1|p〉 is a descendent of |p〉,
and so is (L−2L−1 + L−4L−3)|p〉. Since descendents play an important role, let us discuss
them in some detail.

It follows from (24.36) that N L−1|p〉 = (Np + 1)L−1|p〉, where Np is the number
eigenvalue of the primary |p〉. The state L−1|p〉 is, up to scale, the unique descendent of |p〉
with number Np + 1. There are two basis descendents with number Np + 2: L−2|p〉 and
L−1L−1|p〉. For descendents with number Np + 3 the counting gets a bit more interesting.
A list of candidate basis descendents is

L−3|p〉 , L−2L−1|p〉 , L−1L−2|p〉 , (L−1)
3|p〉 .

Because the Virasoro operators do not commute, the second and third states are not
identical. There is, however, one linear relation among the above states, since

L−1L−2 = [L−1, L−2] + L−2L−1 = L−3 + L−2L−1 .

This identity allows us to rewrite the third state in terms of the first two, so there are only
three basis descendents at this level:

descendents with number Np + 3 : L−3|p〉 , L−2L−1|p〉 , (L−1)
3|p〉 . (24.37)

In general, for any fixed number Np + n, one can choose a basis set of descendents such
that each basis element is of the form:

L−n1 L−n2 . . . L−nk |p〉 , where n1 ≥ n2 ≥ · · · ≥ nk and
k∑

i=1

ni = n . (24.38)

This is a useful conventional ordering of the Virasoro operators.
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Quick calculation 24.2 Convince yourself that any descendent of |p〉with number Np + n
that is written as an arbitrary sequence of negatively moded Virasoro operators acting on
|p〉 can be written as a linear superposition of states of the form (24.38). Note that the
number of elements in the generating set (24.38) is equal to the number of partitions of n.

For any given primary |p〉, there may be linear relations between the basis descendents
(24.38). These relations do not arise by manipulation of the Virasoro operators but rather
from the specific properties of the state |p〉. There are simple examples of this phenomenon.
The zero-momentum ground state |0〉, for example, is a primary whose descendent L−1|0〉
vanishes identically (Problem 24.2). An important property of descendents is that they are
all orthogonal to any primary. Indeed, any basis descendent |d〉 can be written as |d〉 =
L−ni |χ〉 for some ni > 0 and some state |χ〉. It follows that for any primary |p〉,

〈d | p〉 = 〈χ |Lni |p〉 = 0 , (24.39)

since |p〉 is annihilated by all positively moded Virasoro operators.
We now suggest that a state that is both a primary and a descendent represents a state

that is pure gauge. A state that is both a primary and a descendent is called a null state.
It follows from (24.39) that a null state has zero inner product with itself, with any pri-
mary, and with any descendent. If we alter a primary state by the addition of a null state,
then the new primary state has the same inner products with primary states as the original
one. A null state behaves as a pure gauge if, in addition, physical operators in the the-
ory map null states to null states; in this case the addition of null states to primary states
cannot affect any physical expectation values. This motivates the following definition of a
physical state.

A nonvanishing state is said to represent a physical state if it is admissible and
it is not a descendent, i.e., the state must be a primary, it must be annihilated
by (L0 − 1), and it must not be a descendent. Two representatives of the same
physical state must differ by a null state.

Note that we speak about representatives of physical states precisely because of the
ambiguity that null states create. A physical state is not best thought of as one specific
vector in the state space but rather as a class of vectors, all of which differ from one another
by a null state. Any vector in this class is an equally valid representative of the same
physical state. In order to give evidence that this definition is a good one, we will apply
it in the following section to find the physical states for the two lowest-mass levels of the
open string. We will recover the results previously derived in the light-cone gauge.

24.4 Lorentz covariant state space

Before constructing the state space of the covariantly quantized string, it is useful to recall
some properties of the light-cone state space. The light-cone time-independent states are
labeled by the light-cone momenta p+ and �pT . The ground states, for example, are written
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as |p+, �pT 〉. Time-dependent states satisfy the Schrödinger equation which uses the light-
cone Hamiltonian, as we saw in Section 11.4 and Section 12.7.

In the covariant formalism all components pμ of the momentum are independent
commuting operators, and we can label the ground states using the full momentum vec-
tor |p〉 = |p0, p1, . . ., p25〉. The conjugate variables xμ label the position states |x〉 =
|x0, x1, . . ., x25〉. There are as many position states as there are spacetime points, and the
states carry time labels! Given a state |ψ〉, the associated wavefunction 〈x |ψ〉 will have
time dependence even before we introduce a Schrödinger equation.

To understand the fate of the Schrödinger equation let us examine the Hamiltonian
(24.6). Rewriting it in terms of Ẋ , we have

H = 1

4πα′

∫ π

0
dσ

(
Ẋ2 + X ′2)

= 1

4πα′

∫ π

0
dσ

1

2

((
Ẋ + X ′)2 + (

Ẋ − X ′)2
)

= 1

2π

∑
n∈Z

∫ π

0
dσ Ln(e−inσ + einσ ) e−inτ , (24.40)

where we used (24.13). All integrals with n 	= 0 vanish, and for n = 0 the right-hand side
gives L0. This operator, however, is ambiguous because (24.13) does not yield the normal-
ordered L0 operator. Thus H equals L0 up to a constant. The light-cone Hamiltonian is
L⊥0 − 1, suggesting that the covariant Hamiltonian must be chosen to be

H = L0 − 1 = α′ p2 + N − 1 . (24.41)

This ordering constant coincides with the one needed for the constraint associated with
L0. Since all physical states are annihilated by L0 − 1, we reach the surprising conclusion
that the Hamiltonian annihilates all physical states! This means that it is not possible to
introduce a time variable and generate nontrivial time evolution through the Schrödinger
equation. But then again, we do not need to introduce a time variable and generate time
evolution as we did in the light-cone. The covariant states already have time labels. The
Schrödinger equation has turned into the constraint H |�〉 = 0. This constraint – roughly
speaking – fixes a relation between the time label and the position labels of the states. In
momentum space, it imposes a mass-shell condition that fixes the energy p0 in terms of
the momentum �p.

The basis vectors of the covariant state space are constructed by acting on the ground
states |p〉 with all possible creation operators:

|r〉 =
∞∏

n=1

25∏
μ=0

(
aμ

n
†
)λn,μ |p〉 . (24.42)

Here the λn,μ are non-negative integers, and, as usual, only finitely many of them are non-
zero. All 26 values of μ can be used to build the basis states. In the light-cone gauge all
the basis states we introduced were physical states. Not here: a vector |�〉 represents a
physical state if it satisfies the Virasoro constraints in (24.33) and it is not a descendent.
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Let us examine concretely some of the physical states in the theory. Consider first
the ground states |p〉. These are the states with number eigenvalue zero. On account of
(24.34), they are automatically annihilated by the Ln≥1 operators, and the only nontrivial
constraint is

0 = (L0 − 1)|p〉 = (α′ p2 − 1)|p〉 −→ p2 = 1/α′ . (24.43)

This is the on-shell condition for a tachyon state with M2 = −1/α′. The states |p〉 are not
descendents because if they were, they would have to have descended from a state with
negative number eigenvalue, and there are no such states in the theory. We have therefore
identified the physical tachyon states. In Chapter 12 we identified the same physical states
using the light-cone quantization of the open string.

Quick calculation 24.3 Use (24.13) to verify explicitly that L1|p〉 = 0.

With a slight generalization we can also deal with tachyon fields, and the constraint will
give us the classical field equation for the tachyon. A general tachyon state |T 〉 can be
constructed as a superposition of momentum ground states:

|T 〉 ≡
∫

d D p φ(p) |p〉 , (24.44)

where φ(p) is an arbitrary function of the spacetime momentum. For |T 〉 to be physical it
must be annihilated by (L0 − 1):

(L0 − 1)|T 〉 =
∫

d D p φ(p)(L0 − 1)|p〉 =
∫

d D p φ(p)
(
α′ p2 − 1

)
|p〉 = 0 . (24.45)

Since the ground states |p〉 are linearly independent, the integrand must vanish for all p:

(α′ p2 − 1)φ(p) = 0 . (24.46)

This is the field equation for the tachyon. The function φ(p), which was introduced to help
construct the general tachyon state, turns out to be the tachyon field. Since the tachyon
state |T 〉 has number eigenvalue zero, there are no further Virasoro constraints, and the
state cannot be a descendent.

Next we consider photon states, which we identified as ξI a I †
1 |p+, �pT 〉 in the light-cone

quantization of the open string. Presently, we consider N = 1 states with fixed momentum
p and polarization ξμ:

ξμ α
μ
−1|p〉 . (24.47)

The L0 − 1 = 0 condition gives

0 = (α′ p2 + N − 1) ξμ α
μ
−1|p〉 = α′ p2ξμ α

μ
−1|p〉 −→ p2 = 0 . (24.48)

With L1 = α0 · α1 + (α−1 · α2 + α−2 · α3 + · · · ), the condition L1ξμ α
μ
−1|p〉 = 0 gives

0 = α0 · α1 ξμ α
μ
−1|p〉 =

√
2α′ pμ ξμ |p〉 −→ p · ξ = 0 . (24.49)

The Ln≥2 operators automatically annihilate the ξμ α
μ
−1|p〉 states. So far, we have learned

that physical photon states exist only for p2 = 0 and must satisfy p · ξ = 0. For any pμ
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which satisfies p2 = 0, we can choose a Lorentz frame where pμ = (p0, p0, 0, . . ., 0), and
then the constraint p · ξ = 0 gives

ξ0 + ξ1 = 0 . (24.50)

This cannot be the final answer; (24.50) leaves D − 1 independent polarizations ξμ, and
our light-cone analysis showed that photons only have D − 2 independent polarizations.
We must impose the condition that physical states are defined up to null states. For this,
consider the descendent

|d〉 = L−1
1√
2α′

iε |p〉 = (
i pμε

)
α

μ
−1|p〉 , with p2 = 0. (24.51)

This state is of the form (24.47) with ξμ = i pμε. It follows from (24.49) that |d〉 is also
primary since pμ(iεpμ) = 0. So |d〉 is null. We therefore have the equivalence of states

ξμ α
μ
−1 |p〉 ∼ (

ξμ + i pμε
)
α

μ
−1 |p〉, (24.52)

and, consequently, the equivalence of polarizations

ξμ ∼ ξμ + i pμε , for p2 = 0 . (24.53)

Again, using pμ = (p0, p0, 0, . . ., 0), this means that

ξ0 ∼ ξ0 − i p0 ε and ξ1 ∼ ξ1 + i p0 ε . (24.54)

Since ξ0 − ξ1 ∼ ξ0 − ξ1 − 2i p0ε, we can choose representative polarizations such that

ξ0 − ξ1 = 0 . (24.55)

Together with (24.50), we conclude that physical states have D − 2 independent polariza-
tions. This is the result we had found in the light-cone gauge.

One can also work with general superpositions. We define a gauge field state |A〉 as

|A〉 =
∫

d D p Aμ(p) α
μ
−1 |p〉 . (24.56)

Quick calculation 24.4 Show that the L0 − 1 and L1 constraints give p2 Aμ(p) = 0 and
p · A = 0, respectively. The condition p · A = 0 is the Lorentz gauge condition. The
equation p2 Aμ = 0 is the familiar Maxwell field equation p2 Aμ − pμ(p · A) = 0 in the
Lorentz gauge.

For additional discussion of photon states, see Problem 24.3.

24.5 Closed string Virasoro operators

The covariant quantization of the closed string brings about no new complications. There
are two sets of covariant Virasoro operators, and the operators with non-negative mode
number annihilate the physical states. The vanishing of both Virasoro operators with mode
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number zero (with a proper subtraction constant) implies that the left and right number
operators have the same eigenvalue when acting on physical states. We will only consider
closed strings in the absence of compactification.

The mode expansion (13.24) for a generic closed string coordinate reads

Xμ(τ, σ ) = xμ
0 +√

2α′ αμ
0 τ + i

√
α′
2

∑
n 	=0

e−inτ

n
(αμ

n einσ + ᾱμ
n e−inσ ) , (24.57)

where α
μ
0 = pμ

√
α′/2. The τ and σ derivatives of the coordinates were recorded in

(13.26), with the understanding that ᾱ
μ
0 = α

μ
0 . Just as in (13.36), we have

(Ẋμ + Xμ′)2 = 4α′
∑
n∈Z

(1

2

∑
p∈Z

ᾱμ
p ᾱn−p,μ

)
e−in(τ+σ) ≡ 4α′

∑
n∈Z

L̄ne−in(τ+σ) ,

(Ẋμ − Xμ′)2 = 4α′
∑
n∈Z

(1

2

∑
p∈Z

αμ
p αn−p,μ

)
e−in(τ−σ) ≡ 4α′

∑
n∈Z

Lne−in(τ−σ) ,

(24.58)

where we defined

L̄n = 1

2

∑
p∈Z

ᾱμ
p ᾱn−p,μ , Ln = 1

2

∑
p∈Z

αμ
p αn−p,μ . (24.59)

These are the two sets of Virasoro operators of closed string theory. If we imposed the
constraints (24.1), then all Virasoro operators would have to annihilate the physical states.
Just like for open strings, this would leave no physical states. In analogy with the open
string quantum constraints (24.33), we demand that for physical closed states |�〉

(Ln − δn,0)|�〉 = 0 , (L̄n − δn,0)|�〉 = 0 , n ≥ 0 . (24.60)

A vector |�〉which satisfies these conditions is a representative for a physical closed string
state if it is not a descendent. A descendent of a primary |p〉 is a state obtained by acting
on the primary with a collection of negatively moded Virasoro operators. Both barred and
unbarred operators can be used.

For n = 0, the conditions (24.60) give

(L0 − 1)|�〉 =
(α′

4
p2 + N − 1

)
|�〉 = 0 ,

(L̄0 − 1)|�〉 =
(α′

4
p2 + N̄ − 1

)
|�〉 = 0 , (24.61)

where N and N̄ are the covariant number operators. Note that equations (24.61) imply
that L0 − L̄0 annihilates all physical states. As before, this condition is interpreted as an
invariance of physical states under a constant shift of the σ coordinate on the world-sheet,
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or as the vanishing of the two-dimensional momentum along the string (Section 13.2).
Equations (24.61) give two expressions for the mass-squared:

M2 = −p2 = 4

α′
(N − 1) = 4

α′
(N̄ − 1) , (24.62)

and therefore we have the constraint

N = N̄ . (24.63)

Making use of (24.63) we can write, more symmetrically,

M2 = 2

α′
(N + N̄ − 2) . (24.64)

The closed string state space is constructed by acting with arbitrary numbers of oscilla-
tors on the closed string ground states |p〉. To uncover the closed string tachyon states it
suffices to consider the ground states and to impose the L0 − 1 = L̄0 − 1 = 0 conditions.
To uncover the massless closed string states – the Kalb–Ramond field, the graviton, and
the dilaton – we must also examine the L1 = L̄1 = 0 constraints. Those constraints suf-
fice because the massless states have N = N̄ = 1, so Virasoro operators with higher mode
number automatically annihilate these states. Of course, the equivalences generated by null
states must also be considered (Problem 24.5).

24.6 The Polyakov string action

Despite the elegance of the action (24.4) and the ease with which we can obtain from it
the equations of motion, the momenta, and the Hamiltonian, the constraint equations (24.1)
still have to be imposed by hand. We will now develop another action, the Polyakov action,
from which the constraint equations also emerge naturally. As a first step, we rewrite (24.4)
in a more suggestive form:

S = − 1

4πα′

∫
dτdσ ηαβ∂α Xμ∂β Xν ημν . (24.65)

The spacetime indices on the string coordinates are contracted with the Minkowski met-
ric ημν . The α and β indices run over two values, corresponding to the two world-sheet
coordinates τ and σ :

∂α = ∂

∂ξα
, ξα = (ξ1, ξ2) = (τ, σ ). (24.66)

We have also introduced a two-dimensional Minkowski metric ηαβ . Just like the spacetime
Minkowski metric, it is diagonal; the time–time entry is −1, and the space–space entry
is +1:

ηαβ =
( −1 0

0 1

)
. (24.67)

In (24.65) the repeated α and β indices are summed over the two values τ and σ . Writing
out these sums we recover the action (24.4).
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The above two-dimensional metric might remind you of the metric that emerged while
we were making manifest the reparameterization invariance of the Nambu–Goto action.
There we saw that the action takes the form indicated in equation (6.44):

S = − 1

2πα′

∫
dτdσ

√−γ . (24.68)

Here γ = det(γαβ), and γαβ is the world-sheet metric induced by the target-space
Minkowski metric. It is explicitly given by (6.42):

γαβ = ∂ X

∂ξα
· ∂ X

∂ξβ
= ∂α X · ∂β X . (24.69)

The Polyakov action involves a new world-sheet metric, hαβ(τ, σ ). This is the kind
of metric that one uses in two-dimensional general relativity. The metric hαβ(τ, σ ) is a
dynamical variable in the action, so it leads to its own field equations. As it turns out, the
equations of motion will relate the new metric hαβ to the induced metric γαβ . The metric
hαβ enters the Polyakov action in a way that is analogous to the way in which ηαβ enters
the action (24.65). The Polyakov action is

S = − 1

4πα′

∫
dτdσ

√−h hαβ∂α Xμ∂β Xνημν . (24.70)

Here h ≡ det(hαβ), and hαβ is the inverse of hαβ :

hαβhβγ = δα
γ , hαβhαβ = 2 . (24.71)

The variation of the metric hαβ in the Polyakov action will give us the Virasoro con-
straints. Since hαβ is a symmetric two-by-two matrix, and such matrices have three
independent entries, we should expect three constraints. But there are only two Virasoro
conditions. How can these facts be reconciled?

First note that the metric hαβ enters the action through the specific combination√−h hαβ . The square root factor is needed to make the measure (dτdσ
√−h ) reparame-

terization invariant, as you saw in Section 6.2. The hαβ factor is needed to contract against
the indices carried by the derivatives of X . While hαβ is clearly determined by three real
numbers at any fixed point on the world-sheet, the combination

√−h hαβ is in fact deter-
mined by just two numbers! This is a peculiar property of two-dimensional metrics. Define
this combination to be

Mαβ = √−h hαβ. (24.72)

We will show that the symmetric matrix M satisfies an additional constraint. To appreciate
why two-dimensional metrics are special, let n denote the size of the matrix hαβ . Then

det(Mαβ) = (
√−h )n det(hαβ) = (−h)

n
2

det(hαβ)
= (−h)

n
2

h
= −(−h)

n
2−1 . (24.73)

The final simplification occurs only when n = 2. In that case we find

det(Mαβ) = −1 . (24.74)
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A 2-by-2 symmetric matrix with determinant equal to a fixed constant is determined by
two parameters. This is why the variation of the metric gives us only two independent con-
straints, which is the number we want.

Enough with preliminaries. Let us tackle the variation of the Polyakov action. First we vary
the string coordinates Xμ. This variation gives

δS = − 1

2πα′

∫
dτdσ

√−h hαβ∂α(δXμ)∂β Xνημν

= 1

2πα′

∫
dτdσ δXμ ∂α

(√−h hαβ∂β Xνημν

)
, (24.75)

where we have discarded the complete derivatives which give the familiar boundary
contributions in the case of open strings. The resulting equation of motion is therefore

∂α

(√−h hαβ∂β Xμ
)
= 0. (24.76)

This equation is not yet a wave equation for Xμ, but we will get there shortly.
In order to vary the metric hαβ we need a preliminary result. Let A be a 2-by-2 matrix,

and let δA denote its variation:

A =
(

a11 a12

a21 a22

)
and δA =

(
δa11 δa12

δa21 δa22

)
. (24.77)

It is straightforward to check that the variation of det A can be written as

δ det A = (det A) Tr(A−1 δA) , (24.78)

where A−1 denotes the inverse of A and Tr stands for trace. This identity actually holds for
matrices of arbitrary dimension.

Quick calculation 24.5 Verify explicitly that equation (24.78) holds for 2-by-2 matrices.

Let δhαβ denote the variation of the metric. We can use (24.78) to calculate the variation
of h:

δh = δ det(hαβ) = h (hαβδhβα) . (24.79)

We must write the variation δhαβ in terms of δhαβ . For this we vary the second equation in
(24.71) to find

δhαβ hαβ + hαβ δhαβ = 0 −→ hαβ δhβα = −δhαβ hαβ , (24.80)

where we noted that δhαβ = δhβα . We can then rewrite the variation of h as

δh = −h δhαβ hαβ . (24.81)

Of course, what we really need to vary is
√−h. This can now be done as

δ(
√−h) = −1

2

δh√−h
= −1

2

(−h)δhαβhαβ√−h
= −1

2

√−h δhαβ hαβ . (24.82)
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We can finally vary the metric in the action (24.70):

δS = − 1

4πα′

∫
dτdσ

√−h
(
−1

2
δhαβ hαβ(hγ δ∂γ X · ∂δ X)+ δhαβ∂α X · ∂β X

)
= − 1

4πα′

∫
dτdσ

√−h δhαβ
(
∂α X · ∂β X − 1

2
hαβ(hγ δ∂γ X · ∂δ X)

)
. (24.83)

The equation of motion which arises from the variation δhαβ is therefore

∂α X · ∂β X − 1

2
hαβ(hγ δ∂γ X · ∂δ X) = 0 . (24.84)

Recalling that ∂α X · ∂β X is just the induced metric γαβ in (24.69), the above equation can
be written as

γαβ − 1

2
hαβ(hγ δγγ δ) = 0 . (24.85)

Since the factor (hγ δγγ δ) has no free indices, this equation sets the world-sheet metric hαβ

proportional to the induced metric γαβ at every point on the world-sheet. The factor of
proportionality can be position dependent. This factor is not determined by (24.85): given
a solution hαβ of this equation, the metric h′αβ = �2hαβ , with � an arbitrary nonvanishing
function, will also provide a solution. This happens because the second term on the left-
hand side of (24.85) contains the product of the metric and its inverse. Equation (24.85) is
therefore satisfied by

hαβ = f 2 (ξ) γαβ , (24.86)

where f (ξ) is some undetermined nonvanishing function on the world-sheet. By writing
(24.86) with f 2(ξ), we are making an additional statement: the proportionality factor that
relates the metrics is positive. This has a physical implication: the notions of timelike and
spacelike vectors defined by hαβ and γαβ agree. Since the induced metric γαβ is really the
ambient metric referred to the world-sheet, if a world-sheet vector is spacelike or time-
like, as determined by hαβ , it will be spacelike or timelike, respectively, as determined by
the Minkowski metric. Metrics related by a (positive) factor of proportionality are said to
be conformal to each other. Thus the world-sheet metric is conformal to the induced metric.

Let us see what happens to the Polyakov action when we substitute into it the information
we have gained. We first calculate

√−hhαβ = Mαβ using (24.86). The good news is that
the undetermined function f (ξ) drops out of this calculation. To see this quickly, recall that
the determinant of the matrix Mαβ is (−1), independent of the metric hαβ . If we scale the
metric hαβ , the most that could happen to Mαβ is that it scales as well. But if Mαβ were to
scale then its determinant would change. Thus the scale of hαβ does not affect Mαβ . This
argument can be confirmed explicitly. With γ ≡ det(γαβ), we use (24.86) to determine the
determinant of hαβ and the inverse metric hαβ :

h = f 4 γ and hαβ = 1

f 2
γ αβ , (24.87)
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where γ αβ is the inverse of γαβ . It follows that

√−h hαβ = f 2 √−γ
1

f 2
γ αβ = √−γ γ αβ , (24.88)

which confirms that the undetermined function f is irrelevant. If we now substitute back
into the Polyakov action (24.70) we find

S = − 1

4πα′

∫
dτdσ

√−γ γ αβ γαβ . (24.89)

The second equation in (24.71), which is valid for any two-dimensional metric, now gives

S = − 1

2πα′

∫
dτdσ

√−γ . (24.90)

This is exactly the Nambu–Goto action. We conclude that the Polyakov action is classically
equivalent to the Nambu–Goto action.

Quick calculation 24.6 Verify that, had we chosen hαβ = − f 2 (ξ) γαβ instead of (24.86),
the Nambu–Goto action would have emerged with the wrong sign.

While we were showing that the factor f 2(ξ) in (24.86) drops out during the evalua-
tion of the string action, we also proved that the Polyakov action is invariant under the
transformation

hαβ(τ, σ ) → �2(τ, σ ) hαβ(τ, σ ) , (24.91)

where �2 is an arbitrary function on the world-sheet. This rescaling of the world-sheet
metric is called a Weyl transformation. The invariance of the Polyakov action under a Weyl
transformation indicates that, on the world-sheet, distances measured with the hαβ metric
have no physical significance.

We have yet to show that we obtain the Virasoro constraints and wave equations for the
string coordinates. The equation of motion (24.76) for Xμ looks complicated, and the
equation of motion (24.84) for hαβ does not resemble the Virasoro constraints. In order
to make progress we use the reparameterization invariance to choose a convenient form
for hαβ .

It is a well known result of two-dimensional geometry that a coordinate reparameteriza-
tion allows an arbitrary metric hαβ on a surface to be cast locally in the form

hαβ = ρ2 (ξ) ηαβ . (24.92)

Here ρ is a conformal factor and ηαβ is the two-dimensional Minkowski metric. The metric
hαβ is said to be conformally flat. By restricting ourselves to the class of world-sheet coor-
dinates that result in a conformally flat metric, we are making a partial gauge choice. This
choice is called the conformal gauge. In the conformal gauge

√−hhαβ = ηαβ , so equation
(24.76) becomes

∂α

(
ηαβ∂β Xμ

) = ηαβ∂α∂β Xμ = 0 . (24.93)
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Expanding out the sums over two-dimensional indices, we see that this is precisely the
wave equation. For equations (24.84), the conformal gauge condition (24.92) results in

∂α X · ∂β X − 1

2
ηαβ (ηγ δ∂γ X · ∂δ X) = 0 . (24.94)

Expanding the expression in parentheses we have

∂α X · ∂β X − 1

2
ηαβ (−Ẋ2 + X ′2) = 0 . (24.95)

These are three equations, but only two of them are independent. Taking α = β = 1 we
get

Ẋ2 + 1

2
(−Ẋ2 + X ′2) = 0 −→ Ẋ2 + X ′2 = 0 , (24.96)

which is one of the constraints. With α = 1, β = 2 we get

Ẋ · X ′ = 0 , (24.97)

which is the second constraint. Finally, when α = β = 2 we get

X ′2 − 1

2
(−Ẋ2 + X ′2) = 0 −→ Ẋ2 + X ′2 = 0 , (24.98)

which is redundant. We have thus shown that the equations of motion for the world-sheet
metric reduce to the familiar Virasoro constraints in the conformal gauge.

Because of its elegance and convenience, the Polyakov string action is typically the
starting point of any detailed analysis of covariant string quantization. In such an analysis,
the various facts for which we have had to appeal to our previous light-cone results can be
given independent justification.

Problems

Problem 24.1 Covariant quantization of the point particle.

The point particle Lagrangian is L = −m
√−ẋ2, where ẋμ = dxμ(τ)/dτ .

(a) Calculate the momentum pμ canonical to xμ(τ). Verify that the momentum satisfies
the constraint p2 + m2 = 0. Prove that one cannot solve uniquely for the velocity in
terms of the momentum by showing that, given one solution, one can easily construct a
different one. In addition, only for momenta satisfying the constraint can one possibly
find velocities.

(b) Show that H ≡ pμ ẋμ − L = 0. Set up commutation relations and describe the state
space.

(c) Physical states are those that satisfy the constraint. Build candidate states as general
linear superpositions and compare with (11.48). Apply the constraint and show that the
wavefunction for the physical states satisfies the Klein–Gordon equation for a scalar
field of mass m.
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Problem 24.2 States as Virasoro primaries or Virasoro descendents.

Consider the Virasoro operators Ln = 1
2

∑
p αn−pαp associated with a single open string

coordinate X with oscillators that satisfy [αm, αn] = mδm+n,0. The states that can be built
from the zero-momentum vacuum |0〉 for N ≤ 4 are:

N = 0 : |0〉 ,
N = 1 : α−1|0〉 ,
N = 2 : α−2|0〉 , α−1α−1|0〉 ,
N = 3 : α−3|0〉 , α−2α−1|0〉 , (α−1)

3|0〉 ,
N = 4 : α−4|0〉 , α−2(α−1)

2|0〉 , α−3α−1|0〉 , α−2α−2|0〉 , (α−1)
4|0〉 . (1)

We want to show that at each level N we can form an equivalent basis of states where each
state is either a Virasoro primary or a Virasoro descendent from a primary in the list.

(a) Define the norm of |0〉 as 〈0|0〉 ≡ 1. Explain why any state |χ〉 in (1) has positive norm
〈χ |χ〉 > 0, and why any two different states |χ1〉, |χ2〉 are orthogonal: 〈χ2|χ1〉 = 0.
Argue that any nonzero linear combination of the above states is a state of positive
norm, and that, as a result, no state in the state space is both a primary and a descendent.

(b) Explain why the state |0〉 is a primary. Now consider the state α−1|0〉 with N = 1.
This state is either a descendent of |0〉 or a primary. Show that the only candidate
descendent L−1|0〉 vanishes. Prove that α−1|0〉 is a primary, and call it |p1〉. Using a
basis as in equation (24.38), explain why descendents of |0〉 with one or more L−1

operators vanish.

(c) Show that, for N = 2, one state is a descendent of |0〉, and one state is a descendent of
|p1〉.

(d) Show that, for N = 3, one state is a descendent of |0〉, and two states are descendents
of |p1〉.

(e) For N = 4 we have three candidate descendents of |p1〉. From these states, show that
one linear combination vanishes:(

L−3 − 2L−2L−1 + 1
2 (L−1)

3
)
|p1〉 = 0 ,

and the other two give states equivalent to the first two of the N = 4 list. Note that
there are only two candidate descendents of |0〉. So the last three states on the list must
break into two descendents and one new primary |p4〉. Show that, up to an arbitrary
normalization,

|p4〉 =
(
α−3α−1 − 3

4 (α−2)
2 − 1

2 (α−1)
4
)
|0〉 ,

and write explicitly the three last states on the list as a linear superposition of this
primary and the two descendents.
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Problem 24.3 Photon states in the covariant description.

(a) Consider the field equation and gauge transformations for a Maxwell field:

p2 Aμ − pμ(p · A) = 0 , δAμ = i pμε .

Show that for p2 	= 0 it is possible to make the potentials satisfy the Lorentz gauge
condition p · A = 0. Show also that for p2 = 0 the quantity p · A is gauge invariant
and that it is set to zero by the field equation. This shows that the Lorentz gauge con-
dition is generally valid for all p. It also shows, however, that for p2 = 0 the Lorentz
gauge does not fix the gauge symmetry. We have seen evidence of this: for p2 = 0 the
solutions of the equations of motion in the Lorentz gauge are characterized by (D − 1)

independent degrees of freedom.
(b) Consider the coupling

∫
Aμ jμd Dx of the gauge field to the conserved current jμ.

Show that for p2 = 0 the part of the gauge field that can be gauged away drops out of
this coupling.

(c) Examine the descendent |D〉 relevant to the discussion of the general superposition
(24.56):

|D〉 = L−1
1√
2α′

∫
d D p iε(p)|p〉 .

When is |D〉 null? Show that for p2 = 0 we have the identification Aμ(p) ∼ Aμ(p)+
i pμε(p). This is an on-shell gauge invariance.

Problem 24.4 D0-branes, open strings, and M-theory.

(a) We want to show that it is not possible to have only one string endpoint on a D0-brane.
Intuitively, the string charge, visualized as a current on the string, has nowhere to go on
the pointlike D0-brane. More quantitatively, as in any D-brane, on the D0-brane there
is a gauge field that couples to the string endpoint as in (16.54). Since the D0-brane has
no spatial coordinate the gauge field is just A0. Show that the Maxwell action vanishes,
and that, as a result, the variation of A0 imposes an inconsistent equation of motion.
Note that the inconsistency is removed if the two endpoints of an open string lie on the
D0-brane.

(b) Consider the covariant quantization of an open string whose endpoints lie on a
D0-brane. Describe the ground states, noting that the momentum has a single com-
ponent. Construct the general states with N = 0 and discuss the equation of motion
for the tachyon field φ(t). Construct the N = 1 physical states. Show that there are no
relevant null states, and that we have D independent physical states of zero momentum.

(c) Give the mass m0 of a D0-brane (see Section 18.4). In type IIA superstring theory
the same formula applies, and a bound state of n D0-branes is known to have a mass
exactly equal to nm0. Such states can be identified with momentum states that arise
from a compact eleventh dimension, assuming that the momentum p along this dimen-
sion contributes to the mass of the effective ten-dimensional particle as in m = p.
What is the radius R̄ of this eleventh dimension? How does it behave as a function
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of g? This result is one piece of evidence for the fact that eleven-dimensional M-theory
compactified on a circle is type IIA superstring theory.

Problem 24.5 Graviton and dilaton states in covariant quantization.

Examine the closed string states ξμν α
μ
−1ᾱ

ν
−1|p〉, with ξμν = ξνμ.

(a) Show that the Virasoro constraints give the conditions p2 = 0 and pμξμν = 0.
(b) Exhibit null states that generate the physical state equivalences ξμν ∼ ξμν + pμεν +

pνεμ, which hold for p2 = 0 and p · ε = 0.
(c) Show that there are (D − 2)(D − 1)/2 independent physical degrees of freedom in

ξμν α
μ
−1ᾱ

ν
−1|p〉 for each value of pμ which satisfies p2 = 0. These are the degrees of

freedom of a graviton and a scalar dilaton.



25 String interactions and Riemann surfaces

The world-sheets of interacting open strings are recognized to be Riemann sur-
faces, and interaction processes are seen to construct the moduli spaces of these
surfaces. Conformal mapping is used to provide canonical presentations for
interacting light-cone world-sheets. The celebrated Veneziano amplitude for the
interaction of open string tachyons is motivated and discussed.

25.1 Introduction

Interactions and the forces that mediate them make the world interesting. If the electron and
the proton did not interact, there would be no hydrogen atom. The fine structure constant
α = e2/(4π h̄c) quantifies the strength of electromagnetic interactions and determines the
interaction potential between the electron and the proton (see Section 13.4). The hot fila-
ment of a light bulb emits photons, some of which are absorbed by your eye. Emission and
absorption processes are also interactions. A neutron can turn into a proton, an electron,
and an antineutrino. This process, called β-decay, is the result of a weak interaction.

In string theory the strength of interactions is parameterized by the string coupling g.
The value of this dimensionless number is determined by the expectation value of the
dilaton field, as we discussed in Section 13.4. The string coupling g, together with the
slope parameter α′, determines the value of Newton’s constant. The constants g and α′
also determine the tension of D-branes.

Interactions arise very elegantly in string theory because they are described by processes
in which strings join and split. In these processes, the world-sheets of free strings combine
to form a single world-sheet, which represents the interaction. Recall that world-sheets
define the two-dimensional parameter space (τ, σ ) for string propagation. For a free open
string, this parameter space is an infinite strip; for a free closed string, it is an infinite
cylinder.

Riemann surfaces are some of the most interesting two-dimensional surfaces. They are,
roughly speaking, surfaces where the two coordinates make up a complex variable. Rie-
mann surfaces are preserved by conformal maps, so they have no a priori concept of
distance! Inequivalent Riemann surfaces can be distinguished by parameters called mod-
uli. Finding a way to construct all Riemann surfaces with their associated moduli is a
difficult mathematical problem. Our study of string interactions will give very strong evi-
dence for a remarkable statement: the world-sheets of interacting strings give precisely this
construction.
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String world-sheets can be used to calculate quantum mechanical amplitudes for scat-
tering. Our Riemann surface analysis will motivate the amplitude for the scattering of four
tachyons, the famous Veneziano amplitude. String theory began with Veneziano’s discov-
ery of this amplitude. By reaching this point in our course, we have essentially traversed
the historical path backwards!

One word about terminology before getting started. We defined the world-sheet as the
spacetime surface Xμ(τ, σ ) which represents the history of a string. As we mentioned
in the paragraph above equation (6.29), physicists sometimes use the term world-sheet to
refer, in addition, to the parameter space (τ, σ ). In this chapter we will use this alternative
meaning of the term.

25.2 Interactions and observables

Before we begin our study of string interactions and Riemann surfaces, let us set the stage
for the concept of interactions. The goal is to turn a picture of a set of interacting strings
into a number which gives the probability for that event to occur. Doing so involves three
steps.

(1) Drawing the string diagram and calculating the conformal map which gives a canonical
representation of that diagram.

(2) Using conformal field theory to calculate the scattering amplitude from the canonical
representation.

(3) Using formulae to turn the scattering amplitude into a cross section. The cross section
is observable.

We will study step number (1) in some detail. This entails understanding the fascinating
relation between string diagrams and Riemann surfaces. Step number (2), in all its gener-
ality, is the subject of more advanced string theory courses. Step (3) properly belongs to a
quantum field theory course. Step (1) is in many ways the most nontrivial of the three.

Let us examine these three steps in the case of point particles in four-dimensional space-
time. We consider a specific theory with two types of scalar particles: φ particles with mass
M and χ particles with mass m. Suppose that M > 2m, so that a φ particle can decay into
two χ particles. Indeed, in the rest frame of the φ particle the total energy is Mc2, and to
create two χ particles we need at least 2mc2. Thus M > 2m is required by energy con-
servation, and the difference (M − 2m)c2 goes into the kinetic energy of the resulting χ

particles.
The diagram of step (1) is simply a picture (shown in Figure 25.1). In this picture, called

a Feynman diagram, three lines come together at a point. One of the lines, the dotted
one, represents the φ particle, and the other two represent the χ particles. For step (2) we
must calculate the decay amplitude. In order to do this, we introduce a constant λ which
quantifies the strength of the interaction. The value of λ is a parameter in the theory. If we
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�Fig. 25.1 The diagram showing the interaction of a φ particle with two χ particles.

let p denote the momentum of the incoming φ particle and p1, p2, denote the momenta of
the outgoing χ particles, then the amplitude for an initial state consisting of a φ particle to
turn into a final state consisting of the two outgoing χ particles is

out〈p1, p2 | p〉in = −i (2π)4δ(p − p1 − p2) T (p, p1, p2), (25.1)

where the decay amplitude T is given by

T (p, p1, p2) = λ. (25.2)

The four-dimensional delta function δ(p − p1 − p2) ensures that both energy and momen-
tum are conserved. Step (3) is the construction of an observable. In this case we calculate
the lifetime τφ of the φ particle. Converting the amplitude into a lifetime is a standard
calculation. The answer is

1

τφ

= λ2

32π

1

M

√
1 − 4m2

M2
. (25.3)

This is reasonable: as the interaction parameter λ goes to zero the φ particle lifetime
becomes infinitely long. The factors multiplying λ2 are kinematical; they take into account
the state space available to the decay particles.

Things get more interesting when we consider the possibility of two χ particles scattering
off each other. In that case both the initial and final states consist of two χ particles. We
call p1 and p2 the momenta of the incoming particles and p′1 and p′2 the momenta of the
outgoing particles. We now construct the simplest Feynman diagrams that can represent
this scattering process. Since two χ can turn into a φ, and a φ can then turn into two χ , the
scattering process will use the basic φχχ interaction twice. There are three possible Feyn-
man diagrams for this scattering process, as shown in Figure 25.2. Feynman diagrams are
a useful visual tool. In the path-integral formulation of quantum mechanics, the amplitude
for a process is obtained by adding the amplitudes of all the “paths” consistent with the
initial and final states. A Feynman diagram for a process is a representation of a specific
class of allowed paths.

In diagram (a), the incoming χ with momenta p1 and p2 join to form a φ particle with
momentum p1 + p2. This particle then decays into two χ with momenta p′1 and p′2. In
this process, all external particles – all the χ – are on the mass-shell. That is, they all
satisfy p2 = −m2 and thus represent physical particle states. How about the intermediate
φ particle? The momentum of this particle is p1 + p2, and, generally, (p1 + p2)

2 	= −M2.
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�Fig. 25.2 The three possible Feynman diagrams for the scattering of two χ particles. In each diagram
the intermediate particle is a φ particle.

The intermediate φ particle is typically not on the mass-shell; the intermediate states are not
physical particle states. If the initial state is carefully prepared, φ may be on the mass-shell:
the center-of-mass energy available would have to coincide precisely with Mc2. Diagram
(a) contributes to the scattering amplitude whether or not the φ particle is on the mass-shell.

Since all we measure are initial and final states, the interactions can occur in a more
subtle way. In particular, there are diagrams where the intermediate φ particle could never
be on the mass-shell! Consider diagram (b), where the incoming χ with momentum p1

turns into the outgoing χ with momentum p′1 plus an intermediate φ. This intermediate φ

could not possibly be physical – energy conservation rules out the production of physical
χ and φ particles from a single physical χ particle (why?). The intermediate particle joins
the incoming χ particle with momentum p2 to give the outgoing χ with momentum p′2.
Diagram (c) shows the last possibility: the χ with momentum p2 creates an intermediate
φ and the outgoing χ with momentum p′1. The intermediate particle joins the χ particle
with momentum p1 to give the outgoing χ with momentum p′2. In these three diagrams,
the intermediate momentum carried by the φ particle is given by

first diagram : p1 + p2,

second diagram : p1 − p′1,
third diagram : p2 − p′1. (25.4)

This completes step (1).

Given the three diagrams, we can now proceed to step (2), the calculation of the scattering
amplitude. This is the analog of equations (25.1) and (25.2). The Feynman rules of field
theory give

out〈 p′1, p′2 | p1, p2 〉in = −i (2π)4δ(p1 + p2 − p′1 − p′2) T (p1, p2; p′1, p′2), (25.5)

where

T (p1, p2; p′1, p′2) =− λ2
( 1

(p1 + p2)2 + M2
+ 1

(p1 − p′1)2 + M2

+ 1

(p2 − p′1)2 + M2

)
. (25.6)
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It is useful to define invariant quantities s, t , and u that represent the intermediate momenta
squared. We let

s = −(p1 + p2)
2, t = −(p1 − p′1)2, u = −(p2 − p′1)2. (25.7)

In the center-of-mass frame the total spatial momentum is zero, so p1 + p2 = (E1 +
E2, �0), where E1 and E2 are the center-of-mass energies of the incoming particles. Since
s is a Lorentz invariant, it can be evaluated in any frame. In the center-of-mass frame we
find s = (E1 + E2)

2. The invariant s thus gives the square of the total energy available
in the center-of-mass frame. Using the invariants s, t , and u the scattering amplitude is
rewritten as

T (s, t, u) = λ2
(

1

s − M2
+ 1

t − M2
+ 1

u − M2

)
. (25.8)

Each denominator is of the form (p2 + M2), where p is the momentum carried by the
intermediate particle. When the intermediate particle is on the mass-shell, the denominators
vanish, and we get a pole in the amplitude. In this way, the poles of scattering amplitudes
tell us about particles in the theory: the corresponding values of −p2 give the particle
masses. Thus, for example, if we only knew about the χ particles of mass m, but were
given the scattering amplitude above, we could deduce that there is an intermediate particle
with mass M . This completes step (2).

The scattering amplitude, while very interesting, is not an observable. It is used to calcu-
late the scattering cross section σ , a quantity with the dimension of area. In the problem
we considered above, the cross section is the effective area that a target χ particle presents
to an incoming beam of χ particles. If the incoming beam has a cross sectional area A,
the probability P that any of the beam particles will interact with the target is σ/A. Total
cross sections can be refined into differential cross sections dσ , giving, for example, the
effective area for scattering particles into a small solid angle d� in some specified direc-
tion. The differential cross section is the typical quantity that theorists must calculate and
experimentalists must measure. The Standard Model has largely been tested by comparing
predicted cross sections with measured cross sections.

Differential cross sections are calculated using field theory methods. They are integrals
of |T |2 (times suitable kinematic factors) over the available phase space. For the example
we have considered, the result is

dσ

d�
= 1

4s

∣∣∣ T

4π

∣∣∣2. (25.9)

This completes step (3).

25.3 String interactions and global world-sheets

Strings can interact in a rather limited number of ways. Two possible interactions of open
strings go as follows: an open string can split into two open strings, and two open strings
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�Fig. 25.3 The basic open string interaction, in which a string of energy E splits into strings of energies
E1 and E2. The interaction occurs at τ = τQ.

can join to form a single open string. String diagrams are representations of the string
interactions; they are analogous to the Feynman diagrams of particle physics. The focus
of the string diagram is the (τ, σ ) world-sheet. The string diagram does not represent the
spacetime surface traced by the string. In a string diagram the world-sheets of free strings
are put together to form the world-sheet of an interaction process.

Interactions must be analyzed using a specific gauge, since gauge choices affect the world-
sheet description. Let us recall how world-sheets look in the static gauge. In this gauge

X0(τ, σ ) = cτ , (25.10)

and strings are parameterized using the energy E that they carry:

σ ∈ [0, E/T0
] = [ 0, 2πα′E ], (25.11)

where T0 is the string tension. Since energy must be conserved and the energy of a string
determines its σ length, the interactions must conserve the total σ length. In Figure 25.3 we
show a string of energy E splitting into two strings with energies E1 and E2. Note that the
incoming string with energy E is semi-infinite towards the past, while the outgoing strings
are semi-infinite towards the future. In the far past τ →−∞ there is only one string; in the
far future τ →+∞ there are two strings. The interaction point Q is also shown. It occurs
at some value τQ of τ . At each τ < τQ there is just one string, and at each τ > τQ there
are two strings.

Somewhat more complicated processes are also possible. Two strings, with energies E1 and
E2, can come together to form a single open string, of energy E1 + E2. This intermediate
string can then split into two open strings, of energies E3 and E4 with E3 + E4 = E1 + E2

(see Figure 25.4). This string diagram can be used to calculate a string amplitude regardless
of the types of particles that are represented by the quantum states of the strings. For
example, the initial quantum states of the two incoming strings could be two tachyons or
two photons or a photon and a tachyon or any other two particle states in the quantum string
spectrum. The same is true for the outgoing states. The string diagrams are universal; the
information about the specific particles only enters in step (2) of the amplitude calculation.
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�Fig. 25.4 Incoming open strings one and two join to form an intermediate open string that then
splits into strings three and four.

We now consider string diagrams in the light-cone gauge. In this gauge we have ((9.62)
with β = 2)

X+ = 2α′ p+τ, p+ = π Pτ+. (25.12)

The second equation, in particular, implies that σ ∈ [0, π ] for every string. The above
equations are not suitable to deal with interactions. If every string has σ ∈ [0, π ], then
σ length cannot be conserved in interactions, and it is not clear anymore how to draw
string diagrams! There is an additional difficulty. Imagine that we have two open strings
(strings one and two) which interact to form a single open string (string three). We select
a Lorentz frame, use light-cone coordinates, and, with the above version of the light-cone
gauge choice applied to each of the three strings, we have

X+
1 = 2α′ p+1 τ1,

X+
2 = 2α′ p+2 τ2,

X+
3 = 2α′ p+3 τ3 . (25.13)

Here the subscripts label the strings. The interaction is a particular event in spacetime,
and the three strings must agree on the value of the physical time X+ at which it occurs.
Moreover, since we are to combine the three world-sheets into a single world-sheet, with a
single τ coordinate, the interaction point must have a unique τ . This value of τ is generi-
cally nonzero, so the above equations, with different values of p+i , will in general not give
X+

1 = X+
2 = X+

3 .
How can we modify our light-cone setup in order to deal with interactions? Recall the

more general version of equation (9.62), which applies for arbitrary β (see the remarks
below (9.34)):

X+ = βα′ p+τ, p+ = 2π

β
P+

μ . (25.14)

Formerly, the choice β = 2 was taken in order to get open strings with σ ∈ [0, π ]. The
idea now is to choose β so as to eliminate the p+ dependence from the relation between
X+ and τ . If we choose

β = 1

α′ p+
, (25.15)

then we will have the gauge
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�Fig. 25.5 The global world-sheet for a splitting interaction in the light-cone gauge. The conservation
of p+ implies that the total width of the strip is constant in τ .

X+ = τ, (25.16)

which makes it possible to use a single τ for all interacting strings. For the case of the three
strings just discussed, if we call τ0 the interaction time, then we have

X+
1 = τ, τ ≤ τ0,

X+
2 = τ, τ ≥ τ0,

X+
3 = τ, τ ≥ τ0. (25.17)

String one ceases to exist at τ0, at which time strings two and three are born. Note that
X+

2 = X+
3 when τ ≥ τ0. At τ = τ0 the three X+ agree. Along with (25.16), each string is

parameterized by

σ ∈
[

0,
2π

β

]
= [ 0, 2πα′ p+], (25.18)

where p+ is the momentum carried by the string. Had we used this convention to quan-
tize the string in our earlier work, unwieldy factors would have appeared in many of the
equations.

Now we can represent the splitting of string one into strings two and three using a single
diagram in the (τ, σ ) plane, as shown in Figure 25.5. The interaction looks like a constant
width infinite strip with a cut. The figure is described by two parameters: the width of string
one and the width of either string two or string three. Where we start the cut on an infinite
strip is just a matter of convention, so the interaction time τ0 is not really a parameter.

25.4 World-sheets as Riemann surfaces

We will now show that it is reasonable to view string world-sheets as Riemann surfaces.
Riemann surfaces are two-dimensional surfaces. The simplest Riemann surface is the com-
plex plane C. This is the conventional (x, y) plane, but with the understanding that the
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complex coordinate z ≡ x + iy is used to describe points on the plane. Subregions of
the complex plane are also Riemann surfaces. For example, the upper half-plane H, defined
to include all points z with positive imaginary part,  (z) > 0, is an important Riemann sur-
face. A closely related surface is the bordered upper half-plane H̄, which includes all points
z with  (z) ≥ 0 and the “point at infinity” (which is discussed in Section 25.6). An annu-
lus is also a Riemann surface. More complicated Riemann surfaces include the Riemann
sphere Ĉ and the torus. We will have the chance to study all of these in some detail, either
in this chapter or in the following one.

In this and in several of the following sections the level of mathematical rigor will be
higher than before. Some familiarity with complex variables will be helpful. The definition
of a Riemann surface (to be given below) is included for completeness and will not be
strictly necessary for the material that follows.

The definition of a Riemann surface requires the concept of an analytic function. A func-
tion f (z) of the complex variable z is analytic at z0 if the derivative f ′(z) exists in some
neighborhood of z0. If we write f (z) = u(x, y)+ iv(x, y), then the functions u and v

satisfy the Cauchy–Riemann equations

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
, (25.19)

over the domain of analyticity. A Riemann surface is a two-dimensional real manifold
equipped with complex charts: homeomorphisms zα which take open sets Uα into open
subsets of the complex plane C (a homeomorphism is a one-to-one continuous map with a
continuous inverse). Here α is a label for the open sets Uα that cover the manifold. Over
the intersections Uα ∩Uβ , the transition functions zα ◦ z−1

β must be analytic.
Two Riemann surfaces are considered equivalent if there is a continuous one-to-one and

onto mapping relating them that is analytic. This means that the map, expressed in terms
of the charts, is an analytic function from a subset of C to some subset of C. An analytic
map is conformal: angles between arcs meeting at a point are preserved under the map,
except possibly at points where the derivative of the map vanishes (we will see examples
of this soon). Even though angles are preserved locally, the overall shape of the surface can
change quite dramatically under a conformal map. In this and in the next chapter we will
take conformal to mean analytic and one-to-one. Accordingly, the existence of a conformal
map taking one Riemann surface onto another Riemann surface implies the equivalence of
the two Riemann surfaces.

Since conformally related surfaces are the same Riemann surface, the concept of distance
cannot be defined intrinsically. Consider the complex z-plane and two points P1 and P2,
with coordinates z1 and z2, respectively. The natural definition of distance between two
points in C is given by the absolute value |z1 − z2| of the difference of coordinates. Now
map the z-plane into the w-plane via w = 2z. The two planes are the same Riemann
surface. After the conformal map, the images of P1 and P2 (still called P1 and P2 in the w-
plane), have coordinates w1 = 2z1, and w2 = 2z2. The distance between P1 and P2 in the
w-plane is thus |w1 − w2| = 2|z1 − z2|. The distance is doubled. Since both planes are the
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�Fig. 25.6 An open string freely propagating from τ = −∞ to τ = +∞. The string diagram is a strip of
constant width 2πα′p+. The vertical dashed segments are the open strings.

same Riemann surface, we are at a loss when asked what is the distance between the points
P1 and P2. Conformal maps locally scale distances. In fact, locally, lengths measured in all
directions are scaled by the same factor. From w = f (z) we find dw = f ′(z)dz. It follows
that at any point z0 we have |dw| = | f ′(z0)||dz|. Since |dw| is the length of the image of
the vector dz, we see that, locally, all lengths are scaled by the same factor | f ′(z0)|.

Perhaps this reminds you of a metric whose scale turned out to be irrelevant. Indeed,
a world-sheet metric hαβ enters in the Polyakov action (24.70), and Weyl transformations
hαβ → �2hαβ leave the string action invariant (see (24.91)). Weyl transformations scale all
metric components by the same factor at each point on the world-sheet. As a result, locally,
all lengths are scaled in the same way, just as a conformal map does for Riemann surfaces.
The invariance of the string action under local scale transformations of the world-sheet
metric indicates that the scale of lengths on the world-sheet is not physical. Since the scale
of lengths is not well defined on Riemann surfaces, this suggests that viewing world-sheets
as Riemann surfaces is natural.

While the scale of distances behaves similarly, there is one difference. The world-sheet
metric can be set to be proportional to the two-dimensional Minkowski metric ηαβ , which
defines distances as −ds2 = −dτ 2 + dσ 2. On the other hand, on the complex plane the
natural metric is Euclidean: ds2 = |dz|2 = dx2 + dy2. Because of this sign difference,
we cannot really prove that world-sheets can be treated as Riemann surfaces. But nothing
stops us from trying to treat them as such, especially because it is known that much about
a Minkowski theory can be learned from its Euclidean version. It turns out that thinking of
world-sheets as Riemann surfaces leads to a consistent picture of string interactions.

In order to view world-sheets as Riemann surfaces, our first task is to find suitable
complex coordinates. We assemble τ and σ into a complex coordinate w as follows:

w = τ + iσ. (25.20)

The simplest world-sheet is that of a freely propagating open string. As shown in
Figure 25.6, the world-sheet for a string with light-cone momentum p+ is the strip
0 ≤  (w) ≤ 2πα′ p+ ( (w) denotes the imaginary part of w and �(w) denotes the real
part of w). The strings are the vertical segments of constant τ . Since conformal maps do
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�Fig. 25.7 Left: the infinite strip is mapped into H̄ via the exponential map. The infinite past is at z = 0,
and the infinite future is at z = ∞. The open strings are the dashed lines. Right: H̄ is
mapped onto the unit η disk via a linear fractional transformation. The infinite past is at
η = 1, and the infinite future is at η = −1.

not change the physics, it is a good idea to familiarize ourselves with pictures that are
conformally equivalent to the strip.

Let us see what happens to the strip when we map it conformally using the exponential
function

z = exp

(
w

2α′ p+

)
. (25.21)

(Recall that exp(u + iv) = exp(u) (cos v + i sin v ).) The result of this mapping is shown
in the left part of Figure 25.7. Note that the full string in the infinite past limit is mapped
to a point! Indeed, for w = −τ0 + iσ , with τ0 →∞ we have

z = exp
(
− τ0

2α′ p+
)

exp
(

i
σ

2α′ p+
)
−→ 0, (25.22)

for all values of σ . As shown in the figure, the strings that approach the infinite past
approach the point z = 0. Note also another curious fact. The two boundaries of the strip
are mapped to the real line. The boundary σ = 0 is mapped to the positive half of the real
line, while the boundary σ = 2πα′ p+ is mapped to the negative half of the real line. The
angle between the boundaries at the infinite past has been changed. Think of the bound-
aries as lines emerging from the past. While such boundaries make zero angle in the strip
picture, they make an angle of 180◦ in the z-picture. The strip has been mapped into H̄, and
the strings appear as semicircles centered at z = 0. The string at τ = 0 is the unit semi-
circle. The strings in the far future are very large semicircles on the z-plane. They grow
without bound as the strings approach the infinite future.

There is another useful presentation for the Riemann surface of a free open string. We
can map H̄ onto the unit disk in the η plane via the transformation

η = 1 + i z

1 − i z
. (25.23)
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This mapping, illustrated in the right side of Figure 25.7, takes the real line  (z) = 0 into
the unit circle. Indeed, for z = x ∈ R we have

|η|2 = ηη∗ = 1 + i x

1 − i x
· 1 − i x

1 + i x
= 1. (25.24)

This time the infinite past z = 0 is mapped to η = 1, and the infinite future z = ∞ is
mapped to η = −1. The two boundary components are the unit semicircles BAF and CDE.

We must draw one important lesson from the above maps. When the strip is mapped
onto a bounded region, the complete strings in the infinite past and in the infinite future
are mapped into two points on the boundary of the bounded region. More precisely, these
points are limits that are not attained for any finite time string, so topologically these points
are to be removed from the boundary of the bounded region: they are punctures. We say that
strings are inserted at the punctures. Our conformal maps have shown that the infinite strip
is conformally equivalent to a disk, twice-punctured on the boundary. The punctures break
the boundary of the unit disk into two disjoint components. In the mapping of the strip to
H̄, the point z = 0 is not attained for any string in the finite past. The far future on the strip
is mapped to large z, and it will become clear in Section 25.6 that the “point at infinity” is
not attained either. Therefore, the infinite strip maps onto H̄ with two points removed.

A free closed string can be represented by the string diagram in Figure 25.6, with
the understanding that the top and bottom edges of the infinite strip are identified. More
precisely, we identify points on the two edges that have the same value of �(τ ). This
identification results in an infinite cylinder of circumference 2πα′ p+. The vertical dashed
segments become closed strings.

Quick calculation 25.1 Show that

z = exp
( w

α′ p+
)

(25.25)

maps the free closed string world-sheet to the full z-plane with the origin removed. Verify
that the vertical dashed segments that represent closed strings in the w-plane become closed
circles on the z-plane.

Note that under the map (25.25) the closed string in the infinite past is sent to z = 0, while
the closed strings that approach the infinite future are mapped to larger and larger circles
centered at the origin. The closed string world-sheet is the complex plane punctured at
the origin.

25.5 Schwarz−Christoffel map and three-string interaction

Now that we have examined some conformal maps of the world-sheet of a freely propa-
gating open string, we turn to the case of interacting strings. The simplest interaction is
one where an open string breaks into two open strings, as shown in Figure 25.5. Following
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�Fig. 25.8 The Schwarz–Christoffel map w(z) takes H̄ onto the polygon. Shown are the vertices Pi, and
the turning angles αi. In the (bordered) upper half-plane, shown to the right, the xi are
mapped to the vertices of the polygon.

the intuition developed above, this surface should be conformally equivalent to a disk with
three punctures on the boundary. In fact, the mapping theorem of Riemann guarantees
that this interacting world-sheet can be conformally mapped into H̄, with the open string
boundaries mapping into the real line.

Why do we want to map the world-sheet to H̄? H̄ gives us a canonical presentation that
will allow us to compare different Riemann surfaces. This comparison will play a major
role in the study of interactions that involve more than three strings. In mapping the string
diagram to H̄ we fulfill step (1) of the list indicated at the beginning of Section 25.2.

It is not so easy to map the world-sheet in Figure 25.5 onto H̄. This world-sheet, how-
ever, can be viewed as the limit of a polygon, and there is a well established method for
constructing the map that takes a polygon onto H̄. The map is conformal, except at the cor-
ners of the polygon. In general, one cannot write the conformal map explicitly, but one can
always write a differential equation for the mapping function. The maps relating polygons
and H̄ are called Schwarz–Christoffel maps.

Suppose we have a polygon in the complex w-plane. Let the polygon have n sides and
therefore n vertices, denoted by P1, P2, . . ., Pn . The Schwarz–Christoffel map w(z) takes
z ∈ H̄ into the polygon. The situation is illustrated in Figure 25.8. We choose the boundary
of the polygon to be oriented so that the interior of the polygon lies to the left of the
oriented boundary. The mapping takes the real line in the z-plane, oriented in the direction
of increasing values, into the oriented polygon boundary.

The polygon has turning angles αi at the vertices Pi . A turning angle is positive if the
oriented side emerging from the vertex is obtained by counterclockwise rotation from the
extension of the side that enters the vertex. By definition, we restrict turning angles to
the interval [−π, π]

− π ≤ αi ≤ π. (25.26)

A turning angle of value near to but smaller than π represents a corner where the poly-
gon covers only a small sector. On the other hand, a turning angle of value near to but
larger than −π represents a corner where the polygon fails to cover a small sector. Turning
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angles of value π or −π give degenerate polygons. In fact light-cone string diagrams are
degenerate polygons. The angles π and −π give completely different types of corners.

We claim that the differential equation for the mapping function w(z) is

dw

dz
= A(z − x1)

− α1
π (z − x2)

− α2
π · · · (z − xn−1)

− αn−1
π . (25.27)

Here the xi are a collection of ordered real numbers:

x1 < x2 < · · · < xn−1, (25.28)

and the map z(w) takes the vertices to those points:

z(Pi ) = xi , i = 1, 2, . . ., n − 1. (25.29)

Note that the turning angle αn does not appear in the differential equation (25.27). In fact,
the map constructed from (25.27) will take Pn to z = ∞:

z(Pn) = ∞. (25.30)

Since a polygon is closed, the turning angles must sum to 2π :

α1 + α2 + · · · + αn = 2π. (25.31)

Thus αn is determined by the other turning angles. This is why the map in (25.27) can
properly handle the “missing” vertex (see Problem 25.6 for details).

Now we will explain why (25.27) is the correct differential equation for the Schwarz–
Christoffel map. We do so by taking the argument of both sides of the equation. The
argument of a complex number z = r exp(iθ), with r real, is defined as arg(z) = θ . Since
angles are multivalued, the arg function has an additive ambiguity, we can add or sub-
tract any multiple of 2π . The function arg satisfies arg(z1z2) = arg(z1)+ arg(z2) and
arg(z1/z2) = arg(z1)− arg(z2). Taking the argument of both sides of (25.27) and using
these properties, we find

arg(dw)− arg(dz) = arg A + arg(z − x1)
− α1

π + · · · + arg(z − xn−1)
− αn−1

π . (25.32)

We fix our conventions by replacing the arg functions on the right-hand side with the
principal value Arg, which satisfies

− π < Arg(z) ≤ π. (25.33)

Arg of a positive real number is zero, while Arg of a negative real number is π . If we define
zβ as the principal branch zβ ≡ exp[β (ln |z| + iArg(z)) ], we then have

Arg(zβ) = β Arg(z), for |β| ≤ 1. (25.34)

The condition |β| ≤ 1 guarantees that the right-hand side satisfies the inequalities appro-
priate for Arg of a complex number. Since |αi/π | ≤ 1, we can use (25.34) to simplify
(25.32):

arg(dw)− arg(dz) = Arg A − α1

π
Arg(z − x1)− · · · − αn−1

π
Arg(z − xn−1) . (25.35)
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�Fig. 25.9 The mapping of a three-string interaction into the upper half-plane. The string diagram is a
degenerate polygon with vertices P1, P2, Q, and P3. The interaction point Q is mapped to
the point z = x∗. The vertex P1 is mapped to infinity.

When z = x is on the real line and dz = dx > 0, equation (25.35) gives

arg(dw) = ArgA − α1

π
Arg(x − x1)− · · · − αn−1

π
Arg(x − xn−1) . (25.36)

Since the real line in the z-plane maps to the boundary of the polygon, arg(dw) is the
angle that an edge makes with respect to the horizontal axis. As long as x varies with-
out crossing a turning point xi , nothing changes on the right-hand side: the arguments of
the positive quantities remain equal to zero, and the arguments of the negative quantities
remain equal to π . This generates a straight edge in the w-plane. On the other hand, as x
goes from the left side to the right side of a turning point xi , Arg(x − xi ) changes from
π to 0, a total change of (−π). The right-hand side of the above equation then changes
by (−αi/π)(−π) = αi . This means that dw along the new edge will have an argument
larger by αi , which is exactly what is supposed to happen. This confirms our claim that the
differential equation does its job. Given a specific polygon, the turning points xi as well as
the constant A have to be calculated. These quantities depend on the length of the sides of
the polygon. We will first apply the Schwarz–Christoffel transformation to the case of an
open string splitting in two, as shown in Figure 25.9. This world-sheet can be viewed as
a degenerate polygon with four vertices. If we orient the boundary of the polygon starting
with the lower horizontal line, the first vertex we find is P2, the second string in the infinite
future. Here we have a turning angle of +π . The next edge travels back to the interaction
point Q. This is the second vertex, and here the turning angle is −π . The next edge goes
to the infinite future P3 of the third string. Here we find our third vertex, where we have a
turning angle of +π . Finally, the fourth vertex is P1, the infinite past of string one. Here
the turning angle is +π . In summary, we have

turning angle at P2 = α2 = +π ,

turning angle at Q = αQ = −π,

turning angle at P3 = α3 = +π,

turning angle at P1 = α1 = +π. (25.37)

Note that the turning angles add up to 2π , as expected from (25.31). The turning angles are
perhaps easier to appreciate in Figure 25.10, where the world-sheet is shown schematically
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�Fig. 25.10 A nondegenerate version of the degenerate polygon shown on the left side of Figure 25.9.
In the degenerate limit, the small turning angles above and below Q disappear.

as an almost degenerate polygon by reducing the magnitude of the turning angles from the
value of π and adding two small turning angles right above and right below Q.

We will map to H̄ by requiring that P2 go to z = −1, P3 go to z = +1, and P1 go to
z = ∞. Having one vertex at infinity is implicit in the differential equation we wrote, and
it simplifies matters. You may ask: how do we know that we can map the other two points,
P2 and P3, to the chosen values of z? The answer is based on a result obtained in the
next section: three points on the real line can be mapped to any specific coordinates while
preserving H̄ and the ordering of the points. These three points are P2, P3, and P1, and we
have chosen to map them to −1,+1, and ∞. We cannot, however, specify the coordinate
x∗ of the last vertex Q. As shown in the right part of Figure 25.9, x∗ must lie between −1
and +1, since the vertex Q lies in between the vertices P2 and P3 of the oriented polygon.

We now proceed to write the differential equation for this map, following (25.27). With
ordered turning points z = −1, x∗,+1 and turning angles α2, αQ, α3 we write

dw

dz
= A(z − (−1))−

α2
π (z − x∗)−

αQ
π (z − 1)−

α3
π . (25.38)

Using the values for the angles from (25.37), we obtain

dw

dz
= A

(z − x∗)
(z + 1)(z − 1)

. (25.39)

For z real and greater than one, dw/dz must be real and negative, since the image of
z > 1 is the horizontal line between P3 and P1. Therefore, we conclude that A is real and
negative. In order to integrate this equation, we decompose the right-hand side using partial
fractions:

dw

dz
= A

2

(1 + x∗

z + 1
+ 1 − x∗

z − 1

)
. (25.40)

Integrating, we obtain

w = A

2
(1 + x∗) ln (z + 1)+ A

2
(1 − x∗) ln (z − 1). (25.41)

Here we define the logarithms by ln(z) = ln |z| + iArg(z), with the logarithm of a real
number taken to be real. We still need to determine the constants A and x∗ in terms of the
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parameters p+2 and p+3 of the string diagram. We need σ =  (w) to increase by 2πα′ p+2
as z crosses z = −1, the image of P2. Since  (ln z) = Arg(z), and A is real, we have

σ =  (w) = A

2
(1 + x∗)Arg(z + 1)+ A

2
(1 − x∗)Arg(z − 1). (25.42)

As z goes from the left to the right of −1, Arg(z + 1) goes from π to 0, and thus

�σ = A

2
(1 + x∗)(0 − (π)) = 2πα′ p+2 . (25.43)

This gives

A

2
(1 + x∗) = −2α′ p+2 . (25.44)

Similarly, the behavior near z = 1 requires

A

2
(1 − x∗) = −2α′ p+3 . (25.45)

With these two equations, back in (25.41) we have

w = −2α′ p+2 ln (z + 1)− 2α′ p+3 ln (z − 1). (25.46)

This is the equation for the map, written in terms of known parameters.

Quick calculation 25.2 Convince yourself that the real axis of the w-plane coincides with
the top edge of the strip on the left side of Figure 25.9.

In the future, we will be able to write equations like (25.46) by inspection. The rules are
clear. We need a logarithm for each of the strings, except for the one whose turning point
is mapped to infinity in the upper half-plane. The prefactor of each of these logarithms is
related to the width of the corresponding string – it equals (−2α′ p+) when σ increases as
we cross the turning point. We will use this understanding to write the map for a four-string
interaction in Section 25.7.

The map (25.46) was written without calculating x∗. We can find x∗ by dividing
equations (25.44) and (25.45):

1 + x∗

1 − x∗
= p+2

p+3
−→ x∗ = p+2 − p+3

p+2 + p+3
. (25.47)

If p+2 = p+3 , then x∗ = 0, as we would expect, since Q is then half-way between P2 and
P3. If p+2 � p+3 , the figure leads us to believe that, conformally speaking, Q is getting
close to P3. This is indeed the case, for then x∗ → 1. On the other hand, if p+3 � p+2 then
x∗ → −1, and indeed Q is getting closer to P2.

The value of x∗ can also be calculated from (25.46). For this, note that dw/dz = 0 at
z = x∗, because at Q, the derivative dw/dz goes from negative to positive (τ reaches a
local minimum). Using (25.46) we find that

dw

dz
= − 2α′ p+2

x∗ + 1
− 2α′ p+3

x∗ − 1
= 0, (25.48)
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�Fig. 25.11 Three-string interaction as seen in H̄. Shown as dashed lines are the images of the (vertical)
strings in Figure 25.9. The string at the interaction time is shown as a solid line.

which leads to the same value for x∗. It is interesting to look at the strings in the z-plane,
as shown in Figure 25.11. Observe the strings converging into z = −1 and z = +1. The
strings arriving from P1 at z = ∞ eventually reach the interaction point. The string at the
interaction time is shown as a solid line. Its endpoints are to the left and to the right of P2

and P3, respectively, and one of its interior points touches the boundary at x∗.

Quick calculation 25.3 Consider the three-string interaction when p+2 = p+3 , so that
x∗ = 0. Check that �(w(x∗))= 0. Show that the endpoints of the string at the interaction
time lie at z = ±√2.

The amplitude for the three-string interaction considered here includes the open string
coupling go as a multiplicative factor (g2

o ∼ g, where g is the closed string coupling). This
is analogous to the amplitude (25.2), which also includes the coupling constant.

25.6 Moduli spaces of Riemann surfaces

Since surfaces related by a conformal map are, by definition, the same Riemann surface,
it is important to understand when we can map a pair of surfaces into each other. To make
this question more concrete, consider a simple example. Take the upper half-plane H̄ with
one puncture at a position x on the real axis. Can this configuration be mapped to the upper
half-plane H̄ with a puncture x ′ 	= x? Are these two the same Riemann surface? They are.
Use the coordinate z for the first H̄ and the coordinate z′ for the second H̄. Then take

z′ = z + (x ′ − x). (25.49)

This conformal map (z′ is an analytic function of z) takes the puncture at z = x into
the puncture at z′ = x ′. This map also preserves H̄ since  (z′) =  (z). The upshot of
this example is that H̄ with one puncture on the boundary is a Riemann surface without
a parameter. Whichever point is chosen, the Riemann surface is the same. We call the
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�Fig. 25.12 A map from the plane to the sphere. The sphere is resting on the plane with the south pole
S at the origin. For each point P in the plane we associate the point P′ on the sphere. The
point at infinity maps to the north pole N.

parameters of Riemann surfaces moduli, or modulus, if there is just one. Thus, H̄ with one
puncture on the real axis has no moduli.

As we will see here, and in the exercises at the end of this chapter, the story is more
interesting when we add additional punctures on the real line. H̄ with two punctures still has
no moduli! The positions of the punctures can be changed at will. H̄ with three punctures
still has no continuous modulus, but it does have one discrete modulus, which describes
the ordering of the punctures on the boundary of H̄. Finally, H̄ with four punctures has one
continuous modulus as well as a discrete one.

We begin our analysis with the complex plane C, extended to define the Riemann sphere.
We will then return to the case of H̄, which is immediately applicable to open string inter-
actions. Our analysis of the Riemann sphere will be needed in the following chapter, where
we discuss closed strings.

The complex plane C can be extended to construct the Riemann sphere Ĉ. Imagine a
sphere sitting atop the complex plane, such that the south pole coincides with the origin
and the north pole is directly above it (see Figure 25.12). Every point P on the complex
plane can be matched to a point P ′ on the sphere using a stereographic projection: P ′ is the
intersection of the sphere with the line that connects P to the north pole. Clearly, this is a
one-to-one map. As we move out on the complex plane, the points on the sphere approach
the north pole. The image of C under the map is the sphere without its north pole – the
sphere minus one point. To build the complete sphere we must extend the complex plane
by the inclusion of a “point at infinity,” a point {∞}whose image under the map is declared
to be the north pole. Via the stereographic map, the extended complex plane C ∪ {∞}
is equivalent to the Riemann sphere Ĉ. This is why the Riemann sphere is sometimes
called the extended complex plane. In practice, to work with a Riemann sphere, we use the
complex plane with the understanding that z = ∞ is a point, to be treated just like every
finite point.

The Riemann sphere Ĉ is relevant to closed strings. Consider the map (25.25) from the
infinite cylinder to the complex z-plane. There is some asymmetry here: in the cylinder
picture the closed strings in the infinite past and infinite future appear symmetrically, but
on the plane the first is seen as a puncture at z = 0, while the second is mapped to an infinite
circle. To restore the symmetry the solution is clear: the infinite circle on the plane must be
viewed as a single puncture. We therefore say that the world-sheet of a free closed string
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is the extended complex plane C ∪ {∞} with the point z = 0 removed and the point at
infinity removed. Equivalently, the world-sheet of a free closed string is a Riemann sphere
Ĉ with two punctures. The punctures are z = 0 and the point at infinity; both are on the
same footing in Ĉ.

What is the most general analytic one-to-one map from Ĉ to Ĉ? Mathematicians have
shown that it is a linear fractional transformation. Consider two copies of Ĉ, with
coordinates z and w. A linear fractional transformation takes the form

w = az + b

cz + d
, (25.50)

where a, b, c, and d are complex numbers. Note that the point at infinity in the z-plane is
mapped to w = a/c, which is typically a finite number. This is consistent with our view
that in Ĉ the point at infinity is a generic point. For the map to be one-to-one, we must, in
addition, require

ad − bc 	= 0. (25.51)

If a = b = 0, for example, this condition is violated, and (25.50) gives w = 0 for all z. To
show that (25.51) guarantees a one-to-one map, we must show that w(z1) = w(z2) implies
z1 = z2. Using (25.50), the equality w(z1) = w(z2) gives

az1 + b

cz1 + d
= az2 + b

cz2 + d
. (25.52)

If cz1 + d = 0 the left-hand side is infinite, so the right-hand side must be infinite as well.
This requires cz2 + d = 0, so then z1 = z2. If the denominators do not vanish, we can
cross multiply, and, after cancelling common terms, we find:

(ad − bc)z1 = (ad − bc)z2, (25.53)

which, on account of (25.51), implies z1 = z2. The linear fractional map is an invertible
transformation. We can easily solve for z in terms of w to get

z = dw − b

−cw + a
. (25.54)

This is also a linear fractional map, and it is also one-to-one, as you can see by examining
the condition in (25.51). The map in (25.50) can be rewritten, after cross multiplication, in
the form

Awz + Bw + Cz + D = 0, (25.55)

for complex constants A, B, C , and D. This is just another form that should be recognized
as defining a linear fractional transformation. The symmetric role of w and z is manifest
here.

Quick calculation 25.4 What is the condition on the coefficients A, B, C , and D for
(25.55) to be a linear fractional transformation?
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�Fig. 25.13 Three punctures P1, P2, and P3 with coordinates z1, z2, and z3, respectively, can be
conformally mapped to arbitrary positions w1, w2, and w3 in the w-plane.

How many parameters does the map (25.50) have? Although the map is written using four
complex numbers, a, b, c, and d, there are only three parameters. If we multiply a, b, c,
and d by the same complex number α 	= 0, the map in (25.50) will not change since the
constant factor appears both in the numerator and in the denominator. Since ad − bc 	= 0,
we can rescale the parameters a, b, c, and d by dividing them by

√
ad − bc. The new,

rescaled parameters satisfy

ad − bc = 1. (25.56)

It is now clear that we have only three adjustable complex parameters: given a, b, and c,
for example, the equation fixes d.

Having three complex parameters, we might expect that a linear fractional transfor-
mation can map a z-sphere with three (different) punctures at z1, z2, and z3, into a
w-sphere where the three punctures go to arbitrary (different) coordinates w1, w2, and
w3 (see Figure 25.13). This is indeed the case, and it shows that Ĉ with three punctures is
a Riemann surface without moduli.

Let us now construct the map. We write

(z − z1) ( · · · ) = (w − w1) ( · · · ), (25.57)

because we want that w = w1 when z = z1. The dots indicate additional multiplicative
factors yet to be included. Clearly z1 will go to w1 since, regardless of the multiplicative
factors, both sides of the equation are equal if z = z1 and w = w1. Next we want w = w2

when z = z2. To achieve this, we put the factors w − w2 and z − z2 in the denominators:

z − z1

z − z2
( · · · ) = w − w1

w − w2
( · · · ). (25.58)

If w = w2, the equality requires z = z2. In order to incorporate the condition that z = z3

when w = w3, we simply include numerical factors that make each side equal to one when
this happens:

z − z1

z − z2

z3 − z2

z3 − z1
= w − w1

w − w2

w3 − w2

w3 − w1
. (25.59)

The above equation is our final result for the map that takes z1, z2, and z3 to w1, w2, and
w3, respectively. It is a linear fractional transformation: by cross multiplying, we find that
(25.59) is in the form of (25.55). Spheres with three punctures have no moduli because all
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�Fig. 25.14 Four punctures in the complex z-plane can be mapped uniquely into the w-plane by
requiring that P1, P3, and P4 go to w = 0, 1, and ∞, respectively. In this canonical
presentation, the remaining puncture P2 will go to some value w = λ.

such spheres are conformally equivalent; they can be mapped into each other using (25.59).
In Problem 25.1 you will show that (25.59) is the unique map of Ĉ taking an ordered set
of three different points to another ordered set of three different points.

Consider now Ĉ with four punctures at z1, z2, z3, and z4, and another copy of Ĉ with
four punctures at w1, w2, w3, and w4. Think of the punctures as labeled punctures, with
labels 1, 2, 3, and 4. Can these copies of Ĉ be mapped into each other with the punctures
going into each other, that is, with zi → wi , for i = 1, 2, 3, and 4? In general the answer
is no. To map the four punctures into each other, we must certainly map z1, z2, and z3 into
w1, w2, and w3. This requirement fixes the map (25.59), giving us the unique map capable
of mapping the punctures. Being unique, we cannot incorporate an additional condition,
and z4 will go to some point that we cannot prescribe. Of course, the map may happen to
send z4 to the prescribed w4, but that would be accidental, since z4 and w4 were not used
to construct the map. Therefore, spheres with four labeled punctures are not necessarily
conformally equivalent.

Suppose someone hands you a z-sphere and a z′-sphere, each with four punctures P1,
P2, P3, and P4. How do you decide whether they are conformally equivalent? To find out,
first take each sphere and map P1, P3, and P4 to 0, 1, and∞. This requires linear fractional
maps w = f (z) and w′ = f ′(z′). The question of conformal equivalence of the z- and z′-
spheres is now the question of conformal equivalence of the w- and w′-spheres. Now look
at P2. Suppose P2 is sent to w = λ in the w sphere and to w′ = λ′ in the w′-sphere. The
four-punctured w- and w′-spheres are conformally equivalent if and only if λ = λ′. The
only conformal map w → w′ preserving the punctures P1, P3, and P4 (set at 0, 1, and ∞
in both) is the identity map. If the P2 punctures are to go into each other, their coordinates
must be the same. This establishes the claim. In the canonical presentation, where three
punctures are sent to 0, 1, and ∞, the position λ of the last puncture is therefore a modulus
of the four-punctured sphere (see Figure 25.14). Since this position is a complex number,
we have a complex modulus, or equivalently, two real moduli. These moduli are continuous
parameters, since the position of the fourth puncture can be varied continuously.
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The complex modulus λ which represents the position of a puncture can take all complex
values except for 0, 1, and ∞, since in those cases two of the punctures would coincide.
Shifting the viewpoint, consider a new Riemann sphere, with coordinate λ, and with the
points 0, 1, and ∞ removed. To each point λ0 of this sphere we associate a sphere with
punctures at 0, 1,∞ and λ0. With this association, two different points in the λ-sphere
represent conformally inequivalent four-punctured spheres. Finally, every four-punctured
sphere is associated with a point on the λ-sphere. We call the λ-sphere, with 0, 1, and ∞
removed, the moduli space M0,4 of four-punctured spheres. The zero tells us that we are
dealing with Riemann spheres (which are surfaces of genus zero), and the four indicates
that the surfaces have four punctures, assumed to be labeled. Being itself a two-dimensional
surface, the (real) dimensionality of M0,4 is two:

dim(M0,4) = 2. (25.60)

Amusingly, the moduli space of four-punctured Riemann spheres is itself a Riemann sur-
face, a sphere λ with three punctures. Understanding a moduli space means that we have
control over all the inequivalent Riemann surfaces of a given type. The moduli space M0,4

will be important for our discussion of closed string amplitudes in Chapter 26. To under-
stand open string scattering, we now consider H̄ with punctures on the real line and the
moduli spaces of such Riemann surfaces.

Recall that H̄ is defined as the upper half-plane with the real line included and a “point
at infinity” included, as well. This point at infinity is added in the same way as it was
added for the Riemann sphere. In H̄, both plus and minus infinity on the real line are the
same point, and so is the limit of r exp(iθ), for 0 ≤ θ ≤ π , when r →∞. The point at
infinity is part of the boundary of H̄; this boundary is a circle. Note that H̄ is conformally
equivalent to the unit disk, as established by the map (25.23). In this map, the boundary
of H̄ maps onto the boundary of the disk, and the point at infinity is mapped to η = −1.
We can now clearly understand that the infinite strip is conformally equivalent to H̄ with
the point z = 0 removed, and the point at infinity removed, as well. The point at infinity is
removed because it is not attained for any finite time string. The infinite strip is conformally
equivalent to H̄ twice punctured at the boundary

Let us consider the self-maps of H̄. A reasonable approach is to investigate the self-maps
of Ĉ that preserve the upper half-plane H̄. Following (25.50), we consider transformations
of the form

w = az + b

cz + d
. (25.61)

If a, b, c, and d are real, the real line in the z-plane maps to the real line in the w-plane.
In fact, up to a common phase that cancels in (25.61), the condition that the real line is
mapped to the real line implies that (Problem 25.3)

a, b, c, d ∈ R. (25.62)

Finally, there is one additional condition. As before, the map is one-to-one if and only if

ad − bc 	= 0. (25.63)
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Since we are now working with real coefficients, the left-hand side above is a number that
is either positive or negative. Since we can only rescale the coefficients using real numbers,
we can set ad − bc = 1 if the left-hand side is positive, and we can set ad − bc = −1 if
the left-hand side is negative. It turns out that to preserve H̄ we need the former:

ad − bc = 1. (25.64)

Indeed, taking the imaginary part of (25.61), we find

 (w) =  
(az + b

cz + d

)
= 1

2i

(az + b

cz + d
− az̄ + b

cz̄ + d

)
. (25.65)

Simplifying this expression, we get

 (w) = 1

2i

(ad − bc)(z − z̄)

|cz + d|2 = ad − bc

|cz + d|2  (z). (25.66)

This equation makes it clear that  (z) ≥ 0 implies  (w) ≥ 0 if and only if ad − bc > 0.
Therefore, (25.64) guarantees that (25.61) preserves the upper half-plane. All-in-all, the
self-maps of H̄ are defined by equations (25.61), (25.62), and (25.64). They are character-
ized by three real parameters. In H̄ the point at infinity is treated like a regular point; its
image under (25.61) is w = a/c.

Let us consider a few examples. Is the map

w = −z (25.67)

a map of H̄ to H̄? It is not: a point z on the positive imaginary axis, for example, will be
mapped to a point w on the negative imaginary axis. Therefore (25.67) cannot be written
in the form (25.61) with the requisite conditions. Indeed, we can try to write

w = (−1) · z + 0

0 · z + 1
→ a = −1, b = 0, c = 0, d = 1, (25.68)

but this gives ad − bc = −1, which violates condition (25.64). How about

w = z + 1 ? (25.69)

This maps H̄ to H̄. In fact, it simply translates H̄ to the right by one unit. A more interesting
map is

w = −1

z
. (25.70)

To see why this one works, first note that it can be written in the form (25.61) by choosing

w = 0 · z + (−1)

1 · z + 0
→ a = 0, b = −1, c = 1, d = 0. (25.71)

Since ad − bc = 1, condition (25.64) is satisfied. More directly, write z = reiθ . Then
w = − 1

z = − 1
r e−iθ . What does this transformation look like in the complex plane? Con-

sider a complex number z with positive imaginary part, as shown in Figure 25.15. The
vector 1

r e−iθ is obtained from z by reflection across the real axis and scaling. This vector
is therefore in the lower half-plane. However, w = − 1

z , and the negative sign reflects the
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�Fig. 25.15 Explaining why the map z → −1/z takes H̄ onto itself.
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w

�Fig. 25.16 There is no conformal map of the upper half-plane into itself that can reverse the order of
three points on the real line.

vector across the origin. The final vector w is therefore in the upper half-plane. It is now
clear that (25.70) maps the upper half-plane onto itself.

You might imagine that a real linear fractional transformation, having three real parameters,
can be used to map H̄ with three punctures on the real line into H̄ with the three punctures
at arbitrary real positions. This is almost true! You can indeed use (25.59) to construct a
map, but one thing might go wrong. Condition (25.64) may fail to hold. It is interesting to
see why this happens, as it has to do with an important feature of open strings.

The maps (25.61) that we are considering satisfy

dw

dz
= (ad − bc)

(cz + d)2
, (25.72)

and, since ad − bc > 0, this derivative is positive throughout the real line. This means that
the map takes the oriented real line (say from left to right) into a real line with the same
orientation! In fact, we can think of the real line in H̄ as a circle that includes the point at
infinity. Three points on the real line can be mapped into three other points if and only if
their cyclic orderings, as points on a circle, agree. Let (P1 P2 P3) denote the punctures 1,
2, and 3, if they appear in this order as we travel on the real line from left to right. Then
this configuration can be mapped to any other configuration as long as the cyclic ordering
is preserved. It can be mapped to the configuration (P2 P3 P1), for example, but not to the
configuration (P2 P1 P3).

Consider an example. Let A, B, and C be points on the z-plane that lie at −1, 0, and 1,
respectively (Figure 25.16). Let us try to build a map to the w-plane that takes the points
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0 1λ ∞

z w

�Fig. 25.17 The z upper half-plane with four punctures on the real line can be presented canonically by
mapping it to the w upper half-plane and setting three of the punctures, say P1, P3, and P4,
to w = 0, 1, and ∞. The puncture P2 will have w = λ with 0 < λ < 1.

to 1, 0, and −1, respectively. In effect, we are trying to reverse the order of the points on
the real axis. Using (25.59), we find that we need the following mapping:

z − 1

z + 1
= w + 1

w − 1
. (25.73)

When we cross multiply, we find that this map is w = −z, and we showed before that
this does not map H̄ to H̄. Since there are only two inequivalent cyclic orderings of three
points on the boundary of a disk, the moduli space N3 of H̄ with three punctures on its
boundary has two representatives. One represents H̄ with three punctures ordered as in
(P1 P2 P3), and the other represents H̄ with three punctures ordered as in (P2 P1 P3). We
can say that there is one discrete modulus taking two values, and that is all! Note that the
moduli space M0,3 of three-punctured spheres had no discrete modulus – all such spheres
were conformally equivalent. The moduli space M0,3 is just a point, while the moduli
space N3 is two points. While there is an obvious way to define an ordering for points that
lie on a circle (the boundary of H̄), there is no way to define an ordering for points on a
sphere.

Consider H̄ with four labeled punctures, P1, P2, P3, and P4, on the real line, and fix their
cyclic ordering to be (P1 P2 P3 P4) (Figure 25.17). Can we map this H̄ to itself and take
the four punctures to arbitrary positions that preserve the cyclic ordering? No. There are
just three real parameters in the most general map of H̄ to H̄, and therefore only three
positions can be specified. Following the same strategy as before, we can map three of the
punctures to fixed w coordinates. For instance, let us map P1 to w = 0, P3 to w = 1, and
P4 to w = ∞. Under this map, P2 will be taken to w = λ, where λ is some real number.
Because the cyclic ordering is preserved, P2 must still lie between P1 and P3, so 0 < λ < 1.

We can view 0 < λ < 1 as the space that represents all possible H̄ with four ordered
punctures on the boundary. For any λ0 in this interval there is an associated H̄ punctured
at 0, λ0, 1 and ∞. Two points with different λ values represent conformally inequivalent
H̄s with four boundary punctures. Finally, no H̄ with four boundary punctures is missed in
this interval. We thus call 0 < λ < 1 the moduli space N4 of upper half-planes with four
labeled boundary punctures of a given cyclic ordering. This moduli space has one real
parameter and is just an open interval. It is a one-dimensional space:

dimN4 = 1. (25.74)
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The surfaces H̄ with four boundary punctures are important because they are the sur-
faces that arise for interactions which involve four open strings. As we will see below,
the world-sheet for such a process is conformally equivalent to an H̄ with four boundary
punctures. We will also see that the string diagram has one parameter, the time difference
T between the interaction points. We will prove a remarkable result: as T varies over its
natural range, the string diagrams produce all H̄ with four boundary punctures! That is, we
generate the full moduli space N4. To prove this we must study the function λ(T ), which
gives the modulus as a function of T . This, of course, requires the conformal map from
the string diagram to H̄. We must show that, as T goes over its natural range, λ(T ) ranges
from zero to one. We now turn to this analysis.

Quick calculation 25.5 How many inequivalent orderings of four points are possible on
the boundary of H̄. What does this tell us about the moduli space of H̄ with four boundary
punctures?

25.7 Four open string interaction

Let us consider the process where two open strings join to form an intermediate string,
which then splits into two open strings. The incoming strings are strings three and four, and
the outgoing strings are strings one and two. The string diagram is shown in Figure 25.18.

x1 ∞λ 10 x2

P3

P1 Q1 Q2P2 P3 P4

P4

Q2

Q1

T2 T1

2πα′p3 2πα′p2

2πα′p1
2πα′p4

+ +

+

P2(z = λ)

P1(z = 0)

(z = 1)

(z = ∞)

+

w

z

�Fig. 25.18 Top: a light-cone string diagram showing strings three and four joining to form an
intermediate string that then splits into strings one and two. Bottom: the light-cone diagram
is mapped into H̄. P1, P3, and P4 are go to 0, 1, and ∞. The interaction points Q1 and Q2 go
to x1 and x2, and P2 goes to λ.
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Note that the interaction point Q1 occurs at τ = T1, and Q2 occurs at τ = T2. The time
interval between interactions is

T = T1 − T2. (25.75)

In the diagram shown in the figure T > 0. But the set of all possible interactions also
includes the cases when T < 0. In those cases the slits move across each other. The
complete range of T for this interaction is

−∞ < T < ∞. (25.76)

There is an exception if p+2 = p+3 . In this case the slits collide when T = 0, and T cannot
be negative. You may examine such a situation in Problem 25.7.

We now use a Schwarz–Christoffel map to take this diagram into H̄. The special points
on the boundary of the string diagram are ordered as (P1 Q1 P2 P3 Q2 P4). Three points can
go to arbitrary positions (consistent with the cyclic ordering), so we choose P1, P3, and P4

to go to 0, 1, and∞, respectively. Then P2, whose position plays the role of modulus, must
map to some 0 < λ < 1. Since Q1 lies between P1 and P2 and Q2 lies between P3 and P4,
their images x1 and x2 in H̄ satisfy

0 < x1 < λ, 1 < x2 < ∞. (25.77)

Our aim is to calculate the modulus λ of the H̄ with four boundary punctures as a function
of the parameters T and p+i of the string diagram:

λ = λ (T ; p+1 , p+2 , p+3 , p+4 ). (25.78)

We want to prove a remarkable fact: the set of all possible string diagrams T ∈ (−∞,∞)

will give all λ ∈ (0, 1), the full moduli space N4 of H̄ with four boundary punctures. λ is
manifestly a well defined function of T : given T , we can calculate λ. Although we will
not prove it, the function λ(T ) is in fact one-to-one. This shows that two string diagrams
with different values of T give different Riemann surfaces. As a result, the set of string
diagrams gives each surface in N4 once.

The differential equation for the conformal map is readily written using (25.27). At the
points Pi the turning angles are +π , and at the interaction points Qi the turning angles
are −π . We therefore have

dw

dz
= A

1

z
(z − x1)

1

(z − λ)

1

(z − 1)
(z − x2). (25.79)

We now need the partial fraction expansion of the right-hand side. We can use a trick valid
when the factors in the denominator are all different, as they are in (25.79). The coefficient
of 1/z, for example, is obtained by deleting the 1/z factor and evaluating the rest of the
right-hand side for z = 0. Similarly, to determine the coefficient of 1/(z − λ), you delete
this factor, and evaluate the rest at z = λ. Removing the A factor, the right-hand side is
therefore

1

z

(−x1)(−x2)

(−λ)(−1)
+ 1

(z − λ)

(λ− x1)(λ− x2)

λ(λ− 1)
+ 1

(z − 1)

(1 − x1)(1 − x2)

(1 − λ)
. (25.80)
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Simplifying, equation (25.79) becomes

dw

dz
= A

[
1

z

x1x2

λ
+ 1

z − λ

(λ− x1)(x2 − λ)

λ(1 − λ)
− 1

z − 1

(1 − x1)(x2 − 1)

1 − λ

]
. (25.81)

We also know a way to write the conformal map directly, as explained below equation
(25.46). For the present case it gives

w(z) = −2α′ p+1 ln z − 2α′ p+2 ln(z − λ)+ 2α′ p+3 ln(z − 1). (25.82)

Taking the derivative,

dw

dz
= −2α′ p+1

1

z
− 2α′ p+2

1

z − λ
+ 2α′ p+3

1

z − 1
. (25.83)

We can compare the two differential equations (25.81) and (25.83) to obtain three equa-
tions which relate the string diagram momentum parameters to the parameters in the H̄

presentation:

−2α′ p+1 = A
x1x2

λ
,

−2α′ p+2 = A
(λ− x1)(x2 − λ)

λ(1 − λ)
,

−2α′ p+3 = A
(1 − x1)(x2 − 1)

1 − λ
. (25.84)

So far we have three equations to solve for our four unknowns (A, λ, x1, x2). What piece
of information is missing? We have not yet used the parameter T = T1 − T2 of the string
diagram. Notice that T1 is the real part of w when z = x1, and T2 is the real part of w when
z = x2:

T1 = �(w(x1)), T2 = �(w(x2)). (25.85)

Since �(ln z) = ln |z|, we can use equation (25.82) to write

T1 = −2α′ p+1 ln x1 − 2α′ p+2 ln(λ− x1)+ 2α′ p+3 ln(1 − x1),

T2 = −2α′ p+1 ln x2 − 2α′ p+2 ln(x2 − λ)+ 2α′ p+3 ln(x2 − 1).

Here we have used 0 < x1 < λ < 1 < x2. We can now evaluate T = T1 − T2:

1

2α′
T = p+1 ln

x2

x1
+ p+2 ln

(
x2 − λ

λ− x1

)
+ p+3 ln

(
1 − x1

x2 − 1

)
. (25.86)

This last equation, together with those previous, fixes the values of the unknown param-
eters. It is difficult to solve this system of equations to obtain explicit values for the
parameters, but, luckily, we can prove our claim without doing so. We will merely analyze
them to derive the result.
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Since A does not appear in (25.86), it is convenient to eliminate it from equations (25.7)
by forming ratios:

p+2
p+1

= (λ− x1)(x2 − λ)

(1 − λ)x1x2
,

p+2
p+3

= (λ− x1)(x2 − λ)

(1 − x1)(x2 − 1)λ
. (25.87)

As T varies, the values of x1, x2, and λ will vary continuously. T varies from −∞ to +∞.
If we can show that λ approaches zero as T →∞ and that λ approaches one as T →−∞,
then λ must take all values 0 < λ < 1.

We have just suggested that λ → 0 as T →∞. The intuition is that, when T →∞, the
points P1 and P2 are separated from the points P3 and P4 by a long strip. Conformally, P1

and P2 are approaching each other. In our map to H̄ this requires λ → 0 (if you want to
develop your intuition further, solve Problem 25.5). We now prove that T →∞ as λ → 0.
Since λ(T ) is a well defined function of T , this means that λ → 0 as T →∞.

Given that 0 < x1 < λ, we have x1 → 0 when λ → 0. Let us see what happens to T in
this case. Using (25.86), we find

1

2α′
T � p+1 ln

x2

x1
+ p+2 ln

x2

λ− x1
+ p+3 ln

1

x2 − 1
. (25.88)

To understand how T behaves, we must know how x2 behaves. We use equations (25.7) to
find out. With λ → 0 and x1 → 0 they give

p+2
p+1

� (λ− x1)

x1
= λ

x1
− 1,

p+2
p+3

� (λ− x1)x2

(x2 − 1)λ
= 1 − x1

λ

1 − 1
x2

. (25.89)

Since the ratios of light-cone momenta are fixed positive numbers, the top equation shows
that, in the limit, λ/x1 is finite and greater than one. The bottom equation then shows that
x2 is finite and greater than one. Using the finiteness of x2, (25.88) becomes

1

2α′
T � −p+1 ln x1 − p+2 ln(λ− x1)+ finite. (25.90)

Since both x1 and λ− x1 go to zero as λ → 0, we find T →+∞. Therefore λ → 0 when
T →∞, as we wanted to show.

Now we would like to show that λ → 1 as T →−∞. This is also reasonable from the
viewpoint of the string diagram. In this case the slits have gone long past each other, so
points P2 and P3 are separated from points P1 and P4 by a long strip. Conformally, P2 and
P3 are approaching each other. Since P3 sits at one, this requires λ → 1.

Let us look at equation (25.7) to see what is happening with the parameters. As λ → 1,
the second ratio becomes

p+2
p+3

= (λ− x1)(x2 − λ)

(1 − x1)(x2 − 1)
. (25.91)
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If we naively take λ → 1 in the above equation, we find p+2 /p+3 → 1, which is not correct.
Therefore, as λ → 1 we must have either x1 → 1 with x2 finite or x2 → 1 with x1 finite.
If x1 → 1, we get

x1 → 1: p+2
p+3

� (λ− x1)

(1 − x1)
< 1, (25.92)

where the last inequality follows because x1 < λ. Having a look at Figure 25.18, we see
that we chose conventionally p+2 > p+3 . Therefore, we look at the possibility x2 → 1. In
this case, we get

x2 → 1 : p+2
p+3

= (x2 − λ)

(x2 − 1)
> 1. (25.93)

This is the correct regime:

p+2 > p+3 , λ → 1, x2 → 1, and x1 finite. (25.94)

Now we can look at (25.86) to find what T does in this regime:

1

2α′
T −→ p+1 ln

1

x1
+ p+2 ln

(
x2 − λ

1 − x1

)
+ p+3 ln

(
1 − x1

x2 − 1

)
. (25.95)

Separating finite parts, we have

1

2α′
T −→ p+2 ln(x2 − λ)− p+3 ln(x2 − 1)+ finite. (25.96)

The first two terms on the above right-hand side can be rearranged to read

1

2α′
T −→ (p+2 − p+3 ) ln(x2 − λ)+ p+3 ln

( x2 − λ

x2 − 1

)
+ finite. (25.97)

The ratio appearing on the right-hand side is finite (see (25.93)); therefore

1

2α′
T −→ (p+2 − p+3 ) ln(x2 − λ)+ finite . (25.98)

With p+2 − p+3 > 0, and x2 − λ → 0, we find T →−∞. Since T →−∞ as λ → 1, we
have that λ → 1 as T →−∞, as we wanted to prove.

Since λ varies continuously and reaches both zero and one, it must attain all values in
between. We have thus shown that the light-cone diagrams produce all relevant Riemann
surfaces, that is, all H̄ with four boundary punctures. The string diagrams have produced
the moduli space N4. As we mentioned before, λ varies monotonically with T , so each
value of λ in the interval (0, 1) is taken only once.

The above is an illustration of an important and general result in string theory. For arbi-
trary string interactions an analogous result holds. Keeping the topological type of the
string diagram fixed, as the parameters of the diagram are varied over the natural ranges, the
complete set of inequivalent Riemann surfaces of the given topological type is produced.
String interactions generate the moduli spaces of Riemann surfaces.
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�Fig. 25.19 The scattering amplitude for four open string tachyons uses a disk with four boundary
punctures. Mapped to H̄, these four punctures Pi, i = 1,. . ., 4 have general positions x1, x,
x3, x4. They can also be mapped to 0, λ,1, and ∞.

25.8 Veneziano amplitude

We will now use our understanding of the moduli space N4 to motivate the construction
of the Veneziano amplitude, the amplitude for the scattering of four open string tachyons
(two incoming and two outgoing). As you recall, open string tachyons are particles with
p2 = −M2 = 1/α′. In Section 25.2 we discussed the three steps necessary to get cross
sections in string theory. We have done step (1), the drawing of string diagrams and their
conformal mapping into a standard presentation. We now focus on step (2), where we must
get the scattering amplitude. We will not consider step (3), which is the construction of a
cross section.

We cannot derive here the scattering amplitude, but we can motivate it. For this, we note
that it should be an integral over the moduli space of the surfaces that contribute to the
process – the moduli space N4. Note that the integral is over the moduli space of surfaces,
not over the surfaces themselves! Each surface represents a possible “path” connecting
the initial and final states, so each surface contributes to the amplitude. To find the full
amplitude, we must add up the contributions from all the surfaces; this is an integral over
the parameter space of the surfaces.

Consider H̄ punctured at x1, x, x3, and x4 with x1 < x < x3 < x4, as shown in
Figure 25.19. These are the points where the four tachyons are supposed to be inserted:
the images of the far past and far future strips in the light-cone diagram. At x1 we intro-
duce the tachyon with spacetime momentum p1, at x the tachyon with momentum p2, and
at x3 and x4 the tachyons with momenta p3 and p4, respectively. We could map x1, x3,
and x4 to 0, 1, and ∞, but we will not do so yet. Treating all punctures on the same foot-
ing makes for a clearer structure. Our strategy will be to use the conditions of conformal
invariance to motivate an expression for the amplitude.

Using surfaces with punctures at x1, x, x3, and x4, the moduli space N4 can be described
as the set of surfaces obtained when x varies over the interval x1 < x < x3 (if you map
x1, x3, and x4 to 0, 1, and ∞, you recover the canonical presentation x ∈ (0, 1)). Writing
the scattering amplitude A(p1, p2, p3, p4) as an integral

A(p1, p2, p3, p4) = g2
o

∫
dμ, (25.99)
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the measure dμ must include a dx since we will integrate over x . The amplitude is pro-
portional to the square of the open string coupling go, since the process involves two
elementary interactions where two strings combine to form one string, and each such inter-
action carries one power of go. This amplitude A is an object similar to the amplitude T
considered in (25.2). We will not attempt to fix the precise overall normalization of A. The
measure dμ must also depend on the momenta of the tachyons and on the positions of the
boundary punctures. Our momenta satisfy

p1 + p2 + p3 + p4 = 0, p2
1 = p2

2 = p2
3 = p2

4 =
1

α′
. (25.100)

The first equation is the momentum conservation equation, with all momenta treated as
incoming: if the outgoing tachyons are tachyons three and four, for example, then p3 and p4

above are actually minus the momenta of these two outgoing tachyons. The second equa-
tion implies that the four tachyons are on the mass-shell. We now propose a measure dμ:

dμ = dx |x3 − x1||x4 − x1||x4 − x3|
|x − x1|2α′ p2·p1 |x3 − x1|2α′ p3·p1 |x3 − x |2α′ p3·p2

|x4 − x1|2α′ p4·p1 |x4 − x |2α′ p4·p2 |x4 − x3|2α′ p4·p3 . (25.101)

This is a very symmetric expression. For each pair of punctures, there is a factor which is
the distance between the points raised to the dot product of their full momenta. In this part
of dμ, occupying the second and third lines, all punctures are treated on the same footing.
In the first line, however, the moving puncture x is treated differently from the other three
fixed punctures, x1, x3, and x4.

Now we consider the issue of conformal invariance. We have written an expression for dμ

that arbitrarily selected three special punctures. We are integrating over the moduli space
N4, presented as x ∈ (x1, x3) for an arbitrary choice of x1, x3, and x4. This choice must be
irrelevant – the integral of dμ must give the same answer for any other choice. Since any
two choices of three fixed punctures on the real line are related by a real linear fractional
transformation, we can guarantee that the amplitude is unchanged if the measure dμ is
invariant under real linear fractional transformations. The generic transformation of this
type is

z −→ az + b

cz + d
, ad − bc = 1, a, b, c, d ∈ R. (25.102)

It changes all of the quantities dx , x1, x2, x3. Indeed, we will have

x −→ ax + b

cx + d
,

dx −→ dx

(cx + d)2
,

xi − x j −→ xi − x j

(cxi + d)(cx j + d)
. (25.103)
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The measure dμ must be invariant under all of these changes. This is a stringent condition.
Now we can understand the logic behind the first line in (25.8). In including the extra
factors along with dx , the first line transforms in a rather neat way. We have, with x2 ≡ x ,

dx |x3 − x1||x4 − x1||x4 − x3|

−→ dx |x3 − x1||x4 − x1||x4 − x3|
4∏

i=1

(cxi + d)−2. (25.104)

The transformation induced exactly the same factor for each of the punctures. Using the
last equation in (25.8) to transform the second and third lines in the measure, we find that
dμ transforms into itself times factors of (cxi + d) for each of the punctures. For dμ to be
invariant, each factor must have the value one. Let us have a look at the factor (cx1 + d).
We get a contribution from the first line of the measure, as calculated in (25.8), and three
additional contributions, from the rest of the measure:

(cx1 + d)−(2+2α′ p2·p1+2α′ p3·p1+2α′ p4·p1). (25.105)

This factor can only be equal to one if the exponent is equal to zero. Happily, this is the
case. Looking at the exponent, we have

2 + 2α′ p1 · (p2 + p3 + p4) = 2 − 2α′ p2
1 = 2 − 2α′ 1

α′
= 0. (25.106)

In obtaining this result, we used both momentum conservation and the on-shell condition
(see (25.100)). Completely analogous results hold for the other punctures. This concludes
our verification of the conformal invariance of the measure dμ. The condition of conformal
invariance is not strong enough to determine the measure uniquely, so we cannot prove that
dμ is selected. It turns out that dμ is the correct measure for the scattering of open string
tachyons.

We simplify the measure by choosing x1 = 0, x = λ, x3 = 1, and x4 = ∞. It might
seem that the placement of x4 at infinity could give us a problem. If we trust our previous
analysis, however, we know that no problem can arise. The measure dμ is finite for finite
values of x1, x3, and x4. Any linear fractional transformation, even if it takes one point to
infinity, will not change the measure. Using x4 � x1, x, x2, we can simplify (25.8):

dμ = dλ |x4|2 |λ|2α′ p2·p1 |1 − λ|2α′ p3·p2 |x4|2α′ p4·(p1+p2+p3). (25.107)

The total exponent of |x4| adds up to zero, so dμ reduces to

dμ = dλ |λ|2α′ p2·p1 |1 − λ|2α′ p3·p2 . (25.108)

Since λ ∈ (0, 1), we find that the Veneziano amplitude is given by

A(p1, p2, p3, p4) = g2
o

∫ 1

0
dλ λ2α′(p1·p2)(1 − λ)2α′(p2·p3). (25.109)

String theory began with this formula, written by Veneziano in the late 1960s. The formula
was simply postulated, and physicists wondered what kind of theory would give rise to
such an amplitude. It took a few years before it was demonstrated that this amplitude arose
from a theory of strings.
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Towards the end of Section 25.2, we realized that one can determine what kinds of
particles exist in a theory by looking for poles in the scattering amplitudes. We shall do
this for the Veneziano amplitude, just as physicists did shortly after it was discovered. As a
first step, we express the momentum dot products in terms of the Lorentz invariants s and t .
If strings one and two join to form an intermediate string, the string will carry momentum
p1 + p2. On the other hand, if strings two and three join to form an intermediate string,
the string will carry momentum p2 + p3. Since the punctures are cyclically ordered, there
are no other possibilities: string one cannot join with string three to form an intermediate
string (nor can string two join string four). Thus the relevant invariants are

s = −(p1 + p2)
2, t = −(p2 + p3)

2. (25.110)

Expanding s, and using the on-shell condition, we find

s = −p2
1 − p2

2 − 2p1 · p2 = − 2

α′
− 2p1 · p2, (25.111)

which leads to

2α′ p1 · p2 = −α′s − 2 = −(α′s + 1)− 1. (25.112)

For convenience, define

α(s) ≡ α′s + 1, (25.113)

so that we may express (25.112) as

2α′ p1 · p2 = −α(s)− 1. (25.114)

Using this relation, and the corresponding one for t , the Veneziano amplitude (25.109) is
written as

A(p1, p2, p3, p4) = g2
o

∫ 1

0
dλ λ−α(s)−1(1 − λ)−α(t)−1. (25.115)

This integral can be expressed in terms of gamma functions. Indeed, since∫ 1

0
dx xa−1(1 − x)b−1 = �(a)�(b)

�(a + b)
, (25.116)

we find that

A(p1, p2, p3, p4) = g2
o

�(−α(s)) �(−α(t))

�(−α(s)− α(t))
. (25.117)

To find the poles of the amplitude A, we must know about the poles and zeros of the
gamma function. We had a first look at the gamma function in Section 3.4, where we
proved the recursion relation

�(z + 1) = z �(z), �(z) > 0. (25.118)

This equation shows that the gamma function has a pole at z = 0. Indeed, �(1 + ε) =
ε�(ε) with ε small gives

�(ε) = 1

ε
�(1 + ε) = 1

ε
(�(1)+O(ε)) = 1

ε
+O(1). (25.119)
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We can extend the definition of the gamma function to negative real numbers using analytic
continuation: equation (25.118) is taken to hold even when �(z) ≤ 0. We then find, for
example, a pole at z = −1:

�(ε) = (−1 + ε)�(−1 + ε) → �(−1 + ε) � −1

ε
. (25.120)

Similar reasoning shows that the gamma function has poles at all of the negative integers
(see also Problem 3.6). It is a famous (and nontrivial) result that the gamma function has
no zeros.

We are now ready to investigate the pole structure of the Veneziano amplitude (25.117).
Having no zeros, the gamma function in the denominator contributes no poles. All poles
must arise from the gamma functions in the numerator. We have poles when

α(s) = n, n = 0, 1, 2, 3, . . ., (25.121)

and when

α(t) = m, m = 0, 1, 2, 3, . . .. (25.122)

Let us focus on the poles in the s channel. Recall that a pole for s = M2 implies a particle
of mass-squared equal to M2 (see (25.8)). Therefore, in order to find which particles are
present in the Veneziano amplitude, we need to find the values of s which give the poles in
(25.121). Making use of (25.113), this condition is simply

α′s + 1 = n → s = 1

α′
(−1 + n) = M2

n . (25.123)

Since n runs from zero to infinity, there is an infinite number of poles, and an infinite
number of particles. Note that the values of M2

n define precisely the levels of the relativistic
string that we have been studying in this book. When n = 0 we find the tachyon (M2

0 =
−1/α′). When n = 1 we find massless particles. For higher n, there are infinitely many
massive particles. Exactly the same set of particles appears in the poles that occur in the
t channel. It became clear to physicists early on that the model invented by Veneziano
was somehow related to relativistic strings. This intuition was confirmed in the early 1970s
when, using the light-cone gauge, the string was quantized and its spectrum was elucidated.

Problems

Problem 25.1 Self-mappings of the sphere Ĉ.

(a) Show that the composition of two linear fractional transformations (25.50) is a linear
fractional transformation.

(b) A fixed point of a transformation w = f (z) is a point z0 such that f (z0) = z0.
Prove that each linear fractional transformation, with the exception of the identity
transformation w = z, has at most two fixed points.
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(c) Show that (25.59) is the unique linear fractional transformation that maps the three dif-
ferent points z1, z2, and z3 into the three different points w1, w2, and w3, respectively.
[Hint: let S and T be two distinct linear fractional transformations which satisfy this
property, and consider the transformation obtained by composing S with the inverse
of T .]

Problem 25.2 Conformal invariant of the sphere Ĉ with four punctures.

Consider four points z1, z2, z3, and z4 in Ĉ. Write a map w(z) such that w(z2) = 0,
w(z3) = 1, and w(z4) = ∞. Define λ = w(z1). Calculate λ, and show that it is given by

λ = λ(z1, z2, z3, z4) = (z1 − z2)(z3 − z4)

(z1 − z4)(z3 − z2)
.

Verify explicitly that λ is a conformal invariant, that is, λ(φ(z1), φ(z2), φ(z3), φ(z4)) =
λ(z1, z2, z3, z4), where φ is any linear fractional transformation.

Problem 25.3 Self-mappings of H̄.

Prove that if a linear fractional transformation w = (az + b)/(cz + d) maps the real line
of the z plane into the real line of the w plane, then a, b, c, and d must all be real, except
possibly for a common phase factor that can be removed without changing the map z → w.

Problem 25.4 Upper half-plane H̄ with two boundary punctures.

Consider H̄ with two punctures P1 and P2 on the real line, with coordinates z = x1 and
z = x2, respectively. Consider another copy of H̄ with two punctures P1 and P2 on the
real line, with coordinates z′ = x ′1 and z′ = x ′2, respectively. Are these two surfaces the
same Riemann surface? Prove that they are, by exhibiting the conformal map that takes
the punctures into each other while preserving H̄. You may have to write two conformal
maps, depending on the sign of (x ′2 − x ′1)/(x2 − x1). What is the geometrical significance
of this sign?

Problem 25.5 What does it mean for points to be close in a Riemann surface?

The concept of points approaching each other on a Riemann surface is subtle because we
can always scale the coordinates. Consider H̄ with boundary punctures. If we only have
two punctures, then they cannot be said to be close because we can always map them to
arbitrary positions. The same is true for three punctures. For four punctures it is possible
to have a notion of punctures coming together. The notion applies to a family of surfaces
where punctures move.

Consider H̄ with four punctures Pi , i = 1, 2, 3, 4, with real coordinates xi (t), where
t ∈ [0, 1]. This is a family of surfaces parameterized by the parameter t . As t varies, the
coordinates of the punctures will vary. Of course, we can make (real) linear fractional
transformations which change the values of the xi (t).
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Definition We say that Pi → Pj as t → 0 (i 	= j) if the coordinate of Pi approaches
the coordinate of Pj in a representation of H̄ where Pj and the other two punctures are
held fixed.

To understand this definition properly, consider the following example:

x1(t) = 0, x2(t) = t, x3(t) = 1, x4(t) = ∞.

It is clear from the definition that P2 → P1 as t → 0. Prove that the following statements
hold for this family as t → 0.

(a) P1 → P2. This means that if one puncture approaches a second one, then the second
also approaches the first.

(b) P3 → P4. The other two punctures also approach each other!

Prove now, on general grounds, that

(c) The definition proposed above is conformal invariant. That is, if the relevant coordi-
nates approach each other in a given representation of H̄ where Pj and the other two
punctures are held fixed, then they will approach each other in any such representation.

Problem 25.6 Closing off the polygon in the Schwarz–Christoffel map.

The differential equation (25.27) does not show the turning angle αn at Pn because
this point has been mapped to z = ∞. We aim to understand how this point at infinity
works out.

(a) To find the turning angle at z = ∞, consider the large-z limit of (25.27):

dw

dz
� Az−

1
π

∑n−1
i=1 αi .

Define t = −1/z, and calculate dw
dt as a function of t . Explain why your result shows

that the turning angle is αn .
(b) The differential equation

dw

dz
= A(z − x1)

− α1
π (z − x2)

− α2
π · · · (z − xn)−

αn
π , (1)

with the last turning point Pn included as a finite point xn , represents the situation
where there is no corner at z = ∞. Prove that the polygon closes. For this, show that
as we traverse the full real axis x , the change in w is zero:

w(x = ∞)− w(x = −∞) =
∫ x=∞

x=−∞
dx

dw

dx
= 0 .

[Hints: use (1) and contour deformation. Argue that there is no contribution from half-
circles around the xi and around ∞.]

Problem 25.7 Four open string interaction in a special configuration.

Consider the light-cone open string diagram of Figure 25.18 in the special configuration
where all p+ momenta are equal: p+1 = p+2 = p+3 = p+4 . Let T = T1 − T2 denote the
world-sheet time difference between the interaction points. Calculate the modulus λ(T )
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explicitly. Show that the moduli space N4 is produced for T ∈ [0,∞). Confirm that λ is a
monotonic function of T .

Problem 25.8 Proton decay in intersecting brane models.

We aim to show that in intersecting brane models there are no open string diagrams
which represent proton decay into leptons and gauge bosons. We focus on the model of
Figure 21.7 and restrict ourselves to string diagrams presented as a disk with boundary
punctures, where the set of open string states relevant to the process (incoming and outgo-
ing) are inserted. The punctures split the boundary of the disk into components, which are
the loci of open string endpoints, and consequently, are labeled by D-branes.

Prove that no consistent assignment of labels to the boundary components is possi-
ble given that proton decay involves three quarks (and a number of leptons and gauge
bosons), and a quark has one endpoint on a baryonic brane and the other endpoint else-
where. [Hint: try drawing string diagrams. Your attempts should evolve into a clear and
very brief argument.]



26 Loop amplitudes in string theory

To calculate scattering amplitudes with high accuracy, one must include the con-
tribution from diagrams which contain loops that represent virtual processes. In
Einstein’s theory of gravity these diagrams give rise to ultraviolet divergences,
which reveal intractable short-distance phenomena. String theory contains grav-
ity, but there are no such ultraviolet divergences. The Riemann surfaces that are
candidates for short-distance problems admit an interpretation where they clearly
describe safe, long-distance phenomena. We illustrate this remarkable property
for the case of annuli, which are the surfaces relevant to virtual open string pro-
cesses, and for the case of tori, which are the surfaces relevant to virtual closed
string processes.

26.1 Loop diagrams and ultraviolet divergences

When calculating scattering amplitudes in particle physics, one typically uses an approx-
imation scheme in which the strength of the interactions is assumed to be small. The
amplitude is then written in terms of a perturbative series expansion in powers of this
small interaction parameter. The Feynman diagrams we considered in Chapter 25 and the
similar looking string diagrams were all tree diagrams. This means that the graphs (see,
for example, Figure 25.2) contain no nontrivial closed paths, or loops. Tree diagrams give
the first term in the perturbative expansion of scattering amplitudes. To go beyond this
lowest-order approximation, one must consider Feynman diagrams with loops.

Consider the Feynman diagram with a loop shown in Figure 26.1. This diagram repre-
sents an incoming particle which splits into two particles that rejoin to form an outgoing
particle. The two particles with momentary existence are called virtual particles, and their
appearance and subsequent disappearance is called a virtual process. When calculating
the contribution of such graphs to amplitudes, one typically encounters divergent quanti-
ties. These divergences are called ultraviolet (UV) divergences if they arise from virtual
processes involving very high energies or momenta or, alternatively, very short times or
distances. Virtual processes that involve short distances can be roughly represented by
graphs with small loops.

Ultraviolet divergences need not be fatal – in many cases they can be dealt with by the
processes of regularization and renormalization. But for some theories regularization and
renormalization do not work – the most important case being Einstein’s theory of gravity.
Faced with unrenormalizable ultraviolet divergences, one can sometimes work accurately
at low energies using effective field theories which, at some loss of predictive power,
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�Fig. 26.1 A one-loop Feynman graph that represents a virtual process. In the limit in which the virtual
process involves short distances or high momenta, one may find an ultraviolet divergence
in the corresponding amplitude.

model in a controllable way the problematic high energy processes. At a fundamental level,
however, this is far from being a fully satisfactory approach.

If string theory is a complete quantum theory, then there are two possibilities: either
the ultraviolet divergences are manageable or there are simply no ultraviolet divergences.
The wonderful news is that there are no ultraviolet divergences in string theory. String
theory is the first quantum theory, ever, to include gravity without also including ultraviolet
divergences. This is the reason why string theory has become the foremost candidate for a
theory of quantum gravity. It is the purpose of this chapter to give you some understanding
of this remarkable result.

The main property of string diagrams is that the relevant information is all encoded in the
Riemann surfaces they define. Any conformal map of a string diagram gives an equivalent
physical picture, since the Riemann surface is not changed. We will use conformal mapping
to show that string diagrams that may appear to represent potentially dangerous short-
distance physics are actually equivalent to diagrams that are manifestly free of ultraviolet
problems. We learned in Chapter 25 that the string amplitude for a given process is obtained
as an integral over the relevant moduli space of Riemann surfaces. In this integration, we
are adding up the contributions to the amplitude from all the surfaces that are consistent
with the initial and final states. The integration is not over the surfaces themselves.

For string loop diagrams, the simplest relevant Riemann surfaces are annuli and tori.
We will look at both types of surfaces in some detail, and we will study their correspond-
ing moduli spaces: the space of all possible annuli and the space of all possible tori. We
will examine the regions of moduli space where Riemann surfaces seem to involve short-
distance physics, and by using suitable conformal maps we will show that they represent
safe, long-distance physics. We will take this as evidence that there is no room in string
theory for ultraviolet divergences. While we will only examine one-loop string diagrams,
this remarkable property of Riemann surfaces and their moduli spaces holds for string
diagrams with an arbitrary number of loops.

26.2 Annuli and one-loop open strings

Let us begin by considering the one-loop open string diagram shown in Figure 26.2(a). This
diagram involves one incoming open string, one outgoing open string, and two intermediate
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�Fig. 26.2 (a) A string diagram that represents a one-loop open string process. This diagram has two
parameters. (b) Mapping the diagram to H̄ with a slit. (c) Mapping the diagram into a disk
with a slit. (d) Finally, mapping the diagram into a canonical annulus.

open strings. It is the string analog of the one-loop Feynman diagram in Figure 26.1. We
will discuss a less obvious string analog in Section 26.4.

The light-cone diagram shows an open string with light-cone momentum p+ that
splits into two open strings. The two open strings propagate for a time �T and then
recombine. By conservation of light-cone momentum we have p+ = p+1 + p+2 . For fixed
external momentum p+, this diagram has two parameters: �T ∈ (0,∞), and the vertical
position of the slit, parameterized by p+1 ∈ (0, p+). In the language developed in Chap-
ter 25, we say that the class of Riemann surfaces corresponding to this process has two
moduli. The amplitude is obtained by summing the contributions from all such string
diagrams.

We now examine a sequence of conformal maps that turns this diagram into a canonical
presentation. The first two steps focus on the full strip. As you saw in Section 25.4, the
infinite strip can be mapped to H̄ using the exponential map in (25.21). This map, applied
in the present case, gives the result indicated in Figure 26.2(b), where the new slit is the
image of the original slit under the map. The incoming string has been sent to z = 0 and
the outgoing one to z = ∞. With the help of (25.23) this surface can be mapped into a unit
disk – again the slit goes along for the ride, and the incoming and outgoing strings end
up at η = 1, and η = −1, respectively. At this stage, the string surface is topologically an
annulus, a disk with a hole. The hole happens to be a slit.
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�Fig. 26.3 A topological annulus – the region between the two closed curves in the w plane – can be
mapped into a canonical annulus r ≤ |z| ≤ 1 for some value of the modulus r.

The last map is fairly nontrivial. The annulus shown in (c) can be mapped conformally
into the canonical annulus shown in (d). A canonical annulus with parameter r in the range
0 < r < 1 is the region r ≤ |ξ | ≤ 1 of the complex ξ plane. This map is a particular exam-
ple of a general result: a region of the complex plane that is topologically an annulus can
be mapped conformally to a canonical annulus (see Figure 26.3). The value r of the inner
radius cannot be prescribed; the map fixes it uniquely. This quantity r is called the modulus
of the annulus. In Figure 26.2(d) the incoming string can be placed at ξ = 1: if it originally
lies elsewhere on the unit circle, the conformal map ξ → exp(iα)ξ will take it to ξ = 1
for suitable α. Once the ingoing string has been fixed, the position of the outgoing string
cannot be adjusted. In the figure, the outgoing string appears as a puncture at an angle θ

with respect to the positive horizontal axis. The Riemann surface is an annulus with two
punctures. The boundary of an annulus has two components: the two circles which bound
the annular region. In this string diagram, the two punctures lie on the same boundary com-
ponent.

In the following section, we will use ideas from electrostatics to show explicitly that there
exists a conformal map from any topological annulus to a canonical annulus. The modu-
lus of an annulus is closely related to the capacitance of the cylindrical capacitor whose
cross sectional region between the conductors is the annulus. We will also learn that two
canonical annuli with inner radii r1 and r2 cannot be mapped conformally into each other
unless r1 = r2. This is why the inner radius is properly called a modulus. Since the inner
radius must be larger than zero and smaller than one, the moduli space of annuli is the
space 0 < r < 1.

Since the string diagram in Figure 26.2(a) has two parameters, the final diagram in part
(d) also has two parameters. They are the modulus r of the annulus and the angle θ that
defines the position of the outgoing string on the outer boundary. In fact, these two are
the moduli of an annulus with two boundary punctures. To construct a string amplitude,
we add up the contributions from all the Riemann surfaces that comprise the relevant
moduli space. For the Veneziano amplitude we considered all disks with four boundary
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punctures. For the open string loop amplitude we are studying now, we must integrate over
the moduli r and θ . The integration may be complicated by the appearance of an ultraviolet
divergence.

A candidate ultraviolet divergence appears if the string diagrams in some region of the
moduli space have a certain kind of short curves that suggest that they may give unbounded
contributions to the amplitudes. Let us elaborate.

In the string diagram of Figure 26.2(a), the open strings are vertical segments, some of
which stretch between the outer edges of the string diagram, and some of which stretch
between an outer edge and the slit. Remember, the slit is one boundary component, and
the outer edges of the string diagram, which are separated by the punctures, comprise the
other boundary component. All the open strings are open curves that are nontrivial in the
following sense: they cannot be contracted away if the endpoints remain on the bound-
ary and are not allowed to slide past the punctures (the external states). Let us call any
such nontrivial open curve a possible open string. There are many more possible open
strings than there are open strings. Any curve that begins on the top edge and ends on
the lower edge is a possible open string. So is any curve that begins on the left side of
the top edge, goes under the slit, and ends on the right side of the top edge. As the name
suggests, a possible open string is a curve that could be taken to be an open string with
some suitable parameterization of the world-sheet. The concept of a possible open string
on a Riemann surface is well defined: the nontrivial character of a possible open string is
not changed by conformal mapping. Similarly, a possible closed string is a closed curve
that cannot be shrunk away. In Figure 26.2(a), a closed curve looping around the slit is
a possible closed string. In this string diagram there are no canonical closed strings, but
there are many possible closed strings. The signal of short-distance physics that suggests
ultraviolet divergences is the appearance of short possible open strings or short possible
closed strings on a string diagram. The length is calculated in the obvious way: in com-
plex coordinates z, a segment dz is assigned length |dz|. Since length is not conformal
invariant, we can see that the appearance of short possible strings may have an alternative
interpretation.

Let us now return to our example and search for the short possible strings that can arise
as the modulus r of the annulus varies over its range. Interesting things happen near the
ends of the moduli space 0 < r < 1. As shown in Figure 26.4, an annulus with r = 1 − ε

and ε → 0, is a vanishingly thin ribbon. The short radial lines going from one boundary to
the other are short possible open strings of length ε. The diagram can be interpreted as a
short open string traveling around the annulus. But by using a conformal map that scales the
figure by the large factor 1/ε, we get a physically equivalent situation where an open string
of unit length travels a very long distance 2π/ε. This region of moduli space has therefore
the interpretation of long-distance open string physics and is not ultraviolet problematic.
The existence of this “dual” interpretation is not the cure for a problem; rather, it simply
reveals that the problem is not there. As you may imagine, the region r → 1 corresponds
to �T →∞ in the original light-cone diagram. This is because the slit, which is the inner
boundary of the annulus, is becoming very large.
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�Fig. 26.4 Top: an annulus with r → 1. To the right we show a small region near z = 1 magnified by a
large factor to give an open string of unit length that travels a long distance. Bottom: an
annulus with r → 0. Its physical interpretation is that of a closed string traveling a long
distance.

The annuli in the region r → 0 are particularly interesting. An r � 0 annulus has a very
small hole (see the bottom part of Figure 26.4), and we get short possible closed strings
that go around the hole. This time we use the map ξ = ln z to give a nicer physical inter-
pretation. This map turns the annulus into a long strip, with the top and bottom horizontal
lines identified. This is simply a long cylinder of length (− ln r) and circumference 2π . Its
physical interpretation is that of a closed string of circumference 2π propagating for a large
distance | ln r |. This shows that the region r → 0 of the moduli space of annuli represents
long-distance closed string physics. The short possible closed curves do not give rise to
ultraviolet problems.

These results generalize to arbitrary string diagrams that involve any number of open
and closed strings. Every time short possible open strings arise in a light-cone diagram, the
diagram can be presented as one where a finite length open string propagates for a long
time. Every time short possible closed strings arise in a light-cone diagram, the diagram
can be presented as one where a finite length closed string propagates for a long time.
A little more is actually required: the presentations in the various regions of the relevant
moduli space must go continuously into each other as the moduli vary. This can be done.
One can give a presentation that varies continuously with the moduli and that has two
properties: (i) open and closed strings that propagate for long distances are represented by
strips of constant width and by cylinders of constant circumference, respectively, and (ii)
no short possible strings ever arise. This is the geometrical basis for the understanding of
the absence of ultraviolet divergences in string theory.
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26.3 Annuli and electrostatic capacitance

An annulus in the complex plane z = x + iy is defined as the region between two dis-
joint closed curves. The curves must have no self-intersections, and one must lie inside the
region bounded by the other. We want to use physical ideas from electrostatics to show
that such an annulus can be mapped into a canonical annulus, a region r ≤ |ξ | ≤ 1 in the
complex ξ plane. The inner radius r is the parameter which defines the annulus. We want
to show that r is a modulus for annuli; that is, two annuli with different values of r are not
conformally equivalent.

Our electrostatic approach uses the notion of capacitance and some properties of analytic
functions, which we review now. As mentioned in Section 25.4, an analytic function f (z)
can be broken into real and imaginary parts,

f (z) = u(x, y)+ iv(x, y) , (26.1)

that satisfy the Cauchy–Riemann equations

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (26.2)

By taking additional partial derivatives, one readily verifies that the functions u and v

satisfy Laplace’s equation ∇2u = ∇2v = 0. For example,( ∂2

∂x2
+ ∂2

∂y2

)
v(x, y) = 0 . (26.3)

Additionally, the gradients of u and v are orthogonal vectors of equal magnitude. Indeed,
the gradients are defined as

∇u =
(∂u

∂x
,
∂u

∂y

)
, ∇v =

(∂v

∂x
,
∂v

∂y

)
, (26.4)

and the Cauchy–Riemann equations imply that we can write

∇u =
(∂v

∂y
,−∂v

∂x

)
. (26.5)

Using this version of ∇u, one readily sees that ∇u · ∇v = 0 and |∇u| = |∇v|. Moreover,
∇v is obtained from ∇u by a counterclockwise rotation of 90◦ (the operation (a, b) →
(−b, a) rotates the vector (a, b) by 90◦ in the counterclockwise direction). Since ∇u is
orthogonal to the lines of constant u and ∇v is orthogonal to the lines of constant v, the
orthogonality of ∇u and ∇v implies that the lines of constant u and the lines of constant v

are orthogonal. These facts are illustrated in Figure 26.5. Given two points P1 and P2, the
difference in u values u(P2)− u(P1) is related to the flux of ∇v across any curve joining
the two points:

u(P2)− u(P1) =
∫ P2

P1

∇v · �n d� . (26.6)
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�Fig. 26.5 Lines of constant u and lines of constant v. Here u0<u1<u2< · · · and v0<v1<v2< · · ·. The
vectors ∇u and ∇v are orthogonal.

Here d� is a length element, and �n is the unit vector normal to the curve obtained by a
90◦ counterclockwise rotation of the unit tangent vector �t of the curve, oriented from P1

to P2 (see Figure 26.5). The reason is simple: ∇v · �n = ∇u · �t because the vectors on the
left-hand side are obtained by a counterclockwise rotation of 90◦ from the vectors on the
right-hand side, and ∇u · �t is the change in u per unit length along the curve.

Having reviewed the basic facts needed, we can now discuss the electrostatic analogy.
We will use the topological annulus to define a cylindrical capacitor. The cross section of
the capacitor is such that the inner and outer boundaries of the annulus correspond to the
inner and outer conductors of the capacitor. The annular region itself is the region between
the two conductors. The annulus/capacitor is shown in Figure 26.6 as some region of the
complex z plane (z = x + iy).

Now imagine setting the inner conductor at unit (electrostatic) potential and the outer
conductor at zero potential. With v(x, y) denoting the potential in the region between the
conductors, we have the Dirichlet boundary conditions v = 1 and v = 0 at the inner and
outer boundaries, respectively. The electric field in the annular region is given by

�E = −∇v . (26.7)

As you learned in electrostatics, Dirichlet boundary conditions uniquely determine the
potential v(x, y) satisfying Laplace’s equation in between the conductors. We use physics
intuition as sufficient motivation for two facts, which we will not prove: (1) a solution for
the potential v(x, y) exists, and (2) the electric field lines begin on the inner conductor and
end on the outer conductor.

Since the imaginary part of an analytic function satisfies Laplace’s equation, we will
identify v(x, y) as the imaginary part of an analytic function f (z) = u(x, y)+ iv(x, y)

and then construct u(x, y). The lines of constant u will be orthogonal to the lines of con-
stant v, the equipotentials. As a result, the lines of constant u must be the electric field
lines.
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�Fig. 26.6 The cross section of a cylindrical capacitor. The region in between the two conductors defines
a topological annulus. We set the inner conductor at unit potential and the outer conductor
at zero potential.

To construct the function u(x, y), we make note of (26.6) and define

u(P) ≡
∫ P

P0

∇v · �n d� , (26.8)

where P0 is a fixed point chosen to lie on the inner conductor. The function u(x, y) is
well defined in the following sense: if we use two different paths γ1 and γ2 from P0 to P ,
then the resulting values for u(P) will be the same if the two paths can be deformed into
each other (see Figure 26.6). In that case the paths γ1 and γ2, joined together by reversing
the orientation of γ2, form a closed path � = γ1 − γ2 which bounds a region R. The total
integral around � then vanishes:∮

γ1

∇v · �n d�−
∮

γ2

∇v · �n d� =
∮

�

∇v · �n d� =
∫

R
da ∇ · (∇v) =

∫
R

da ∇2v = 0,

(26.9)
where we have used the divergence theorem to turn the flux of ∇v into the area integral of
the divergence of ∇v. This proves that the two paths give the same value for u(P). Note,
however, that a path that wraps around the inner conductor need not give the same value
for u(P) as a path that does not wrap. This will play a role below.

We now prove that u + iv is an analytic function. For this purpose it is useful to intro-
duce a unit vector �k which points out of the plane and satisfies �n = �k × �t (see Figure 26.5).
With the help of this vector, we write (26.8) as
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u(P) =
∫ P

P0

∇v · (�k × �t) d� =
∫ P

P0

∇v · (�k × d ��) =
∫ P

P0

d �� · (∇v × �k) , (26.10)

where we have used the cyclicity of the triple product. This equation implies

∇u = ∇v × �k . (26.11)

The component version of this equation gives precisely the Cauchy–Riemann equations,
thus proving the desired result.

Consider now the field line that departs P0 and reaches the outer boundary at P ′
0, as shown

in Figure 26.6. On any field line, ∇v · �n vanishes. It thus follows from (26.8) that the field
line in question is a line with u = 0. The topology of the annulus, however, implies that u
is not single valued. There are paths that cannot be deformed into each other. Using a path
that wraps once around the annulus, we find that the field line u = 0 is also the line u = u f ,
with u f a constant whose value and physical interpretation we will determine next.

The constant u f can be calculated using definition (26.8) and integrating around the
inner conductor, starting at P0 and moving counterclockwise until we return to P0:

u f =
∮
∇v · �n d� . (26.12)

Along the path, ∇v = − �E points into the inner conductor, and so does �n. Therefore ∇v ·
�n > 0 along the integration curve and, as a consequence, u f > 0. Rewriting the above
equation with ∇v = − �E ,

u f =
∮

�E · (−�n) d� . (26.13)

Since (−�n) points out of the inner conductor, the above integral computes the flux of �E out
of the inner conductor. By Gauss’ law, we find that

u f = Q , (26.14)

where Q is the charge on the surface of the inner conductor per unit length, where length is
measured along the axis of the cylindrical capacitor. The capacitor is neutral, so the outer
conductor will have a charge of (−Q) per unit length. For two conductors, with a potential
difference V between them and charges Q and (−Q) placed on them, the capacitance
C per unit length is defined by the equation Q = CV . In our case V = 1, and therefore
C = Q. Using (26.14), we find

C = u f . (26.15)

The conformal map from the annulus to the canonical presentation is now readily obtained
using v(x, y) and u(x, y) to define

w = f (z) = u(x, y)+ iv(x, y) . (26.16)

The conformal map z → w takes the annular region into the configuration of a parallel
plate capacitor! This is shown in Figure 26.7. The inner conductor, the surface of constant
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�Fig. 26.7 The capacitor mapped into a parallel plate capacitor and then into a round cylindrical
capacitor.

v = 1, is mapped to  (w) = 1, while the outer conductor, the surface of constant v = 0, is
mapped to  (w) = 0. Moreover, the full annulus lies between the vertical lines u = 0 and
u = u f . The two vertical segments u = 0 and u = u f , with 0 ≤ v ≤ 1, must be identified,
as depicted in Figure 26.6. A final conformal map ξ takes the annular region in the w plane
into canonical form:

ξ = exp
(

2π i
w

u f

)
. (26.17)

This map takes the outer conductor (0 ≤ u ≤ u f , v = 0) to the unit circle |ξ | = 1. It takes
the inner conductor (0 ≤ u ≤ u f , v = 1) to the circle |ξ | = r , where

r = exp
(
−2π

u f

)
= exp

(
−2π

C

)
. (26.18)

This relates the inner radius r of the resulting annulus to the constant u f and the capac-
itance C . With this final map, we have shown how to use the electrostatic problem to
provide a map from the topological annulus to the canonical annulus. The region of the
moduli space of annuli interpreted as long-time open string propagation (r → 1) corre-
sponds to large capacitance. The region interpreted as long-time closed string propagation
(r → 0) corresponds to small capacitance.

It remains to be shown that r is a modulus. To prove this, we first show that capacitance
is a conformal invariant. This holds because the electrostatic solution for one capacitor
can be used as a solution for any conformally related capacitor. Consider a capacitor in
the z = x + iy plane and a capacitor in the η = ψ + iφ plane, as shown in Figure 26.8.
Assume that for the capacitor in the z plane we have found an analytic function f (z) =
u + iv such that v is the potential when the inner and outer conductors are kept at unit and
zero potentials, respectively. Moreover, assume that the conformal map

z = h(η) , (26.19)
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�Fig. 26.8 If the annulus in the η plane can be mapped conformally to the annulus in the z plane, the
capacitances of the associated cylindrical capacitors are the same. Here z = h(η) denotes the
conformal map between the annuli, and w = f(z) maps the z plane capacitor into a
parallel-plate capacitor.

takes the capacitor in the η plane to the capacitor in the z plane. This, of course, means that
the inner conductors and the outer conductors are taken into each other by the map. We
now claim that the function

f (h(η)) = u
(

x(ψ, φ), y(ψ, φ)
)
+ iv

(
x(ψ, φ), y(ψ, φ)

)
≡ ũ(ψ, φ)+ i ṽ(ψ, φ) , (26.20)

does for the capacitor in the η plane what f (z) did for the capacitor in the z plane. This
function assigns to the point η the same number that f assigns to the image of η under
the map to the z plane. Since f (h(η)) is an analytic function, its real and imaginary parts
together satisfy the Cauchy–Riemann equations and separately satisfy Laplace’s equation.
Additionally, the function ṽ(ψ, φ) will assign unit potential to the inner conductor of the
η capacitor and zero potential to the outer conductor. ṽ(ψ, φ) is the unique solution for
the potential in the η capacitor. Up to an additive constant, ũ(ψ, φ) is the unique function
which can be combined with ṽ to form an analytic function. But the ambiguous constant
is unimportant, since the capacitance is a function only of the total change in ũ as we go
around the inner conductor. It is clear that this change is the same as the change in u as
we go around the inner conductor of the z capacitor. Thus the capacitance is a conformal
invariant.

The conformal invariance of the capacitance implies that the inner radius of a canonical
annulus is a modulus. Why? It is clear from (26.18) that two canonical annuli with different
inner radii will have different capacitances. Since the capacitance is a conformal invariant,
two canonical annuli with different radii cannot be mapped conformally into each other.
This is what we wanted to show.
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�Fig. 26.9 Top: an incoming open string splitting into two strings, string a and string b, that then
merge to form string two. The string diagram is nonplanar. Bottom: when the slits do not
overlap, we find intermediate closed strings.

26.4 Non-planar open string diagrams

When we studied the one-loop open string diagram of Figure 26.2, we mentioned that there
is another string diagram that corresponds to the Feynman diagram of Figure 26.1. That
other string diagram is shown in the top part of Figure 26.9. The diagram may appear to
be drawn in an unusual way: were it not for the slits, one extending far to the left and the
other extending far to the right, we would have a closed string diagram. Both the incoming
and the outgoing strings, called string one and string two, are open strings. When the two
slits overlap we have two intermediate open strings, string a and string b. The process is
that of an open string splitting into two open strings which, later on, recombine to form a
single open string.

What is the difference between the one-loop diagram at the top of Figure 26.9 and the
one-loop diagram of Figure 26.2? The difference is topological and very significant. In both
diagrams, the boundary has two disjoint components. In Figure 26.2, both external open
strings are attached to the same boundary component, and the other boundary component
is provided by the intermediate slit. This is manifest in Figure 26.2(d). In Figure 26.9 the
situation is completely different. The slits themselves are the boundary components, and
each boundary component contains an external string. This string diagram is said to be
non-planar because it cannot be flattened out without tearing it up or having one piece of
the surface lie on top of some other piece of the surface. Another non-planar diagram is
the infinite cylinder which represents free closed string propagation.

As we learned before, the set of string diagrams that contribute to an amplitude is
obtained by varying the parameters that define the string diagram. The diagram at the top
of Figure 26.9 has two parameters. The first specifies the light-cone momentum of one of
the intermediate open strings. The second, more important for our present considerations,
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gives the length �T of the time interval during which the slits overlap. When �T is large,
the slits go past each other for a long time. As �T → 0, the overlap time of the slits goes
to zero. But �T = 0 is not the end of the parameter space; �T can turn negative, in which
case we get the string diagram shown in the bottom of Figure 26.9. Surprisingly, we get
an intermediate closed string! The string interpretation of the string diagram changes com-
pletely. Now the process is described as an open string closing to form a closed string that
propagates for some time and then breaks up to form an outgoing open string. To the right
of the string diagram we see the corresponding graph. The straight line, representing the
open string, turns into the wavy line, representing the closed string. The wavy line then
turns back into a straight line. The graph has no loop!

There is an important lesson here. In a consistent theory of interacting quantum open
strings, the inclusion of closed strings is generically required. This should not be too sur-
prising. The process by which two open strings join at their endpoints is a local process;
it is only dependent upon the regions of the strings near the endpoints. This means that it
could just as well happen to the endpoints of a single string. Thus, if our theory includes
processes in which two strings can join, then it will also, in general, contain processes in
which a single open string closes to form a closed string.

A final comment on moduli. When �T is large and negative, the two boundaries of the
annulus are far from each other. This is the region of moduli space where the inner radius
of the canonical annulus is going to zero. This region is dominated by long-time closed
string propagation, just as it was in our analysis at the end of Section 26.2. In the former
case, the closed string propagates for a long distance and then stops. In the present case,
after propagating for a long distance, the closed string turns again into an open string.

26.5 Four closed string interactions

We have seen before that the string diagram for a freely propagating closed string is a
twice-punctured Riemann sphere Ĉ (Section 25.6). The string diagrams for a closed string
interaction which involves two incoming and two outgoing closed strings are Riemann
spheres with four punctures. In Section 25.7 we saw that the string diagrams for the inter-
action of four open strings generate the moduli space of H̄ with four boundary punctures.
It is reasonable to expect that the string diagrams for the interaction of four closed strings
generate the moduli space M0,4 of four-punctured Riemann spheres. Recall from equation
(25.60) that this moduli space has two real parameters. The moduli space is represented by
the position of a puncture on Ĉ when the other three punctures are fixed, conventionally,
to be at 0, 1, and ∞. Our goal in this section is to give some evidence that the hypothesis
is, in fact, true: the string diagrams generate the moduli space M0,4. Our arguments will
only be qualitative.

Consider the interaction of four closed strings shown in the light-cone diagram of
Figure 26.10. Note how closed strings interact: the two incoming closed strings meet at a
point and form a longer closed string. After some propagation, two points on the interme-
diate closed string meet, and the closed string splits into the two outgoing closed strings. If
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�Fig. 26.10 A light-cone string diagram for the interaction of four closed strings. The Riemann surface is
a four-punctured sphere. This string diagram has two parameters, the time �T and the twist
angle θ . String two approaches string one when �T is very large.

this diagram is to generate even only a portion of the two-dimensional moduli space M0,4,
it must have two parameters. One parameter we have encountered already: the time �T
between the interaction points. For simplicity, this diagram will be taken to include only
the range �T ∈ [0,∞). We will see that the region �T < 0 actually comprises two dia-
grams! Where is the other parameter of the string diagram? Cut the middle cylinder with a
pair of scissors along the double lines shown in the figure. Rigidly rotate the right side of
the diagram by an angle θ , and then glue the diagram back together. The resulting diagram
does not look like the original one. With a rotation of 90◦, for example, string three would
be in front of string four. Diagrams obtained from different values of θ can be shown not
to be conformally equivalent. Therefore 0 ≤ θ < 2π is the second parameter in the string
diagram.

With the parameters 0 ≤ �T < ∞, and 0 ≤ θ < 2π , what region of the moduli space
M0,4 does the diagram in Figure 26.10 produce? To answer this question, we imagine
mapping this diagram into Ĉ, letting P1, P3, and P4 land at 0, 1, and ∞, respectively. The
modular parameter is the position λ of P2. How does λ vary as we change �T and θ? As
�T →∞, λ will approach P1, which is at the origin. Moreover, for each fixed �T , as θ

goes from zero to 2π , λ traces a closed curve around P1. The string diagram generates a
region of M0,4 with the topology of a disk. When �T = 0, the curve that we get is the
boundary of the disk domain generated by this string diagram.
In the string diagram of Figure 26.10 there is a single intermediate string. There are two
diagrams in which the interaction points cross each other and there are three intermediate
strings. In the first, shown in Figure 26.11, string one joins string four. In the second, shown
in Figure 26.12, string two joins string four.

In Figure 26.11, the time between interactions is �T̃ . As �T̃ becomes large, P2

approaches P3, which is located at λ = 1. The intermediate closed string with momen-
tum p+1 − p+4 can be cut, rotated, and glued back, just as before, making the rotation
angle θ a parameter. This string diagram will generate a disk domain around λ = 1. The
curve arising from �T̃ = 0 represents the boundary of the domain generated by this string
diagram.
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�Fig. 26.11 In this string diagram P2 approaches P3 when �T̃ becomes very large.
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�Fig. 26.12 In this string diagram P2 approaches P4 when �T̂ becomes very large.
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�Fig. 26.13 The moduli space M0,4 of four-punctured spheres is generated by three string diagrams.
The string diagram in Figure 26.10 generates the disk domain around λ = 0. The string
diagrams in Figures 26.11 and 23.12 generate disk domains around λ = 1 and λ = ∞,
respectively. The three disk domains fully cover M0,4, which is equivalent to Ĉ with three
points removed.
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In Figure 26.12, the time between interactions is �T̂ . As �T̂ becomes large, P2

approaches P4, which is located at z = ∞. The intermediate closed string, with momen-
tum p+2 − p+4 , also carries a θ parameter. This string diagram will generate a disk domain
around λ = ∞. The curve arising from �T̂ = 0 represents the boundary of the domain
generated by this string diagram.

It turns out that the full moduli space M0,4 is precisely covered by the three string
diagrams we have examined, each one producing a punctured-disk domain. Since no region
in M0,4 is left unaccounted for, the domain boundaries must meet. So the images in M0,4

of the curves �T = 0, �T̃ = 0, and �T̂ = 0 must meet. The way this happens is actually
quite intricate, as we show in Figure 26.13. The curves �T̃ = 0 and �T̂ = 0 do not meet
at all. Part of the �T = 0 curve matches with the curve �T̃ = 0, and another part matches
with the �T̂ = 0 curve. Finally, some part of the �T = 0 curve matches with itself! The
disk domains around λ = 1 and λ = ∞ have ordinary shapes, but the one around λ =
0 has an unusual shape. You may take it as a good challenge to explain the features of
Figure 26.13 by looking carefully at the θ dependence of each of the three string diagrams
in the limit that the intermediate time goes to zero.

26.6 The moduli space of tori

We conclude this chapter with a look at the fascinating properties of loop amplitudes of
closed strings. A light-cone string diagram which represents a one-loop process for a single
closed string is shown in Figure 26.14. The slit in this diagram separates two cylinders –
these are the intermediate closed strings. If there were no slit, the string diagram would be
a two-punctured Riemann sphere. A torus can be viewed as a sphere with a hole. To do so,
one can cut out a disk around the north pole of the sphere and a disk around the south pole
of a sphere. The two resulting boundaries are then pushed towards each other and glued.
The result is a torus. The slit in Figure 26.14 is the hole that turns the sphere into a torus.
More precisely, we have a torus with two punctures.

To understand whether ultraviolet divergences can occur, the key questions we must
answer are

(1) Why is the torus a Riemann surface?
(2) How many moduli does a torus have?
(3) What does the moduli space of tori look like?

P1 P2
P2P1

�Fig. 26.14 A one-loop light-cone diagram for a closed string. The string diagram is a torus with two
punctures.
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�Fig. 26.15 (a) A rectangular torus is a rectangular region of the complex z-plane with identifications.
(b) Gluing the vertical sides of the rectangular region gives a cylinder. (c) Gluing the
horizontal sides as well gives a torus.

Since the answers to these questions are interesting even for tori without punctures, we
will consider this case in detail. We will see that tori have two real moduli and that the
moduli space is surprisingly intricate.

We begin with the simplest type of torus, the rectangular torus. As shown in Figure 26.15,
the torus can be defined as a rectangular region of the complex plane C with some iden-
tifications. In particular, the horizontal sides must be identified as indicated by the double
arrows, and the vertical sides must be identified as indicated by the triple arrows. To the
right, we show the region after the vertical lines have been identified, and then, in the right-
most part of the figure, we have the final result.

The identifications that lead to the rectangular torus, starting from the full complex plane,
are described by the equations

z ∼ z + L1 , z ∼ z + i L2 . (26.21)

The fundamental domain for these identifications is the rectangular region 0 ≤ �(z) < L1,
0 ≤  (z) < L2. This torus is a Riemann surface because the complex plane C is one and
because the identifications above are analytic identifications: z ∼ f (z), with f an analytic
function.

It is important to note that neither L1 nor L2 is a parameter of the rectangular torus. We
can scale the z coordinate by a constant factor. Letting z′ = z/L1, which is obviously a
conformal map, the identifications in (26.21) become

z′ ∼ z′ + 1 , z′ ∼ z′ + iT , T ≡ L2

L1
. (26.22)

It follows that a rectangular torus has just one parameter, the value of T . The above equa-
tions define the canonical presentation of a rectangular torus. In the canonical presentation,
the horizontal length is one.

Surprisingly, rectangular tori with different T parameters can sometimes be conformally
equivalent. To prove this, consider the torus shown in the top left of Figure 26.16. This is
a rectangular torus with T < 1, shown as a rectangular domain in the w plane. Now we
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�Fig. 26.16 Top left: a rectangular torus with parameter T in the w plane. Top right: the torus mapped to
w̃= −iw. Bottom right: the torus mapped to η = w̃/T. Bottom left: the torus mapped to
z = η + i

T . This final form is a rectangular torus with parameter 1/T.

perform a sequence of three conformal maps. For visual aid, the vertical lines and their
images under the map are shown as double lines. The first map is w̃ = −iw. This is a
clockwise rotation of the original rectangle by 90◦. Next we scale the figure by a factor of
1/T : η = w̃/T . The rectangle now lies below the real line. In the final step, we lift it up:
z = η + i/T . The result (bottom left of the figure) is the canonical presentation of a rectan-
gular torus with parameter 1/T ! We have therefore shown that tori with parameters T and
1/T are conformally equivalent. This implies that the tori with 0 < T ≤ 1 are conformally
equivalent to the tori with 1 ≤ T < ∞. As a result, the moduli space of rectangular tori can
be chosen to be the interval 1 ≤ T < ∞ or, alternatively, the interval 0 < T ≤ 1. We are
assuming that no conformal map exists that produces a further identification of rectangular
tori, which is in fact true.

The above conclusion has some implications for ultraviolet divergences. The tori with
T → 0, give rise to short closed strings that appear as vertical segments in the top left of
Figure 26.16. On the other hand, these tori are conformally equivalent to large tori with
T →∞, so it is mathematically impossible for them to give rise to ultraviolet problems.
In fact, if we include the tori 1 ≤ T < ∞, then we should not include the tori 0 < T < 1.
String amplitudes are integrals over the space of inequivalent Riemann surfaces; if we
included the short tori we would be double counting. Using the canonical presentation
1 ≤ T < ∞ of the moduli allows us to work with long tori only.

The rectangular tori do not exhaust the set of all conformally inequivalent tori. Tori can
be twisted as well. Referring to part (b) of Figure 26.15, one can glue the bottom and top
edges of the cylinder with a twist. The way this is actually done is sometimes elusive, so
we will explain it in detail. In particular, if you had a real-life rubber cylinder, then gluing
its open edges after a twist by an angle θ and after a twist by an angle θ + 2π would be
physically inequivalent processes. For a torus Riemann surface, a twist by θ and a twist by
θ + 2π are equivalent.
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�Fig. 26.17 A general torus is obtained from the complex z-plane by identifying z ∼ z + ω1 and
z ∼ z + ω2.

To discuss twisted tori clearly, we begin by giving the general construction of a torus. To
get a torus from the complex plane we need two identifications. We choose two complex
numbers ω1 and ω2, both different from zero and satisfying

 (ω2/ω1) > 0 . (26.23)

This condition is simpler than it looks. It just requires that the two complex numbers rep-
resent vectors that are not parallel. Then, by convention, we choose ω2 to be the one which
is obtained from ω1 by a counterclockwise rotation through an angle smaller than 180◦.
An example is shown in Figure 26.17. The torus is obtained by the identifications

z ∼ z + ω1 , z ∼ z + ω2 . (26.24)

The fundamental domain is the parallelogram shaded in the figure, and its edges are iden-
tified. This is the general construction of a torus Riemann surface, but it has extraneous
parameters. We can define

τ ≡ ω2/ω1 ,  (τ ) > 0 , (26.25)

and, scaling z by a factor of 1/ω1, we note that the identifications above are equivalent to
the identifications

z ∼ z + 1 , z ∼ z + τ ,  (τ ) > 0 . (26.26)

Observe that τ lives in the upper half-plane H. The new picture of the parallelogram is
shown in Figure 26.18. Note that the torus is rectangular precisely when �(τ ) = 0 (i.e.,
when τ is purely imaginary).

Could the moduli space of tori be just τ ∈ H? It cannot. Our previous work with rect-
angular tori indicates that tori with different τ parameters can be equivalent. Indeed, for
a rectangular torus with parameter T , we have τ = iT , as is clear by comparing (26.22)
and (26.26). But this torus is equivalent to a torus with parameter τ ′ = i/T . It follows that
τ ′ = −1/τ , and, at least for rectangular tori, τ and (−1/τ) are conformally equivalent. In
fact, we will see shortly that τ and (−1/τ) always define conformally equivalent tori.
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�Fig. 26.18 The canonical presentation of a torus with parameter τ ∈ H. The shaded region in the top
left figure can be moved, as shown in the top right figure. Using this rectangular
fundamental domain, we form a cylinder and recognize the twist angle θ associated with
the final identification.

Let us now explain the twisting of tori with�(τ ) 	= 0. Consider Figure 26.18. Let P denote
the points z = 0 and z = τ , which are equivalent after identification. Making use of the
identification z ∼ z + 1, we can move the shaded region, shown in the top left, to obtain
the result shown in the top right. The fundamental domain has become a rectangle, even
though the torus is not rectangular! While the vertical edges are identified, the identification
of horizontal lines is shifted: the point P is not identified with a point that is directly above
it, as would be the case for a rectangular torus. We can now roll up the rectangular domain
to form a cylinder, whose ends remain to be joined together. This cylinder is shown in the
bottom part of the figure. The identification of points on the two boundary components of
the cylinder must be shifted, as P on the bottom end must be matched with P on the top
end. We can use an angular variable running from zero to 2π to parameterize uniformly
both boundary components of the cylinder. We take P on the lower boundary component
to have zero angle. The upper boundary component is parameterized so that a given point
takes the angular value assigned to the point on the lower boundary that is directly below
it prior to identifications. Since the identifications are shifted by �(τ ) along the boundary,
and the boundaries have unit length, the angle θ associated with P on the top boundary is

θ = 2π �(τ ) , (26.27)

as shown in Figure 26.18. We call θ the twist angle.

We can now investigate the effects of letting the twist angle increase by 2π . This can be
done by letting τ → τ + 1, as can be seen in equation (26.27). If a torus with parameter
τ and a torus with parameter τ + 1 (Figure 26.19) are really the same, then increasing the
twist angle by 2π changes nothing. We now use the arbitrariness in the choice of funda-
mental domain to demonstrate that two such tori are in fact the same. With the identification
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�Fig. 26.19 A torus with parameter τ (left) and a torus with parameter τ + 1 (right). By moving the
shaded region on the left using z ∼ z + 1, we see that the two tori are really the same.

z ∼ z + 1, we can shift the shaded region on the left side of the figure to the position indi-
cated on the right side of the figure. In doing so each point in the region has been moved
horizontally by one unit. This operation does not change the torus; it is simply a different
choice of fundamental domain. It follows that the torus on the left, with parameter τ , is the
same torus as the torus on the right, with parameter τ + 1:

τ ∼ τ + 1 . (26.28)

Back in (26.27), this means that θ ∼ θ + 2π . Thus, for example, twist angles beyond the
interval−π ≤ θ < π do not yield new tori. Now we can understand this concretely. Do not
think of twisting as an application of physical torsion to wind up the cylinder before gluing
the boundaries. Twisting is just a prescription for identifying points on the two boundary
components of the cylinder: we arbitrarily pick a point P on the bottom boundary and
then fix a point on the top boundary to identify it with. The identification is then extended
uniformly over the boundaries. It is clear from this prescription that the twist identification
parameter simply describes the position of a point on the top boundary, and thus the twist
parameter lives on a circle.

Concerning the moduli space of tori, the identification (26.28) has an important impli-
cation. While τ certainly lives in H, the space of inequivalent tori is much smaller. The
identification shows that any infinite vertical strip of unit width contains all inequivalent
tori. It is customary to choose the strip S0:

S0 ≡
{− 1

2 < �(τ ) ≤ 1
2 ,  (τ ) > 0

}
. (26.29)

The set of inequivalent tori is contained in S0. Note that the right boundary �(τ ) = 1/2 of
the strip is included in the set. The left boundary �(τ ) = −1/2 is not included, because it
is identified with the right boundary under τ → τ + 1.

Our analysis of rectangular tori indicates that perhaps τ ∼ −1/τ . Let us now prove that
this is true. Consider a torus with parameter τ , as shown in the top left of Figure 26.20. Now
define the conformally related z̃ = z/τ . This map is a rigid rotation plus a uniform scaling,
and the original parallelogram turns into the parallelogram shown at the top right part of
the figure. In a final step we do a rigid translation z′ = z̃ − 1/τ . The final parallelogram
in the z′-plane is in canonical form, and the parameter of the associated torus is (−1/τ).
Thus τ ∼ −1/τ .
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�Fig. 26.20 A sequence of conformal maps that shows that a torus with parameter τ is conformally
equivalent to a torus with parameter −1/τ .

At this stage, we have found two equivalences for tori described by τ ∈ H:

τ ∼ τ + 1 , τ ∼ −1/τ . (26.30)

It turns out that there are no additional independent identifications. It is therefore of great
interest to find a fundamental domain for the identifications (26.30), for this will give us the
set of all inequivalent tori. A fundamental domain for the first identification is the strip S0.
Since the second relation identifies points in the region |τ | < 1 with points in the region
|τ | > 1, we can attempt to use the subset of S0 which lies beyond the unit circle together
with some points which lie on the unit circle. This is actually the answer, but it is by no
means obvious. The same logic could have been used to argue that we can use the subset of
S0 which lies inside the unit circle, together with some points which lie on the unit circle,
but this would have been wrong. The claim is that a fundamental domain is the region F0,
defined by

F0 ≡
{
− 1

2 < �(τ ) ≤ 1
2 , (τ ) > 0, |τ | ≥ 1 , with the

further restriction that �(τ ) ≥ 0 if |τ | = 1
}
. (26.31)

The fundamental domain F0 is shown as the shaded region in Figure 26.21. As stated in the
above conditions, certain boundaries (shown by dashed lines in the figure) are not included
in F0. These boundaries are composed of the points on the vertical line �(τ ) = −1/2 and
by the points on the unit circle that lie to the left of τ = i , which are removed by the further
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�Fig. 26.21 The fundamental domain F0 for the identifications τ ∼ τ + 1 and τ ∼ −1/τ of H. The
closure F̄0 of the region F0, with suitable identifications is the moduli space M1,0 of tori
shown to the right.

restriction in (26.31). We will give below part of the proof that F0 is a fundamental domain
for the identifications (26.30), leaving the rest of the proof for Problem 26.6.

The moduli space of tori, denoted as M1,0, is the τ upper half-plane H subject to the
identifications (26.30). We learned in Section 2.7 how to build a space which arises from
identifications: we take the fundamental domain together with its boundary and implement
the identifications on the boundary. In the present situation, the fundamental domain F0

together with its boundary defines the closure F̄0:

F̄0 =
{− 1

2 ≤ �(τ ) ≤ 1
2 , (τ ) > 0, |τ | ≥ 1

}
. (26.32)

On F̄0 we impose two identifications: �(τ ) = −1/2 and �(τ ) = 1/2 are identified by
τ → τ + 1, and the points with |τ | = 1 are identified among themselves by τ →−1/τ .
These are, in fact, all the identifications in F̄0 (see Problem 26.6). The resulting moduli
space M1,0 of tori can be visualized by cutting out the region F0, folding it along the
imaginary axis, and gluing the boundaries, as shown in the right side of Figure 26.21.

Quick calculation 26.1 Consider the points on the unit circle |τ | = 1 that lie on H in
between the vertical lines �(τ ) = ±1/2. Show that the points to the right of τ = i are
identified with the points to the left of τ = i via τ →−1/τ .

Let us consider the physical implications of this result. Since all inequivalent tori are con-
tained in F0, one-loop closed string amplitudes must only include the contributions from
tori with τ ∈ F0. Since the tori in F0 are long tori, ultraviolet divergences are not an issue.
If amplitudes used the full strip S0, the situation would have been quite problematic. This
is not because we would have had some small tori to deal with, since, after all, they are
conformally equivalent to (safe) long tori. The problem would have arisen because the
complement of F0 in S0 contains an infinite number of copies of all the tori in F0! We
can easily verify, for example, that it contains infinitely many copies of the torus τ = i .
Consider the set τn of values

τn = i + n , n ≥ 1 , (26.33)
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all of which, by virtue of τ ∼ τ + 1, are just copies of the τ = i torus. Using the
identification τ ∼ −1/τ , we conclude that

− 1

τn
= − n

n2 + 1
+ i

n2 + 1
(26.34)

are also copies of the τ = i torus. But for n ≥ 1, these copies lie in S0 − F0. This is
clear because the real part of −1/τn is in [−1/2, 0] and |1/τn| = 1/

√
n2 + 1 < 1. If we

had to include all tori in S0, all one-loop amplitudes would be infinite. Instead, one-loop
amplitudes use F0 because this space contains every inequivalent torus exactly once.

To establish that F0 is a fundamental domain for the identifications (26.30) requires some
real work. Let us do some of it here to give you an idea about the necessary tools. To
begin with, it is helpful to introduce some additional structure. Note that the identifications
(26.30) are actually real linear fractional transformations, just like the ones we studied in
Section 25.6. Let T and S denote the generators of linear fractional transformations that
act as

T τ = τ + 1 , S τ = −1/τ . (26.35)

Consider now transformations g of the form

gτ = aτ + b

cτ + d
, a, b, c, d ∈ Z , ad − bc = 1 . (26.36)

Note that this is a linear fractional transformation with integer parameters. We can use
matrix notation to describe these transformations. Associated with the transformation g
we introduce the 2-by-2 matrix [g] defined by

[g] =
(

a b
c d

)
, det [g] = 1 . (26.37)

The matrix [g] has an ambiguity. We can change the sign of all entries without changing the
transformation. We must therefore consider a matrix and minus the matrix to be equivalent.
Given two transformations g1 and g2 of the form indicated in (26.36), the composition g1g2

is also a transformation of the same form, and

[g1g2] = [g1] [g2] . (26.38)

Quick calculation 26.2 Prove equation (26.38).

The matrices associated with the transformations T and S are conventionally chosen to be

[T ] =
(

1 1
0 1

)
, [S] =

(
0 −1
1 0

)
. (26.39)

The composition of any number of S and T transformations, in any order, gives rise to a
transformation of the type (26.36). A useful property of such transformations is that

 (gτ) =  (τ )

|cτ + d|2 , (26.40)

as we verified in a similar calculation earlier (see (25.66)).
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The set of linear fractional transformations with integer coefficients (a, b, c, d) that satisfy
ad − bc = 1 defines a group G of transformations under function composition. The group
is called the modular group, and it is the same group as the group of 2-by-2 matrices with
integer entries and unit determinant – with the proviso that a matrix and minus the matrix
are considered to be the same group element. Here group multiplication is matrix multipli-
cation. The modular group is called P SL(2, Z). Here L stands for linear transformations or
matrices. The two is for 2-by-2, the size of the matrices. S is for special, since the matrices
have unit determinant. Z indicates that the entries are integers. Finally, P is for projective,
or the fact that the sign of all entries can be reversed.

Let G ′ denote the set of projective transformations that can be generated by composition
of any number of S and T transformations and their inverses. G ′ is clearly a subgroup of
the modular group G. We will now prove that, for any τ ∈ H, there is a g ∈ G ′ such that
gτ ∈ F0. This states that F0 contains a copy of each torus – a necessary condition for F0

to be a fundamental domain. The proof is not a trivial matter, the problem being that it is
not all that easy to see how the tori in S0 − F0 can be sent into F0. The strategy requires
making sure that we can send any point to a new point with a sufficiently large imaginary
part, so that it can then be brought into F0 by some number of T transformations.

First we show that, for each τ , there is a g ∈ G ′ such that  (gτ) is largest. It follows
from (26.40) that we need only search for a g such that |cτ + d| is smallest. Since c and
d are integers, as we vary them, (cτ + d) forms the lattice of points generated by τ and 1
in the complex plane. For any number α > 0, there are at most a finite number of points
such that |cτ + d| < α. Thus we should be able to find a minimum for |cτ + d| among all
g, which gives a g for which  (gτ) is largest. The transformation g is not unique.

Now act with T n on gτ , with n ∈ Z chosen so that T ngτ ∈ S0. We claim that, unless
T ngτ ∈ F̄0, we have a contradiction. Let

τ ′ = T n g τ . (26.41)

The imaginary part of τ ′ is equal to the imaginary part of gτ , and, by our proof above, it
should not be possible to find a g′ ∈ G ′ such that g′τ ′ has an imaginary part larger than
that of τ ′. If τ ′ is not in F̄0 then |τ ′| < 1. But then, using (26.40), we find that

 (Sτ ′) =  (τ ′)
|τ ′|2 >  (τ ′) , (26.42)

contradicting the fact that no transformation in G ′ can increase the imaginary part of τ ′.
This contradiction proves that any point τ ∈ H can be brought into F̄0 by transformations
generated by T and S (and their inverses). Once it is in F̄0, then, if it is in F0 we are done.
If it is not in F0, then it must lie in the boundary of F̄0. Applying S or T once will then
send it to F0. This completes the proof that any point τ ∈ H can be brought into F0 by
transformations generated by T and S.

Of course, more remains to be shown in order to prove that F0 is a fundamental domain.
It must be established that no two points in F0 are connected via a transformation in
G ′. In fact, it is possible to show a stronger result: no two points are connected via a



656 Loop amplitudes in string theory
�

transformation in the modular group G. Once this is proven, one can finally show that
G ′ coincides with G. This means that S and T generate the full modular group (see
Problem 26.6). It also follows that F0 is a fundamental domain for the modular group.

Problems

Problem 26.1 Open–closed string transition.

Examine the process by which an open string with light-cone momentum p+ closes up to
form a closed string.

(a) Draw the light-cone diagram as an infinite cylinder with a semi-infinite slit parallel to
its axis. Show the incoming open string, the outgoing closed string, and the special
closed string created at the interaction point.

(b) To draw this diagram as a region of the w plane, cut open the cylinder by follow-
ing the direction of the slit. The result is the infinite strip 0 <  (w) ≤ 2πα′ p+. The
open strings exist for �(w) < 0, and the closed strings exist for �(w) > 0. The lines
 (w) = 0 and  (w) = 2πα′ p+ are glued when �(w) > 0. What is the boundary of
the string diagram?

(c) Construct a map from this light-cone diagram into z ∈ H̄. Require that the incoming
open string in the infinite past is mapped to z = 0 and that the outgoing closed string
in the infinite future is mapped to z = i .
Hints: use ξ = exp(w/(2α′ p+)) to map the strip to H̄. Then let η = ξ2. Why does this
map remove the need for identifications? Show that the surface has gone to the exterior
of a finite slit on the full η complex plane. To map this to z ∈ H̄ you will need a map
that involves square roots.

(d) Plot in the z-plane the closed string emerging at the interaction time. Sketch also
incoming open strings and outgoing closed strings.

Problem 26.2 Mapping of annuli into canonical form.

Find the error in the following argument which suggests that it is not possible to map
conformally a topological annulus into a canonical annulus.

The Riemann mapping theorem implies that any topological disk can be mapped to the unit
disk. A topological annulus can therefore be mapped into the inside of a unit disk |z| ≤ 1,
with the outer boundary mapping into |z| = 1 and the inner boundary mapping into some
closed curve inside the disk. To map this into a canonical annulus we must make the inner
curve round and centered at the origin, while preserving the boundary |z| = 1. This requires a
map of the disk to itself. The mappings of a disk to itself have three real parameters, just
as the mappings of H̄ to itself. It is not possible to round a general curve using just three
parameters, so it is impossible to map the annulus into canonical form.

Problem 26.3 Moduli space of T 2 compactifications with B field.

In Problem 17.5, the compactification parameters of the square torus T 2 are R and the
Kalb–Ramond field b. Define the complex variable
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ρ ≡ b
R2

α′
+ i

R2

α′
= fB

2π
+ i

R2

α′
.

Note that ρ ∈ H. Prove that the transformations (1) and (2) in Problem 17.5 take the form

ρ → ρ + 1 , ρ →−1/ρ .

Describe the moduli space of compactifications on square tori T 2.

Problem 26.4 Shapiro–Virasoro amplitude.

The Shapiro–Virasoro amplitude is the scattering amplitude of four closed string tachyons.
Recall that for a closed string tachyon we have

p2 = −M2 = 4/α′ . (1)

For this amplitude we need the moduli space M0,4 of four-punctured spheres. When three
of the punctures are placed at 0, 1, and ∞, the moduli space is parameterized by the posi-
tion of the last puncture, a complex number λ ∈ Ĉ. The self-mappings of the z-sphere
z ∈ Ĉ are the linear fractional transformations

z → az + b

cz + d
, ad − bc = 1 . (2)

(a) Suppose we want to integrate some quantity over the sphere. We then write an integral∫
d2z . . .. Here d2z ≡ dxdy, with z = x + iy. How does d2z transform under a linear

fractional transformation? (Recall that you must use Jacobians!)
(b) Mimicking the open string Veneziano amplitude, consider an expression for the

Shapiro–Virasoro amplitude ASV of the form

ASV = g2
∫

d2z|z1 − z3|α · · · |z − z1|βp2·p1 · · · (3)

where the dots represent additional factors, which you must write, and α and β are
constants you must determine by the condition that the integrand is invariant under
linear fractional transformations.

(c) Simplify (3) now for the case z1 = 0, z3 = 1, z4 = ∞, and z = λ . Show that you get
an expression of the form

ASV = g2
∫

d2λ |λ|βp2·p1 |1 − λ|βp2·p3 . (4)

(d) To do the integral, first prove the following identity:

|z|−a = 1

�(a/2)

∫ ∞

0
dt t

a
2−1 exp(−t |z|2) . (5)

Now use it twice in (4), once for each factor in the integrand. Call the needed param-
eters t and s. The λ integral now becomes Gaussian, and this is made clear by writing
λ = λ1 + iλ2 and d2λ = dλ1dλ2. Do the Gaussian integral. To do now the t and s inte-
grals let t = xu and s = (1 − x)u with 0 < x < 1 and 0 < u < ∞. Your final answer
should be the ratio of three gamma functions over three other gamma functions.
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(e) Consider the invariants

s = −(p1 + p2)
2 , t = −(p2 + p3)

2 , u = −(p1 + p3)
2 .

Show that your answer has the expected pole structure in each of the three possible
channels.

Problem 26.5 Bringing τ into the fundamental domain.

Let τ = (9 + i)/10. Find the transformation in the modular group that brings it into a
point τ0 of the fundamental domain F0. Show that the transformation is unique by prov-
ing that there is no transformation in the modular group (except the identity) that leaves
τ0 fixed. Partial answer: τ0 = 5i . Repeat the above computations for τ = 9/10 + i/100.
Partial answer: τ0 = i + 1/10. [Hint: use the procedure discussed in the proof that any τ

can be brought into the fundamental domain.]

Problem 26.6 S and T generate the modular group.

(a) Let z ∈ F̄0 and assume that gz ∈ F̄0 is a different point, where g is an element of the
modular group (as in (26.37)). Since we can replace (z, g) by (gz, g−1), we can assume
that  (gz) ≥  (z). This requires |cz + d| ≤ 1. Explain why |c| ≥ 2 is impossible. Dis-
cuss the finitely many possible values of c and d and prove that either �(z) = ±1/2
and gz = z ∓ 1 or |z| = 1 and gz = −1/z.

(b) Prove that the group G ′ generated by S and T (and its inverses) coincides with the
modular group G. Since G ′ is a subgroup of G, it suffices to show that each element of
G is an element of G ′. Construct the proof using the following two facts: (i) any point
outside F0 can be brought into F0 by a transformation in G ′, and (ii) for any point z0

on F0 and any g ∈ G different from the identity, the point gz0 is outside F0 (this is a
consequence of (a)).



References

Most works in string theory assume background knowledge in quantum field theory and
general relativity. For this reason, the present bibliography consists mostly of review
papers. Even reviews are not an easy read, but they are more pedagogical than research
papers, and they give many references, some of which the reader may want to consult
at some point. We have also included in this bibliography some readable articles that
supplement the material that has been covered in this book.

Readers of this book who are looking for more advanced material in string theory are
well advised to begin their search by consulting the textbook by Becker, Becker, and
Schwarz (2007), the two-volume text by Polchinksi (1998), and the two-volume text by
Green, Schwarz, and Witten (1987). A helpful reference text is that of Kiritsis (2007).
A detailed discussion of matters related to D-branes can be found in the book by John-
son (2003). While all these books require a background in quantum field theory and general
relativity, selected parts may be understood without such a background.

For a view of string theory at its earliest stage of development, see the book by Framp-
ton (1974). For string field theory, see the book by Siegel (1988). A book with a broad scope
is that by Kaku (2000). Useful lecture notes include those of Lüst and Theisen (1989),
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broad, we cite Abel et al. (1999), a relatively recent paper with many references. Also rec-
ommended are the lectures by Deo, Jain, and Tan (1990). For a readable introduction to the
physics of black holes see, for example, the book by Begelman and Rees (1998) and the
book by Thorne (1994). See also the article by Bekenstein (2001). Das and Mathur (2001)
review many aspects of black hole physics in string theory. Our discussion of the entropy
of Schwarzschild black holes is based on Horowitz and Polchinski (1997). The five-
dimensional black hole discussed in the text is that in Strominger and Vafa (1996). For
a novel approach to black hole entropy see Mathur (2005). For a recent review on the
subject see Sen (2007).
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For Regge trajectories see Tang and Norbury (2000) and Selem and Wilczek (2006).
Problem 23.1 is based on a similar problem in Frey (2005). The Poincaré-invariant modifi-
cation of string theory with critical dimension four is in Polchinski and Strominger (1991).
For a review of results on the quark-antiquark potential see Kuti (2005). For the AdS/CFT
correspondence, a readable, brief review is Horowitz and Polchinski (2006). Other use-
ful reviews are: Aharony et al. (2000), D’Hoker and Freedman (2002), Klebanov (2000),
Maldacena (2003), Mateos (2007), and Petersen (1999). The AdS/CFT correspondence
originated from the Maldacena conjecture (1998). For other reviews on related topics, see
Banks (1999), Bigatti and Susskind (1997, 2000b), Taylor (2001), and Witten (1998). On
the quark-gluon plasma, see the popular-level accounts by Riordan and Zajc (2006) and by
Blau (2005). Recent technical references are Son and Starinets (2007), Liu, Rajagopal, and
Wiedemann (2006), and Herzog et al. (2006).

Covariant quantization and string interactions are discussed in the string theory text-
books cited before. Readers who wish to go beyond our basic discussion of the Virasoro
operators may look at the lecture notes by Ginsparg (1991), which give an efficient
introduction to conformal field theory. A readable book on Riemann surfaces is that
by Springer (1981). For a construction of all Riemann surfaces without short possible
strings, see Zwiebach (1993). Our discussion of the modular group follows the book by
Serre (1973).
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Index

action
charged point particle, 98
fields and symmetries, 157
first defined, 78
free particle in curved space, 99
free point particle, 91
free scalar field, 196
Nambu–Goto, 111–112, 123, 178
open string and charged endpoints, 368
particle and EM field, 99, 356
Polyakov string, 582–587
saddle points, 87
string and Kalb–Ramond field, 357
transverse string coordinates, 248

admissible states, 575
AdS/CFT correspondence

conformal field theory, 537
finite temperature, 554–559
holography, 553–554
large N limit, 533–535
motivating, 537–541
near horizon geometry, 539
parameters, 541–543

anti-de Sitter
black hole, 555
conformal boundary, 552
defined, 549
isometries, 537
metric, 552, 564, 565

background fields, 361–362, 415–416
black hole

in anti-de Sitter space, 555
basics, 513–514
built with D-branes, 519–520
entropy, 514–515, 520–521
in IIB superstrings, 518–519
temperature, 514

Bohm–Aharonov effect, 406
Born–Infeld electrodynamics

and T-duality, 443–446
capacitance, 446
energy of a point charge, 441–443, 447
general theory, 438–443
Hamiltonian, 447
Lagrangian density, 438

Lagrangian for Dp-brane, 445
string ending on D-brane, 448–450

Calabi–Yau space, 479
capacitance

and moduli of annuli, 636–641
Born–Infeld electrodynamics, 446

Cauchy–Riemann equations, 599
Chan–Paton labels, 345
charge

conserved
for Lagrangian densities, 158
Lagrangian mechanics, 156
Lorentz, 167
momentum, 160, 164

electric, 154–155
chiral fermions, 463–464, 468, 472
conformal boundary

AdS, 552
Hn , 548
defined, 547
Minkowski space, 564
R2, 548

conformal gauge, 586
conformal map, see Schwarz–Christoffel
constraints

from the Polyakov action, 587
parameterization, 136, 138, 182, 569
quantum Virasoro, 572–577
solving in light-cone gauge, 187–189

cosmic strings, 145–149
counting

symmetric products, 277
with generating functions, 317–320

cross section, 595
current

conserved
defined, 154
for Lagrangian densities, 158
Lorentz, 167
momentum, 159–161

electric, 154–155
four-vector, 50
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cusp
in closed strings, 144, 152
in open strings, 151

D-branes
charge, 370–373
classical motion of endpoints, 128
classical open string motion, 149–151
Dp-brane boundary conditions, 331–333
D0-branes, 589
dissolved, 429, 431
first discussed in detail, 115–116
instability, 270–274
Lagrangian with EM fields, 445
open strings between Dp- and Dq-branes, 345–350
open strings between parallel Dp-branes, 338–345
open strings on Dp-branes, 333–338
tension Tp of Dp-brane, 413, 414
tilted, 424, 425
with electric fields, 418–422
with magnetic fields, 423–429

de Sitter space, 566
deficit angle, 145
degrees of freedom

defined, 199
gravity field, 212
Maxwell field, 208

descendent, see Virasoro descendent
dilaton

from covariant closed string, 590
from quantum closed string, 293
related to the string coupling, 294–296

dimensional reduction, 47, 389–390
Dirichlet boundary condition

defined, 75
open strings, 114
reformulated, 83

divergence
in higher dimensions, 70
theorem, 56–57

double strike, 303, 386
dual field strength F̃μν , 437, 447
duality

defined, 376
for a classical oscillator, 377–378
in electromagnetism, 376–377
T-duality, see T-duality

Dynkin label, 466, 467

Einstein
general relativity, 58
summation convention, 17

electric field
critical, 422
motion of open strings, 429–430
on D-branes, 418–422
open string boundary conditions, 419

electromagnetism
gauge potentials, 48
current vector, 50
duality invariance, 376–377
field strength defined, 48
gauge transformations, 46
Maxwell equations, 45

ensemble
canonical, 495–498
microcanonical, 495–498

entropy
black hole, 514–515, 520–521
defined, 495
of a string, 506, 515–516

extra dimensions
Lorentz invariance, 30
compact, 31
large, 67–69

Feynman diagram, 592–594, 630
field strength, see electromagnetism
fine-structure constant, 62, 294
flux compactification, 484
four-vector, 21
free boundary condition, 114
fundamental domain

defined, 32
modular group F0, 651–656
modular group, exercise, 658
modular group, identifications, 658

gamma function
analytic continuation, 70
defined, 54
recursion relation, 54
Veneziano amplitude, 625

gauge transformations
U (1) structure, 404–406
gravitational field, 60, 210
Kalb–Ramond field, 214
Maxwell and Kalb–Ramond, 368
Maxwell field, 46, 206

geodesic
equation, 99
on a cone, 147, 153

graviton states
from covariant closed strings, 590
from gravity field, 212
from light-cone closed strings, 292

gravity field
degrees of freedom, 212
gauge transformations, 210
light-cone gauge, 211
quantum theory, 209–213

group
U (1), 344, 405
U (N ), 344



669 Index
�

Hagedorn temperature
bosonic string theory, 505–507
open superstring theory, 522

Hamilton’s principle, 79
Hamiltonian

Born–Infeld electrodynamics, 447
charged point particle, 99
covariant open string, 570, 578
density for scalar field, 197
density for strings, 127
energy for strings, 133
light-cone closed string, 286, 289, 388
light-cone open string, 238, 262
light-cone point particle, 222
point particle energy, 92

Hardy–Ramanujan, 502
Hawking–Page transition, 559
helicity, 463
hierarchy problem, 61, 69
Higgs mechanism, 345, 463, 465, 493
holography, 549
holonomy W

as angle variable, 410–412
defined, 408
Wilson line, see Wilson line

hyperbolic space
H2, 544
H2 isometric embedding in R

3, 562
Hn defined, 545
Hn metric, 547
Hn conformal boundary, 548

intersection number, 454, 457, 491
interval, 15

jumping rope
angular momentum, 172
relativistic, 150

Kalb–Ramond field
T 2 compactification, 398–399
analysis, 214–215
coupling to a string, 357
coupling to Maxwell field on D-brane,

368–370
electric charge density, 359
gauge transformations, 214
motion of a string, 374–375
of a string, 374
particle states, 215
states from light-cone closed string, 292

Kaluza–Klein, 390

Lagrangian
Born–Infeld electrodynamics, 438
density for nonrelativistic string, 81
first defined, 78

for Dp-brane with EM fields, 445
nonrelativistic string, 81
symmetry

defined, 155
more general, 159, 173–174

landscape, 10, 482, 489
light-cone

components of tensors, 213
coordinates, 22
energy and momentum, 28
gauge

gravity field, 211
Maxwell field, 207
open and closed strings, 187
point particle, 217

Hamiltonian, see Hamiltonian
metric, 24
scalar field equation, 200

lightlike
compactification, 42
separated events, 16

linear fractional transformation
constructed from three points, 611, 626
defined, 610
number of parameters, 611

Lorentz algebra, 231, 234
Lorentz force law, 46, 69
Lorentz generators

quantum open string, 259–262
quantum point particle, 229–233

Lorentz transformations
boost, 19
defined, 20
infinitesimal, 165

Luscher coefficient, 532

M-theory, 325, 481
magnetic field

flux quantization, 427, 430
motion of open string, 431–432
on D-branes, 423–429
related to tilting angle, 425

mass-squared
closed string, 288
closed string with compactification, 387
DD contribution, 336
ND contribution, 350
normal ordering contributions, 349
NS sector, 314
open string, 263
open string (classical), 190
open string between D-branes, 341
R sector, 316
twisted sector, 302

massive vector field
formulation, 215
from separated D-branes, 342–343
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Maxwell field
coupling to open strings, 368, 415–418
gauge transformations, 206
holonomy, 408
light-cone gauge, 207
photon states, 209
quantum theory, 206–209

metric
conformal, 586
dynamical, 59
for open string in magnetic field, 432
induced on surface, 104
induced on world-sheet, 111
Minkowski, 17–18
transformation under reparameterization, 105
world-sheet hαβ , 583

mode expansion
closed string coordinate

no compactification, 284
with compactification, 383

for X− open string coordinate, 190
for DD open string coordinate, 335
for ND open string coordinate, 348
for NN coordinate derivatives, 186
for NN open string coordinate, 186

modular group P SL(2, Z)

defined, 655
fundamental domain F0, 656
generated by S and T , 658

moduli space
of S1 compactification, 393
of T 2 compactification with B field, 656
of Riemann surfaces, see Riemann surface

moduli stabilization, 481–484

Nambu–Goto
free string equations of motion, 113
string action, 111–112, 170, 178

Neumann boundary condition, 76
Neveu–Schwarz fermions, 312–315
Newton

constant G, 60
constant in arbitrary dimension, 63
constant in terms of g, 294
gravitational law, 60

nonlinear electrodynamics
Born–Infeld theory, 438–443
energy functional, 436, 446
field �D, 436
field �H , 436
general framework, 433–437

non-planar open string diagrams, 642–643
normal ordering, 251
null

states, 577
vector, 21
vectors orthogonal to, 191

number operator
closed string, 287
open string, 264

operator
creation and annihilation

closed string, 285
open string, 244–246
quantum scalar field, 203

Heisenberg, 218–220
open string Heisenberg, 237
open string Schrödinger, 237
point particle

Heisenberg, 221
Schrödinger, 220

scalar field operator, 204
Schrödinger, 218–220

orbifold
T 2/Z3, 41
C/ZN , 35
R

1/Z2
closed strings, 296–298
defined, 35
twisted sector, 298–303

construction, 41
defined, 35
spacetime, 43

orientation
of an open string, 339

orientifold plane
and coincident Dp-branes, 352
and Dp-brane, 351
and separated Dp-branes, 352–354
closed string spectrum, 305

particle states
Kalb–Ramond states, 215
one-graviton states, 212
one-particle, 205–206
one-photon states, 209
role in quantum field theory, 201

partition function
defined, 496
relativistic particle, 507–509, 522
single string, 509–513

partitions of N
P(N ; b, f ), 505, 522
p(N ), 499, 502
pb(N ), 503–504
q(N ), 504, 521
generating functions, 522

photon states
from covariant open string, 579–580, 589
from light-cone open string, 266–267
from Maxwell field, 209

physical state
covariant quantization
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defined, 577
gravitons, 590
photons, 580
tachyons, 579

light-cone quantization
open string, 266
point particle, 224

Planck
length, mass, time, 61
constant, 36
energy, 62
length in arbitrary dimension, 63

point particle
action if charged, 98
coupled to dynamical EM field, 99
covariant quantization, 587
free action, 91
free equation of motion, 95
free motion in curved space, 99
Hamiltonian, when charged, 98
Heisenberg operators, 221
Lagrangian when free, 92
light-cone Lorentz generators, 229–233
light-cone momentum generators, 226–229
quantum states, 223
reparameterization symmetry, 234
Schrödinger equation, 224
Schrödinger operators, 220

primary, see Virasoro primary
proper time, 27

as action, 91–92
puncture, 602
pure gauge

defined, 208
gravity field, 214
Maxwell field, 209
states, 577

quantum field theory
gravity field, 209–213
Kalb–Ramond field, 214–215
massive vector field, 215
Maxwell field, 206–209
scalar field, 200–206

quark-antiquark potential, 531–532
quark-gluon plasma

jet-quenching, 561
production, 559
viscosity, 560

Ramond fermions, 315–317
Ramond–Ramond

couplings to D-branes, 371
fields in closed superstrings, 324

Regge trajectory, 527
reparameterization

exercise for particle, 98

generated by Virasoro, 257–259, 277,
289–290

invariance for particle, 93–94, 234
invariance of area, 103–106
invariance of Kalb–Ramond coupling, 373

Riemann surface
defined, 599
moduli space

M0,3, 616
M0,4, 611–613, 646
M1,0, 652
N3, 616
N4, 616–617
of annuli, 633

points approaching each other, 627
the annulus, 632–634
the complex plane C, 598
the sphere Ĉ, 609–610
the torus, 646–651
the upper plane H̄ (bordered), 599
the upper plane H, 599

rotating open string
coherent states, 530
detailed analysis, 140–142
further study, 149
in light-cone gauge, 191
quantum length, 561
quantum states, 526–531

scalar field
action principle, 195–197
degrees of freedom, 199
free equation of motion, 197
free Hamiltonian, 197
light-cone field equation, 200
plane wave solutions, 197–199
quantum theory, 200–206

Schwarz–Christoffel map
closing off the polygon, 628
for four open strings, 618–621
for three open strings, 605–608
in general, 603–605
turning angle, 603

sectors
for open strings between D-branes, 339
for type II superstrings, 322–324
Ramond and Neveu–Schwarz, 312

self-dual radius, 391
Shapiro–Virasoro amplitude, 657
slope parameter α′

defined, 168
related to string length, 170
related to string tension, 169

spacelike
separated events, 16
vector, 21

spatial surface, 100, 121
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sphere
arbitrary dimension, 52
volume, 54

Standard Model
first described, 5–6
gauge group, 457–463
matter content, 463–472
string model, 472–479, 492–493

state space
closed string

no compactification, 290–294
with compactification, 388–392

Lorentz covariant, 577–580
open string

between Dp- and Dq-branes, 344
Dp-brane, 331–333
parallel Dp-branes, 338–345
spacefilling D-brane, 262–268

static gauge
defined, 116
string action in, 123

string bit, 515–516, 524
string charge

�Q, 360, 373
behaving as Maxwell current, 362–363
carried by electric field, 369–370
density �j0, 359–361

string coordinate, 107
string coupling

and Newton’s constant, 294
change under T-duality, 414
related to the dilaton, 294–296

string endpoints
are charged, 368
covariant analysis of motion, 127
exercises on free motion, 149
free motion, 124–125
motion attached to D-branes, 128

string length, 14
defined, 170
related to α′, 170
self-dual radius, 391

string number N , 363
string orientation, 360
string spatial surface, 121
string tension

effective, 134
nonrelativistic string, 73
relativistic string, 111, 119

supergravity, 518
superstrings

charged D-branes, 371
closed superstrings, 322–324
GSO truncation, 320–322
heterotic, 324, 326, 479
NS sector, 312–315

open superstrings, 320–322
R sector, 315–317
type I, 324

supersymmetry, 6, 478, 518
symmetry, see Lagrangian, symmetry

T-duality
as torus duality, 376
closed strings

as X R →−X R , 396
from spectrum coincidence, 392–394

effect on string coupling, 412, 414
open string

invariance of Hamiltonian, 413
of DN coordinate, 413

open strings
derivation, 402–404
effect on D-branes, 404
motivated, 400–402

tachyon
scattering amplitude, 625
states in closed string, 291
states in open string, 266
tachyon potential, 273, 278

timelike
separated events, 16
vector, 21

transverse oscillation
defined, 73
frequencies, 77
wave equation, 75

ultraviolet divergences, 630–631
units

basic, 13–14
Heaviside–Lorentz, 45
natural, 177–178
Planckian, 60
SI system, 13–14

unoriented
closed strings, 304
open strings, 268, 278, 325
type I theory, 324

vacuum energy
associated length scale, 70
in flux compactification, 486–489, 494
in the universe, 486
in toy model, 485, 494

Veneziano amplitude, 625
Virasoro

algebra
as a Lie algebra, 276
consistency of central extension, 276
subalgebra, 276
with central extension, 257
without central extension, 255
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descendent, 576–577, 588
null state, 577
operators

covariant closed strings, 580–582
covariant open strings, 571
light-cone closed strings, 286–287
light-cone open strings, 250–259
ordering of L⊥0 , 251–253

primary, 575, 588
transverse modes, 189

Weyl transformation, 586
Wilson line

defined, 408
effect on particle spectrum, 410
holonomy, see holonomy
with constant Ax , 409

winding
closed strings, 378–381
defined, 381

number, 362
string charge, 398

Witt algebra, 255
world-line, 16, 90, 107
world-sheet

class of parameterizations,
181

current Pμ, 159–161
defined, 100
fermion, 309
momentum, 290

Yang–Mills
U (1) theory, 344
U (3) vs. SU (3), 458–462
U (N ) gauge fields, 344

zeta-function
analytic continuation, 275
defined, 253




