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A First Course in String Theory
Second Edition

Barton Zwiebach is once again faithful to his goal of making string theory accessible to
undergraduates. He presents the main concepts of string theory in a concrete and physical
way to develop intuition before formalism, often through simplified and illustrative exam-
ples. Complete and thorough in its coverage, this new edition now includes the AdS/CFT
correspondence and introduces superstrings. It is perfectly suited to introductory courses
in string theory for students with a background in mathematics and physics.

This new edition contains completely new chapters on the AdS/CFT correspondence,
an introduction to superstrings, and new sections covering strings on orbifolds, cos-
mic strings, moduli stabilization, and the string theory landscape. There are almost 300
problems and exercises, with password protected solutions available to instructors at
www.cambridge.org/zwiebach.

Barton Zwiebach is Professor of Physics at the Massachusetts Institute of Technology.
His central contributions have been in the area of string field theory, where he did the
early work on the construction of the field theory of open strings and then developed the
field theory of closed strings. He has also made important contributions to the subjects of
D-branes with exceptional symmetry and tachyon condensation.

From the first edition
‘A refreshingly different approach to string theory that requires remarkably little previous
knowledge of quantum theory or relativity. This highlights fundamental features of the the-
ory that make it so radically different from theories based on point-like particles. This book
makes the subject amenable to undergraduates but it will also appeal greatly to beginning
researchers who may be overwhelmed by the standard textbooks.’

Professor Michael Green, University of Cambridge

‘Barton Zwiebach has written a careful and thorough introduction to string theory that is
suitable for a full-year course at the advanced undergraduate level. There has been much
demand for a book about string theory at this level, and this one should go a long way
towards meeting that demand.’

Professor John Schwarz, California Institute of Technology

“There is a great curiosity about string theory, not only among physics undergraduates but
also among professional scientists outside of the field. This audience needs a text that goes
much further than the popular accounts but without the full technical detail of a graduate



text. Zwiebach’s book meets this need in a clear and accessible manner. It is well-grounded
in familiar physical concepts, and proceeds through some of the most timely and exciting
aspects of the subject.’

Professor Joseph Polchinski, University of California, Santa Barbara

‘Zwiebach, a respected researcher in the field and a much beloved teacher at MIT, is truly
faithful to his goal of making string theory accessible to advanced undergraduates — the
test develops intuition before formalism, usually through simplified and illustrative exam-
ples...Zwiebach avoids the temptation of including topics that would weigh the book
down and make many students rush it back to the shelf and quit the course.’

Marcelo Gleiser, Physics Today

‘... well-written ... takes us through the hottest topics in string theory research, requiring

only a solid background in mechanics and some basic quantum mechanics ... This is not

just one more text in the ever-growing canon of popular books on string theory ...’
Andreas Karch, Times Higher Education Supplement

‘...the book provides an excellent basis for an introductory course on string theory and
is well-suited for self-study by graduate students or any physicist who wants to learn the
basics of string theory’.

Zentralblatt MATH

‘...excellent introduction by Zwiebach ... aimed at advanced undergraduates who have
some background in quantum mechanics and special relativity, but have not necessarily
mastered quantum field theory and general relativity yet ... the book ... is a very thorough
introduction to the subject ... Equipped with this background, the reader can safely start
to tackle the books by Green, Schwarz and Witten and by Polchinski.’

Marcel L. Vonk, Mathematical Reviews Clippings

Cover illustration: a composite illustrating open string motion as we vary the strength of
an electric field that points along the rotational axis of symmetry. There are three surfaces,
each composed of two lobes joined at the origin and shown with the same color. Each
surface is traced by a rotating open string that, at various times, appears as a line stretching
from the boundary of a lobe down to the origin and then out to the boundary of the opposite
lobe. The inner, middle, and elongated lobes arise as the magnitude of the electric field is
increased. For further details, see Problem 19.2.
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Foreword

String theory is one of the most exciting fields in theoretical physics. This ambitious and
speculative theory offers the potential of unifying gravity and all the other forces of nature
and all forms of matter into one unified conceptual structure.

String theory has the unfortunate reputation of being impossibly difficult to understand.
To some extent this is because, even to its practitioners, the theory is so new and so ill
understood. However, the basic concepts of string theory are quite simple and should be
accessible to students of physics with only advanced undergraduate training.

I have often been asked by students and by fellow physicists to recommend an intro-
duction to the basics of string theory. Until now all I could do was point them either to
popular science accounts or to advanced textbooks. But now I can recommend to them
Barton Zwiebach’s excellent book.

Zwiebach is an accomplished string theorist, who has made many important contribu-
tions to the theory, especially to the development of string field theory. In this book he
presents a remarkably comprehensive description of string theory that starts at the begin-
ning, assumes only minimal knowledge of advanced physics, and proceeds to the current
frontiers of physics. Already tested in the form of a very successful undergraduate course
at MIT, Zwiebach’s exposition proves that string theory can be understood and appreciated
by a wide audience.

I strongly recommend this book to anyone who wants to learn the basics of string theory.

David Gross
Director, Kavli Institute For Theoretical Physics
University of California, Santa Barbara






From the Preface to the First Edition

The idea of having a serious string theory course for undergraduates was first suggested to
me by a group of MIT sophomores sometime in May of 2001. I was teaching Statistical
Physics, and I had spent an hour-long recitation explaining how a relativistic string at high
energies appears to approach a constant temperature (the Hagedorn temperature). I was
intrigued by the idea of a basic string theory course, but it was not immediately clear to me
that a useful one could be devised at this level.

A few months later, I had a conversation with Marc Kastner, the Physics Department
Head. In passing, I told him about the sophomores’ request for a string theory course.
Kastner’s instantaneous and enthusiastic reaction made me consider seriously the idea for
the first time. At the end of 2001, a new course was added to the undergraduate physics
curriculum at MIT. In the spring term of 2002 I taught String Theory for Undergraduates
for the first time. This book grew out of the lecture notes for that course.

When we think about teaching string theory at the undergraduate level the main question
is, “Can the material really be explained at this level?”. After teaching the subject two
times, I am convinced that the answer to the question is a definite yes. Although a complete
mastery of string theory requires a graduate-level physics education, the basics of string
theory can be well understood with the limited tools acquired in the first two or three years
of an undergraduate education.

What is the value of learning string theory, for an undergraduate? By exposing the stu-
dents to cutting-edge ideas, a course in string theory can help nurture the excitement and
enthusiasm that led them to choose physics as a major. Moreover, students will find in string
theory an opportunity to sharpen and refine their understanding of most of the undergradu-
ate physics curriculum. This is valuable even for students who do not plan to specialize in
theoretical physics.

This book was tailored to be understandable to an advanced undergraduate. Therefore,
I believe it will be a readable introduction to string theory for any graduate student or, in
fact, for any physicist who wants to learn the basics of string theory.

Acknowledgements

I would like to thank Marc Kastner, Physics Department Head, for his enthusiastic support
and his interest. I am also grateful to Thomas Greytak, Associate Head for Education,
and to Robert Jaffe, Director of the Center for Theoretical Physics, both of whom kindly
supported this project.
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Teaching string theory to a class composed largely of bright undergraduates was both a
stimulating and a rewarding experience. I am grateful to the group of students that com-
posed the first class:

Jeffrey Brock Adam Granich Trisha Montalbo
Zilong Chen Markéta Havlickova Eugene Motoyama
Blair Connely Kenneth Jensen Megha Padi

Ivailo Dimov Michael Krypel Ian Parrish

Peter Eckley Francis Lam James Pate

Qudsia Ejaz Philippe Larochelle Timothy Richards
Kasey Ensslin Gabrielle Magro James Smith

Teresa Fazio Sourav Mandal Morgan Sonderegger
Caglar Girit Stefanos Marnerides David Starr

Donglai Gong

They were enthusiastic, funny, and lively. My lectures were voice-recorded and three
of the students, Gabrielle Magro, Megha Padi, and David Starr, turned the tapes and the
blackboard equations into IATEX files. I am grateful to the three of them for their dedication
and for the care they took in creating accurate files. They provided the impetus to start the
process of writing a book. I edited the files to produce lecture notes.

Additional files for a set of summer lectures were created by Gabrielle and Megha. In
the next six months the lecture notes became the draft for a book. After teaching the course
for a second time in the spring term of 2003 and a long summer of edits and revisions, the
book was completed in October 2003.

By the time the lecture notes had become a book draft, David Starr offered to read it
critically. He basically marked every paragraph, suggesting improvements in the exposition
and demonstrating an uncanny ability to spot weak points. His criticism forced me to go
through major rewriting. His input was tremendous. Whatever degree of clarity has been
achieved, it is in no small measure thanks to his effort.

I am delighted to acknowledge help and advice from my friend and colleague Jeffrey
Goldstone. He shared generously his understanding of string theory, and several sections
in this book literally grew out of his comments. He helped me teach the course the second
time that it was offered. While doing so, he offered perceptive criticism of the whole text.
He also helped improve many of the problems, for which he wrote elegant solutions.

The input of my friend and collaborator Ashoke Sen was critical. He believed that string
theory could be taught at a basic level and encouraged me to try to do it. I consulted
repeatedly with him about the topics to be covered and about the strategies to present them.
He kindly read the first full set of lecture notes and gave invaluable advice that helped shape
the form of this book.

The help and interest of many people made writing this book a very pleasant task. For
detailed comments on all of its content I am indebted to Chien-Hao Liu and to James
Stasheff. Alan Dunn and Blake Stacey helped test the problems that could not be assigned
in class. Jan Troost was a sounding board and provided advice and criticism. I've relied
on the knowledge of my string theory colleagues — Amihay Hanany, Daniel Freedman,
and Washington Taylor. I’d like to thank Philip Argyres, Andreas Karch, and Frieder Lenz
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for testing the lecture notes with their students. Juan Maldacena and Samir Mathur pro-
vided helpful input on the subject of string thermodynamics and black holes. Boris Kors,
Fernando Quevedo, and Angel Uranga helped and advised on the subject of string phe-
nomenology. Thanks are also due to Tamsin van Essen, editor at Cambridge, for her advice
and her careful work during the entire publishing process.

Finally, I would like to thank my wife Gaby and my children Cecile, Evy, Margaret, and
Aaron. At every step of the way I was showered with their love and support. Cecile and
Evy read parts of the manuscript and advised on language. Questions on string theory from
Gaby and Margaret tested my ability to explain. Young Aaron insisted that a ghost sitting
on a string would make a perfect cover page, but we settled for strings moving in electric
fields.
Barton Zwiebach
Cambridge, Massachusetts, 2003






Preface to the Second Edition

It has been almost five years since I finished writing the first edition of A First Course
in String Theory. I have since taught the undergraduate string theory course at MIT three
times, and I have received comments and suggestions from colleagues all over the world. I
have learned what parts of the book are most challenging for the students, and I have heard
requests for extra material.

As in the first edition, the book is broadly divided into Part I (Basics) and Part IT (Devel-
opments). In this second edition I have improved the clarity of many arguments and the
general readability of Part I. This part is studied by the largest number of readers, many of
them independently and outside of the classroom setting. The changes should make study
easier. There are more figures and the number of problems has been increased to better
cover the range of ideas developed in the text. Part I has five new sections and one new
chapter. The new sections discuss the classical motion of closed strings, cosmic strings,
and orbifolds. The new chapter, Chapter 14, is the last one of Part I. It explains the basics
of superstring theory.

Part II has changed as well. The ordering of chapters has been altered to bring T-
duality earlier into the book. The material relevant to particle physics has been collected
in Chapter 21 and includes a new section on moduli stabilization and the landscape.
Chapter 23 is new and is entirely devoted to strong interactions and the AdS/CFT cor-
respondence. I aim to give there a gentle introduction to this lively area of research. The
number of chapters in the book has gone from twenty-three to twenty-six, a nice number
to end a book on string theory!

I want to thank Hong Liu and Juan Maldacena for helpful input on the subject of
AdS/CFT. Many thanks are also due to Alan Guth, who helped me teach the string the-
ory course in the spring term of 2007. He tested many of the new problems and offered
very valuable criticism of the text.

About this book

A First Course in String Theory should be accessible to anyone who has been exposed to
special relativity, basic quantum mechanics, electromagnetism, and introductory statistical
physics. Some familiarity with Lagrangian mechanics is useful but not indispensable.
Except for the introduction, all chapters contain exercises and problems. The exercises,
called Quick calculations, are inserted at various points throughout the text. They are con-
trol calculations that are expected to be straightforward. Undue difficulty in carrying them
out may indicate problems understanding the material. The problems at the end of the
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chapters are more challenging and sometimes develop new ideas. A problem marked with
a dagger’ is one whose results are cited later in the text. A mastery of the material requires
solving all the exercises and many of the problems. All the problems should be read, at
least.

Throughout most of the book the material is developed in a self-contained way, and very
little must be taken on faith. Chapters 14, 21, 22, and 23 contain a few sections that address
subjects of much interest for which a full explanation cannot be provided at the level of this
book. The reader will be asked to accept some reasonable facts at face value, but otherwise
the material is developed logically and should be fu/ly understandable. These sections are
not addressed to experts.

This book has two parts. Part I is called “Basics,” and Part II is called “Developments.”
Part I begins with Chapter 1 and concludes with Chapter 14. Part II comprises the rest of
the book: it begins with Chapter 15 and it ends with Chapter 26.

Chapter | serves as an introduction. Chapter 2 reviews special relativity, but it also intro-
duces concepts that are likely to be new: light-cone coordinates, light-cone energy, compact
extra dimensions, and orbifolds. In Chapter 3 we review electrodynamics and its manifestly
relativistic formulation. We make some comments on general relativity and study the effect
of compact dimensions on the Planck length. We are able at this point to examine the excit-
ing possibility that large extra dimensions may exist. Chapter 4 uses nonrelativistic strings
to develop some intuition, to review the Lagrangian formulation of mechanics, and to intro-
duce terminology. Chapter 5 uses the relativistic point particle to prepare the ground for
the study of the relativistic string. The power and elegance of the Lagrangian formulation
become evident at this point. The first encounter with string theory happens in Chapter 6,
which deals with the classical dynamics of the relativistic string. This is a very important
chapter, and it must be understood thoroughly. Chapter 7 solidifies the understanding of
string dynamics through the detailed study of string motion, both for open and for closed
strings. It includes a section on cosmic strings, a topic of potential experimental relevance.
Chapters 1 through 7 could comprise a mini-course in string theory.

Chapters 8 through 11 prepare the ground for the quantization of relativistic strings. In
Chapter 8, one learns how to calculate conserved quantities, such as the momentum and
the angular momentum of free strings. Chapter 9 gives the light-cone gauge solution of
the string equations of motion and introduces the terminology that is used in the quantum
theory. Chapter 10 explains the basics of quantum fields and particle states, with emphasis
on the counting of the parameters that characterize scalar field states, photon states, and
graviton states. In Chapter 11 we perform the light-cone gauge quantization of the rela-
tivistic particle. It all comes together in Chapter 12, another important chapter that should
be understood thoroughly. This chapter presents the light-cone gauge quantization of the
open relativistic string. The critical dimension is obtained and photon states are shown to
emerge. Chapter 12 contains a section on the subject of tachyon condensation. Chapter 13
discusses the quantization of closed strings and the emergence of graviton states. It also
contains two sections that deal with quantum closed strings on the simplest orbifold, the
half-line. Chapter 14 is the last chapter of Part I. It introduces the subject of superstrings.
The Ramond and Neveu—Schwarz sectors of open strings are presented and combined to
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obtain a supersymmetric theory. The chapter concludes with a brief discussion of type II
closed string theories.

The first part of this book can be characterized as an uphill road that leads to the quantiza-
tion of the string at the summit. In the second part of this book the climb is over. The pace
slows down a little, and the material elaborates upon previously introduced ideas. In Part II
one reaps many rewards for the effort exerted in Part I.

The first chapter in Part II, Chapter 15, deals with the important subject of open strings
on various D-brane configurations. The discussion of orientifolds has been relegated to the
problems at the end of the chapter. Chapter 16 introduces the concept of string charge and
demonstrates that the endpoints of open strings carry Maxwell charge. The next four chap-
ters are organized around the fascinating subject of T-duality. Chapters 17 and 18 present
the T-duality properties of closed and open strings, respectively. Chapter 19 studies D-
branes with electromagnetic fields, using T-duality as the main tool. Chapter 20 introduces
the general framework of nonlinear electrodynamics. It demonstrates that electromagnetic
fields in string theory are governed by Born—Infeld theory, a nonlinear theory in which the
self-energy of point charges is finite.

String models of particle physics are considered in Chapter 21. This chapter explains
in detail the particle content of the Standard Model and discusses one approach, based
on intersecting D6-branes, to the construction of a realistic string model. The chapter
concludes with some material on moduli stabilization and the landscape.

Chapter 22 begins with string thermodynamics, followed by the subject of black hole
entropy. It presents string theory attempts to derive the entropy of Schwarzschild black
holes and the successful derivation of the entropy for a supersymmetric black hole. The
applications of string theory to strong interactions are studied in Chapter 23. After a dis-
cussion of Regge trajectories and the quark—antiquark potential, the subject turns to the
AdS/CFT correspondence. The correspondence is discussed in some detail, with emphasis
on the geometry of AdS spaces. A section on the quark—gluon plasma is included.

Chapter 24 gives an introduction to the Lorentz covariant quantization of strings. It also
introduces the Polyakov string action. The last two chapters in the book, Chapters 25
and 26, examine string interactions. We learn that the string diagrams which represent
the processes of string interactions are Riemann surfaces. These two chapters assume a lit-
tle familiarity with complex variables and have a mathematical flavor. One important goal
here is to provide insight into the absence of ultraviolet divergences in string theory, the
fact that made string theory the first candidate for a theory of quantum gravity.

In this book I have tried to emphasize the connections with ideas that students have learned
before. The quantization of strings is described as the quantization of an infinite number
of oscillators. String charge is visualized as a Maxwell current. The effects of Wilson lines
on circles are compared with the Bohm—Aharonov effect. The modulus of an annulus is
related to the capacitance of a cylindrical conductor, and so forth and so on. The treatment
of topics is generally explicit and detailed, with formalism kept to a minimum.

The choice was made to use the light-cone gauge to quantize the strings. This approach
to quantization can be understood in full detail by students with some prior exposure to
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quantum mechanics. The same is not true for the Lorentz covariant quantization of strings,
where states of negative norms must be dealt with, the Hamiltonian vanishes, and there is
no conventional looking Schrédinger equation. The light-cone approach suffices for most
physical problems and, in fact, simplifies the treatment of several questions.

This book as a textbook

Part I of the book is structured tightly. Little can be omitted without hampering the under-
standing of string quantization. The first chapter in Part II (on D-branes) is important
for much of the later material. Many choices among the remaining chapters are possible.
Different readers/instructors may take different routes.

My experience suggests that the complete book can be covered in a full-year course at
the undergraduate level. In a school with an academic year composed of three quarters,
Part I and four chapters from Part II may be covered in two quarters. In a school with an
academic year composed of two semesters, Part I and two chapters from Part I may be
covered in one semester. In either case, the choice of chapters from Part II is a matter of
taste. Chapters 21, 22, and 23 give an appreciation for current research in string theory.
Lecturers who prefer to focus on T-duality and its implications will cover as much as
possible from Chapters 17-20. If this book is used to teach exclusively to graduate students,
the pace can be quickened considerably.

An updated list of corrections can be found at http://xserver.Ins.mit.edu/~zwiebach/
firstcourse.html. Solutions to the problems in the book are available to lecturers via
solutions @cambridge.org.
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A brief introduction

Here we meet string theory for the first time. We see how it fits into the historical
development of physics, and how it aims to provide a unified description of all
fundamental interactions.

1.1 The road to unification

Over the course of time, the development of physics has been marked by unifications:
events when different phenomena were recognized to be related and theories were adjusted
to reflect such recognition. One of the most significant of these unifications occurred in the
nineteenth century.

For a while, electricity and magnetism had appeared to be unrelated physical phenom-
ena. Electricity was studied first. The remarkable experiments of Henry Cavendish were
performed in the period from 1771 to 1773. They were followed by the investigations of
Charles Augustin de Coulomb, which were completed in 1785. These works provided a
theory of static electricity, or electrostatics. Subsequent research into magnetism, however,
began to reveal connections with electricity. In 1819 Hans Christian Oersted discovered
that the electric current on a wire can deflect the needle of a compass placed nearby.
Shortly thereafter, Jean-Baptiste Biot and Felix Savart (1820) and André-Marie Ampere
(1820-1825) established the rules by which electric currents produce magnetic fields. A
crucial step was taken by Michael Faraday (1831), who showed that changing magnetic
fields generate electric fields. Equations that described all of these results became available,
but they were, in fact, inconsistent. It was James Clerk Maxwell (1865) who constructed a
consistent set of equations by adding a new term to one of the equations. Not only did this
term remove the inconsistencies, but it also resulted in the prediction of electromagnetic
waves. For this great insight, the equations of electromagnetism (or electrodynamics) are
now called “Maxwell’s equations.” These equations unify electricity and magnetism into
a consistent whole. This elegant and aesthetically pleasing unification was not optional.
Separate theories of electricity and magnetism would be inconsistent.

Another fundamental unification of two types of phenomena occurred in the late 1960s,
about one-hundred years after the work of Maxwell. This unification revealed the deep
relationship between electromagnetic forces and the forces responsible for weak interac-
tions. To appreciate the significance of this unification it is necessary first to review the
main developments that occurred in physics since the time of Maxwell.
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An important change of paradigm was triggered by Albert Einstein’s special theory of
relativity. In this theory one finds a striking conceptual unification of the separate notions of
space and time. Different from a unification of forces, the merging of space and time into a
spacetime continuum represented a new recognition of the nature of the arena where phys-
ical phenomena take place. Newtonian mechanics was replaced by relativistic mechanics,
and older ideas of absolute time were abandoned. Mass and energy were shown to be
interchangeable.

Another change of paradigm, perhaps an even more dramatic one, was brought forth by
the discovery of quantum mechanics. Developed by Erwin Schrodinger, Werner Heisen-
berg, Paul Dirac and others, quantum theory was verified to be the correct framework
to describe microscopic phenomena. In quantum mechanics classical observables become
operators. If two operators fail to commute, the corresponding observables cannot be mea-
sured simultaneously. Quantum mechanics is a framework, more than a theory. It gives the
rules by which theories must be used to extract physical predictions.

In addition to these developments, four fundamental forces had been recognized to exist
in nature. Let us have a brief look at them.

One of them is the force of gravity. This force has been known since antiquity, but it was
first described accurately by Isaac Newton. Gravity underwent a profound reformulation in
Albert Einstein’s theory of general relativity. In this theory, the spacetime arena of special
relativity acquires a life of its own, and gravitational forces arise from the curvature of this
dynamical spacetime. Einstein’s general relativity is a classical theory of gravitation. It is
not formulated as a quantum theory.

The second fundamental force is the electromagnetic force. As we discussed above,
the electromagnetic force is well described by Maxwell’s equations. Electromagnetism, or
Maxwell theory, is formulated as a classical theory of electromagnetic fields. As opposed
to Newtonian mechanics, which was modified by special relativity, Maxwell theory is fully
consistent with special relativity.

The third fundamental force is the weak force. This force is responsible for the process
of nuclear beta decay, in which a neutron decays into a proton, an electron, and an anti-
neutrino. In general, processes that involve neutrinos are mediated by weak forces. While
nuclear beta decay had been known since the end of the nineteenth century, the recognition
that a new force was at play did not take hold until the middle of the twentieth century.
The strength of this force is measured by the Fermi constant. Weak interactions are much
weaker than electromagnetic interactions.

Finally, the fourth force is the strong force, nowadays called the color force. This force
is at play in holding together the constituents of the neutron, the proton, the pions, and
many other subnuclear particles. These constituents, called quarks, are held so tightly by
the color force that they cannot be seen in isolation.

We are now in a position to return to the subject of unification. In the late 1960s the
Weinberg—Salam model of electroweak interactions put together electromagnetism and the
weak force into a unified framework. This unified model was neither dictated nor justified
only by considerations of simplicity or elegance. It was necessary for a predictive and con-
sistent theory of the weak interactions. The theory is initially formulated with four massless
particles that carry the forces. A process of symmetry breaking gives mass to three of these
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particles: the W, the W, and the Z°. These particles are the carriers of the weak force.
The particle that remains massless is the photon, which is the carrier of the electromagnetic
force.

Maxwell’s equations, as we discussed before, are equations of classical electromag-
netism. They do not provide a quantum theory. Physicists have discovered quantization
methods, which can be used to turn a classical theory into a quantum theory — a theory
that can be calculated using the principles of quantum mechanics. While classical electro-
dynamics can be used confidently to calculate the transmission of energy in power lines
and the radiation patterns of radio antennas, it is neither an accurate nor a correct theory
for microscopic phenomena. Quantum electrodynamics (QED), the quantum version of
classical electrodynamics, is required for correct computations in this arena. In QED, the
photon appears as the quantum of the electromagnetic field. The theory of weak interac-
tions is also a quantum theory of particles, so the correct, unified theory is the quantum
electroweak theory.

The quantization procedure is also successful in the case of the strong color force, and
the resulting theory has been called quantum chromodynamics (QCD). The carriers of the
color force are eight massless particles. These are colored gluons, and just like the quarks,
they cannot be observed in isolation. The quarks respond to the gluons because they carry
color. Quarks can come in three colors.

The electroweak theory together with QCD form the Standard Model of particle physics.
In the Standard Model there is some interplay between the electroweak sector and the
QCD sector because some particles feel both types of forces. But there is no real and
deep unification of the weak force and the color force. The Standard Model summarizes
completely the present knowledge of particle physics. So, in fact, we are not certain about
any possible further unification.

In the Standard Model there are twelve force carriers: the eight gluons, the W+, the W,
the Z°, and the photon. All of these are bosons. There are also many matter particles, all of
which are fermions. The matter particles are of two types: leptons and quarks. The leptons
include the electron e~ the muon 1™, the tau 77, and the associated neutrinos v, v,, and
vr. We can list them as

leptons: e™, 0™, T, Ve, Vy, Vr.

Since we must include their antiparticles, this adds up to a total of twelve leptons. The
quarks carry color charge, electric charge, and can respond to the weak force as well.
There are six different types of quarks. Poetically called flavors, these types are: up (u),
down (d), charm (c), strange (s), top (¢), and bottom (b). We can list them as

quarks: u,d,c,s,t,b.

The u and d quarks, for example, carry different electric charges and respond differently
to the weak force. Each of the six quark flavors listed above comes in three colors, so this
gives 6 x 3 = 18 particles. Including the antiparticles, we get a total of 36 quarks. Adding
leptons and quarks together we have a grand total of 48 matter particles. Adding matter
particles and force carriers together we have a total of 60 particles in the Standard Model.

Despite the large number of particles it describes, the Standard Model is reasonably
elegant and very powerful. As a complete theory of physics, however, it has two significant
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shortcomings. The first one is that it does not include gravity. The second one is that it
has about twenty parameters that cannot be calculated within its framework. Perhaps the
simplest example of such a parameter is the dimensionless (or unit-less) ratio of the mass
of the muon to the mass of the electron. The value of this ratio is about 207, and it must be
put into the model by hand.

Most physicists believe that the Standard Model is only a step towards the formulation of
a complete theory of physics. A large number of physicists also suspect that some unifica-
tion of the electroweak and strong forces into a Grand Unified Theory (GUT) will prove to
be correct. At present, however, the unification of these two forces appears to be optional.

Another attractive possibility is that a more complete version of the Standard Model
includes supersymmetry. Supersymmetry is a symmetry that relates bosons to fermions.
Since all matter particles are fermions and all force carriers are bosons, this remarkable
symmetry unifies matter and forces. In a theory with supersymmetry, bosons and fermions
appear in pairs of equal mass. The particles of the Standard Model do not have this property,
so supersymmetry, if it exists in nature, must be spontaneously broken. Supersymme-
try is such an appealing symmetry that many physicists believe that it will eventually be
discovered.

While the above extensions of the Standard Model may or may not occur, it is clear that
the inclusion of gravity into the particle physics framework is not optional. Gravity must
be included, with or without unification, if one is to have a complete theory. The effects of
the gravitational force are presently quite negligible at the microscopic level, but they are
crucial in studies of cosmology of the early universe.

There is, however, a major problem when one attempts to incorporate gravitational
physics into the Standard Model. The Standard Model is a quantum theory, while Einstein’s
general relativity is a classical theory. It seems very difficult, if not altogether impossible,
to have a consistent theory that is partly quantum and partly classical. Given the successes
of quantum theory, it is widely believed that gravity must be turned into a quantum theory.
The procedures of quantization, however, encounter profound difficulties in the case of
gravity. The resulting theory of quantum gravity appears to be ill-defined. As a practical
matter, in many circumstances one can work confidently with classical gravity coupled to
the Standard Model. For example, this is done routinely in present-day descriptions of the
universe. A theory of quantum gravity is necessary, however, to study physics at times very
near to the Big Bang, and to study certain properties of black holes. Formulating a quan-
tum theory that includes both gravity and the other forces seems fundamentally necessary.
A unification of gravity with the other forces might be required to construct this complete
theory.

1.2 String theory as a unified theory of physics
.

String theory is an excellent candidate for a unified theory of all forces in nature. It is also
a rather impressive prototype of a complete theory of physics. In string theory all forces
are truly unified in a deep and significant way. In fact, all the particles are unified. String
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The decay o« — B + y as a particle process (left) and as a string process (right).

theory is a quantum theory, and, because it includes gravitation, it is a quantum theory
of gravity. Viewed from this perspective, and recalling the failure of Einstein’s gravity to
yield a quantum theory, one may conclude that in string theory all other interactions are
necessary for the consistency of the quantum gravitational sector! While it may be difficult
to measure the effects of quantum gravity directly, a theory of quantum gravity such as
string theory may have testable predictions concerning the other interactions.

Why is string theory a truly unified theory? The reason is simple and goes to the heart
of the theory. In string theory, each particle is identified as a particular vibrational mode
of an elementary microscopic string. A musical analogy is very apt. Just as a violin string
can vibrate in different modes and each mode corresponds to a different sound, the modes
of vibration of a fundamental string can be recognized as the different particles we know.
One of the vibrational states of strings is the graviton, the quantum of the gravitational
field. Since there is just one type of string, and all particles arise from string vibrations,
all particles are naturally incorporated into a single theory. When we think in string theory
of a decay process @« — B + y, where an elementary particle o decays into particles g
and y, we imagine a single string vibrating in such a way that it is identified as particle
« that breaks into two strings that vibrate in ways that identify them as particles 8 and
y (Figure 1.1). Since strings may turn out to be extremely tiny, it may be difficult to observe
directly the string-like nature of particles.

Are we sure that string theory is a good quantum theory of gravity? There is no complete
certainty yet, but the evidence is very good. Indeed, the problems that occur when one tries
to quantize Einstein’s theory do not seem to appear in string theory.

For a theory as ambitious as string theory, a certain degree of uniqueness is clearly desir-
able. It would be somewhat disappointing to have several consistent candidates for a theory
of all interactions. The first sign that string theory is rather unique is that it does not have
adjustable dimensionless parameters. As we mentioned before, the Standard Model of par-
ticle physics has about twenty parameters that must be adjusted to some precise values. A
theory with adjustable dimensionless parameters is not really unique. When the parameters
are set to different values one obtains different theories with potentially different predic-
tions. String theory has one dimensionful parameter, the string length ¢. Its value can be
roughly imagined as the typical size of strings.

Another intriguing sign of the uniqueness of string theory is the fact that the dimen-
sionality of spacetime is fixed. Our physical spacetime is four-dimensional, with one time
dimension and three space dimensions. In the Standard Model this information is used
to build the theory, it is not derived. In string theory, on the other hand, the number of
spacetime dimensions emerges from a calculation. The answer is not four, but rather ten.
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Some of these dimensions may hide from plain view if they curl up into a space that is
small enough to escape detection in experiments done with low energies. If string theory
is correct, some mechanism must ensure that the observable dimensionality of spacetime
is four.

The lack of adjustable dimensionless parameters is a sign of the uniqueness of string
theory: it means that the theory cannot be deformed or changed continuously by changing
these parameters. But there could be other theories that cannot be reached by continuous
deformations. So how many string theories are there?

Let us begin by noting two broad subdivisions. There are open strings and there are closed
strings. Open strings have two endpoints, while closed strings have no endpoints. One
can consider theories with only closed strings and theories with both open and closed
strings. Since open strings generally can close to form closed strings, we do not consider
theories with only open strings. The second subdivision is between bosonic string theories
and superstring theories. Bosonic strings live in 26 dimensions, and all of their vibrations
represent bosons. Since they lack fermions, bosonic string theories are not realistic. They
are, however, much simpler than the superstrings, and most of the important concepts in
string theory can be explained in the context of bosonic strings. The superstrings live in ten-
dimensional spacetime, and their spectrum of states includes bosons and fermions. In fact,
these two sets of particles are related by supersymmetry. Supersymmetry is therefore an
important ingredient in string theory. All realistic models of string theory are built from
superstrings. In all string theories the graviton appears as a vibrational mode of closed
strings. In string theory gravity is unavoidable.

By the mid 1980s five ten-dimensional superstring theories were known to exist. In the
years that followed, many interrelations between these theories were found. Moreover,
another theory was discovered by taking a certain strong coupling limit of one of the
superstrings. This theory is eleven-dimensional and has been dubbed M-theory, for lack
of a better name. It has now become clear that the five superstrings and M-theory are only
facets or different limits of a single unique theory! At present, this unique theory remains
fairly mysterious. It is not yet clear whether or not the set of bosonic string theories is
connected to the web of superstring theories.

All in all, we see that string theory is a truly unified and possibly unique theory. It is a
candidate for a unified theory of physics, a theory Albert Einstein tried to find ever since his
discovery of general relativity. Einstein would have been surprised, or perhaps disturbed,
by the prominent role that quantum mechanics plays in string theory. But string theory
appears to be a worthy successor of general relativity. It is almost certain that string theory
will give rise to a new conception of spacetime. The prominence of quantum mechanics in
string theory would not have surprised Paul Dirac. His writings on quantization suggest that
he felt that deep quantum theories arise from the quantization of classical physics. This is
precisely what happens in string theory. This book will explain in detail how string theory,
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at least in its simplest form, is nothing but the quantum mechanics of classical relativistic
strings.

1.3 String theory and its verification
|

It should be said at the outset that, as of yet, there has been no experimental verification
of string theory. In order to have experimental verification one needs a sharp prediction.
It has been difficult to obtain such a prediction. String theory is still at an early stage
of development, and it is not so easy to make predictions with a theory that is not well
understood. Still, some interesting possibilities have emerged.

As we mentioned earlier, superstring theory requires a ten-dimensional spacetime: one
dimension of time and nine of space. If string theory is correct, extra spatial dimensions
must exist, even if we have not seen them yet. Can we test the existence of these extra
dimensions? If the extra dimensions are the size of the Planck length ¢p (the length scale
associated with four-dimensional gravity), they will remain beyond direct detection, per-
haps forever. Indeed, £p ~ 10733 cm, and this distance is many orders of magnitude smaller
than 1076 cm, which is roughly the smallest distance that has been explored with particle
accelerators. This scenario was deemed to be most likely. It was assumed that in string
theory the length scale £, coincides with the Planck length, in which case extra dimensions
would be of Planck length, as well.

It turns out, however, that string theory allows extra dimensions that are as large as
a tenth of a millimeter! Surprisingly, extra dimensions that large may have gone unde-
tected. To make this work out, the string length £; is taken to be of the order of 10~!8 cm.
Moreover, our three-dimensional space emerges as a hypersurface embedded inside the
nine-dimensional space. The hypersurface, or higher-dimensional membrane, is called a
D-brane. D-branes are real, physical objects in string theory. In this setup, the presence
of large extra dimensions is tested by gravitational experiments. Extra dimensions much
larger than £p but still very small may be detected with particle accelerators. If extra dimen-
sions are detected, this would be strong evidence for string theory. We discuss the subject
of large extra dimensions in Chapter 3.

A striking confirmation of string theory may result from the discovery of a cosmic string.
Left-over from early universe processes, a cosmic string can stretch across the observable
universe and may be detected via gravitational lensing or, more indirectly, through the
detection of gravitational waves. No cosmic strings have been detected to date, but the
searches have not been exhaustive and they continue. If found, a cosmic string must be
studied in detail to confirm that it is a string from string theory and not the kind of string
that can arise from conventional theories of particle physics. We discuss the subject of
cosmic strings in Chapter 7.

Another interesting possibility has to do with supersymmetry. If we start with a
ten-dimensional superstring theory and compactify the six extra dimensions, the result-
ing four-dimensional theory is, in many cases, supersymmetric. No unique predictions
have emerged for the specific details of the four-dimensional theory, but supersymmetry
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may be a rather generic feature. An experimental discovery of supersymmetry in future
accelerators would suggest very strongly that string theory is on the right track.

Leaving aside predictions of new phenomena, we must ask whether the Standard Model
emerges from string theory. It should, since string theory is supposed to be a unified the-
ory of all interactions, and it must therefore reduce to the Standard Model for sufficiently
low energies. While string theory certainly has room to include all known particles and
interactions, and this is very good news indeed, no one has yet been able to show that
they actually emerge in fine detail. In Chapter 21 we will study some models which use
D-branes and have an uncanny resemblance to the world as we know it. In these models the
particle content is in fact precisely that of the Standard Model (the particles are obtained
with zero mass, however, and it is not clear whether the process that gives them mass can
work out correctly). Our four-dimensional world is part of the D-branes, but these D-branes
happen to have more than three spatial directions. The additional D-brane dimensions are
wrapped on the compact space (we will learn how to imagine such configurations!). The
gauge bosons and the matter particles in the model arise from vibrations of open strings
that stretch between D-branes. As we will learn, the endpoints of open strings must remain
attached to the D-branes. If you wish, the musical analogy for strings is improved. Just as
the strings of a violin are held stretched by pegs, the D-branes hold fixed the endpoints
of the open strings whose lowest vibrational modes could represent the particles of the
Standard Model!

String theory shares with Einstein’s gravity a problematic feature. Einstein’s equations
of gravitation admit many cosmological solutions. Each solution represents a consistent
universe, but only one of them represents our observable universe. It is not easy to explain
what selects the physical solution, but in cosmology this is done using arguments based
on initial conditions, symmetry, and simplicity. The smaller the number of solutions a
theory has, the more predictive it is. If the set of solutions is characterized by continuous
parameters, selecting a solution is equivalent to adjusting the values of the parameters.
In this way, a theory whose formulation requires no adjustable parameters may generate
adjustable parameters through its solutions! It seems clear that in string theory the set of
solutions (string models) is characterized by both discrete and continuous parameters.

In order to reproduce the Standard Model it seems clear that the string model must
not have continuous parameters; such parameters imply the existence of massless fields
that have not been observed. It was not easy to find models without continuous parame-
ters, but that became possible recently in the context of flux compactifications; models in
which the extra dimensions are threaded by analogs of electric and magnetic fields. There
is an extraordinary large number of such models, certainly more than 10°% of them. There
may be even more models that manage to avoid continuous parameters by other means.
Physicists speak of a vast landscape of string solutions or models.

In this light we can wonder what are the possible outcomes of the search for a realistic
string model. One possible outcome (the worst one) is that no string model in the land-
scape reproduces the Standard Model. This would rule out string theory. Another possible
outcome (the best one) is that one string model reproduces the Standard Model. Moreover,
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the model represents a well-isolated point in the landscape. The parameters of the Stan-
dard Model are thus predicted. The landscape may be so large that a strange possibility
emerges: many string models with almost identical properties all of which are consistent
with the Standard Model to the accuracy that it is presently known. In this possibility there
is a loss of predictive power. Other outcomes may be possible.

String theorists sometimes say that string theory has already made at least one successful
prediction: it predicted gravity! (I heard this from John Schwarz.) There is a bit of jest in
saying so — after all, gravity is the oldest known force in nature. I believe, however, that
there is a very substantial point to be made here. String theory is the quantum mechanics of
a relativistic string. In no sense whatsoever is gravity put into string theory by hand. It is a
complete surprise that gravity emerges in string theory. Indeed, none of the vibrations of the
classical relativistic string correspond to the particle of gravity. It is a truly remarkable fact
that we find the particle of gravity among the quantum vibrations of the relativistic string.
You will see in detail how this happens as you progress through this book. The striking
quantum emergence of gravitation in string theory has the full flavor of a prediction.

1.4 Developments and outlook
L

String theory has been a very stimulating and active area of research ever since Michael
Green and John Schwarz showed in 1984 that superstrings are not afflicted with fatal
inconsistencies that threaten similar particle theories in ten dimensions. Much progress
has been made since then.

String theory has provided new and powerful tools for the understanding of conven-
tional particle physics theories, gauge theories in particular. These are the kinds of theories
that are used to formulate the Standard Model. Close cousins of these gauge theories
arise on string theory D-branes. We examine D-branes and the theories that arise on them
in detail beginning in Chapter 15. A remarkable physical equivalence between a certain
four-dimensional gauge theory and a closed superstring theory (the AdS/CFT correspon-
dence) is discussed in Chapter 23. As we will explain, the correspondence has been used to
understand hydrodynamical properties of the quark-gluon plasma created in the collision
of gold nuclei at heavy ion colliders.

String theory has also made good strides towards a statistical mechanics interpretation of
black hole entropy. We know from the pioneering work of Jacob Bekenstein and Stephen
Hawking that black holes have both entropy and temperature. In statistical mechanics these
properties arise if a system can be constructed in many degenerate ways using its basic
constituents. Such an interpretation is not available in Einstein’s gravitation, where black
holes seem to have few, if any, constituents. In string theory, however, certain black holes
can be built by assembling together various types of D-branes and strings in a controlled
manner. For such black holes, the predicted Bekenstein entropy is obtained by counting
the ways in which they can be built with their constituent D-branes and strings. In fact, the
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class of black holes amenable to string theory analysis continues to grow. We discuss this
important development in Chapter 22.

String theory will be needed to study cosmology of the Very Early Universe. String
theory may provide a concrete model for the realization of inflation — a period of dramatic
exponential expansion that the universe is likely to have experienced at the earliest times.
The theory of inflation suggests that our universe is a growing bubble or region inside a
space that continues to inflate for eternity. Bubbles continue to emerge forever and some
have remarked that every model in the landscape may be physically realized in some bub-
ble. Inflation does not appear to be eternal in the past, so some kind of beginning seems
necessary. The deepest mysteries of the universe seem to lie hidden in a regime where
classical general relativity surely breaks down. String theory should allow us to peer into
this unknown realm. Some day we may be able to understand how the universe comes into
being, if it does, or how the universe could have existed forever in the past, if it did.

Most likely, answering such questions will require a mastery of string theory that goes
beyond our present abilities. String theory is in fact an unfinished theory. Much has been
learned about it, but in reality we have no complete formulation of the theory. A compar-
ison with Einstein’s theory is illuminating. Einstein’s equations for general relativity are
elegant and geometrical. They embody the conceptual foundation of the theory and feel
completely up to the task of describing gravitation. No similar equations are known for
string theory, and the conceptual foundation of the theory remains largely unknown. String
theory is an exciting research area because the central ideas remain to be found.

Describing nature and formulating the theory — those remain the present-day challenges
of string theory. If surmounted, we will have a theory of all interactions, allowing us to
understand the fate of spacetime and the mysteries of a quantum mechanical universe. With
such high stakes, physicists are likely to investigate string theory until definite answers are
found.
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The word relativistic, as used in the term “relativistic strings,” indicates consis-
tency with Einstein’s theory of special relativity. We review special relativity and
introduce the light-cone frame, light-cone coordinates, and light-cone energy. We
then turn to the idea of additional, compact space dimensions and show with an
example from quantum mechanics that, if small, these dimensions have little
effect at low energies.

2.1 Units and parameters
M—

Units are nothing other than fixed quantities that we use for purposes of reference.
A measurement involves finding the unit-free ratio of an observable quantity to the appro-
priate unit. Consider, for example, the definition of a second in the international system of
units (SI system). The SI second (s) is defined to be the duration of 9 192 631 770 periods
of the radiation emitted in the transition between the two hyperfine levels of the cesium-
133 atom. When we measure the time elapsed between two events, we are really counting a
unit-free, or dimensionless, number: the number that tells us how many seconds fit between
the two events or, alternatively, how many periods of the cesium radiation fit between the
two events. The same goes for length. The unit called the meter (m) is nowadays defined as
the distance traveled by light in a certain fraction of a second (1/299 792458 of a second,
to be precise). Mass introduces a third unit, the prototype kilogram (kg), kept safely in
Sevres, France.

When doing dimensional analysis, we denote the units of length, time, and mass by L,
T, and M, respectively. These are called the three basic units. A force, for example, has
units

[Fl=MLT 2, 2.1

where [X] denotes the units of the quantity X. Equation (2.1) follows from Newton’s law
that equates the force on an object to the product of its mass and its acceleration. The
newton (N) is the SI unit of force, and it equals kg-m/s”.

It is interesting that no additional basic units are needed to describe other quantities.
Consider, for example, electric charge. Do we need a new unit to describe charge? Not
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really. This is easy to see in Gaussian units. In these units, Coulomb’s law for the force |1’3 |
between two charges g and g, separated by a distance r reads

lg192|
.

|F| = (2.2)

r

The units of charge are fixed in terms of other units because we have a force law where
charges appear and all other quantities have known units. The esu is the Gaussian unit of
charge, and it is defined by stating that two charges of one esu each, placed at a distance of
one centimeter apart, repel each other with a force of one dyne (the Gaussian unit of force,
10> N). Thus

esu’ = dyne - em? =10 N- (107%m)?> = 1077 N - m?. (2.3)
It follows from this equation that
[esu’] = [N-m?], (2.4)
and, using (2.1), finally we get
[esu] = M'/2L32 11, (2.5)

This expresses the esu in terms of the three basic units.

In SI units, charge is measured in coulombs (C). The situation in SI units is a little
more intricate, but the essential point is the same. A coulomb is defined in SI units as the
amount of charge carried by a current of one ampere (A) in one second. The ampere itself
is defined as the amount of current that, when carried by two wires separated by a distance
of one meter, produces a force of 2 x 10~7 N/m. The coulomb, as opposed to the esu, is
not expressed in terms of meters, kilograms, and seconds. Coulomb’s law in SI units is

. 1 1
|F| a2l i =899 10° (2.6)

T dmwep 12 e 2
Note the presence of C~2 in the definition of the constant prefactor. Since each charge
carries one factor of C, all the factors of C cancel in the calculation of the force. Two
charges of one coulomb each, placed one meter apart, will each experience a force of
8.99 x 10° N. This fact allows you to deduce (Problem 2.1) how many esus there are in
a coulomb. Even though we do not write coulombs in terms of other units, this is just a
matter of convenience. Coulombs and esus are related, and esus are written in terms of the
three basic units.

When we speak of parameters in a theory, it is convenient to distinguish between dimen-
sionful parameters and dimensionless parameters. Consider, for example, a theory in which
there are three types of particles with masses m1, my, and m3. We can think of the the-
ory as having one dimensionful parameter, the mass m of the first particle, say, and two
dimensionless parameters, the mass ratios my/m and m3/m;.

String theory is said to have no adjustable parameters. By this it is meant that no dimen-
sionless parameter is needed to formulate string theory. String theory does, however, have
one dimensionful parameter. That parameter is the string length £;. This length sets the
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scale in which the theory operates. In the early 1970s, when string theory was first being
formulated, the theory was thought to be a theory of hadrons. Back then, the string length
was taken to be comparable to the nuclear scale. Nowadays, we think that string theory is
a theory of fundamental forces and interactions. Accordingly, we set the string length to be
much smaller than the nuclear scale.

2.2 Intervals and Lorentz transformations
e

Special relativity is based on the experimental fact that the speed of light (¢ ~ 3 x 108
m/s) is the same for all inertial observers. This fact leads to some rather surprising conclu-
sions. Newtonian intuition about the absolute nature of time, the concept of simultaneity,
and other familiar ideas must be revised. In comparing the coordinates of events, two
inertial observers, henceforth called Lorentz observers, find that the appropriate coordinate
transformations mix space and time.

In special relativity, events are characterized by the values of four coordinates: a time
coordinate ¢ and three spatial coordinates x, y, and z. It is convenient to collect these four
numbers in the form (ct, x, y, z), where the time coordinate is scaled by the speed of light
so that all coordinates have units of length. To make the notation more uniform, we use
indices to relabel the space and time coordinates as follows:

2 x%) = (ct,x, 9, 2). 2.7

=0l x
Here the superscript u takes the four values 0, 1,2, and 3. The x* are spacetime
coordinates.

Consider a Lorentz frame S in which two events are represented by the coordinates x*
and x* + Ax*. Consider now a second Lorentz frame S’, in which the same two events are
described by the coordinates x"** and x"" + Ax'", respectively. In general, not only are the
coordinates x* and x"* different, so too are the coordinate differences Ax* and Ax’*. On
the other hand, both observers will agree on the value of the invariant interval As?. This
interval is defined by

— As? = —(Ax")? + (AxDH? + (AxD)? + (A2 (2.8)
Note the minus sign in front of (Ax?)2, as opposed to the plus sign appearing before
the spacelike differences (AxH? (i =1,2,3). This sign encodes the fundamental differ-
ence between time and space coordinates. The agreement on the value of the intervals is
expressed as

_ (AXO)2 + (Axl)Z + (Ax2)2 + (AX3)2 — _(A.X/O)Z + (Ax/l)2 + (AX/2)2 + (A.x/3)2,
(2.9)
or, in brief:

As? = As”. (2.10)
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The minus sign on the left-hand side of (2.8) implies that As? > 0 for events that are
timelike separated. Timelike separated events are events for which

(Ax")? > (AxH? 4+ (AxP)? + (AxD)?. (2.11)

The history of a particle is represented in spacetime as a curve, the world-line of
the particle. Any two events on the world-line of a particle are timelike separated,
because no particle can move faster than light and therefore the distance light would
have traveled in the time interval that separates the events must be larger than the
space separation between the events. This is the content of (2.11). You at the time
you were born and you at this moment are timelike separated events: a long time
has passed and you have not gone that far. Events connected by the world-line of
a photon are said to be lightlike separated. For such a pair of events, we have
As? = 0, because in this case the two sides of (2.11) are identical: the spatial sepa-
ration between the events coincides with the distance that light would have traveled
in the time that separates the events. Two events for which As?> < 0 are said to be
spacelike separated. Events that are simultaneous in a Lorentz frame but occur at dif-
ferent positions in that same frame are spacelike separated. It is because As’ can
be negative that it is not written as (As)z. For timelike separated events, however,
we define

As =V As?2 if As?>>0 (timelike interval). (2.12)

Many times it is useful to consider events that are infinitesimally close to each other.
Small coordinate differences are needed to define velocities and are also useful in gen-
eral relativity. Infinitesimal coordinate differences are written as dx*, and the associated
invariant interval is written as ds2. Following (2.8), we have

—ds? = —(dx")? + (dx"H? + @x>)? + (dxD)>. (2.13)
The equality of intervals is the statement
ds? = ds'*. 2.14)

A very useful notation can be motivated by trying to simplify the expression for the
invariant ds2. To do this, we introduce symbols that carry subscripts instead of superscripts.
Let us define

dxo = —dx°, dx;=dx', dx,=dx* dx;=dx’. (2.15)

The only significant change is the inclusion of a minus sign for the zeroth component. All
together, we write

dx, = (dxo, dx1, dxz, dx3) = (—dx°, dx', dx?, dx?). (2.16)
Now we can rewrite ds? in terms of dx* and dx,,:
—ds* = —(dx")? + dx")? + dx>)? + (dx>)?
= dxodx + dxjdx' + dxpdx® + dxs3dx?, (2.17)
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and we see that the minus sign in (2.13) is gone. The invariant interval has become
3
—ds* = dx,dx". (2.18)
n=0

Throughout the rest of the text we will use Einstein’s summation convention. In this con-
vention, indices repeated in a single term are to be summed over the appropriate set of
values. We do not consider indices to be repeated when they appear in different terms.
For example, there are no sums implied by a”* + b* or a* = b", but there is an implicit
sum in a*b,. A repeated index must appear once as a subscript and once as a superscript
and should not appear more than twice in any one term. The letter chosen for the repeated
index is not important; thus a”b,, is the same as a”b,. Because of this, repeated indices
are sometimes called dummy indices! Using the summation convention, we can rewrite
(2.18) as

—ds? = dx,dx". (2.19)

Just as we did for finite coordinate differences in (2.12), for infinitesimal timelike intervals
we define the quantity

ds =Vds?2 if ds*>>0 (timelike interval) . (2.20)

We can also express the interval ds? using the Minkowski metric Nuv- This is done by
writing
—ds? =y dxtdx” . (2.21)

Equation (2.21), by itself, does not determine the metric 7. If, in addition, we require
v to be symmetric under an exchange in the order of its indices,

Ny = Mo (2.22)

then this together with (2.21) completely determines a metric called the Minkowski met-
ric. It is reasonable to declare that 7,, be symmetric for, as we shall now see, any
antisymmetric component would be irrelevant.

Any two-index object M, can be decomposed into a symmetric part and an antisym-
metric part:

1 1
M/w = E(MMU + leu,) + E(M,uv - MU/,L) . (223)

The first term on the right-hand side, the symmetric part of M, is invariant under exchange
of the indices @ and v. The second term on the right-hand side, the antisymmetric part of
M, changes sign under exchange of the indices n and v. If 1, had an antisymmetric part
& (= —£&y,), then its contribution would drop out of the right-hand side of (2.21). We
can see this as follows:

Eupdxtdx’ = (=&, dxtdx" = =€, dx"dx" = =&, dx"dx". (2.24)

In the first step, we used the antisymmetry of &,,. In the second step, we relabeled the
dummy indices: the u were changed into v and vice versa. In the third step, we switched
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the order of the dx* and dx" factors. The result is that &,,,dx"dx" is identical to minus
itself, and therefore it vanishes. It would be useless for 7,,,, to have an antisymmetric part,
so we simply declare that it has none.

Since repeated indices are summed over, equation (2.21) means that

—ds? = noodxodxo + r)()ldxodx] + modx]dxo + mldx]dx] + - (2.25)

Comparing with (2.17) and using (2.22), we see that noo = —1, n11 = 722 = 133 = 1, and
all other components vanish. We collect these values in matrix form:

-1 0 0 O
0 1 00

Ny = 001 0 (2.26)
0 0 0 1

In this equation, which follows a common identification of two-index objects with matri-
ces, we think of w, the first index in 7, as the row index, and v, the second index in 7, as
the column index. The Minkowski metric can be used to “lower indices.” Indeed, equation
(2.15) can be rewritten as

dx, = nuydx". (2.27)
If we are handed a set of quantities b*, we always define
by = nuwb". (2.28)

Given objects a* and b*, the relativistic scalar product a - b is defined as
a-b=atb, = nuya'b’ = —a’b° +a'b' +a’p? + 3. (2.29)

Applied to (2.19), this gives —ds? = dx - dx. Note that a*b,, = a, b".
It is convenient to introduce the matrix inverse for n,,. Written conventionally as n**",
itis given by

1.0 0 0
0100

=0 0 1 o (2.30)
000 1

You can see by inspection that this matrix is indeed the inverse of the matrix in (2.26).
When thinking of n*" as a matrix, as with 7,,, the first index is a row index and the
second index is a column index. In index notation the inverse property is written as

0" oy = 8 2.31)
where the Kronecker delta &), is defined by

1 ifp =
sr={ "HEZY (2.32)
0 ifu#v.
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y AS y' AS’
—t >V
~ vt >
o} “x 0’ X

Two Lorentz frames connected by a boost. §' is boosted along the +x direction of S with
boost parameter g = v/c.

Note that the repeated index p in (2.31) produces the desired matrix multiplication. The
Kronecker delta can be thought of as the index representation of the identity matrix. The
metric with upper indices can be used to “raise indices.” Using (2.28) and (2.31), we get

nPt by, = n’t (v b") = (n* Nuv) b = 55 b" =b". (2.33)

The lower u index of b, was raised by n”* to become an upper p index. The last step in
the above calculation needs a little explanation: 80 bY = bP because as we sum over v, 8
vanishes unless v = p, in which case it equals one.

Lorentz transformations are the relations between coordinates in two different inertial
frames. Consider a frame S and a frame §’, that is moving along the positive x direction
of the S frame with a velocity v, as shown in Figure 2.1. Assume the coordinate axes for
both systems are parallel, and that the origins coincide at the common time ¢ = ¢/ = 0. We
say that S’ is boosted along the x direction with velocity parameter 8 = v/c. The Lorentz
transformations in this case read

X' =y — Ber),
ct’ = y(ct — Bx),
Y=y,
7 =z, (2.34)
where the Lorentz factor y is given by
y = ! = ! . (2.35)
Vi-g 1oy

Using indices, and changing the order of the first two equations, we arrive at

¥ =y (¥ = g,
=y (B0 1Y,
x/z_ 2

X =3 (2.36)
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In the above transformations, the coordinates x2 and x> remain unchanged. These are the
coordinates orthogonal to the direction of the boost. The inverse Lorentz transformations
give the values of the x coordinates in terms of the x” coordinates. They are readily found
by solving for the x in the above equations. The result is the same set of transformations
with x and x’ exchanged and with 8 replaced by (—p), as required by symmetry.

The coordinates in the above equations satisfy the relation

O O O R G R i B 0 B O i € L 1)

as you can show by direct computation. This is just the statement of invariance of the inter-
val As? between two events: the first event is represented by (0, 0, 0, 0) in both S and
S’, and the second event is represented by coordinates x* in S and x’* in S’. By defini-
tion, Lorentz transformations are the linear transformations of coordinates that respect the
equality (2.37).

In general, we write a Lorentz transformation as the linear relation

XM =L* xV, (2.38)

where the entries L", are constants that define the linear transformation. For the boost in
(2.36), we have

y —yB 0 0

—ou | —vB y 00
[L]=L", = 0 0 1 0 (2.39)

0 0 0 1

In defining the matrix L as [L] = L",, we are following the convention that the first index
is a row index and the second index is a column index. This is why the lower index in L",
is written to the right of the upper index.

The coefficients L", are constrained by equation (2.37). In index notation, this equation
requires

Nap %P = Ny XX (2.40)
Using (2.38) twice on the right-hand side above gives
Nap x%xP = Nuv (LY, x“)(L“ﬂ Py = nuv LY, Lvﬁ x¥xP (2.41)
Equivalently, we have the equation
kap x*xP =0, with kag = 10 L", L'y — 10 - (2.42)
Since kep x* x# = 0 must hold for all values of the coordinates x, we find that
kap +kpge =0, (2.43)

as you should convince yourself by writing out the sums over a and B. Since kqg is in
fact symmetric under the exchange in the order of its indices, (2.43) implies ko5 = 0. This
means that

Muv LY LY g = Nap - (2.44)
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Rewriting (2.44) to make it look more like matrix multiplication, we have

L,y LY = tap - (2.45)

The sum over the v index works well: it is a column index in 7, and a row index in L"g.
The p index, however, is a row index in L",, while it should be a column index to match
the row index in 7,,. Moreover, the « index in L", is a column index, while it is a row
index in 7yg. This means that we should exchange the columns and rows of L",, which
is the matrix operation of transposition. Therefore equation (2.45) can be rewritten as the
matrix equation

LTyL=n. (2.46)

Here n is the matrix whose entries are 1. This neat equation is the constraint that L must
satisfy to be a Lorentz transformation.

An important property of Lorentz transformations can be deduced by taking the deter-
minant of each side of equation (2.46). Since the determinant of a product is the product of
the determinants, we get

(det LT)(det n)(det L) = detn. (2.47)

Cancelling the common factor of detn and recalling that the operation of transposition
does not change a determinant, we find

(detL)> =1 —> detL = +1. (2.48)

You can check that det L = 1 for the boost in (2.39). Since det L never vanishes, the matrix
L is always invertible and, consequently, all Lorentz transformations are invertible linear
transformations.

The set of Lorentz transformations includes boosts along each of the spatial coordinates. It
also includes rotations of the spatial coordinates. Under a spatial rotation, the coordinates

I x2, x3) of a point transform into coordinates (x’O, /! , x’z, x’3), for which x? =

(xo, X
x'°, because time is unaffected. Since the spatial distance from a point to the origin is

preserved under a rotation, we have
@2+ @2+ 6 = @2+ P2+ )2 (2.49)

This, together with x0 = x’o, implies that (2.37) holds. Therefore spatial rotations are
Lorentz transformations.

Any set of four quantities which transforms under Lorentz transformations in the same
way as the x** do is said to be a four-vector, or Lorentz vector. When we use index notation
and write b, we mean that b* is a four-vector. Taking differentials of the linear equations
(2.36), we see that the linear transformations that relate x’ to x also relate dx’ to dx.
Therefore the differentials dx* define a Lorentz vector. In the spirit of index notation, a
quantity with no free indices must be invariant under Lorentz transformations. A quantity
has no free indices if it carries no index or if it contains only repeated indices, such as a*b,,.

A four-vector a** is said to be timelike if a> = a - a < 0, spacelike if a®> > 0, and null
if a2 =0. Recalling our discussion below (2.11), we see that the coordinate differences
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between timelike-separated events define a timelike vector. Similarly, the coordinate dif-
ferences between spacelike-separated events define a spacelike vector, and the coordinate
differences between lightlike-separated events define a null vector.

Quick calculation 2.1 Verify that the invariant ds? is indeed preserved under the Lorentz
transformations (2.36).

Quick calculation 2.2 Consider two Lorentz vectors a* and b*. Write the Lorentz trans-
formations a* — a’* and b* — b'" analogous to (2.36). Verify that a*b,, is invariant
under these transformations.

2.3 Light-cone coordinates
.

We now discuss a coordinate system that will be extremely useful in our study of string
theory, the light-cone coordinate system. The quantization of the relativistic string can
be worked out most directly using light-cone coordinates. There is a different approach
to the quantization of the relativistic string, in which no special coordinates are used. This
approach, called Lorentz covariant quantization, is discussed briefly in Chapter 24. Lorentz
quantization is very elegant, but a full discussion requires a great deal of background
material. We will use light-cone coordinates to quantize strings in this book.

We define the two light-cone coordinates x™ and x~ as two independent linear combi-
nations of the time coordinate and a chosen spatial coordinate, conventionally taken to be
x!. This is done by writing

(x% — x1). (2.50)

The coordinates x> and x> play no role in this definition. In the light-cone coordinate
system, (xo, X 1) is traded for (x*, x ™), but the other two coordinates x2, x3 are kept. Thus,
the complete set of light-cone coordinates is (x™, x ™, x2, x3).

The new coordinates x and x ™ are called light-cone coordinates because the associated
coordinate axes are the world-lines of beams of light emitted from the origin along the x'
axis. For a beam of light moving in the positive x! direction, we have x' = ¢z = x°, and
thus x~ = 0. The line x~ = 0 s, by definition, the x ™ axis (Figure 2.2). For a beam of light
moving in the negative x! direction, we have x! = —ct = —x°, and thus x* = 0. This
corresponds to the x~ axis. The x* axes are lines at 45° with respect to the x, x! axes.

Can we think of x1, or perhaps x~, as a new time coordinate? Yes. In fact, both have
equal right to be called a time coordinate, although neither one is a time coordinate in
the standard sense of the word. Light-cone time is not quite the same as ordinary time.
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D
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4\

45°%Y (45°

A spacetime diagram with x? and x? represented as orthogonal axes. Shown are the
light-cone axes x£ = 0. The curves with arrows are possible world-lines of physical particles.

Perhaps the most familiar property of time is that it goes forward for any physical motion
of a particle. Physical motion starting at the origin is represented in Figure 2.2 as curves that
remain within the light-cone and whose slopes never go below 45°. For all these curves,
both x* and x~ increase as we follow the arrows. The only subtlety is that, for special
light rays, light-cone time will freeze! As we saw above, x* remains constant for a light
ray in the negative x! direction, while x~ remains constant for a light ray in the positive
x! direction.

For definiteness, we will take x™ to be the light-cone time coordinate. Accordingly,
we will think of x~ as a spatial coordinate. Of course, these light-cone time and space
coordinates will be somewhat strange.

Taking differentials of (2.50), we readily find that
2dxTdx™ = dx" + dx") (dx® — dx") = @x®)?* — @x")?. (2.51)

It follows that the invariant interval (2.13), expressed in terms of the light-cone coordinates
(2.50), takes the form

—ds? = =2dxVdx™ + (dx*)?* + (dx>)?. (2.52)

The symmetry in the definitions of xT and x~ is evident here. Notice that, if we are given
ds?, solving for dx~ or for dx™ does not require us to take a square root. This is a very
important feature of light-cone coordinates, as we will see in Chapter 9.

How do we represent (2.52) with index notation? We still need indices that run over four
values, but this time the values will be called

+,-.,2,3. (2.53)



24

Special relativity and extra dimensions

Just as we did in (2.21), we write
— ds? = fidxtdx’. (2.54)

Here we have introduced a light-cone metric 7 which, like the Minkowski metric, is also
defined to be symmetric under the exchange of its indices. Expanding this equation, and
comparing with (2.52), we find

Ny—=f-y=—1, fptr=7-——=0. (2.55)

In the (4, —) subspace, the diagonal elements of the light-cone metric vanish, but the off-
diagonal elements do not. We also find that 7 does not couple the (+, —) subspace to the
(2, 3) subspace:

fer=h_;=0, 1=23. (2.56)

The matrix representation of the light-cone metric is

0 -1 0 O

A -1 0 0 0

Ny = 0 01 0 (2.57)
0 0 0 1

The light-cone components of any Lorentz vector a* are defined in analogy with (2.50):

a=— @ —a. (2.58)

The scalar product between vectors, shown in (2.29), can be written using light-cone
components. This time we have

a-b=—a"b" —atb” +a’b? +a’b =iy, atb. (2.59)

The last equality follows immediately from summing over the repeated indices and using
(2.57). The first equality needs a small computation. In fact, it suffices to check that

—a bt —ath™ = —-a"" +a'b'. (2.60)

This is quickly done using (2.3) and the analogous equations for b*. We can also introduce
lower light-cone indices. Consider the expression a - b = a,b*, and expand the sum over
the index o using the light-cone labels:

a-b=a.bt +a_b” +ab® + azb’. (2.61)
Comparing with (2.59), we find that

ar=—-a", a_=—a". (2.62)
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When we lower or raise the zeroth index in a Lorentz frame, we get an extra sign. In light-
cone coordinates, the indices of the first two coordinates switch and we get an extra sign.

Since physics described using light-cone coordinates looks unusual, we must develop an
intuition for it. To do this, we will look at an example where the calculations are simple
but the results are surprising.

Consider a particle moving along the x! axis with speed parameter 8 = v/c. At time
t = 0, the positions x1, x2, and x3 are all zero. Motion is nicely represented when the
positions are expressed in terms of time:

@o)y=v =81 xX*0)=x*0)=0. (2.63)

How does this look in light-cone coordinates? Since x7T is time and x2 = x3 = 0, we must
simply express x~ in terms of x*. Using (2.63), we find
x9 4 ! _ 1+8

=T T — 0 2.64
X 7 7 X (2.64)

As aresult,
0 1
- 1— 1 —
et _4=Bh o 126 o (2.65)
V2 V2 1+p
Since it relates light-cone position to light-cone time, we identify the ratio
dx~ 11—
dx_ _1-8 (2.66)
dxt 1+8

as the light-cone velocity. How strange is this light-cone velocity? For light moving to the
right (8 = 1) it equals zero. Indeed, light moving to the right has zero light-cone veloc-
ity because x~ does not change at all. This is shown as line 1 in Figure 2.3. Suppose
you have a particle moving to the right with high conventional velocity, so that g >~ 1
(line 2 in the figure). Its light-cone velocity is then very small. A long light-cone time
must pass for this particle to move a little in the x~ direction. Perhaps more interestingly,
a static particle in standard coordinates (line 3) is moving quite fast in light-cone coordi-
nates. When f = 0 the particle has unit light-cone speed. This light-cone speed increases
as B grows negative: the numerator in (2.66) is larger than one and increasing, while the
denominator is smaller than one and decreasing. For 8 = —1 (line 5), the light-cone veloc-
ity is infinite! While this seems odd, there is no clash with relativity. Light-cone velocities
are just unusual. The light-cone is a frame in which kinematics has a nonrelativistic fla-
vor and infinite velocities are possible. Note that light-cone coordinates were introduced
as a change of coordinates, not as a Lorentz transformation. There is no Lorentz trans-
formation that takes the coordinates (x°, x!, x2, x3) into coordinates (x’ O xt x? y 3) =
xt, x—, x2, x3).

Quick calculation 2.3 Convince yourself that the last statement above is correct.
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1

X

m World-lines of particles with various light-cone velocities. Particle 1 has zero light-cone
velocity. The velocities increase through that of particle 5, which is infinite.

2.4 Relativistic energy and momentum
.|

In special relativity there is a basic relationship between the rest mass m of a point particle,
its relativistic energy E, and its relativistic momentum p. This relationship is given by

EZ
— _ﬁ . I_)' = mzcz_ (2.67)
C

The relativistic energy and momentum are given in terms of the rest mass and velocity by
the following familiar relations:

E=ymc*, p=ymb. (2.68)
Quick calculation 2.4 Verify that the above E and p satisfy (2.67).

Energy and momentum can be used to define a momentum four-vector, as we will prove
shortly. This four-vector is

E
[ (?,px,py,pz). (2.69)

Using the last two equations, we have

= (g ﬁ) =my(c, V). (2.70)

We use (2.28) to lower the index in p*:

E
Pu = (o, p1, p2, p3) = Nuwp’ = (—;, Dx> Dys pz). (2.71)

The above expressions for p/ and p,, give

. . E*
p“pu=—(p°)2+p~p=—c—2+p~p, (2.72)
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and, making use of (2.67), we have

plpu = —m3c% (2.73)
Since p" p, has no free index it must be a Lorentz scalar. Indeed, all Lorentz observers
agree on the value of the rest mass of a particle. Using the relativistic scalar product
notation, condition (2.73) reads

pP=p-p=-m3 (2.74)

A central concept in special relativity is that of proper time. Proper time is a Lorentz
invariant measure of time. Consider a moving particle and two events along its trajectory.
Different Lorentz observers record different values for the time interval between the two
events. But now imagine that the moving particle is carrying a clock. The proper time
elapsed is the time elapsed between the two events on that clock. By definition, it is an
invariant: all observers of a particular clock must agree on the time elapsed on that clock!

Proper time enters naturally into the calculation of invariant intervals. Consider an
invariant interval for the motion of a particle along the x axis:

—ds? = =cdi* + dx* = =2di* (1 — ). (2.75)

Now evaluate the interval using a Lorentz frame attached to the particle. This is a frame in
which the particle does not move and time is recorded by the clock that is moving with the
particle. In this frame dx = 0 and dt = dt), is the proper time elapsed. As a result,

—ds? = —c*d1,°. (2.76)
We cancel the minus signs and take the square root (using (2.20)) to find
ds = cdt,. 2.77)

This shows that, for timelike intervals, ds/c is the proper time interval. Similarly,
cancelling minus signs and taking the square root of (2.75) gives

dt
ds = cdiy/1 — g2 —> d—=Z. (2.78)
S C

Being a Lorentz invariant, ds can be used to construct new Lorentz vectors from old
Lorentz vectors. For example, a velocity four-vector u" is obtained by taking the ratio
of dx* and ds. Since dx* is a Lorentz vector and ds is a Lorentz scalar, the ratio is also a
Lorentz vector:

L

Ut = (2.79)

dxt sd(ct) dx dy dz
o~ Comaws)
The factor of ¢ is included to give u* the units of velocity. The components of u* can be
simplified using the chain rule and (2.78). For example,

ds — dids ¢

dx dxdt vy (2.80)
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Back in (2.79), we find
ut = y(c, vy, vy, v7) = y(c, V). (2.81)

Comparing with (2.70), we see that the momentum four-vector is just mass times the
velocity four-vector:

pH = mut. (2.82)
This confirms our earlier assertion that the components of p* form a four-vector. Since

any four-vector transforms under Lorentz transformations as the x* do, we can use (2.36)
to find that under a boost in the x-direction the p* transform as

E7/ =V (g _IBPX),
pi=v (—ﬁ% + ). (2.83)

2.5 Light-cone energy and momentum
.

The light-cone components pT™ and p~ of the momentum Lorentz vector are obtained
using the rule (2.3):

+ = —1 0 1 = —
p ﬁ(p +p) P—s
P = (= Py = —pa. (2.84)
V2 "

Which component should be identified with light-cone energy? The naive answer would
be p*. In any Lorentz frame, both the time and energy are the zeroth components of their
respective four-vectors. Since light-cone time was chosen to be x T, we might conclude that
light-cone energy should be taken to be p™. This is not appropriate, however. Light-cone
coordinates do not transform as Lorentz ones do, so we should be careful and examine this
question in detail. Both p* are energy-like, since both are positive for physical particles.
Indeed, from (2.67), and with m # 0, we have

== =5 peme= 1521, (2.85)

Asaresult, p° + p! > 0, and thus p* > 0. While both are plausible candidates for energy,
the physically motivated choice turns out to be — p., which happens to coincide with p~.
Before we explain this choice, let us first evaluate p, x*. In standard coordinates,

p-x = pox’ + pix' + pox® + p3x’. (2.86)
In light-cone coordinates, using (2.61),

p-x=pixT 4+ p_xT + pox? + p3x. (2.87)
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In standard coordinates, pg = —E /c appears together with the time x°. In light-cone coor-
dinates, p appears together with the light-cone time x™. We would therefore expect p,
to be minus the light-cone energy.

Why is this pairing significant? Energy and time are conjugate variables. As you learned
in quantum mechanics, the Hamiltonian operator measures energy and generates time
evolution. The wavefunction of a point particle with energy E and momentum p is given by

Wt %) = exp(—}%(Et —B- 2)). (2.88)
Indeed, this wavefunction satisfies the Schrodinger equation
oy E
ih—— = — . 2.89
x0T ¢ (289)
Similarly, light-cone time evolution and light-cone energy E). should be related by
. a‘/f E\c
h—=—1. 2.90
oot c v (2:90)

To find the x™ dependence of the wavefunction, we recognize that
- i R i
w(t,x)zexp(g(poxo—l—p-x)) =exp< 7 p-x), (2.91)
and, using (2.87), we have

¥ (x) = exp(’g (pext + pox™ + poc 4 pax)). (2.92)

We can now return to (2.90) and evaluate:

.0y E)
i ==ps¥ — —pp=— (2.93)
X C

This confirms our identification of (—p_.) with light-cone energy. Since, presently, —p, =
p~,itis convenient to use p~ as the light-cone energy in order to eliminate the sign in the
above equation:

E
p =< (2.94)

Some physicists like to raise and lower 4 and — indices to simplify expressions involving
light-cone quantities. While this is sometimes convenient, it can easily lead to errors. If
you talk with a friend over the phone, and she says “... p-plus times ...,” you will have to
ask, “plus up, or plus down?” In the rest of this book we will not lower the 4 or — indices.
They will always be up, and the energy will always be p~.

We can check that the identification of p~ as light-cone energy fits together nicely with
the intuition that we have developed for light-cone velocity. To this end, we confirm that a
particle with small light-cone velocity also has small light-cone energy. Suppose we have
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a particle moving very fast in the +x! direction. As discussed below (2.66), its light-cone
velocity is very small. Since p' is very large, equation (2.67) gives

m2c? m?c?
20 = (p12 +m2e = p' |1+ T Pl (2.95)

2p

The light-cone energy of the particle is therefore

1 m2c?

0_ 1y~
p —ﬁ(p p)_zﬁpl'

(2.96)

As anticipated, both the light-cone velocity and the light-cone energy decrease as p'
increases.

2.6 Lorentz invariance with extra dimensions

If string theory is correct, we must entertain the possibility that spacetime has more than
four dimensions. The number of time dimensions must be kept equal to one — it seems
very difficult, if not altogether impossible, to construct a consistent theory with more than
one time dimension. The extra dimensions must therefore be spatial. Can we have Lorentz
invariance in worlds with more than three spatial dimensions? Yes. Lorentz invariance is a
concept that admits a very natural generalization to spacetimes with additional dimensions.
We first extend the definition of the invariant interval ds? to incorporate the additional
space dimensions. In a world with five spatial dimensions, for example, we would write

—ds? = —c%dt? + (dxH? + dxD)? + dx3)? + dxH? + dxO)?. (2.97)

Lorentz transformations are then defined as the linear changes of coordinates that leave
ds? invariant. This ensures that every inertial observer in the six-dimensional spacetime
will agree on the value of the speed of light. With more dimensions, come more Lorentz
transformations. While in four-dimensional spacetime we have boosts in the x!, x2, and
x3 directions, in this new world we have boosts along each of the five spatial dimensions.
With three spatial coordinates, there are three basic spatial rotations: rotations that mix x!
and x2, those that mix x! and x3, and finally those that mix x> and x>. The equality of
the number of boosts and the number of rotations is a special feature of four-dimensional
spacetime. With five spatial coordinates, we have ten rotations, which is twice the number
of boosts.

The higher-dimensional Lorentz invariance includes the lower-dimensional one: if noth-
ing happens along the extra dimensions, then the restrictions of lower-dimensional Lorentz
invariance apply. This is clear from (2.97). For motion that does not involve the extra
dimensions, dx* = dx> = 0, and the expression for ds? reduces to that used in four
dimensions.
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A one-dimensional world that repeats each 2z R. Several copies of Phil are shown.

2.7 Compact extra dimensions
|

It is possible for additional spatial dimensions to be undetected by low energy experiments
if the dimensions are curled up into a compact space of small volume. In this section, we
will try to understand what a compact dimension is. We will focus mainly on the case of
one dimension. In Section 2.10 we will explain why small compact dimensions are hard to
detect.

Consider a one-dimensional world, an infinite line, say, and let x be a coordinate along
this line. For each point P along the line, there is a unique real number x(P) called the
x-coordinate of the point P. A good coordinate on this infinite line satisfies two conditions.

e Any two distinct points P; # P, have different coordinates: x(Py) # x(P2).
e The assignment of coordinates to points is continuous: nearby points have nearly equal
coordinates.

If a choice of origin is made for this infinite line, then we can use distance from the origin
to define a good coordinate. The coordinate assigned to each point is the distance from that
point to the origin, with a sign depending upon which side of the origin the point lies.

Imagine that you live in a world with one spatial dimension. Suppose you are walking
along and notice a strange pattern: the scenery repeats each time you move a distance
27 R, for some value of R. If you meet your friend Phil, you see that there are Phil clones
at distances 2m R, 47 R, 6 R, ... down the line (see Figure 2.4). In fact, there are clones
up the line, as well, with the same spacing.

There is no way to distinguish an infinite line with such a strange property from a circle
with circumference 27 R. Indeed, saying that this strange line is a circle explains the pecu-
liar property — there really are no Phil clones; you meet the same Phil again and again as
you go around the circle!

How do we express this mathematically? We can think of the circle as the open line
with an identification. That is, we declare that points with coordinates that differ by 27 R
are the same point. More precisely, two points are declared to be the same point if their
coordinates differ by an integer number of 27 R:

Py~ Py, «— x(P))=x(P)+2nRn, necw. (2.98)
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The interval 0 < x < 2xR is a fundamental domain for the line with the identification
(2.99). The identified space is a circle of radius R.

This is precise, but somewhat cumbersome, notation. With no risk of confusion, we can
simply write

X ~x+27R, (2.99)

which should be read as “identify any two points whose coordinates differ by 27 R.” With
such an identification, the open line becomes a circle. The identification has turned a non-
compact dimension into a compact one. It may seem to you that a line with identifications
is only a complicated way to think about a circle. We will see, however, that many physical
problems become clearer when we view a compact dimension as an extended one with
identifications.

The interval 0 < x < 27w R is a fundamental domain for the identification (2.99) (see
Figure 2.5). A fundamental domain is a subset of the entire space that satisfies two
conditions.

1. No two points in the fundamental domain are identified.
2. Any point in the entire space is in the fundamental domain or is related by the
identification to some point in the fundamental domain.

Whenever possible, as we did here, the fundamental domain is chosen to be a connected
region. To build the space implied by the identification, we take the fundamental domain
together with its boundary, and implement the identifications on the boundary. In our case,
the fundamental domain together with its boundary is the segment 0 < x < 27 R. In this
segment we identify the point x = 0 with the point x = 27 R. The result is the circle.

A circle of radius R can be represented in a two-dimensional plane as the set of points that
are at a distance R from a point called the center of the circle. Note that the circle obtained
above has been constructed directly, without the help of an embedding two-dimensional
space. For our circle, there is no point, anywhere, that represents the center of the circle.
We can still speak, figuratively, of the radius R of the circle, but in our case, the radius is
simply the quantity which multiplied by 2 gives the total length of the circle.

On the circle, the coordinate x is no longer a good coordinate. The coordinate x is now
either multivalued or discontinuous. This is a problem with any coordinate on a circle.
Consider using angles to assign coordinates on the unit circle (Figure 2.6). Fix a reference
point Q on the circle, and let O denote the center of the circle. To any point P on the circle
we assign as a coordinate the angle 6(P) = /P O Q. This angle is naturally multivalued.
The reference point Q, for example, has 6(Q) = 0° and 6(Q) = 360°. If we force angles
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Using the angle ¢ to define a coordinate on a circle. The reference point Q is assigned zero
angle: #(Q) = 0. The coordinate ¢ is naturally multivalued.

to be single valued by restricting 0° < 6 < 360°, for example, then they become discon-
tinuous. Indeed, two nearby points, Q and Q’, then have very different angles: 9(Q) = 0,
while 8(Q’) ~ 360°. It is easier to work with multivalued coordinates than it is to work
with discontinuous ones.

If we have a world with several open dimensions, then we can apply the identification
(2.99) to one of the dimensions, while doing nothing to the others. The dimension described
by x turns into a circle, and the other dimensions remain open. It is possible, of course, to
make more than one dimension compact. Consider, for example, the (x, y) plane, subject
to two identifications:

x~x+2xR, y~y+2nR. (2.100)

It is perhaps clearer to show both coordinates simultaneously while writing the identifica-
tions. In that fashion, the two identifications are written as

(x,y) ~(x+27R, y), (2.101)
(x,y) ~ (x, y+27R). (2.102)

The first identification implies that we can restrict our attention to 0 < x < 27 R, and the
second identification implies that we can restrict our attention to 0 < y < 27 R. Thus the
fundamental domain can be taken to be the square region 0 < x, y < 27 R, as shown in
Figure 2.7. To build the space implied by the identifications, we take the fundamental
domain together with its boundary, forming the full square 0 < x, y < 27 R, and imple-
ment the identifications on the boundary. The vertical edges are identified because they
correspond to points of the form (0, y) and (27 R, y), which are identified by (2.101). The
horizontal edges are identified because they correspond to points of the form (x, 0) and
(x, 2 R), which are identified by (2.102). The resulting space is called a two-dimensional
torus. One can visualize the torus by taking the fundamental domain (with its boundary)
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A square region in the plane with identifications indicated by the dashed lines and
arrowheads. The resulting surface is a torus. The identification of the vertical lines gives a
cylinder, shown to the right of the square region. The cylinder, shown horizontally and
flattened in the bottom left, must have its edges glued to form the torus.

and gluing the vertical edges as their identification demands. The result is a cylinder, as
shown in the top right corner of Figure 2.7 (with the gluing seam dashed). In this cylin-
der, however, the bottom circle and the top circle must also be glued, since they are nothing
other than the horizontal edges of the fundamental domain. To do this with paper, you must
flatten the cylinder and then roll it up to glue the circles. The result looks like a flattened
doughnut. With a flexible piece of garden hose, you could simply identify the two ends to
obtain the familiar picture of a torus.

We have seen how to compactify coordinates using identifications. Some compact spaces
are constructed in other ways. In string theory, however, compact spaces that arise from
identifications are particularly easy to work with. We shall focus on such spaces throughout
this book.

Quick calculation 2.5 Consider the plane (x, y) with the identification

(x,y) ~ (x +27R, y+27R). (2.103)

What is the resulting space? Hint: the space is most clearly exhibited using a fundamental
domain for which the line x 4+ y = 0 is a boundary.
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2.8 Orbifolds
|

Sometimes identifications have fixed points, points that are related to themselves by the
identification. For example, consider the real line parameterized by the coordinate x and
subject to the identification x ~ —x. The point x = 0 is the unique fixed point of the identi-
fication. A fundamental domain can be chosen to be the half-line x > 0 (Figure 2.8). Note
that the boundary point x = 0 must be included in the fundamental domain. The space
obtained by the above identification is in fact the fundamental domain x > 0. This is the
simplest example of an orbifold, a space obtained by identifications that have fixed points.
An orbifold is singular at the fixed points. While the half-line x > 0 is a conventional
one-dimensional manifold for x > 0, neighborhoods of the point x = 0 fail to be typi-
cal. This orbifold is called an R!/Z, orbifold. Here R! stands for the (one-dimensional)
real line, and Z; describes a basic property of the identification when it is viewed as the
transformation x — —x: if applied twice, it gives back the original coordinate.

Certain two-dimensional cones can be obtained as orbifolds. Begin with the (x, y) plane
and identify every point with the image obtained by rotation around the origin through the
angle 2t /N, where N > 2 is an integer. A simple description of the identification makes
use of the complex coordinate z = x + iy:

Z~e g, (2.104)
This identification does as expected: multiplication of any complex number by a phase
' (a real) rotates the complex number by the angle «. The identification is of Zy type:
viewed as the transformation z — e z, if applied N times, it gives back the original
coordinate. A point must be identified with all the N — 1 images obtained by repeated
action of the transformation. The only fixed point of the Zy transformation is the origin
z = 0. A fundamental domain for (2.104), as we will explain below, is provided by the
points z that satisfy the constraint

2
0 <arg(z) < N (2.105)

Here we recall that for z = re'?, with  and 0 real, we have arg(z) = 0. The fundamental
domain is shown in Figure 2.9. To the right one sees the cone, obtained by gluing the
rays arg(z) = 0 and arg(z) = 2w /N using the identification (2.104). The resulting cone is
called the C/Zy orbifold, where C denotes the complex plane, namely, the original two-
dimensional plane equipped with a complex coordinate. The cone is singular at the apex
z = 0 in the sense that it has concentrated curvature.

C N

0 X 0 X

The identification x ~ —x on the real line yields the half-line. This is the R1/Z, orbifold.
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The fundamental domain for the identification z ~ e“¥ z is shown shaded. After
identification we obtain a cone - the C/Zy orbifold.

Let us explain why the region defined by (2.105) is a fundamental domain. Acting
repeatedly on the region with the transformation z — e z, we find N — 1 images that
together with the region cover seamlessly the full complex plane. Since each point in the
region has exactly N — 1 copies, all outside the region, no two points in the region are
identified. Any point in C that is not in the region must lie in one of its N — 1 copies and
therefore it has an image in the region. Note that our argument used the fact that N is an
integer; for N irrational, for example, any point would have an infinite number of images.
Our construction gives only the cones whose total angle at the apex is 27 divided by an
integer. Cones with other angles exist, but they are not obtained as orbifolds. The case
when N is replaced by a rational number is examined in Problem 2.7. Additional examples
of orbifolds are considered in Problems 2.5, 2.6, and 2.10.

Physics on spaces with generic singularities is typically complicated and sometimes even
inconsistent. Orbifolds are spaces with tractable singularities, at least as far as strings are
concerned. The physics of quantum strings on an orbifold, as we will see in Chapter 13,
is completely regular because the orbifold arises from identifications applied to a non-
singular space where the quantum string is simple. The strings on the orbifold inherit that
simplicity.

2.9 Quantum mechanics and the square well
.

Planck’s constant 7 appears as the constant of proportionality relating the energy E and
the angular frequency w of a photon:

E =ho. (2.106)
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Since w has units of inverse time, £ has units of energy times time. Energy has units of
M L2T~2 and, therefore,

[A] = [Energy] x [Time] = ML*T~". (2.107)

The value of Planck’s constant is / ~ 1.055 x 10~ erg - s.
The constant / appears in the basic commutation relations of quantum mechanics. The
Schrodinger position and momentum operators satisfy

[x, p] = ih. (2.108)

If we have several spatial dimensions, then the commutation relations are
[x", p,-] — insi, (2.109)

where the Kronecker delta is defined as in (2.32):
- 1 ifi=j
si={ "7/ (2.110)
Polooifi #£ .
In three spatial dimensions, the indices i and j run from 1 to 3. The generalization of

quantum mechanics to higher dimensions is straightforward. With d spatial dimensions,
the indices in (2.109) simply run over the d possible values.

To set the stage for the analysis of a small extra dimension, we review a standard quantum
mechanics problem. Consider the time-independent Schrédinger equation

h2
- %vzw(x) + V()Y (x) = E(x) (2.111)
applied to the case of a one-dimensional square-well potential of infinite height:

Vi) = 0 ifx e (0,a) 2.112)
oo ifx & (0,a).

For x ¢ (0, a), the infinite potential implies 1 (x) = 0. In particular, ¥ (0) = ¥ (a) = 0.
This is just the quantum mechanics of a particle living on a segment, as shown in
Figure 2.10.

When x € (0, a), the Schrodinger equation becomes
n? d*y
2m dx?

The solutions of (2.113), consistent with the boundary conditions, are

2 . (knx)
Y (1) =/ Zsin [ =), k=1,2,...,00. (2.114)
a a

— Ev. (2.113)
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Left: the square-well potential in one dimension. Here the particle lives on a segment.
Right: in the (x, y) plane the particle must remain within 0 < x < a. The direction y is
identified as y ~ y + 2z R. The particle lives on a cylinder.

The value k = 0 is not allowed since it would make the wavefunction vanish everywhere.
By performing the differentiation indicated in (2.113), we see that the energy Ej associated

with the wavefunction v is
n? (kn\?
Er=—1|—]) . (2.115)

T 2m\ a

2.10 Square well with an extra dimension
[

We now add an extra dimension to the square-well problem (no pun intended!). In addition
to x, we include a dimension y that is curled up into a small circle of radius R. In other
words, we make the identification

(x,y) ~ (x, y+27R). (2.116)

The original dimension x has not been changed (see Figure 2.10). Since the y direction has
been turned into a circle of circumference 27 R, the space where the particle moves is now
a cylinder. The cylinder has length a and circumference 2w R. The potential V (x, y) will
remain given by (2.112) and is y-independent.

We will see that, as long as R is small, and as long as we look only at low energies, the
quantum mechanics of the particle on the segment is very similar to the quantum mechan-
ics of the particle on the cylinder. The only length scale in the original problem is the size
a of the segment, so small R means R < a.

In two dimensions, the Schrodinger equation (2.111) becomes

R AN
-3 (W + W) — Ey. (2.117)
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We use separation of variables in order to solve this equation. We let ¢ (x,y) =
¥ (x) ¢ (v) and find that the equation takes the form

R 1 d(x) R 1 dPP(y)

2m Yy (x) dx? 2m ¢ (y) dy?
The x-dependent and y-dependent terms of this equation must separately be constant, and
the solutions are of the form ¥ ;(x, y) = ¥ (x)¢;(y), where

(2.118)

Vi () = e sin(k’;—x) : 2.119)

&) =a sin(%) + b cos(%). (2.120)

The physics along the x dimension is unchanged, since the wavefunction must still vanish
at the ends of the segment. Therefore (2.119) takes the same form as (2.114) and k =
1,2, .... The boundary condition for ¢;(y) arises from the identification y ~ y + 27 R.
Since y and y + 27 R are coordinates that represent the same point, the wavefunction must
take the same value at these two arguments:

d1(y) = pi(y + 271 R). (2.121)

As opposed to ¥ (x), the function ¢;(y) need not vanish for any y. As a result, the gen-
eral periodic solution, recorded in (2.120), includes both sines and cosines. The presence
of cosines allows a nonvanishing constant solution: for I = 0, we get ¢o(y) = bg. This
solution is the key to understanding why a small extra dimension does not change the low
energy physics very much.

The energy eigenvalues of the ¥ ; are

=5, [(5) + ()]

These energies correspond to doubly degenerate states when / # 0, because in this case
(2.120) contains two linearly independent solutions. The extra dimension has changed the
spectrum dramatically. We will see, however, that if R < a, then the low-lying part of
the spectrum is unchanged. The rest of the spectrum changes, but these changes are not
accessible at low energies.

Since [ = 0 is permitted, the energy levels Ej (o coincide with the old energy levels
E;! The new system contains all the energy levels of the old system. But it also includes
additional energy levels. What is the lowest new energy level? To minimize the energy,
each of the terms in (2.122) must be as low as possible. The minimum occurs when k = 1,
since k = 0 is not allowed, and [ = 1, since / = 0 gives us the old levels. The lowest new
energy level is

2
=5 G)
When R « a, the second term is much larger than the first, and
B2 12
Eip~ %(ﬁ . (2.124)
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This energy is comparable to that of the level k eigenstate of the original problem (see
(2.115)) when
km 1 1 a

—_—~ = =k~ = —. (2.125)
a R 7 R

Since R is much smaller than a, k is a very large number. So the first new energy level
appears at an energy far above that of the low-lying original states. We therefore conclude
that an extra dimension can remain hidden from experiments at a particular energy level
as long as the dimension is small enough. Once the probing energies become sufficiently
high, the effects of an extra dimension can be observed.

Curiously, the quantum mechanics of a string introduces new features. For an extra
dimension much smaller than the already small string length £, new low-lying states can
appear! These correspond to strings that wrap around the extra dimension. They have no
analog in the quantum mechanics of a point particle, and we will study them in detail in
Chapter 17. In string theory, the conclusion remains true that no new low energy states arise
from a small extra dimension, but there is a small qualification: the dimension must not be
significantly smaller than £;. We will learn in Chapter 17 that, in string theory, the effects
of a compact dimension of radius smaller than £, cannot be distinguished from those of
another compact dimension with a radius larger than £;.

Problems

Problem 2.1 Exercises with units.

(a) Find the relation between coulombs (C) and esus.

(b) Explain the meaning of the unit K (degree kelvin) used for measuring temperatures,
and explain its relation to the basic length, mass, and time units.

(c) Construct and evaluate a dimensionless number using the charge e of the electron (as
defined in the Gaussian system of units), %, and c. (In Heaviside-Lorentz units, the

2

Gaussian e~ is replaced by %.)

Problem 2.2 Lorentz transformations for light-cone coordinates.

Consider coordinates x* = (xo,xl,xz,x3) and the associated light-cone coordinates
(xt,x—, x2, x3). Write the following Lorentz transformations in terms of the light-cone
coordinates.

(a) A boost with velocity parameter S in the x! direction.
(b) A rotation with angle 6 in the x', x? plane.
(c) A boost with velocity parameter f in the x* direction.

Problem 2.3 Lorentz transformations, derivatives, and quantum operators.

(a) Give the Lorentz transformations for the components a, of a vector under a boost
along the x! axis.
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(b) Show that the objects Bxi” transform under a boost along the x! axis in the same way
as the a;, considered in (a) do. This checks, in a particular case, that partial derivatives
with respect to upper-index coordinates x* behave as a four-vector with lower indices,
which is why they are written as 9,.

(c) Show that, in quantum mechanics, the expressions for the energy and momentum in

terms of derivatives can be written compactly as p,, = ?%.

Problem 2.4 Lorentz transformations as matrices.

A matrix L that satisfies (2.46) is a Lorentz transformation. Show the following.

(a) If Ly and L, are Lorentz transformations so is the product L1 L>.
(b) If L is a Lorentz transformation so is the inverse matrix L.
(c) If L is a Lorentz transformation so is the transpose matrix LT,

Problem 2.5 Constructing simple orbifolds.

(a) Consider a circle S', presented as the real line with the identification x ~ x + 2.
Choose —1 < x < 1 as the fundamental domain. The circle is the space —1 <x <1
with the points x = +1 identified. The orbifold S!/Z, is defined by imposing the (so-
called) Z; identification x ~ —x. Describe the action of this identification on the circle.
Show that there are two points on the circle that are left fixed by the Z, action. Find a
fundamental domain for the two identifications. Describe the orbifold S!/Z, in simple
terms.

(b) Consider a torus T2, presented as the (x, y) plane with the identifications x ~ x + 2
and y ~y+ 2. Choose —1 < x,y <1 as the fundamental domain. The orbifold
T2/Z, is defined by imposing the Z, identification (x, y) ~ (—x, —y). Prove that
there are four points on the torus that are left fixed by the Z, transformation. Show
that the orbifold 72 /Z, is topologically a two-dimensional sphere, naturally presented
as a square pillowcase with seamed edges.

Problem 2.6 Constructing the T'2/Z3 orbifold.

Consider the complex plane z = x + iy subject to the following two identifications
z~Ti(x)=z+1, and z~T(z)=z+".

(a) A fundamental domain, with its boundary, is the parallelogram with corners atz = 0, 1,
and ¢'™/3, Where is the fourth corner? Make a sketch and indicate the identifications
on the boundary. The resulting space is an oblique torus.

(b) Consider now the additional 7.3 identification

7~ R(Z) — eZm'/3Z.

To understand how this identification acts on the oblique torus, draw the short diagonal
that divides the torus into two equilateral triangles. Describe carefully the Z3 action on
each of the two triangles (recall that the action of R can be followed by arbitrary action
with T4, T, and their inverses).
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(c) Determine the three fixed points of the Z3 action on the torus. Show that the orbifold
T?/7Z3 is topologically a two-dimensional sphere, naturally presented as a triangular
pillowcase with seamed edges and corners at the fixed points.

Problem 2.7 A more general construction for cones?

Consider the (x, y) plane and the complex coordinate z = x + iy. We have seen that the
identification z ~ e N z, with N an integer greater than two, can be used to construct a
cone.

Examine now the identification
- M
z~62”'Wz, N>M=>2,

where M and N are relatively prime integers (their greatest common divisor is one). One
may guess that a fundamental domain is provided by the points z that satisfy 0 < arg(z) <
2 % Play with low values of M and N to convince yourself that this is not true. Determine
a fundamental domain for the identification. [Hint: use the following result. Given two
relatively prime integers a and b, there exist integers m and n such that ma + nb = 1.
Finding m and n is not easy unless you use Euclid’s algorithm. Try to find, for example,
integers m and n that satisfy 187m + 35n = 1.]

Problem 2.8 Spacetime diagrams and Lorentz transformations.

Consider a spacetime diagram in which the x° and x! axes of a Lorentz frame S are rep-
resented as vertical and horizontal axes, respectively. Show that the x’ O and x'! axes of
the Lorentz frame S’, related to S via (2.36), appear in the original spacetime diagram as
oblique axes. Find the angle between the primed and unprimed axes. Show in detail how
the axes appear when 8 > 0 and when B < 0, indicating in both cases the directions of
increasing values of the coordinates.

Problem 2.9 Lightlike compactification.

The identification x ~ x + 27 R, is the statement that the coordinate x has been compact-
ified into a circle of radius R. In this identification, the time dimension is left untouched.
Consider now the strange “lightlike” compactification, in which we identify events with
position and time coordinates related by

()= () () »

(a) Rewrite this identification using light-cone coordinates.
(b) Consider coordinates (ct’, x’) related to (ct, x) by a boost with velocity parameter 8.
Express the identifications in terms of the primed coordinates.

To interpret (1) physically, consider the family of identifications
2 2
()= ()= (V525 @
ct ct —R

where R; is a length that will eventually be taken to zero, in which case (2) reduces to (1).
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(c) Show that there is a boosted frame S’ in which the identification (2) becomes a standard
identification (i.e., the space coordinate is identified but the time coordinate is not).
Find the velocity parameter of S” with respect to S and the compactification radius in
this Lorentz frame S’.

(d) Represent your answer to part (c) in a spacetime diagram. Show two points related by
the identification (2) and the space and time axes for the Lorentz frame S’ in which the
compactification is standard.

(e) Fill in the blanks in the following statement: Lightlike compactification with radius
R arises by boosting a standard compactification with radius. .. with Lorentz factor
y ~R/...,inthelimitas... — 0.

Problem 2.10 A spacetime orbifold in two dimensions.

Consider a two-dimensional world with coordinates x° and x!. A boost with velocity
parameter 8 along the x! axis is described by the first two equations in (2.36). We want to
understand the two-dimensional space that emerges if we identify

)- ey

We are identifying spacetime points whose coordinates are related by a boost!

o0y ~

(a) Use the result of Problem 2.2, part (a), to recast (1) as

(xt,x7) ~ (e_)‘x+ , e)‘x_), where ¢ = /%. 2)

What is the range of 1? What is the orbifold fixed point? Assume now that § > 0, and
thus A > 0.

(b) Draw a spacetime diagram, indicate the x™ and x~ axes, and sketch the family of
curves

xtx™ =a? , 3)
where a > 0 is a real constant that labels the various curves. Indicate which curves

have small a and which have large a. For each value of a, equation (3) describes two
disconnected curves. Show that the identification (2) relates points on each separate

curve.

(c) Use the expression —ds* = —2dxtdx~ for the interval to show that any curve in (3)
is spacelike.

(d) Consider the two curves xTx~ = a? for some fixed a. The identification (2) makes

each one of these curves into a circle. Find the invariant circumference of this circle
by integrating the appropriate root of ds? between two neighboring identified points.
Give your answer in terms of @ and A. Answer: V2an.

Roughly, as time goes from minus infinity to plus infinity, the parameter a goes from
infinity down to zero and then back to infinity. This orbifold represents a universe where
space is a circle. The circle begins large, contracts to zero size, and then expands again. This
orbifold has one pathology: the curves x*x~ = —a? are actually closed timelike circles.
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Problem 2.11 Extra dimension and statistical mechanics.

Write a double sum that represents the statistical mechanics partition function Z(a, R) for
the quantum mechanical system considered in Section 2.10. Note that Z(a, R) factors as
Z(a, R) = Z(a)Z(R).

(a) Explicitly calculate Z(a, R) in the very high temperature limit (8 = % — 0). Prove

that this partition function coincides with the partition function of a particle in a two-
dimensional box with sides @ and 27 R. This shows that, at high temperatures, the
effects of the extra dimension are visible.

(b) Assume that R < a in such a way that there are temperatures that are large as far as the
box dimension a is concerned, but small as far as the compact dimension is concerned.
Write an inequality involving kT and other constants to express this possibility. Eval-
uate Z(a, R) in this regime, but include the leading correction due to the small extra
dimension.



Electromagnetism and gravitation in

various dimensions

As a candidate theory of all interactions, string theory includes Maxwell elec-
trodynamics and its nonlinear cousins, as well as gravitation. We review the
relativistic formulation of four-dimensional electrodynamics and show how it
facilitates the definition of electrodynamics in other dimensions. We give a brief
description of Einstein’s gravity and use the Newtonian limit to discuss the
relation between Planck’s length and the gravitational constant in various dimen-
sions. We study the effect of compactification on the gravitational constant and
explain how large extra dimensions could escape detection.

3.1 Classical electrodynamics

Unlike Newtonian mechanics, classical electrodynamics is a relativistic theory. In fact,
Einstein was led by considerations of electrodynamics to formulate the special theory of
relativity. Electrodynamics has a particularly elegant formulation in which the relativistic
character of the theory is manifest. This relativistic formulation allows a natural exten-
sion of the theory to higher dimensions. Before we discuss the relativistic formulation we
must review Maxwell’s equations. These equations describe the dynamics of electric and
magnetic fields.

Although most undergraduate and graduate courses in electrodynamics nowadays use the
international system of units (SI units), the Heaviside—Lorentz system of units is far more
convenient for discussions that involve relativity and extra dimensions. In this system of
units, Maxwell’s equations take the following form:

V x E 195 3.1
XE=———, .
c ot
V.B=0, (3.2)
V.E=p, (3.3)
. 1- 19E
VxB=—-j+-— (3.4)
c c ot

The above equations imply that E and B are measured with the same units. The first two
equations are the source-free Maxwell equations. The second two involve sources: the
charge density p, with units of charge per unit volume, and the current density j, with
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units of current per unit area. The Lorentz force law, which gives the rate of change of the
relativistic momentum of a charged particle in an electromagnetic field, takes the form
dp - U -
—pzq(E—i——xB). (3.5)
dt c

Since the magnetic field B is divergenceless, it can be written as the curl of a vector, the
well known vector potential A:

B=VxA. (3.6)

In electrostatics the electric field E has zero curl, and it is therefore written as (minus) the
gradient of a scalar, the well known scalar potential ®. In electrodynamics, as equation
(3.1) indicates, the curl of E is not always zero. Substltutmg (3.6) into (3.1), we find a
linear combination of E and of the time derivative of A that has zero curl:

. 104
v x (E+——) =0. 3.7)
ot
The object inside parentheses is set equal to —V ®, and the electric field E can be written
in terms of the scalar potential and the vector potential:
. 104
E=—-"2_vo. (3.8)
c Jt
While the potentials (P, A) introduced above seem to be just auxiliary quantities used
to represent electric and magnetic fields, we learn in quantum mechanics that, in fact, the
potentials are more fundamental than the £ and B fields. The Hamiltonian that describes
the motion of a charged particle uses the potentials, not the fields. It is therefore relevant
to examine possible ambiguities in the definition of the potentials. As we now show, the
potentials associated with a set of £ and B fields are not unique.
If we change A into A’ = A + Ve, where € is an arbitrary function of space and time,
the new magnetic field B’ is equal to the old one:

B =VxA =VxA+VxVe=B8, (3.9)

noting that the curl of a gradient is zero. The change in A would not leave E unchanged, as
it is clear from (3.8). We can repair this, however, by having ® change too. In fact, letting

, 1 de
P — & =0 — ——,
c Jat

A — A=A+ Ve, (3.10)

neither B nor E is changed. The changes of the potentials indicated above are called gauge
transformations and € is the gauge parameter.

Quick calculation 3.1 Verify that E, as given in (3.8), is invariant under the gauge
transformations (3.10).

Two sets of potentials (P, f_{) and (®/, A’ ) that are related by gauge transformations
are physically equivalent. It follows that physically equivalent sets of the potentials give
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identical electric and magnetic fields. It can happen, however, that potentials (P, A) and
(@, A’ ) give the same electric and magnetic fields, but still one cannot find an € such that
(3.10) holds. In such case, the potentials are not gauge equivalent and must be considered
physically different, even if their E and B fields are the same! This surprising situation can
occur in spacetimes with compact spatial dimensions and will feature in our later studies
of D-branes (Section 18.3). It does not happen in Minkowski space.

In the presence of compact spatial dimensions a related subtlety occurs. Given some
E and B there may not exist potentials ® and A that satisfy (3.6) and (3.8) and are well
defined throughout the compact part of the space. The gauge transformations come to our
help. It is not strictly necessary to have uniquely defined potentials (P, K) all over the
compact space. A set of potentials defined on patches that cover fully the compact space is
admissible if in the regions of overlap between any two patches the corresponding poten-
tials are related by gauge transformations. Given our statement that potentials are needed
in quantum mechanics, we must conclude that a configuration of E and B fields that does
not arise from admissible potentials cannot be discussed.

By the introduction of potentials, the source-free Maxwell equations (3.1) and (3.2) are
automatically satisfied. Equations (3.3) and (3.4) contain additional information. They are
used to derive equations for ® and A.

3.2 Electromagnetism in three dimensions
L

What is electromagnetism in three spacetime dimensions? One way to produce a theory
of electromagnetism in three dimensions is to begin with the four-dimensional theory and
eliminate one spatial coordinate. This procedure is called dimensional reduction.

In four spacetime dimensions, both electric and magnetic fields have three spatial com-
ponents: (Ey, Ey, E;) and (By, By, B;), respectively. It may seem likely that a reduction
to a world without a z coordinate would require dropping the z components from the two
fields. Surprisingly, this does not work! Maxwell’s equations and the Lorentz force law
make it impossible.

In order to construct a consistent three-dimensional theory, we must ensure that the
dynamics does not depend on the z direction, the direction that we want to eliminate. If
there is motion, it must remain restricted to the (x, y) plane. It is thus natural to require that
no quantity should have z-dependence. This does not necessarily mean dropping quantities
with a z index.

The Lorentz force law (3.5) is a useful guide to the construction of the lower-dimensional
theory. Suppose that there is no magnetic field. Then, in order to keep the z component of
momentum equal to zero we must have E, = 0; the z component of the electric field must
go. The case of the magnetic field is more surprising. Assume that the electric field is zero.
If the velocity of the particle is a vector in the (x, y) plane, a component of the magnetic
field in the plane would generate, via the cross product, a force in the z direction. On the
other hand, a z component of the magnetic field would generate a force in the (x, y) plane!
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We conclude that B, and B, must be set equal to zero, while we can keep B;. All in all,
E,=B,=B,=0. (3.11)

The left-over fields £, Ey, and B, can only depend on x and y. In the three-dimensional
world with coordinates 7, x, and y, the z index of B, is not a vector index. Therefore, in
this reduced world, B, behaves like a Lorentz scalar (more precisely, it is an object called
a pseudo-scalar). In summary, we have a two-dimensional vector E and a scalar field B..
We can test the consistency of this truncation by taking a look at the x and y components
of (3.1):
0E, OE, 1 0By
dy 9z c ot
0E, OE; 108,
9z ax ¢ ar
Since the right-hand sides are set to zero by our truncation, the left-hand sides should
vanish as well. Indeed, they do. Each term on the left-hand sides equals zero, either because
it contains an E, or because it contains a z derivative. You may examine the consistency
of the remaining equations in Problem 3.3.

(3.12)

While setting up three-dimensional electrodynamics was not too difficult, it is much harder
to guess what five-dimensional electrodynamics should be. As we will see next, the mani-
festly relativistic formulation of Maxwell’s equations immediately gives the appropriate
generalization to other dimensions.

3.3 Manifestly relativistic electrodynamics
.

In the relativistic formulation of Maxwell’s equations neither the electric field nor the mag-
netic field becomes part of a four-vector. Rather, a four-vector is obtained by combining
the scalar potential ® with the vector potential A:

At = (0,41, 4% 4%). (3.13)
The corresponding object with down indices is
A, = (—q>, Al A2 A3). (3.14)

From A, we create an object known as the electromagnetic field strength F,,:
Fuv = 0,A, — 0,A,. (3.15)

Here 9, = a%. Equation (3.15) implies that £, is antisymmetric:

Fu = —Fy. (3.16)
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It follows from this property that all diagonal components of F),, vanish:
Foo = F11 = Foo = F33 =0. (3.17)

Let us calculate a few entries in F,,. Let i denote a spatial index, that is, an index that can
take the values 1, 2, and 3. Making use of (3.15) and (3.8), we find

9A;  0Ag  10A" 0D

Foi=— — — = - = —F;. 3.18
0= 5x0 7 axi c ot + ax? ! (3-18)

Similarly, we can calculate Fps:
Fip =01A; — A1 = 0cAy — 0yAy, = By, (3.19)

since B =V x A. Continuing in this manner, we can compute all the entries in the matrix
F .
v

0 -E. —E, —E.
E. 0 B, -B,
Fuy = 7. 2
- E, —B; 0 By (3-20)
E. B, —-B, 0

We see that the electric and magnetic fields E and B are encoded in the field strength F,, .
The gauge transformations (3.10) discussed before can be nicely summarized with index
notation as

Ay —> Al = Ay + e (3.21)

Here A, and A;L are the gauge related potentials and, as before, the gauge parameter €(x)
is an arbitrary function of the spacetime coordinates.

Quick calculation 3.2 Verify that the gauge transformations (3.10) are correctly summa-
rized by (3.21).

Since gauge transformations leave the E and B fields invariant, the field strength F,,
must be gauge invariant. Indeed, we readily verify that
F, — Fl’w =0,A, — BUA;L
= 0u(Ay + 0ve) — 0y (A, + 0y€)
= F,y + 0,0, — 0,0,€
= Fj,. (3.22)

In the last step we noted that partial derivatives commute.

Recall that the use of potentials to represent E and B automatically solves the source-free
Maxwell equations (3.1) and (3.2). How are these equations written in terms of the field
strength F,,? They must be written so that they hold when (3.15) holds. Consider the
following combination of field strengths:

TM/-V = GAFW + 8MF,,A + avFAu~ (3.23)
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T}, vanishes identically on account of (3.15):
o (GMAV — BVA,L) + 0y (0A) — 0 Ay) + 0y (EhA,L - B,LAA) =0, (3.24)

using the commutativity of partial derivatives. The vanishing of 7} .,
8)\4FILU + ay,FvA + auFAM =0, (3.25)

is a set of differential equations for the field strength. These equations are precisely
the source-free Maxwell equations. To make this clear, first note that T}, satisfies the
antisymmetry conditions

Tkuv = —Lurv, T)LMU = _T)LVI/L' (326)

These two equations follow from (3.23) and the antisymmetry property Fy,, = —F),, of the
field strength. They state that 7 changes sign under the transposition of any two adjacent
indices.

Quick calculation 3.3 Verify the equations in (3.26).

Any object, with however many indices, that changes sign under the transposition of every
pair of adjacent indices, will change sign under the transposition of any two indices: to
exchange any two indices you need an odd number of transpositions of adjacent indices
(do you see why?). An object that changes sign under the transposition of any two indices
is said to be totally antisymmetric. Therefore T is totally antisymmetric.

Since T is totally antisymmetric, it vanishes when any two of its indices take the same
value. T is nonvanishing only when each of its three indices takes a different value. In
such case, different orderings of these three fixed values will give T components that can
differ at most by a sign. Since we are setting 7 to zero these various orderings do not
give new conditions. Because we have four spacetime coordinates, selecting three differ-
ent indices can only be done in four different ways — leaving out a different index each
time. Thus the vanishing of 7" gives four nontrivial equations. These four equations are the
three components of equation (3.1) and equation (3.2). The vanishing of Ty, for example,
gives us

10B, 0E, 0E,
doF12 + 01F2 + 02Fp = — + ——-—==0. (3.27)
c ot ox dy

This is the z component of equation (3.1). The other three choices of indices lead to the
remaining three equations (Problem 3.2).

How can we describe Maxwell equations (3.3) and (3.4) in our present framework? Since
these equations have sources, we must introduce a current four-vector:

i = (o' 12 7)., (3.28)
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where p is the charge density and ; = (j!, j2, j3) is the current density. In addition, we
raise the indices of the field tensor to obtain the field tensor with upper indices:

FI =l y'P Fop. (3.29)
Quick calculation 3.4 Show that
FW =—F" F%=_Fy, FY=F;. (3.30)
Equation (3.29), together with the definition of F),,, gives
FI = 0" (9, Ap — dpA) = n"“ 0. (0P Ap) — 0" 5 (" Ao), (3.31)

where the constancy of the metric components was used to move them across the deriva-
tives. It is customary to apply the rules for raising and lowering indices to partial
derivatives, so we write 0" = n#*9,. As a result,

FM = 9lrAY — 9V A, (3.32)
It follows from (3.30) and (3.20) that

0 E. E, E
-E, 0 B, —B
-E, —B, 0 B,
-E, B, —B. O

FR = (3.33)

Using this equation and the current vector (3.28), we can encapsulate Maxwell’s equations
(3.3) and (3.4) as (Problem 3.2)

aF*Y 1
= — jH. 3.34
o o (3.34)
In the absence of sources this equation becomes
WFP =0 — 9,0"A" — 9*A* =0, (3.35)

where we have written 32 = 3%,

Equations (3.15) together with equations (3.34) are equivalent to Maxwell’s equations in
four dimensions. We will take these equations to define Maxwell theory in arbitrary dimen-
sions. In d spatial dimensions the Lorentz vector A* has components (P, A) where A is a
d-dimensional spatial vector.

In three-dimensional spacetime, for example, the matrix F),, is a 3-by-3 antisymmetric
matrix, obtained from (3.20) by discarding the last row and the last column:

0 —E. —E,
Fo=| E. 0 B |. (3.36)
E, —-B, 0
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This immediately reproduces the main result of Section 3.2; By, By, and E; are to be set
to zero.
Motivated by (3.33), in arbitrary dimensions we will call F 0% the electric field E;:

E;=F% = —F,. (3.37)

The electric field is a spatial vector. Equation (3.18) implies that, in any number of
dimensions,

- 19A
E=—-""_Vo. (3.38)
¢ ot

The magnetic field is identified with the F/ components of the field strength. In four-
dimensional spacetime F'/ is a 3-by-3 antisymmetric matrix. Its three independent entries
are the components of the magnetic field vector (see (3.33)). In dimensions other than four,
the magnetic field is no longer a spatial vector. In three spacetime dimensions the magnetic
field is a single-component object. In five spacetime dimensions the magnetic field has as
many entries as a 4-by-4 antisymmetric matrix, six entries. That many components do not
fit into a spatial vector.

Our next goal is the determination of the electric field produced by a point charge in a
spacetime with an arbitrary but fixed number of spatial dimensions. To this end, we must
first learn how to calculate the volumes of higher-dimensional spheres. We turn to this
subject now.

3.4 An aside on spheres in higher dimensions
.

Since we want to work in various numbers of dimensions we should be precise when
speaking about spheres and their volumes. When we speak loosely we tend to confuse
spheres and balls, at least in the precise sense in which they are defined in mathematics.
When you say that the volume of a sphere of radius R is %n R3, you should really be saying
that this is the volume of the three-ball B3 — the three-dimensional space enclosed by the
two-dimensional two-sphere $2. In three-dimensional space R3 with coordinates X1, X2,
and x3, we write the three-ball as the region defined by

B*(R) :  x?+x34+x} <R~ (3.39)
This region is enclosed by the two-sphere:
S*(R) :  x}+x3+x3 =R~ (3.40)

The superscripts in B or S denote the dimensionality of the space in question. When we
drop the explicit argument R, we mean that R = 1. Lower-dimensional examples are also
familiar. B? is a two-dimensional disk — the region enclosed in R? by the one-dimensional
unit radius circle S!. In arbitrary dimensions we define balls and spheres as subspaces
of R?:
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BYR) . xP4x3+---+xi<R. (3.41)
This is the region enclosed by the sphere S9! (R):
STHR) o xt a3+ x3 =R (3.42)

One last piece of terminology: to avoid confusion we will always speak of volumes. If a
space is one-dimensional we take volume to mean length. If a space is two-dimensional we
take volume to mean area. All higher-dimensional spaces have just volumes. The volumes
of the one- and two-dimensional spheres are

vol (S'(R)) = 27 R,

vol (S%(R)) = 47 R>. (3.43)
Unless you have worked with other spheres before, you probably do not know what the
volume of §3 is.

Since volume has units of length to the power of the space dimension, the volume of a
sphere of radius R is related to the volume of a sphere of unit radius by

vol (S?~1(R)) = R4 vol(s¢71). (3.44)

Since the radius dependence of the volume is easily recovered, it suffices to record the
volumes of unit spheres:

vol (§1) = 27,
vol (§%) = 4. (3.45)
Let us now begin our calculation of the volume of the sphere S¢~!. For this purpose
consider R? with coordinates X1, X2, ..., X4, and let r be the radial coordinate:
r2:x12+X%+-~-+X5- (3.46)

We will find the desired volume by evaluating in two different ways the following integral:
Iy = f dxydx; ... dxge™". (3.47)
Rd

First we proceed directly. Using (3.46) in the exponential factor, the integral becomes a
product of d Gaussian integrals:

d o0
I = ]—[/ dx; e~ = ()t = 72 (3.48)
i=1Y7%

Now we proceed indirectly. We do the integral by breaking R? into thin spherical shells.
Since the space of constant r is the sphere S¢~! (), the volume of a shell lying between r
and r + dr equals the volume of § d=1(r) times dr. Therefore,

2

o ) 00
Iq =/ drvol(S?='(r))e™ = vol (Sd—l)/ drrd=1e"
0 0

l o0
- Evc>1(5'1*1)/ die™" 1571, (3.49)
0
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where use was made of (3.44), and in the final step we changed the variable of integra-
tion to t = r2. The last integral on the right-hand side can be expressed in terms of the
gamma function, a very useful special function. For positive x the gamma function I"(x) is
defined by

o0
F(x):/ dite”'t*"1, x>0. (3.50)
0

Unless x > 0 the integral does not converge near ¢ = 0. With this definition, equation
(3.49) becomes

1
Iy = - vol shHr(9). (3.51)

Comparing with the earlier evaluation (3.48), we get our final result:

vol (8471 = —) (3.52)

It now remains to calculate the value of I'(d/2). Since d is an integer, we must determine
the values of the gamma function for both integer and half-integer arguments. To find
I'(1/2) we use the definition (3.50) and let t = u?:

1 o0 o0 2
r (§> = / dte 71?2 = 2/ due™ = /x. (3.53)
0 0

Similarly,
(0.¢]
I :/ dte™' =1. (3.54)
0

For larger arguments the calculation of the gamma function is simplified using a recursion
relation. To obtain this relation, begin with

o
Frx+1) = / dte 't*, x>0, (3.55)
0
which can be rewritten as

o0 d _,\ x * d ;. 1 x—1
r(x+1)=—/0 dt(ae )t =—/0 dt(E(e ) —xe ). (356)
The boundary terms vanish for x > 0 and we find that
F'x+1)=xI'kx), x>0. (3.57)
Using this recursion relation we find, for example,
3 1 1 1 5 3 3 3
r(§>=§~r(§>=5ﬁ, F(E)ZE'F<§>=Z*/E (3.58)
For integer arguments the gamma function is related to the factorial:

rGS) =4-T4=4.3-T3) =4-3-2.T(2)=4-3-2-1-T(1) =4,
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Therefore, forn € Z and n > 1, we have
'n) =m-—1)!, (3.59)

where we recall that 0! = 1. We can now test our formula (3.52) in the familiar cases:

vol (81) = vol (82 1) = 2% — 2z
(1) '
2 3/2
vol (82) = vol ($3~1) = 22 — 4x, (3.60)

in agreement with the known values. For the less familiar S we find

2
vol ($3) = vol (§*71) = % =272 (3.61)

Quick calculation 3.5 Show that vol (BY) = 7%/2/T (1 + 4).

3.5 Electric fields in higher dimensions
L

In this section we calculate the electric field due to a point charge in a world with d spatial
dimensions. Here d could be three, in which case the answer is familiar, or less than three,
but we are particularly interested in d > 3. To do this calculation we will use the general
version of Maxwell’s equations appropriate for an arbitrary number of spatial dimensions.
As you may imagine, the electric field of a point charge is radial. Our calculation will give
the radial dependence and the normalization of the electric field. With minor modifications,
this result will also inform us about the gravitational fields of point particles in d spatial
dimensions.

Our computation is based on the zeroth component of equation (3.34):

9 FOi
ax!

=p. (3.62)

Since FY = E; (see (3.37)), this equation is just Gauss’ law:
V.E=p. (3.63)

Gauss’ law is valid in all dimensions! Equation (3.63) can be used to determine the electric
field of a point charge. Let us first review how this is done in the familiar setting of three
spatial dimensions.

Consider a point charge ¢, a two-sphere S2(r) of radius r centered on the charge, and
the three-ball B3 (r) whose boundary is the two-sphere. We integrate both sides of equation
(3.63) over the three-ball to find

f d(vo)V - E = / d(vol) p. (3.64)
B3 B3
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We use the divergence theorem on the left-hand side and note that the volume integral on
the right-hand side gives the total charge:

f E-di=q. (3.65)
$2(r)

Since the magnitude E (r) of E is constant over the two-sphere, we get
vol(S%(r)) E(r) = q. (3.66)

The volume of the two-sphere is just its area 4772, so

q
dmr?’
This is the familiar result for the electric field of a point charge in three spatial dimensions.
The electric field magnitude falls off like 1/r2.

EGr) =

(3.67)

For dimensions higher than three, the starting point (3.63) is good, so we must ask if the
divergence theorem also holds. It turns out that it does. We will first state the theorem in d
spatial dimensions, and then we will give some justification for it.

Consider a d-dimensional subspace V¢ of R? and let V¢ denote the boundary of V¢,
Moreover, let E be a vector field in RY. The divergence theorem states that

/ d(vol) V - E = Flux of E across V¢ = f E - dv. (3.68)
vd avd

The last right-hand side requires some explanation. At any point on 8V, the space V¢ is
locally approximated by the (d — 1)-dimensional tangent hyperplane. For a small piece of
dV< around this point, the associated vector d is a vector orthogonal to the hyperplane,
pointing out of the volume, and with magnitude equal to the volume of the small piece
under consideration. Note that this explanation is in accord with your experience in R3,
where dv corresponds to the area vector element da.

Let us justify the divergence theorem for the case of four space dimensions. Following a
strategy used in elementary textbooks, it suffices to prove the divergence theorem for a
small hypercube — the result for general subspaces follows by breaking such spaces into
many small hypercubes. Because it is not easy to imagine a four-dimensional hypercube,
we might as well use a three-dimensional picture with four-dimensional labels (Figure 3.1).
We use Cartesian coordinates x, y, z, w, and consider a cube whose faces lie on hyper-
planes selected by the condition that one of the coordinates is constant. Let one face of
the cube and the face opposite to it lie on hyperplanes of constant x and constant x + dx,
respectively. The outgoing normal vectors are é,, for the face at x + dx, and (—é,), for the
face at x. The volume of each of these two faces equals dydzdw, where dy, dz, and dw,
together with dx, are the lengths of the edges of the cube. For an arbitrary electric field
E (x,y,z, w), only the x component contributes to the flux through these two faces. The
contribution is

oE
[Ex(x +dx,y,z,w) — Ex(x,y,z,w)]dydzdw >~ a—x dxdydzdw. (3.69)
x
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AZW

€y <«—1° &———¢,

X +dx X

y

An attempt at a representation of a four-dimensional hypercube. The two faces of constant
x are shown (shaded) together with their outgoing normal vectors.

Analogous expressions hold for the flux across the three other pairs of faces. The total net
flux from the little cube is just
0E, OdEy, 0JE, 0K,

— —Y ) dxdydzdw =V - E d (vol). 3.70
8x+8y 8z+3w)xyzw (vol) ( )

Flux of E = (

This result is precisely the divergence theorem (3.68) applied to an infinitesimal hypercube.
This is what we wanted to show.

We can now return to the computation of the electric field due to a point charge in a world
with d spatial dimensions. Consider a point charge ¢, the sphere S¢~!(r) of radius r cen-
tered on the charge (this is the sphere that surrounds the charge), and the ball Bd(r) whose
boundary is the sphere S~ (r). Again, we integrate both sides of equation (3.63) over the
ball B9 (r):

/d(vol)v.z?:zf d(vol) p. (3.71)
Bd Bd

The volume integral on the right-hand side gives the total charge, and the divergence
theorem (3.68) relates the left-hand side to a flux integral:

Flux of E across S~ (r)=gq. (3.72)
The flux equals the magnitude of the electric field times the volume of S9=1(r), so
E@r)vol (87 (r)) = q. (3.73)

Making use of (3.52) we find

—
—~
[\STESW

) a_ (3.74)

E(r) =07 7a
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This is the value of the electric field for a point charge in a world with d spatial dimen-
sions. For d = 3 we recover the inverse-squared dependence of the electric field. In higher
dimensions the electric field falls off faster at large distances. For each additional spatial
dimension we get an additional factor of 1/r in the radial dependence of the electric field.

Quick calculation 3.6 Verify that for d = 3 equation (3.74) coincides with (3.67).

Quick calculation 3.7 The force F on a test charge ¢ in an electric field Eis F = qﬁ.
What are the units of charge in various dimensions?

The electrostatic potential ® is also of interest. For time independent fields (3.38) gives
E=-Vo. (3.75)
This equation, together with Gauss’ law, gives the Poisson equation:
V2o = —p, (3.76)

which can be used to calculate the potential due to a charge distribution. The two equations
above hold in all dimensions using, of course, the appropriate definitions of the gradient
and the Laplacian.

3.6 Gravitation and Planck’s length
|

Einstein’s theory of general relativity is a theory of gravitation. In this very elegant the-
ory the dynamical variables encode the geometry of spacetime. When gravitational fields
are sufficiently weak and velocities are small, Newtonian gravitation is accurate enough,
and one need not work with the more complex machinery of general relativity. We can
use Newtonian gravity to understand the definition of Planck’s length in various dimen-
sions and its relation to the gravitational constant. These are interesting issues that we will
explain here and in the rest of the present chapter. Nevertheless, when gravitation emerges
in string theory, it does so in the language of Einstein’s theory of general relativity. To be
able to recognize the appearance of gravity among the quantum vibrations of the relativis-
tic string you need a little familiarity with the language of general relativity. Here you will
take a first look at the concepts involved in this remarkable theory.

Most physicists do not expect general relativity to hold at truly small distances nor for
extremely large gravitational fields. This is a realm where string theory, the first seri-
ous candidate for a quantum theory of gravitation, is necessary. General relativity is the
large-distance/weak-gravity limit of string theory. String theory modifies general relativity;
it must do so to make it consistent with quantum mechanics. The conceptual frame-
work which underlies these modifications is not clear yet. It will no doubt emerge as we
understand string theory better in the years to come.

The spacetime of special relativity, Minkowski spacetime, is the arena for physics in the
absence of gravitational fields. The geometrical properties of Minkowski spacetime are
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encoded by the metric formula (2.21), which gives the invariant interval separating two
nearby events:

— ds? = ndxtdx”. (3.77)
Here the Minkowski metric 7, is a constant metric, represented as a matrix with entries

(—=1,1,...,1) along the diagonal. Minkowski space is said to be a flat space. In the
presence of a gravitational field, the metric becomes dynamical. We then write

—ds® = g, (x)dxtdx", (3.78)

where the constant 7, is replaced by the metric g, (x). If there is a gravitational field,
the metric is in general a nontrivial function of the spacetime coordinates. The metric g,
is defined to be symmetric

guv(x) = guu(x). (3.79)
It is also customary to define g/¥(x) as the inverse of the g, (x) matrix:
gH% (%) gav(x) = 81, (3.80)

For many physical phenomena gravity is very weak, and the metric g,,, (x) can be chosen
to be very close to the Minkowski metric 7,,,,. We then write,

8uv(X) = My + My (x), (3.81)

and we view hy,(x) as a small fluctuation around the Minkowski metric. This expansion
is done, for example, to study gravity waves. Those waves represent small “ripples” on
top of the Minkowski metric. Einstein’s equations for the gravitational field are written in
terms of the spacetime metric g, (x). These equations imply that matter or energy sources
curve the spacetime manifold. For weak gravitational fields, Einstein’s equations can be
expanded in powers of £, using (3.81). In the absence of sources, the resulting linearized
equation for A, is

2R — 3y (3MRY™ + 3 hM) + 9H9 h = 0. (3.82)

Here h*’ = n”‘)‘n”ﬂhaﬂ and h = n"*Yh,,, = —hoo + h11 + hop + h33. Equation (3.82) is
the gravitational analog of equation (3.35), which describes Maxwell fields in the absence
of sources. While (3.35) is exact, (3.82) is only valid for weak gravitational fields. It is the
linear approximation to a nonlinear equation that includes additional terms quadratic and
higher order in A.

The analogy with electromagnetism extends to the existence of gauge transformations.
Einstein’s gravity has gauge transformations. They arise because the use of different sys-
tems of coordinates yields equivalent descriptions of gravitational physics. In learning
string theory in this book you will get to appreciate the freedom to choose coordinates
on the surfaces generated by moving strings. In general relativity, an infinitesimal change
of coordinates

xH = x* 4 et (x), (3.83)
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can be viewed as an infinitesimal change of the metric g,, and, using (3.81), as an
infinitesimal change of the fluctuating field 2"". One can show that the change is given by

Sh™ = Soh"” + O(e, h), with Soh"" = 9"e” + 8"€™. (3.84)

As indicated above, the infinitesimal change 84"V is given by §oh"" plus corrections, writ-
ten as € - O(h), that are linear in € and linear in the fluctuation /4 itself. The invariance
of the full nonlinear equation of motion under the gauge transformation §2*" requires the
invariance of the linearized equation of motion (3.82) under §pi2"". Indeed, when we vary
the hs in (3.82) using §oh"” we get terms linear in € but without an /. These terms must
cancel out completely because all other variations will contain at least one field 4: this is
clear for the variations of (3.82) using the terms represented by € - O(h) and for all varia-
tions of terms quadratic and higher order in % in the complete equation of motion. We will
check the invariance of (3.82) under the transformation §pi*" in Chapter 10. In Maxwell
theory the gauge parameter has no indices, but in general relativity the gauge parameter
has a vector index.

As we mentioned before, Newtonian gravitation emerges from general relativity in the
approximation of weak gravitational fields and motion with small velocities. For many pur-
poses Newtonian gravity suffices. Starting now, and for the rest of this chapter, we will use
Newtonian gravity to understand the definition of Planck’s length in various dimensions,
and to investigate how gravitational constants behave when some spatial dimensions are
curled up. The results that we will obtain hold also in the full theory of general relativity.

Newton’s law of gravitation in four dimensions states that the force of attraction between
two masses m and my separated by a distance r is given by

Fa = @ mime (3.85)
r
where G denotes the four-dimensional Newton constant. It follows that the units of the
gravitational constant G are
[G] = [Force]L—2 = ﬂL—z = L—3 (3.86)
M? T2 M? MT?
The numerical value for the constant G is determined experimentally:

3

G =6674x 10" 12 (3.87)
kg - s2

Since [c] = L/T and [A] = M L? /T, the three fundamental constants G, ¢, and 7 can be
written as

kg - m?
G =6.674 x 101 c=2998 x 1082, 5 =1.055x 10421
S

S
(3.88)

In the study of gravitation it is sometimes convenient to use a “Planckian” system of
units. Since we have three basic units, those of length, time, and mass, we can find new
units of length, time, and mass such that the three fundamental constants, G, ¢, and # take

m
kg - s2’
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the numerical value of one in those units. These units are called the Planck length ¢p, the
Planck time fp, and the Planck mass mp, respectively. In those units

o [/ Iz
G=1.—F- c=1.2 p=1.722F (3.89)
mp Ip Ip Ip

without additional numerical constants — as opposed to equation (3.88). The above
equations allow us to solve for £p, fp, and mp in terms of G, ¢, and /. One readily finds

Gh
tp =,/ — =1.616 x 107 cm, (3.90)
C
¢ Gh
p=— = |~ = 5391 x 107¥s, (3.91)
C C
he _s
mp =,/ = =2176x10g. (3.92)

These numbers represent scales at which relativistic quantum gravity effects can be impor-
tant. Indeed, the Planck length is an extremely small length, and the Planck time is an
incredibly short time — the time it takes light to travel the Planck length! While Einstein’s
gravity can be used down to relatively small distances and back to relatively early times in
the history of the universe, a quantum gravity theory (such as string theory) is needed to
study gravity at distances of the order of the Planck length or to investigate the universe
when it was Planck-time old.

There is an equivalent way to characterize the Planck length: ¢p is the unique length that
can be constructed using only powers of G, ¢, and /. One thus sets

tp = (G)* (¢)f (W)Y, (3.93)

and fixes the constants «, 8, and y so that the right-hand side has units of length.

Quick calculation 3.8 Show that this condition fixes uniquely o« =y =1/2, and g =
— 3/2, thus reproducing the result in (3.90).

It may appear that mp is not a very large mass, but it is, in fact, a spectacularly large mass
from the viewpoint of elementary particle physics. The mass mp is roughly 10'° times
larger than the mass of the proton. If the fundamental theory of nature is based on the basic
constants G, ¢, and 7, it is then a great mystery why the masses of the elementary particles
are so much smaller than the “obvious” mass mp that can be built from the basic constants.
This puzzle is usually called the hierarchy problem.

For an additional perspective on the Planck mass, consider the following question: what
should be the mass M of the proton so that the gravitational force between two protons
cancels the electric repulsion force between them? Equating the magnitudes of the electric
and gravitational forces we get

GM? &2 5 &2
—_— = — GM* = . (3.94)
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It is convenient to divide both sides of the equation by /ic to find
GM? & 1 M* 1
= > s >
hic 4mhc 137 m12> 137

(3.95)

where use was made of (3.92). We thus find M >~ mp/12, or about one-tenth of the
Planck mass. The dimensionless ratio e2 /(4mhe) is called the fine structure constant.
It was evaluated above using the Heaviside—Lorentz definition of electric charge where
e =+/4mr 4.8 x 10710 esu (see Problem 2.1(c)).

Quick calculation 3.9 The mass of the electron is m, = 0.9109 x 10727 g, and its energy
equivalent is m.c> = 0.5110 MeV. Show that the energy equivalent of the Planck mass is
mpc? = 1.221 x 10! GeV (1 GeV = 10° eV). This energy is called the Planck energy.

3.7 Gravitational potentials
.

We want to learn what happens with the gravitational constant G when we attempt to
describe gravitation in spacetimes of other dimensionalities. To find out, we will examine
gravitational potentials in Newtonian gravity. In this section we obtain the equation that
relates the gravitational potential to the mass distribution in a spacetime with arbitrary but
fixed number of spatial dimensions. In doing so we will learn how to define the relevant
gravitational constant. This result will be used in the following section to define, in any
dimension, the Planck length in terms of the appropriate gravitational constant.

We introduce a gravity field g with units of force per unit mass. The definition is similar
to that of an electric field in terms of the force on a test particle: the force on a given test
mass m at a point where the gravity field is g is given by mg. We set g equal to minus the
gradient of a gravitational potential Vy:

g=-VV,. (3.96)

We will take this equation to be true in all dimensions. Equation (3.96) has content: if you
move a particle along a closed loop in a static gravitational field, the net work that you do
against the gravitational field is zero.

Quick calculation 3.10 Prove the above statement.
What are the units for the gravitational potential? Equation (3.96) gives

[Force] _ w
v =L — [Vg]——M (3.97)

The gravitational potential has units of energy per unit mass in any dimension. The
gravitational potential Vé4) of a point mass in four dimensions is
GM

v = 228 (3.98)
r

(3]= _ [Energy] '
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We can use the electromagnetic analogy to find the equation satisfied by the gravitational
potential. In electromagnetism, we found an equation for the electrostatic potential which
holds in any dimension. This is equation (3.76):

Vo =—p. (3.99)
The four-dimensional scalar potential for a point charge ¢ is
. (3.100)
4y

and it satisfies (3.99) where p is the charge density for the point charge. It follows by
analogy that the four-dimensional gravitational potential in (3.98) satisfies

VAV = dnGpp, (3.101)

where p,, is the matter density. While this equation is correct in four dimensions, a small
modification is needed for other dimensions. Note that the left-hand side has the same units
in any number of dimensions: the units of V, are always the same, and the Laplacian always
divides by length-squared. The right-hand side must also have the same units in any number
of dimensions. Since p,, is mass density, it has different units in different dimensions, and,
as a consequence, the units of G must change when the dimensions change. We therefore
rewrite the above equation more precisely as

VAV =4nG Py, (3.102)

when working in D-dimensional spacetime. The superscripts shown in parentheses denote
the dimensionality of spacetime. In particular, we identify G as the four-dimensional
Newton constant G. In general, we will use D to denote the dimensionality of spacetime,
and d to denote the number of spatial dimensions. Clearly, D = d + 1.

Equation (3.102) defines Newtonian gravitation in an arbitrary number of dimensions.
Just as the electric field of a point charge does, the gravitational field of a point mass falls
off like 1/ r4=1 in a world with d spatial dimensions. As a result, the force between two
point masses separated by a distance r falls off like 1/r¢~!. For three spatial dimensions,
this is the familiar inverse-squared dependence of the gravitational force. If D = 6 (a world
with two extra dimensions) the gravitational force falls off like 1/r%.

3.8 The Planck length in various dimensions
L

We define the Planck length in any dimension just as we did in four dimensions: the Planck
length is the unique length built using only powers of the gravitational constant G?)| ¢,
and /. To compute the Planck length we must determine the units of GP). This is easily
done if we recall that the units of G?) p,, (the right-hand side of (3.102)) are the same in
all dimensions.

Comparing the cases of five and four dimensions, for example,

M M
(G5 =615 — [GO]=LI[G). (3.103)
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The units of GO carry one more factor of length than the units of G. We use (3.90) to read
the units of G in terms of units of length and units of ¢ and #:

[C]3 L2
[G] = T (3.104)
Equation (3.103) then gives
373
(GO = [c][T]L (3.105)

Since the Planck length is constructed uniquely from the gravitational constant, ¢, and 7,

we can remove the brackets in the above equation and replace L by the five-dimensional
(5).

Planck length £57:

(5

613 AG
4 = —. 3.106
( P ) 3 ( )

Reintroducing the four-dimensional Planck length:

©) Q)
) _ (PG\G ) 28

(¢5”) _<63> G (¢7)" = (tp) G (3.107)

Since they do not have the same units, the gravitational constants in four and five dimen-
sions cannot be compared directly. Planck lengths, however, can be compared. If the Planck
length is the same in four and in five dimensions, then G® /G = fp; the gravitational
constants differ by one factor of the common Planck length.

It is not hard to generalize the above equations to D spacetime dimensions:

Quick calculation 3.11 Show that (3.106) and (3.107) are replaced by

P 3 = (¢p) G (3.108)

()2 2152 _ (G2

3.9 Gravitational constants and compactification
.

If string theory is correct, our world is really higher-dimensional. The fundamental grav-
ity theory is then defined in the higher-dimensional world, with some value for the
higher-dimensional Planck length. Since we observe only four dimensions, the additional
dimensions may be curled up to form a compact space with small volume. We can then
ask: what is the effective value of the four-dimensional Planck length? As we shall show
here, the effective four-dimensional Planck length depends on the volume of the extra
dimensions, as well as on the value of the higher-dimensional Planck length.

These observations raise the possibility that the Planck length in the effectively four-
dimensional world — the famous number equal to about 10~33 cm — may not coincide with
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the fundamental Planck length in the original higher-dimensional theory. Is it possible that
the fundamental Planck length is much bigger than the familiar, four-dimensional one? We
will answer this question in the following section. In this section we will work out the
effect of compactification on gravitational constants.

How do we calculate the gravitational constant in four dimensions if we are given the grav-
itational constant in five? First, we recognize the need to curl up one spatial dimension,
otherwise there is no effectively four-dimensional spacetime. As we will see, the size of
the extra dimension enters the relationship between the gravitational constants. To explore
these questions precisely, consider a five-dimensional spacetime where one dimension
forms a small circle of radius R. We are given G and we would like to calculate G®.

Let (xl, x2, x3) denote three spatial dimensions of infinite extent, and x* denote a com-
pactified dimension of circumference 277 R (Figure 3.2). We place a uniform ring of total
mass M all around the circle at x! = x? = x3 = 0. This is a mass distribution which is
constant along the x* dimension. We are interested in the gravitational potential Vg(s) that
emerges from such a mass distribution. Alternatively, we could have placed a point mass
at some fixed x*, but this makes the calculations more involved (Problem 3.10). In the
present case the gravitational potential Vés) does not depend on x*. The total mass M can
be written as

total mass = M = 27w Rm, (3.109)

where m is the mass per unit length.

What is the mass density in the five-dimensional world? It is only nonzero at x! = x? =
x3 = 0. To represent such a mass density we use delta functions. Recall that the delta
function §(x) can be viewed as a singular function whose value is zero except for x = 0
and such that the integral ffooo dx&(x) = 1. This integral implies that if x has units of
length, then &(x) has units of inverse length. Since the five-dimensional mass density is
concentrated at x! = x2 = x3 = 0, it is reasonable to include in its formula the product
S§(xH8(x2)8(x3) of three delta functions. We claim that

0 =ms(xHs(x?)s(x?). (3.110)

x1=x2=x3=0 x1, x2, x3

A world with four space dimensions, one of which, x?, is compactified into a circle of
radius R. A ring of total mass M wraps around this compact dimension.
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We first check the units. The mass density p© must have units of M/L*. This works out
since m has units of mass per unit length, and the three delta functions supply an additional
factor of L™3. The ansatz in (3.110) could still be off by a constant dimensionless factor,
a factor of two, for example. As a final check, we integrate p(s) over all space. The result
should be the total mass:

00 2w R
/ dx'dx*dx? / dx4,0(5)
—00 0

[ee) o) o0 27 R
:m/ dx18(x1)/ dx28(x2)/ dx33(x3)/ dx*
—00 —00 —00 0

=m2nR. (3.111)

This is indeed the total mass on account of (3.109). For the effectively four-dimensional

observer the mass is point-like, and it is located at x! = x> = x3 = 0. So this observer
writes
o = MsxHs(xH)s(x?). (3.112)
Note the relation
1
© = — p@, 3.113
14 wR " ( )

Let us now use this information in the equations for the gravitational potential. Using
the five-dimensional version of (3.102) and (3.113), we find
(&)
G @

VYOl 2 x%) = 41G9p = an —p

3.114
27w R ( )

As we have noted before, Vg(s) is independent of x* so the Laplacian above is actually the
four-dimensional one. Since the effective four-dimensional gravitational potential is V;S),
the above equation takes the form of the gravitational equation in four dimensions, where
the constant in between the 47 and the p™® is the four-dimensional gravitational constant.
We have therefore shown that

G® G®
=—— — | — =2rR={c, (3.115)
27 R G

where £¢ is the length of the extra compact dimension. This is what we were seeking: a
relationship between the strength of the gravitational constants in terms of the size of the
extra dimension.

The generalization of (3.115) to the case where there is more than one extra dimension is
straightforward. One finds that

G

= ()P, (3.116)

where £¢ is the common length of each of the extra dimensions. When the various dimen-
sions are curled up into circles of different lengths, the above right-hand side must be
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replaced by the product of the various lengths. This product is, in fact, the volume V¢ of
the extra dimensions, so that

= -V (3.117)

3.10 Large extra dimensions
L

We are now done with all the groundwork. In Section 3.8 we found the relation between
the Planck length and the gravitational constant in any dimension. In Section 3.9 we
determined how gravitational constants are related upon compactification. We are ready
to find out how the fundamental Planck length in a higher-dimensional theory with
compactification is related to the Planck length in the effectively four-dimensional theory.

To begin with, consider a five-dimensional world with Planck length 4)5) and a single
spatial coordinate curled up into a circle of circumference £¢. How are these lengths related
to £p? From (3.107) and (3.115) we find that

)3 » G¥ 2
(£p")” = (fp) < - p)“Lc. (3.118)
Solving for £¢, we get
(5)43
(O]
c= : (3.119)
(¢p)?

This relation enables us to explore the possibility that the world is actually five-dimensional
with a fundamental Planck length ZS) that is much larger than 10733 cm. Of course, we
must have £p ~ 10733 cm. After all, this is the four-dimensional Planck length, whose
value is given in (3.90).

Present-day accelerators explore physics down to distances of the order of 10716 cm. If
this distance, or a somewhat smaller one, is the fundamental length scale, we may choose
Ef)s) ~ 10718 cm. What would £¢ have to be? With 6;5) ~ 10718 ¢m and ¢p ~ 10733 cm,
equation (3.119) gives £¢ ~ 10'2 cm ~ 107 km. This is more than twenty times the dis-
tance from the earth to the moon. Such a large extra dimension would have been detected
a long time ago.

Having failed to produce a realistic scenario in five dimensions, let us try in six spacetime
dimensions. For arbitrary D, equations (3.108) and (3.116) give

D2 G0 )
(47) = @rPZ— = @l (3.120)
Solving for £¢ we find
K(D) ﬁ
tc =P (P—) - (3.121)
lp
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For D = 6 and 51(36) ~ 1078 ¢m this formula gives

B (21(1’6))2

~ 1073 cm. (3.122)
Lp

%
This is a lot more interesting! A convenient unit here is the micron pm = 10~ m. One-
tenth of a millimeter is 100 wm. We found £¢ ~ 10 wm. Could there be extra dimensions
ten microns long? You might think that this is still too big, since even microscopes probe
smaller distances. Moreover, as we indicated before, accelerators probe distances of the
order of 107!6 cm. Surprisingly, it is possible that “large extra dimensions” exist and that
we have not observed them yet.

The existence of additional dimensions may be confirmed by testing the force law which
gives the gravitational attraction between two masses. For distances much larger than the
compactification scale £¢ the world is effectively four-dimensional, so the dependence of
the force between two masses on their separation must follow accurately Newton’s inverse-
squared law. On the other hand, for distances smaller than £, the world is effectively
higher-dimensional, and the force law will change. A force between two masses that goes
like 1/ r4, where r is the separation, is consistent with the existence of two compact extra
dimensions.

It turns out to be very difficult to test gravity at small distances; the force of gravity is
extremely weak and spurious electrical forces must be cancelled very precisely. Motivated
mainly by the possible existence of large extra dimensions, physicists set out to test the
inverse-squared law at distances smaller than one millimeter. The tabletop experiments use
a torsion pendulum detector or, alternatively, a micromachined cantilever with a test mass
at the free end. As of 2007, experiments have found no departure from the inverse-squared
law down to distances of about fifty microns. This means that extra dimensions, if they
exist, must be smaller than this distance. Compact dimensions the size of ten microns, as
we found in (3.122), are still consistent with experiment.

You might ask: what about forces other than gravity? Electromagnetism has been tested
to much smaller distances, and we know that the electric force obeys an inverse-squared
law very accurately. Rutherford scattering of alpha particles off nuclei, for example,
confirms that the inverse-squared law holds down to 10~'! cm. Since the separation
dependence of the electric force would change at distances smaller than the size of the
extra dimensions, this seems to rule out large extra dimensions. The possibility of
large extra dimensions, however, survives in string theory, where our spatial world could
be a three-dimensional hyperplane transverse to the extra dimensions. This hyperplane is
called a D3-brane. A D3-brane is a D-brane with three spatial dimensions.

Open strings have the remarkable property that their endpoints must remain attached to
the D-branes. In many phenomenological models built in string theory, it is the fluctuations
of open strings that give rise to the familiar leptons, quarks, and gauge fields, including the
Maxwell gauge field. It follows that these fields are bound to the D3-brane and do not feel
the extra dimensions. If the Maxwell field lives on the D-brane, the electric field lines of a
charge remain on the D-brane and do not go off into the extra dimensions. The force law is
not changed at any distance scale. Closed strings are not bound by D-branes, and therefore
gravity, which arises from closed strings, is affected by the extra dimensions.
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Although the Planck length £p is an important length scale in four dimensions, if there
are large extra dimensions, the truly fundamental Planck length would be much bigger than
the effective four-dimensional one. The possibility of large extra dimensions is slightly
unnatural — why should the extra dimensions be much larger than the fundamental length
scale? This is not a new problem, however, but rather the problem of a large hierarchy in
another guise. We noted earlier that particle physics faces a puzzling hierarchy between
the Planck mass and the masses of elementary particles. In the large-extra-dimensions
scenario, the hierarchy is postulated to arise from extra dimensions that are much larger
than the fundamental length scale. At any rate, the truly exciting fact is that present
experimental constraints do not rule out large extra dimensions. The discovery of extra
dimensions would be revolutionary.

It is possible, of course, that extra dimensions are much larger than £p ~ 10733 cm but
are still quite small. If spacetime is ten dimensional, setting D = 10 and Ef)lo) ~ 1078 cm
in (3.121) gives £¢ ~ 10~'3 cm, a distance far too small to be probed with tabletop grav-
itational experiments. Extra dimensions this size or smaller must be searched for using
particle accelerators.

Problems

Problem 3.1 Lorentz covariance for motion in electromagnetic fields. '

The Lorentz force equation (3.5) can be written relativistically as

dp. ¢q dx’
_— = F —_, 1
ds c " ds M
where p,, is the four-momentum. Check explicitly that this equation reproduces (3.5) when
W is a spatial index. What does (1) give when u = 0? Does it make sense? Is (1) a gauge

invariant equation?
Problem 3.2 Maxwell equations in four dimensions.

(a) Show explicitly that the source-free Maxwell equations emerge from 7},;, = 0.
(b) Show explicitly that the Maxwell equations with sources emerge from (3.34).

Problem 3.3 Electromagnetism in three dimensions.

(a) Find the reduced Maxwell equations in three dimensions by starting with Maxwell’s
equations and the force law in four dimensions, using the ansatz (3.11), and assuming
that no field can depend on the z direction.

(b) Repeat the analysis of three-dimensional electromagnetism starting with the Lorentz
covariant formulation. Take A* = (®, Al, A?), examine F > the Maxwell equations
(3.34), and the relativistic form of the force law derived in Problem 3.1.

Problem 3.4 Electric fields and potentials of point charges.

(a) Show that for time-independent fields, the Maxwell equation 7p;; = O implies that
0; E; — 0; E; = 0. Explain why this condition is satisfied by the ansatz £ = —V ®.
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(b) Show that with d spatial dimensions, the potential ® due to a point charge g is given by

rg-1 g

) = —am aa

Problem 3.5 Calculating the divergence in higher dimensions.

Let f = f(r) t be a vector function in R?. Here t is a unit radial vector, and r is the radial
distance to the origin. Derive a formula for V - f by applying the divergence theorem to
a spherical shell of radius » and width dr. Check that for d = 3 your answer reduces to

V- f= 0+ 20
Problem 3.6 Analytic continuation for gamma functions.”

Consider the definition of the gamma function for complex arguments z whose real part is
positive:

o0
F(z):/ dte” ', %) > 0.
0

Use this equation to show that for % (z) > 0

N

1 N n n 00
1/ _ (=1) (=D" 1 t.z—
F(z)= | dr¥™! ’—§ +§ +/ dte '+,
(2) /0 (e — n! ) ~ n z4n ! e

Explain why the above right-hand side is well defined for 3(z) > —N — 1. It follows that
this right-hand side provides the analytic continuation of I'(z) for %(z) > —N — 1. Con-
clude that the gamma function has poles at 0, —1, —2, .. ., and give the value of the residue
at z = —n (with n a positive integer).

Problem 3.7 Simple quantum gravity effects are small.”

(a) What would be the “gravitational” Bohr radius for a hydrogen atom if the attraction
binding the electron to the proton was gravitational? The standard Bohr radius is ag =
I ~529 %107 em.

(b) In “units” where G, c, and # are set equal to one, the temperature of a black hole is
given by kT = ﬁ. Insert back the factors of G, ¢, and 7 into this formula. Evaluate
the temperature of a black hole of a million solar masses. What is the mass of a black
hole whose temperature is room temperature?

Problem 3.8 Vacuum energy and an associated length scale.

Observations indicate that the expansion of the universe is currently accelerating possibly
due to a vacuum energy density. The mass density associated with this energy is approxi-
mately pyac = 7.7 x 10727 kg/m3. Some physicists try to understand the acceleration of
the universe by introducing modifications to gravity. It is then useful to know what length
scales could be important. If one assumes that the only relevant parameters are pyac, 1, and
¢, one can construct a length parameter £,,. by multiplying powers:

Lyac = ,Offac nP e
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w
27ma
) M (x,y,z,0)
R S > X, Y,
™ %0,0,0,0) X%z

Problem 3.10: a point mass M in a five-dimensional spacetime with one compact dimension.

What must be the values of «, 8, and y in the above equation? What is the numerical value
of £yac? Express your answer in um, where 1 pm = 107° m.

Problem 3.9 Planetary motion in four and higher dimensions.

Consider the motion of planets in planar circular orbits around heavy stars in our four-
dimensional spacetime and in spacetimes with additional spatial dimensions. We wish to
study the stability of these orbits under perturbations that keep them planar. Such a per-
turbation would arise, for example, if a meteorite moving on the plane of the orbit hits the
planet and changes its angular momentum.

Show that while planetary circular orbits in our four-dimensional world are stable under
such perturbations, they are not so in five or higher dimensions. [Hint: you may find it
useful to use the effective potential for motion in a central force field.]

Problem 3.10 Gravitational field of a point mass in a compactified five-dimensional
world.

Consider a five-dimensional spacetime with space coordinates (x, y, z, w) not yet com-
pactified. A point mass M is located at the origin (x, y, z, w) = (0, 0, 0, 0).

(a) Find the gravitational potential Vés)(r). Write your answer in terms of M, G©,
and r = (x* + y? + 22 + w?) /2. [Hint: use V2 Vg(s) = 47 G p,, and the divergence
theorem. ]

Now let w become a circle with radius @ while keeping the mass fixed, as shown in
Figure 3.3.

(b) Write an exact expression for the gravitational potential V;S) (x,y, z,0). This potential
is a function of R = (x? 4+ y% + z?)!/? and can be written as an infinite sum.
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(c) Show that for R >> a the gravitational potential takes the form of a four-dimensional
gravitational potential, with Newton’s constant G® given in terms of G® as in
(3.115). [Hint: turn the infinite sum into an integral.]

These results confirm both the relation between the four- and five-dimensional New-
ton constants in a compactification and the emergence of a four-dimensional potential at
distances large compared to the size of the compact dimension.

Problem 3.11 Exact answer for the gravitational potential.

The infinite sum in Problem 3.10 can be evaluated exactly using the identity

- 1 1 1

Z 1 + (wnx)? X COth< x )

n=—oo

(a) Find an exact closed-form expression for the gravitational potential Vg(s) (x,y,2,0) in
the compactified theory.

(b) Expand this answer to calculate the leading correction to the gravitational potential in
the limit when R > a. For what value of R/a is the correction of order 1%?

(c) Use the exact answer in (a) to expand the potential when R < a. Give the first two
terms in the expansion. Do you recognize the leading term?



Nonrelativistic strings

A full appreciation for the subtleties of relativistic strings requires an under-
standing of the basic physics of nonrelativistic strings. These strings have mass
and tension. They can vibrate both transversely and longitudinally. We study
the equations of motion for nonrelativistic strings and develop the Lagrangian
approach to their dynamics.

4.1 Equations of motion for transverse oscillations
I

We will begin our study of strings with a look at the transverse fluctuations of a stretched
string. The direction along the string is called the longitudinal direction, and the directions
orthogonal to the string are called the transverse directions. We consider, for notational
simplicity, the case when there is only one transverse direction — the generalization to
additional transverse directions is straightforward.

Working in the (x, y) plane, let the classical nonrelativistic string have its endpoints
fixed at (0, 0), and (a, 0). In the static configuration the string is stretched along the x axis
between these two points. In a transverse oscillation, the x-coordinate of any point on the
string does not change in time. The transverse displacement of a point is given by its y
coordinate. The x direction is longitudinal, and the y direction is transverse. To describe
the classical mechanics of a homogeneous string, we need two pieces of information: the
tension 7y and the mass per unit length 11o. The total mass of the string is then M = poa.

Let us look briefly at the units. Tension has units of force, so

[Energy]

[To] = [Force] = 4.1

If you stretch a string an infinitesimal amount dx, its tension remains approximately con-
stant through the stretching, and the change in energy equals the work done Todx. The
total mass of the string does not change. If we were considering relativistic strings, how-
ever, a static string with more energy would have a larger rest mass. Using (4.1), noting
that energy has units of mass times velocity squared, and that ;¢ has units of mass per unit
length, we have

M. 2
[To] = f[v] = [rollv]”. (4.2)

For a nonrelativistic string, both 7Ty and o are adjustable parameters, and the velocity on
the right-hand side above will turn out to be the velocity of transverse waves. The above
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y+dy fomm e oo

To

A short piece of a classical nonrelativistic string vibrating transversely. With different slopes
at the two endpoints there is a net vertical force.

equation suggests that the string tension 7j and the linear mass density (¢ in a relativistic
string might be related by Ty = oc?, since ¢ is the canonical velocity in relativity. We will
see in Chapter 6 that this is indeed the correct relation for a relativistic string.

Returning to our classical nonrelativistic string, let us figure out the equation of motion.
Consider a small portion of the static string that extends from x to x + dx, with y = 0. This
piece is shown in transverse oscillation in Figure 4.1. At time ¢, the transverse displacement
of the string is y(¢, x) at x and y(z, x + dx) at x 4+ dx. We will assume that the oscillations
are small, and by this we will mean that at all times

0
\—y\ <1, (4.3)
0x

at any point on the string. This guarantees that the transverse displacement of the string is
small compared to the length of the string. The length of the string changes little, and we
can assume that the tension 7y is unchanged.

The slope of the string is a bit different at the points x and x + dx. This change of
slope means that the string tension changes direction and the portion of string under con-
sideration feels a net force. For transverse oscillations we need only calculate the net
vertical force; the net horizontal force is negligible (Problem 4.1). The vertical force at
(x +dx, y +dy) is given accurately by Ty times dy/dx evaluated at x + dx and is point-
ing up; similarly, the vertical force at (x, y) is T times dy/dx evaluated at x and is pointing
down. Therefore the net vertical force d F,, is
dy o 3y

dF, = Toy— — ~ Ty—dx. 4.4
v O9x lerax — %9x Iy 05:24* 44)

The mass dm of this piece of string, originally stretched from x to x + dx, is given by
the mass density wo times dx. By Newton’s law, the net vertical force equals mass times
vertical acceleration. So we can simply write

3%y 3%y
md}( = (/Lodx) m

We cancel dx on each side and rearrange terms to get

To 4.5)
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2 2
2222 oy, (4.6)

This is just a wave equation! Recall that for the wave equation

9? 19?
) %)
ax vg at
the parameter vy is the velocity of the waves. Thus for the transverse waves on our stretched
string, the velocity vy of the waves is

vo = v/To/1h0- (4.8)

The higher the tension or the lighter the string, the faster the waves move.

4.2 Boundary conditions and initial conditions
|

Since equation (4.6) is a partial differential equation involving space and time derivatives,
in order to fix solutions we must in general apply both boundary conditions and initial con-
ditions. Boundary conditions (B.C.) constrain the solution at the boundary of the system,
and initial conditions constrain the solution at a given starting time. The most common
types of boundary conditions are Dirichlet and Neumann boundary conditions.

For our string, Dirichlet boundary conditions specify the positions of the string end-
points. For example, if we attach each end of the string to a wall (Figure 4.2, left), we are
imposing the Dirichlet boundary conditions

y(t,x =0)=y({,x =a) =0, Dirichlet boundary conditions. 4.9)

Alternatively, if we attach a massless loop to each end of the string and the loops are
allowed to slide along two frictionless poles, we are imposing Neumann boundary con-
ditions. For our string, Neumann boundary conditions specify the values of the derivative
dy/ox at the endpoints. Since the loops are massless and the poles are frictionless, the
derivative dy/dx must vanish at the poles x = 0, a (Figure 4.2, right). If this were not
the case, then the slope of the string at a pole would be nonzero, and a component of the
string tension would accelerate the rings in the y direction. Since each ring is massless,

Left: string with Dirichlet boundary conditions at the endpoints. Right: string with
Neumann boundary conditions at the endpoints.
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their acceleration would be infinite. This is not possible, so, in effect, we are imposing the
Neumann boundary conditions

0 0
a—y(t, x=0) = a—y(t, x =a) =0, Neumann boundary conditions. (4.10)
X X

These Neumann boundary conditions apply to strings whose endpoints are free to move
along the y direction.

Let us see how we can solve the wave equation for a particular set of initial conditions. The
general solution of equation (4.6) is of the form

y(t, x) = hi(x —vot) + h_(x + vot), (4.11)

where k4 and h_ are arbitrary functions of a single variable. This solution represents a
superposition of two waves, A4 moving to the right and #_ moving to the left. Suppose
that the initial values of y and dy/dt are known at time ¢+ = 0. Using equation (4.11) we
see that this information yields the equations

(0, x) = hy (x) + ho(x), 4.12)
9
a—f(o, x) = —vol', (x) + voh'_(x), (4.13)

where the left-hand sides are known functions, and the primes denote derivatives with
respect to arguments. Using (4.12) we can solve for /#_ in terms of s,. Substituting into
(4.13), we get a first-order ordinary differential equation for /. Once we have solved for
h (using appropriate boundary conditions), we can use (4.12) again, this time to find the
explicit form of 4_. With /. and h_ known, the full solution of the equations of motion is
given by (4.11).

4.3 Frequencies of transverse oscillation
.

Suppose that we have a string where each point is oscillating in the y direction sinusoidally
and in phase. This means that y(¢, x) is of the form

y(t, x) = y(x)sin(wt + ¢), 4.14)

where o is the angular frequency of oscillation and ¢ is the constant common phase. Our
aim is to find the allowed frequencies of oscillation. Substituting (4.14) into (4.6) and
cancelling the common time dependence, we find

d’y(x) | 5o

dx? to To

y(x) = 0. (4.15)

This is an ordinary second-order differential equation for the profile y(x) of the oscilla-
tions. The allowed frequencies are selected by this equation, together with the boundary
conditions. Since w, g, and Ty are constants, the differential equation is solved in terms of
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trigonometric functions. With Dirichlet boundary conditions (4.9) we have the nontrivial

solutions

yn(x)zAnsin<mT—x), n=1,2 ..., (4.16)
a

where A, is an arbitrary constant. The value n = 0 is not included above because it repre-
sents a motionless string. Plugging y, (x) into (4.15), we find the allowed frequencies wj,:

To /nm
@, = —(—), n=1,2 ... 4.17)
1o \ a

These are the frequencies of oscillation for a Dirichlet string. The strings on a violin are
Dirichlet strings. To tune a violin to the correct frequency one must adjust the string ten-
sion. The higher the tension is, the higher the pitch, as predicted by (4.17). For the case of
Neumann boundary conditions (4.10), we obtain the spatial solutions

Yu(X) = Ay, cos (”fo) n=01,2,... (4.18)

This time the n = 0 solution is a little less trivial: the string does not oscillate, but it is
rigidly translated to y(z, x) = Ag. The oscillation frequencies, found by plugging (4.18)
into (4.15), are the same as those in (4.17). Therefore, the oscillation frequencies are the
same in the Neumann and Dirichlet problems. The Neumann case admits one extra solution
not included in our oscillatory ansatz (4.14): the string can translate with constant veloc-
ity. Indeed, y(¢, x) = at + b, with a and b arbitrary constants, satisfies both the boundary
conditions and the original wave equation (4.7).

4.4 More general oscillating strings
L

Let us discuss briefly some problems that are closely related to the ones considered thus
far. For example, we can take the mass density of the string to be a function p(x) of
position. The form (4.6) of the wave equation does not change since it is derived from
local considerations: the examination of a little piece of string that can be chosen to be
sufficiently small so that the mass density is approximately constant. We therefore get

Py )y

- = 4.19
ax2 To a2 (4.19)
For normal oscillations, we use the ansatz in (4.14) and find
%y, _“( Y o y(x) =0, (4.20)
dx? To

This equation is no longer simple to solve, and it can only be studied in detail once the
function p(x) is specified. In Problems 4.3 and 4.7 you will consider some specific mass
distributions, and you will explore a variational approach that gives an upper bound for the
lowest oscillation frequency.
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So far we have only considered strings that oscillate transversally. Strings also admit
longitudinal oscillations, although the relativistic string does not. Imagine a string stretched
along the x axis, and consider the infinitesimal segment which at equilibrium extends from
X to x 4+ dx. Suppose now that at time ¢ the ends of this infinitesimal segment are longi-
tudinally displaced from their equilibrium positions by distances (¢, x) and n(t, x + dx),
respectively. If these two quantities are not the same, the piece of string is being com-
pressed or stretched. An equation of motion can be obtained for this system, much as we
did for transverse motion. It is not possible, however, to assume that the tension is constant
throughout the string. For transverse oscillations the net force acting on a little piece of
string arose from the different angles at which the same tension was applied on opposite
ends of the piece. If the string always lies along the x axis then a net force can act on a seg-
ment only if the tension is different on its two ends. Therefore the waves on a longitudinally
oscillating string are accompanied by tension waves (Problem 4.2).

4.5 A brief review of Lagrangian mechanics
|

The Lagrangian L of a system is defined by
L=T-V, (4.21)

where T is the kinetic energy of the system and V is the potential energy of the system.
For a point particle of mass m moving along the x axis under the influence of a time-
independent potential V (x), the nonrelativistic Lagrangian takes the form

dx(t)
dr
We must emphasize that the above Lagrangian is implicitly a function of time, but it has

no explicit time dependence. All the time dependence arises from the time dependence of
the position x (7). The action S is defined as

1
L(t) = >m (X)) = V(x@), i@1)= (4.22)

S = / L(t)dt, (4.23)
P

where P is a path x (#) between an initial position x; at an initial time #;, and a final position
Xy at afinal time 7 > t;. One such path is shown in Figure 4.3.

The action is a functional. Whereas a function of a single variable takes one number — the
argument — as input and gives another number as output, a functional takes a function as
the input, and gives a number as output. Since a function is usually defined by its values
at infinitely many points, we can think of a functional as a function of infinitely many
variables. In our present application, the input for the action functional is the function x ()
which determines the path P. We can emphasize the argument of S by using the notation
S[x]. Here [x] represents the full function x(¢). It is potentially confusing to write S[x(¢)],
since it suggests that S is ultimately a function of 7, which it is not.
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X(t)
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A path P representing a possible one-dimensional motion x(f) of a particle during the time
interval [t;, tf].
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A path x() and its variation x(t) + 8x(f). This variation §x(f) vanishes at t = t; and at t = t.

More explicitly, for any path x(¢), the action is given by
r(1
S[x] = f {Em (x(1))* — V(x(t))} dt. (4.24)
1

It is very important to emphasize that the action S can be calculated for any path x(z)
and not only for paths that represent physically realized motion. It is because S can be
calculated for all paths that it is a very powerful tool to find the paths that can be physically
realized.

Hamilton’s principle states that the path P which a system actually takes is one for which
the action § is stationary. More precisely, if this path P is varied infinitesimally, the action
does not change to first order in the variation. In terms of the function x(¢) which specifies
the path, the perturbed path takes the form x(¢) + §x(¢), as shown in Figure 4.4. For any
time 7, the variation 8x(¢) is the vertical distance between the original path and the varied
path. As in the figure, we consider variations where the initial and final positions x; = x(;)
and x s = x(ty) are unchanged:

8x(ti) = 8x(ty) = 0. (4.25)
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We now calculate the action S[x + §x] for the perturbed path x (¢) + §x(¢):

S[x + 8 ]—/tf m(d H+8 (t)))z—V( 1)+ 8 (t))}dt
X x] = \ {3 E(x( X X X

t
= S[x] + / ! {mfc(t)%&c(t) - V/(x(t))Bx(t)} dt + O((6x)3).  (4.26)
t

In passing to the last right-hand side we expanded V in a Taylor series about x(¢). The
terms of order (8x)? and higher are unnecessary to determine whether or not the action is
stationary. We have thus left them undetermined and indicated them by O((8x)%). We can
write the new action as S + §5, where 6.5 is linear in §x. From the equation above we see
that § S is given by

t
55 = / ! {m}%(l‘)j—t&c(t) - v’(x(r))@x(r)} dt. 4.27)
t

To find the equations of motion, the variation §§ must be rewritten in the form 65 =
Jdtx(1){...}. In particular, no derivatives must be acting on §x. This can be achieved
using integration by parts:

58 — /tf {%(mx(t)ax(t)) — mx()dx(t) — V/(x(t))SX(t)} dt
ti

t
= mi(t7)8x(tf) — mi (1;)8x(t;) +/f Sx(1)(—mi@t) — V'(x(1)) ) dt.  (4.28)
t

Making use of (4.25), the variation reduces to
5
88 = / Sx(t) (—mjc'(t) — V' (x(1)) ) dt. (4.29)
t

The action is stationary if 65 vanishes for every variation §x(¢). For this to happen, the
factor multiplying 6x(¢) in the integrand must vanish:

mi(t) = —V'(x(1)). (4.30)

This is Newton’s second law applied to the motion of a particle in a potential V (x). We
have recovered the expected equation of motion by requiring that the action be stationary
under variations.

Suppose that we have determined the path that the particle takes while going from x; to x .
As we have seen, the action is then stationary under variations that vanish at the initial and
final times. Is the action also stationary under variations that change the initial position at ¢;
or the final position at 7 ? In general, the answer is no. This can be seen from equation (4.5).
The integral term vanishes by assumption, but if §x(z7) # 0, the first term on the right-
hand side would not vanish unless mx (¢ ), the final momentum of the particle, happens to
vanish. The situation is analogous for §x(#;) # 0.

Hamilton’s principle states that the action is stationary about the classical solution. The
classical solution does not always define a minimum of the action. It is possible to construct
a simple example in which the classical solution is a saddle point of the action functional:
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the action increases for some variations and decreases for others. See Problem 4.6 for the
details.

4.6 The nonrelativistic string Lagrangian
L

Let us return now to our string with constant mass density (o, constant tension 7p, and ends
located at x = 0 and x = a. The kinetic energy is simply the sum of the kinetic energies of
all the infinitesimal segments that comprise the string. So it can be written as

(41 ay 2
T_/O 5 (1od-0) <§> . 4.31)

The potential energy arises from the work which must be done to stretch the segments.
Consider an infinitesimal portion of string which extends from (x, 0) to (x + dx, 0) when
the string is in equilibrium. If the string element is momentarily stretched from (x, y)
to (x +dx,y +dy), as in Figure 4.1, then the change in length Al of the infinitesimal
segment is given by

Al = J(dx)? + (dy)? —dx = dx( 1+ (g—z)z — 1) ~ dx % <g—z>2 L @3

where we have used the small oscillation approximation (4.3) to discard higher-order terms
in the expansion of the square root. Since the work done in stretching each infinitesimal
segment is 7o Al, the total potential energy V is

a1_ [ay)?
V:/ ~T (—y> dx. (4.33)
0 2 ax
The Lagrangian for the string is given by T — V:
“rl ay\2 1 ay\2 @
L(t) = [_ <_) ——T(—)]d E/w, 434
() /0 Sl 5 5 Tol 55 x A x (4.34)
where L is referred to as the Lagrangian density :
dy ayy 1 ay\> 1. /9y\2
L(—, _) = (Z) -7 (—) . 435
ot ox 2“°(at 2" %\5x (4.35)

The action for our string is therefore

Iy e T1 o /ay\2 1 /3y\2
= | Lwdr= —no(Z2) =< (2) 7. 4.
S /, (Odt ft dt/o dx [2“°(at> 2 O(Bx) ] (Eile)

In this action the “path” is the function y(¢, x), defined over the region of (¢, x) space
shown shaded in Figure 4.5.
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The string motion is defined by y(t, x) over the domain t € [t;, t/], x € [0, a]. Boundary
conditions apply at x = 0 and x = a for all t € [t;, t/]. Initial and final conditions apply for
t = tj and t = t;, respectively, for all x € [0, a].

To find the equations of motion, we must examine the variation of the action as we vary:
y(t,x) — y(t, x) + 8y(¢, x). Performing the variation as before, we get

iy ra Ly 066 3y 3(5
55:/ dtf dx | 2 30Y) 3y 36y) 1 (4.37)
" 0 % ar %%9x ox

Quick calculation 4.1 Prove equation (4.37).

We must have no derivatives acting on the variations, so we rewrite each of the two terms
above as a full derivative minus a term in which the derivative does not act on the variation:

58 = fdt/d 9 s 82y8+8 702 +T826
. W N_, 0y 8 -3y
ar \M05,00 ) THOGROY T o \ TR0 %Y ) T2 |

(4.38)
The time derivative reduces to evaluations at 7 and t;, while the space derivative gives
evaluations at the string endpoints:

ar gy ty gy T
58 = / 0—8y dx+/ Tyl ar
ot li dx x=0
82
/ dt/ dx ( sy — Toss i)éy. (4.39)

Our final expression for S contains three terms. Each one must vanish independently.
The third term, for example, is determined by the motion of the string for x € (0, a) and
t € (t;, ty). In this domain §y(z, x) is not restricted by boundary conditions nor by initial
or final conditions, so we set to zero the coefficient of §y and recover our original equation
(4.6). The first term in (4.39) is determined by the configuration of the string at times #;
and ¢ 7. If we specify these initial and final configurations, we are in effect setting §y(#;, x)
and 8y(z7, x) to zero. This causes the first term to vanish. We encountered an analogous
situation in our study of the free particle.
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The second term in (4.39) is new. Written out explicitly, it is
Iy 0 0
/ ~To=> (1, @) 8y(1, @) + Ty (1,0) 8y(1, 0) | d1, (4.40)
4 ax ax

and it concerns the motion of the string endpoints y(¢, 0) and y(¢, a). We need a boundary
condition for each of the two terms above. Let x, denote the x coordinate of an endpoint; x,
can be equal to zero or equal to a. Selecting an endpoint means fixing the value of x,. We
can make each term in (4.40) vanish by specifying either Dirichlet or Neumann boundary
conditions. Consider an endpoint x, and the associated term in (4.40). If we impose a
Dirichlet boundary condition the position of the chosen endpoint is fixed throughout time,
and we require that the variation 8y(¢, x,) vanishes. This will cause the chosen term to
vanish. If, on the other hand, we assume that the endpoint is free to move, then the variation
8y(t, x4) is unconstrained. The term will vanish if we impose the condition

a
a—y(t, xx) =0, Neumann boundary condition. 4.41)
X

Dirichlet boundary conditions can be written in a form where the similarity to Neumann
boundary conditions is more apparent. If a string endpoint is fixed, the time derivative of
the endpoint coordinate must vanish

a
a—);(t, xx) = 0, Dirichlet boundary condition. (4.42)

The similarity with (4.41) is quite striking. The only change is that spatial derivatives were
turned into time derivatives. If we write Dirichlet boundary conditions in this form, we
must still specify the values of the coordinates at the fixed endpoints. In order to appreciate
further the physical import of boundary conditions, we consider the momentum py, carried
by the string. There is no other component to the momentum, because we have assumed
that the motion is restricted to the y direction. This momentum is simply the sum of the
momenta of each infinitesimal segment along the string:

a
0
Py = / o dx. (4.43)
0 at
Let us see if this momentum is conserved:
dp, (1 @ 92 @ 02 ay
LU:/ uo—ydx=/ TooZax =1, | 2| (4.44)
dt 0 912 0 dx2 ox =0

where we used the wave equation (4.6). We see that momentum is conserved when
Neumann boundary conditions (4.41) apply at both endpoints. For Dirichlet boundary
conditions momentum is not generally conserved! Indeed, when the endpoints of a string
are attached to a wall, the wall is constantly exerting a force on the string. In the lowest



84

Nonrelativistic strings

normal mode of a Dirichlet string, for example, the net momentum constantly oscillates
between the 4+y and —y directions.

Why is this important for string theory? For a long time string theorists did not take seri-
ously the possibility of Dirichlet boundary conditions. It seemed unphysical that the string
momentum could fail to be conserved. Moreover, what could the endpoints of open strings
be attached to? The answer is that they are attached to D-branes — a new kind of dynamical
extended object. If a string is attached to a D-brane then momentum can be conserved — the
momentum lost by the string is absorbed by the D-brane. A detailed analysis of the spatial
boundary term induced by variation is crucial to recognize the possibility of D-branes in
string theory.

We conclude this chapter with a more general derivation of the equation of motion for the
string. For this, we use (4.35) to write the action as

/ di / axc ay 0y 2, (4.45)

We also define the quantities
oL oL
P==P=_= (4.46)
dy 3y’
with y' = dy/dx. These are simply the derivatives of £ with respect to its first and second
arguments, respectively. Explicitly, they are

dy dy
P = . P =_T 4.47
RO 057 (4.47)

When we vary the motion by 8y, the variation of the action is given by
a£ ty a
58 = / d;/ —3y+ ’] =/ dt/ dx[’P’ 5y + P 5y’]. (4.48)
1 0

Using the standard manipulations we find

5S = / [P’Sy]t - dx—i—/ [PXSy]ZZdt

t X
f dt / dx w 3879 )Sy. (4.49)

Quick calculation 4.2 Derive equation (4.49).

Quick calculation 4.3 Match in detail equations (4.49) and (4.39).

The variation in (4.49) gives the equation of motion
P! n apP*

at ox

Using (4.47) we readily see that this is the wave equation (4.6).

—0. (4.50)
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Note that P’, as given in (4.47), coincides with the momentum density in equation
(4.43). This is not an accident. In Lagrangian mechanics, the derivative of the Lagrangian
with respect to a velocity is the conjugate momentum. For the string, y plays the role of a
velocity, so P!, the derivative of the Lagrangian density with respect to y, is a momentum
density.

In addition, note that for string endpoints that are free to move, the vanishing of §§
requires P* = 0. As we can see from (4.47), this is a Neumann boundary condition. Fur-
thermore, P’ vanishes at the string endpoints for a Dirichlet boundary condition (4.42). A
more detailed analysis of these facts will be given in Chapter 8, where P’ and P* will be
shown to have an interesting two-dimensional interpretation.

Problems

Problem 4.1 Consistency of small transverse oscillations.

Reconsider the analysis of transverse oscillations in Section 4.1. Calculate the horizontal
force d Fj, on the little piece of string shown in Figure 4.1. Show that for small oscilla-
tions this force is much smaller than the vertical force d F, responsible for the transverse
oscillations.

Problem 4.2 Longitudinal waves on strings.

Consider a string with uniform mass density ¢ stretched between x = 0 and x = a. Let
the equilibrium tension be Tj. Longitudinal waves are possible if the tension of the string
varies as it stretches or compresses. For a piece of this string with equilibrium length L, a
small change AL of its length is accompanied by a small change AT of the tension where

Here 1 is a tension coefficient with units of tension. Find the equation governing the small
longitudinal oscillations of this string. Give the velocity of the waves.

Problem 4.3 A configuration with two joined strings.

A string with tension 7j is stretched from x =0 to x = 2a. The part of the string
x € (0, a) has constant mass density 1, and the part of the string x € (a, 2a) has con-
stant mass density w,. Consider the differential equation (4.20) that determines the normal
oscillations.

(a) What boundary conditions should be imposed on y(x) and %(x) atx = a?
(b) Write the conditions that determine the possible frequencies of oscillation.
(c) Calculate the lowest frequency of oscillation of this string when @) = o and

n2 = 2uo.
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Problem 4.4 Evolving an initial open string configuration.

A string with tension Tj, mass density o, and wave velocity vg = +/Tp/ o, 1S stretched
from (x,y) = (0,0) to (x, y) = (a, 0). The string endpoints are fixed, and the string can
vibrate in the y direction.

(a) Write y(z,x) as in (4.11), and prove that the above Dirichlet boundary conditions
imply

hy() =—h_(—u) and hy@u) = hy(u+2a). (1)

Here u € (—o00, 00) is a dummy variable that stands for the argument of the func-
tions 4.

Now consider an initial value problem for this string. Atz = 0 the transverse displacement
is identically zero, and the velocity is

dy X X
0.0 = v ;(1 _ ;), x e (0,a). )

(b) Calculate i (u) for u € (—a, a). Does this define 4 (u) for all u?
(c) Calculate y(¢, x) for x and vgt in the domain D defined by the two conditions

D = {(x, vot)}O < x * vt < a}.

Exhibit the domain D in a plane with axes x and vot.

(d) Att = 0the midpoint x = a/2 has the largest velocity of all points in the string. Show
that the velocity of the midpoint reaches the value of zero at time #yp = a/(2vg) and
that y(tp, a/2) = a/12. This is the maximum vertical displacement of the string.

Problem 4.5 Closed string motion.

We can describe a nonrelativistic closed string fairly accurately by having the string
wrapped around a cylinder of large circumference 2 R on which it is kept taut by the
string tension 7. We assume that the string can move on the surface of the cylinder with-
out experiencing any friction. Let x be a coordinate along the circumference of the cylinder:
X ~ x + 27 R and let y be a coordinate perpendicular to x, thus running parallel to the axis
of the cylinder. As expected, the general solution for transverse motion is given by

y(x, 1) = hy(x — vot) + h_(x + vot),

where h4(u) and h_(v) are arbitrary functions of single variables # and v with
—00 < u, v < oo. The string has mass per unit length 19, and vo = /7o/ 1o-

(a) State the periodicity condition that must be satisfied by y(x, ¢) on account of the iden-
tification that applies to the x coordinate. Show that the derivatives h’, (u) and h’_(v)
are, respectively, periodic functions of u# and v.

(b) Show that one can write

hy(w)=au+ f@), h_(v)=pv+g),
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where f and g are periodic functions and « and B are constants. Give the relation
between « and $ that follows from (a).
(c) Calculate the total momentum carried by the string in the y direction. Is it conserved?

Problem 4.6 Stationary action: minima and saddles.

A particle perfoming harmonic motion along the x axis can be used to show that classical
solutions are not always minima of the action functional. The action for this particle is

Y Yool a2
Sx] = Ldt = dt —m (x —a)x),
0 0 2

where m is the mass of the particle, @ is the frequency of oscillation, and the motion hap-
pens for ¢ € [0, ¢7]. Consider a classical solution x(7) and a variation dx(¢) that vanishes
att =0andt =ty.

(a) Show that the variation of the action is exactly given by
_ _ L, (¥ déx\2 _,_ o
ASIox] = S[E +8x] = SIE = om? [ ar((S5) = a%x?).
2 0 dt

It is noteworthy that AS only depends on §x; x drops out from the answer.
(b) A complete set of variations that vanish at t = 0 and ¢ = ¢ takes the form

. . n
Spx =sinw,t, with w,=— and n=1,2,...,00.
Ir
The general variation dx that vanishes at = 0 and 7 = ¢ is a linear superposition of
variations §,x with arbitrary coefficients b,. Calculate AS[5,x] (your answer should
vanish for w, = @). Prove that

o0 o0
AS[Y budux| =" AS[basx].
n=1 n=1

(c) Show thatforty < % one gets AS[§,x] > 0 foralln > 1. Explain why this guarantees
that the classical solution is a minimum of the action. Show that for % <ty < %” all
variations §,x lead to AS > 0, except for §;x, which leads to AS < 0. In this case
the classical solution is a saddle point: there are variations that increase the action and
variations that decrease the action. As t increases, the number of variations §,x that

decrease the action increases.

Problem 4.7 Variational problem for strings.

Consider a string stretched from x =0 to x = a, with a tension 7y and a position-
dependent mass density w(x). The string is fixed at the endpoints and can vibrate in the y
direction. Equation (4.20) determines the oscillation frequencies w; and associated profiles
¥i(x) for this string.

(a) Set up a variational procedure that gives an upper bound on the lowest frequency of
oscillation wg. (This can be done roughly as in quantum mechanics, where the ground



88

Nonrelativistic strings

(b)

state energy E( of a system with Hamiltonian H satisfies Eo < (¥, HY)/ (Y, ¥).) As
a useful first step consider the inner product

a

(Wmﬁj)E/O mX)Yi () (x)dx

and show that it vanishes when w; # ;. Explain why your variational procedure
works.

Consider the case p(x) = o7 . Use your variational principle to find a simple bound
on the lowest oscillation frequency. Compare with the answer w(z) ~ (18.956)%
obtained by a direct numerical solution of the eigenvalue problem.

Problem 4.8 Deriving Euler—Lagrange equations.’

(a)

(b)

Consider an action for a dynamical variable ¢ (¢):

S = fdtL(q(t),c}(t); 1). (1)

Calculate the variation §§ of the action under a variation 8¢ (¢) of the coordinate. Use
the condition § S = 0 to find the equation of motion for the coordinate ¢ (¢) (the Euler—
Lagrange equation).

Consider an action for a dynamical field variable ¢ (¢, xX). As indicated, the field is
a function of space and time, and is briefly written as the spacetime function ¢ (x).
The action is obtained by integrating the Lagrangian density £ over spacetime. The
Lagrangian density is a function of the field and the spacetime derivatives of the field:

S = /de L(p(x), 0 (x)). 2)

Here dPx = dtdx'...dx“, and 3,¢ = d¢/dx*. Calculate the variation 8S of the
action under a variation §¢ (x) of the field. Use the condition §S = 0 to find the
equation of motion for the field ¢ (x) (the Euler—Lagrange equation).



The relativistic point particle

To formulate the dynamics of a system we can write either the equations of
motion or, alternatively, an action. In the case of the relativistic point particle it
is rather easy to write the equations of motion. But the action is so physical and
geometrical that it is worth pursuing in its own right. More importantly, while it
is difficult to guess the equations of motion for the relativistic string, the action
is a natural generalization of the relativistic particle action that we will study in
this chapter. We conclude with a discussion of the charged relativistic particle.

5.1 Action for a relativistic point particle
I

In this section we learn how to formulate the relativistic theory that describes a free point
particle of rest mass m > 0. A free particle is a particle that is not subject to any force. Our
analysis begins with some preliminary remarks about units and nonrelativistic particles.

For any dynamical system, the action S is obtained by integrating the Lagrangian over
time. Since the Lagrangian has units of energy, the action has units of energy times time:
1= MY (5.1)
T2 T '
It is worth noting that the action has the same units as 7. Indeed, a form of the quantum
mechanical uncertainty principle states that the product of energy and time uncertainties is
of order /.

The action Sy, for a free nonrelativistic particle is given by the time integral of the kinetic

energy:
1 . dx .
Shr = /Lmdt = f —mvz(t) dt, v’*=19- —, v=|v. 5.2)
2 dt
The equation of motion which follows by Hamilton’s principle is

dv

— =0. 5.3

T (5.3)
The free particle moves with constant velocity. Since even a free relativistic particle must
move with constant velocity, how do we know that the action Sy is not correct in relativity?

Perhaps the simplest answer is that this action allows the particle to move with any constant

<

b v -
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velocity, even one that exceeds the velocity of light. The velocity of light does not even
appear in this action. Sy, cannot be the action for a relativistic point particle.

We now construct a relativistic action § for the free point particle. We will do this by
making an educated guess and then showing that it works properly. Since we are interested
in relativistic physics it is convenient to represent the motion of the particle in spacetime.
The path traced out by the particle in spacetime is called the world-line of the particle.
Even a static particle traces a line in spacetime since time always flows.

A physically consistent action must yield Lorentz invariant equations of motion. Let us
elaborate on this point. Suppose that a particular Lorentz observer tells you that a particle
appears to be moving in accordance to its equations of motion, plainly, that the particle
is performing physical motion. Then, you should expect that any other Lorentz observer
will tell you that the particle is doing physical motion. It would be inconsistent for one
observer to state that a certain motion is allowed and for another observer to state that the
same motion is forbidden. If the equations of motion hold in a fixed Lorentz frame, they
must hold in all Lorentz frames. This is what Lorentz invariance of the equations of motion
means.

We are going to write an action, and we are going to take our time to find the equations of
motion. Is there any way to impose a constraint on the action that will result in the Lorentz
invariance of the equations of motion? Yes, there is. We require the action to be a Lorentz
scalar: for any particle world-line, all Lorentz observers must compute the same value for
the action. Since the action has no spacetime indices, this is a reasonable requirement. If the
action is a Lorentz scalar, the equations of motion will be Lorentz invariant. The reason is
simple and neat. Suppose one Lorentz observer states that, for a given world-line, the action
is stationary against all variations of the world-line. Since all Lorentz observers agree on
the value of the action for any world-line, they will all agree that the action is stationary
about the world-line in question. By Hamilton’s principle, the world-line that makes the
action stationary satisfies the equations of motion, and therefore all Lorentz observers will
agree that the equations of motion are satisfied for the world-line in question.

Lorentz invariance imposes strong constraints on the possible forms of the action. In
fact, there are valid grounds to worry that Lorentz invariance is too strong a constraint
on the action. The nonrelativistic action in (5.2), for example, is not invariant under a
Galilean boost v — U + v with constant vp. Such a boost is a symmetry of the theory,
since the equation of motion (5.3) is invariant. Similarly, it could happen that the equations
of motion for the relativistic point particle are Lorentz invariant but that the action is not.
Fortunately, this complication does not occur in this case; we will find a satisfactory fully
Lorentz invariant action.

Quick calculation 5.1 Calculate explicitly the variation of the action Sy, under a boost.

We know that the action is a functional — it takes as input a set of functions that describe
a world-line and it outputs a number S. Imagine a particle whose spacetime trajectory
starts at the origin and ends at (cty, X ). There are many possible world-lines between
the starting and ending points, as shown in Figure 5.1 (which uses one spatial dimension



5.1 Action for a relativistic point particle

ct
th

Xt X

A spacetime diagram with a series of world-lines connecting the origin to the spacetime
point (cty, xg).

for ease of representation). We would like that, for any world-line, all Lorentz observers

compute the same value for the action. Let P denote one world-line. What quantity related

to P do all Lorentz observers agree on? The elapsed proper time! All Lorentz observers

agree on the amount of time that elapses on a clock carried by the moving particle. So let us

take the action of the world-line P to be proportional to the proper time associated with it.
To formulate this idea quantitatively, we recall that

—ds? = —c*dt* + (dx"H? + (dx>)? + dx>)?, (5.4)

and that the infinitesimal proper time is equal to ds/c (recall that ds> = (ds)? since inter-
vals are timelike). The integral of (ds/c) over the path P gives the proper time elapsed on
‘P. Since proper time has units of time, to get the units of action we need an additional mul-
tiplicative factor with units of energy or units of mass times velocity-squared. This factor
should be Lorentz invariant, to preserve the Lorentz invariance of our partial guess (ds/c).
For the mass we can use m, the rest mass of the particle, and for the velocity we can use c,
the fundamental velocity in relativity. We cannot use the particle velocity because it is not
a Lorentz invariant. The factor is then mc?, which is, in fact, the rest energy of the particle.
Therefore, our guess for the action is the integral of mc? (ds/c) = mcds. Of course, there
is still the possibility that a dimensionless numerical factor is missing. It turns out that
there should be a minus sign, but the unit coefficient is correct. We therefore claim that the
correct action is

S = —mcf ds. (5.5)
P

The action is equal to minus the rest energy times the proper time. This action is so simple
looking that it may be baffling. It probably looks nothing like the actions you have seen
before. We can make its content more familiar by choosing a particular Lorentz observer
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and expressing the action as the integral of a Lagrangian over time. With the help of (5.4)

we relate ds to dt by
v2
ds =cdt |1 - —. (5.6)
¢

This allows us to write the action in (5.5) as an integral over time:

ty 2
S=-m | arJ1-Z, (5.7)
t; CZ

where #; and 77 are the values of time at the initial and final points of the world-line P,
respectively. From this version of the action, we see that the relativistic Lagrangian for the
point particle is

L=-mc|1-—. (5.8)

The Lagrangian is equal to minus the rest energy times a relativistic factor. This Lagrangian
makes no sense when v > ¢ since it ceases to be real. The constraint of maximal velocity
is therefore implemented. This could have been anticipated: proper time is only defined
for motion where the velocity does not exceed the velocity of light. The paths shown in
Figure 5.1 all represent motion where the velocity of the particle never exceeds the velocity
of light. Only for such paths is the action defined. At any point in any of those paths, the
tangent vector to the path is a timelike vector.

To show that this Lagrangian gives the familiar physics in the limit of small velocities,
we expand the square root assuming v < c¢. Keeping just the first term in the expansion
gives

2
L~ —mc2(1 — %%) = —mc? + %mvz. 5.9)
Constant terms in a Lagrangian do not affect the equations of motion, so the term (—mc?)
can be ignored for this purpose. The leading significant term coincides with the nonrela-
tivistic Lagrangian in (5.2), showing that the familiar nonrelativistic physics emerges. This
also confirms that we normalized the relativistic Lagrangian correctly.

The canonical momentum is the derivative of the Lagrangian with respect to the velocity.

Using (5.8) we find

. dL 2( U 1 mv
5= = e (__) — . (5.10)
v 1=/ J1=02)c2

This is just the relativistic momentum of the point particle. What about the Hamiltonian?
It is given by
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Hejpi-L=— " i e M (5.11)
V1 =2/ V1 =02/c2

where the result was left as a function of the velocity of the particle, rather than as a
function of its momentum. As expected, the answer coincides with the relativistic energy
(2.68) of the point particle.

‘We have therefore recovered the familiar physics of a relativistic particle from the rather
remarkable action (5.5). This action is very elegant: it is briefly written in terms of the
geometrical quantity ds, it has a clear physical interpretation as total proper time, and it
manifestly guarantees the Lorentz invariance of the physics it describes.

5.2 Reparameterization invariance
L

In this section we explore an important property of the point particle action (5.5). This
property is called reparameterization invariance. To evaluate the integral in the action, an
observer may find it useful to parameterize the particle world-line. Reparameterization
invariance of the action means that the value of the action is independent of the parame-
terization chosen to calculate it. This should be so, since the action (5.5) is in fact defined
independently of any parameterization: the integration can be done by breaking P into
small pieces and adding the values of mc ds for each piece. No parameterization is needed
to do this. In practice, however, world-lines are described as parameterized lines, and the
parameterization is used to compute the action.

We parameterize the world-line P of a point particle using a parameter t (Figure 5.2). This
parameter must be strictly increasing as the world-line goes from the initial point xl” to the
final point x? , but is otherwise arbitrary. As 7 ranges in the interval [7;, ] it describes the
motion of the particle. To have a parameterization of the world-line means that we have
expressions for the coordinates x* as functions of t:

Xt = xH (7). (5.12)

A world-line fully parameterized by z. All spacetime coordinates x# are functions of <.
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We also require

xf‘:x“(r,‘), x?:x“(rf). (5.13)

Note that even the time coordinate x° is parameterized. Normally, we use time as a param-
eter and describe position as a function of time. This is what we did in Section 5.1. But
if we want to treat space and time coordinates on the same footing, we must parameterize
both in terms of an additional parameter t.

We now reexpress the integrand ds using the parameterized world-line. To this end, we
use ds? = —n,ydx"dx" to write

(5.14)

For any motion where the velocity does not exceed the velocity of light ds*> = (ds)?, and
therefore the action (5.5) takes the form

s dx™ dxV
S=- —Nyy—— —— dr. 5.15
mc/;i My dt dt ’ ( )

This is the explicit form of the action when the path has been parameterized by t.

We have already seen that the value of the action is the same for all Lorentz observers.
We have now fixed an observer, who has calculated the action using some parameter t.
Does the value of the action depend on the choice of parameter? It does not. The observer
can reparameterize the world-line, and the value of the action will be the same. Thus S is
reparameterization invariant. To see this, suppose we change the parameter from 7 to t’.
Then, by the chain rule,

dx*  dxtdt’
dr  dt dt’
Substituting back into (5.15), we get

o dx dx¥ dt’ T dxk dxV
S =— — —— —dt=— — —_— dt’, 5.17
mc/ri My dt’ dtv’ drt ‘ mc/;f My dt’ dt’ ¢ ( )

which has the same form as (5.15), thus establishing the reparameterization invariance.
Because the verification of this property is quite simple, we say that the action (5.15) is
manifestly reparameterization invariant.

(5.16)

5.3 Equations of motion

We now move on to the equations of motion. For this we must calculate the variation 6.5
of the action (5.5) when the world-line of the particle is varied by a small amount §x* (7).
Here 7 is an arbitrary parameter along the path. The variation is simply given by

88 = —mc/&(ds). (5.18)
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The variation of ds can be found from the simpler variation of ds* = (ds)2. Varying both
sides of (5.14) we find
dx“) dx"

)= (dr)*. (5.19)

2ds 8(ds) = —21, a(

The factor of two on the right-hand side arises because, by symmetry, the variations of %

and %U give the same result. Since the variation of a velocity is equal to the time derivative
of the variation of the coordinate,

dxt d(6xH
3(i) _ 4ex) (5.20)
dt dt
Using this result and simplifying (5.19) a bit, we get
d(dx*) dxV d(6x") dx,,
8(ds) = —np———— dt = - ————dfr, 5.21
@)= == g a5 I* dr ds " 62D
where 1,,, was used to lower the index of dx”. We can now go ahead and vary the action
using (5.18):
od(8x*) dxy,
88 =mc —dr. (5.22)
% dt ds

Here we introduced explicit limits to the integration: 7; and 7 denote the values of the
parameter at the initial and final points of the world-line, respectively. We recognize that

dx
mcd—sﬂ =muy, = pu, (5.23)

and, as a result, the variation of the action takes the form
o d(8x™)
§S = —ar pu dr. (5.24)
T

To get an equation of motion we need to have §x* multiplying an object under the integral —
the equation of motion is then simply the vanishing of that object. Since there are still
derivatives acting on dx*, we rewrite the integrand as a total derivative plus additional
terms where §x/* appears multiplicatively:

o4 o dp
_ il n _ I H
5s_/n dr — <5x pﬂ) /ri dr sxl'(x) “7L. (5.25)

The first integral gives dx* p, evaluated at the boundaries of the world-line. This term
vanishes because we fix the coordinates on the boundaries. Since the second term must
vanish for arbitrary §x* (t), we obtain the equation of motion

dpy

It is clear that dp* /dt also vanishes. The equation of motion states that the momentum
pu (or pt) of the point particle is constant along its world-line. This is a parameterization-
independent statement. It implies, of course, that the momentum is constant in time. If a
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function is constant over a line, its derivative with respect to any parameter used to describe
the line will vanish. Indeed, the parameter t in (5.26) is arbitrary. We obtained this equation
by varying the relativistic action for the point particle using fully relativistic notation.

Quick calculation 5.2 Show that equation (5.26) implies that

Do _

dt’
holds for an arbitrary parameter t/(z). What should be true about dt’/dt for v’ to be a
good parameter when 7 is one?

(5.27)

If we parameterize the world-line with the proper time s, equation (5.26) gives
dph
L. (5.28)
ds

Using (5.23) to write the momentum as a derivative of the position with respect to proper
time, we find

d?x™

—5 =0. (5.29)

This is an equivalent version of the equation of motion. The constancy of dx" /ds means
that on a path marked by equal intervals of proper time, the change in x* between any
successive pair of marks is the same. Equation (5.29) does not hold when s is replaced
by an arbitrary parameter t. This is reasonable: an arbitrary parameter means arbitrar-
ily spaced marks, so the change in x** between any successive pair of new marks need
not be the same. It is actually possible to write a slightly more complicated version
of (5.29) that uses an arbitrary parameter and is manifestly reparameterization invariant
(Problem 5.2).

Our goal in this section has been achieved: we have shown how to derive the physically
expected equation of motion (5.29) (or (5.26)), starting from the Lorentz invariant action
(5.5). As we explained earlier, the resulting equation of motion is guaranteed to be Lorentz
invariant. Let us check this explicitly.

Under a Lorentz transformation, the coordinates x* transform as indicated in equation
(2.38): x’* = L", xV, where the constants L", can be viewed as the entries of an invertible
matrix L. Since ds is the same in all Lorentz frames, the equation of motion in primed
coordinates is (5.29), with x* replaced by x'*:

2 I 2 2.0
Since the matrix L is invertible, the above equation implies equation (5.29). Namely, if the
equation of motion holds in the primed coordinates, it holds in the unprimed coordinates
as well. This is the Lorentz invariance of the equations of motion.
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5.4 Relativistic particle with electric charge
L

The point particle we have considered so far is free and it moves with constant four-velocity
or four-momentum. If a point particle is electrically charged and there are nontrivial elec-
tromagnetic fields, the particle will experience forces and its four-momentum will not be
constant. You know, in fact, how the momentum of such a particle varies in time. Its time
derivative is governed by the Lorentz force equation (3.5), which was written in relativistic
notation in Problem 3.1:

dp. q dx’

— = =F—. 5.31

ds c "ds ( )
This is a relatively intricate equation which involves the field strength and the four-velocity
of the particle. Since ds appears on both sides of the equation, the equation in fact holds
for a general parameter 7:

dp., ¢ dx"

— = =F,—. 5.32

dt c Mdr ( )
In the spirit of our previous analysis we try to write an action that gives this equation upon
variation. The action turns out to be remarkably simple.

Since the Maxwell field couples to the point particle along its world-line P, we should
add to the action (5.5) an integral over P representing the interaction of the particle with
the electromagnetic field. The integral must be Lorentz invariant, and the form of (5.32)
suggests that it involves the four-velocity of the particle. Since the four-velocity has one
spacetime index, to obtain a Lorentz scalar we must multiply it against another object with
one index. The natural candidate is the gauge potential A,. We claim that the interaction
term in the action is

q dx*
E/Pdt AM(X(T))F(T)' (5.33)

Here g is the electric charge, and the integral is over the world-line P, parameterized
with the arbitrary parameter t. At each t, the vector (dx" /dt) is dot multiplied against
the gauge potential A,,, evaluated at the position x (7) of the particle. The integrand can be
written more briefly as A, dx", by cancelling the factors of dt. In this form, the interaction
term is manifestly independent of parameterization. The world-line of the particle is a one-
dimensional space, and the natural field that can couple to a particle in a Lorentz invariant
way is a field with one index. This will have an interesting generalization when we consider
the motion of strings. Since strings are one-dimensional, they trace out two-dimensional
world-sheets in spacetime. We will see that they couple naturally to fields with two Lorentz
indices!

The full action for the electrically charged point particle is obtained by adding the term
in (5.33) to (5.5):
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Sp— / as+2 / A ()dxt. (5.34)
P clJp

This Lorentz invariant action is simple and elegant. The equation of motion (5.32) arises by
setting to zero the variation of S under a change §x* of the particle world-line. I do not want
to take away from you the satisfaction of deriving this important result. I have therefore left
to Problem 5.5 the task of varying the action (5.34) and deriving the equation of motion.

Problems

Problem 5.1 Point particle equation of motion and reparameterizations.

If the path of a point particle is parameterized by proper time, the equation of motion is
(5.29). Consider now a new parameter T = f(s). Find the most general function f for
which (5.29) implies

d>x*

dr?

Problem 5.2 Particle equation of motion with arbitrary parameterization.

Vary the point particle action (5.15) to find a manifestly reparameterization invariant form
of the free particle equation of motion.

Problem 5.3 Current of a charged point particle.

Consider a point particle with charge ¢ whose motion in a D = d + 1-dimensional space-
time is described by functions x*(7) = {x%1), X(1)}, where T is a parameter. The moving
particle generates an electromagnetic current j* = (cp, j).

(a) Use delta functions to write expressions for the current components jo(f, t) and
JIEL ).
(b) Show that your answers in (a) arise from the integral representation

LR = qc/dr 50 (x — x(z)) D).

dt
Here §2(x) = §(x)8(x1)...8(x9).

Problem 5.4 Hamiltonian for a nonrelativistic charged particle.

The action for a nonrelativistic particle of mass m and charge g coupled to an electromag-
netic field is obtained by replacing the first term in (5.34) by the nonrelativistic action for
a free point particle:

1 q dx*
S:/Emvzdt—l—;/AM(x) 0 dt.

We have also chosen to use time to parameterize the second integral.
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(a) Rewrite the action S in terms of the potentials (P, A) and the ordinary velocity v. What
is the Lagrangian?

(b) Calculate the canonical momentum p conjugate to the position of the particle and show
that it is given by p = mv + %A

(c) Show that the Hamiltonian for the charged particle is

Problem 5.5 Equations of motion for a charged point particle.

Consider the variation of the action (5.34) under a variation §x* (x) of the particle trajec-
tory. The variation of the first term in the action was obtained in Section 5.3. Vary the
second term (written more explicitly in (5.33)) and show that the equation of motion is
(5.32). Begin your calculation by explaining why

A,
oxV

8Au(x(7)) = (x(1)) 8x" (7).

Problem 5.6 Electromagnetic field dynamics with a charged particle.”

The action for the dynamics of both a charged point particle and the electromagnetic field
is given by

1
S = —mc/ ds—l—z/ A (x)dxt — —dex Fyy FM
P cJp 4c

Here dPx = dx%x"' ...dx?. Note that the action S’ is a hybrid; the last term is an integral
over spacetime, and the first two terms are integrals over the particle world-line. While
included for completeness, the first term will play no role here. Obtain the equation of
motion for the electromagnetic field in the presence of the charged particle by calculating
the variation of S’ under a variation A, of the gauge potential. The answer should be
equation (3.34), where the current is the one calculated in Problem 5.3. [Hint: to vary
A, (x) in the world-line action it is useful to rewrite this term as a full spacetime integral
with the help of delta functions.]

Problem 5.7 Point particle action in curved space.

In Section 3.6 we considered the invariant interval ds? = —guv(x)dx"dx" in a curved
space with metric g,,(x). The motion of a point particle of mass m on curved space is
studied using the action

S =—-mc / ds.

Show that the equation of motion obtained by variation of the world-line is
d dx"| 1 0guy dx" dx”
ds 5" 7ds | T 2 oxe ds ds

This is called the geodesic equation. When the metric is constant we recover the equation
of motion of a free point particle.




Relativistic strings

We now begin our study of the classical relativistic string — a string that is, in
many ways, much more elegant than the nonrelativistic one considered before.
Inspired by the point particle case, we focus our attention on the surface traced
out by the string in spacetime. We use the proper area of this surface as the
action; this is the Nambu—Goto action. We study the reparameterization property
of this action, identify the string tension, and find the equations of motion. For
open strings, we focus on the motion of the endpoints and introduce the concept
of D-branes. Finally, we see that the only physical motion is transverse to the
string.

6.1 Area functional for spatial surfaces
Q.

The action for a relativistic string must be a functional of the string trajectory. Just as a
particle traces out a line in spacetime, a string traces out a surface. The line traced out
by the particle in spacetime is called the world-line. The two-dimensional surface traced
out by a string in spacetime will be called the world-sheet. A closed string, for example,
will trace out a tube, while an open string will trace out a strip. These two-dimensional
world-sheets are shown in the spacetime diagram of Figure 6.1. The lines of constant x* in
these surfaces are the strings. These are the objects an observer sees at the fixed time x°.
They are open curves for the surface describing the open string evolution (left), and they
are closed curves for the surface describing the closed string evolution (right).

In Chapter 5 we learned that the point particle action is proportional to the proper time
elapsed on the point particle world-line. The proper time, multiplied by c, is the Lorentz
invariant “proper length” of the world-line. For strings we will define the Lorentz invariant
“proper area” of a world-sheet. The relativistic string action will be proportional to this
proper area, and is called the Nambu—Goto action.

Area functionals are useful in other applications: a soap film held between two rings, for
example, automatically constructs the surface of minimal area which joins one ring to the
other (Figure 6.2). The string world-sheet and the soap bubble between two rings are very
different types of surfaces. At any given instant of time a Lorentz observer will see the full
two-dimensional surface of the soap film, but he or she can only see one string from the
two-dimensional world-sheet. Imagine that the soap film is static in some Lorentz frame.
In this case, time is not relevant to the description of the film, and we think of the film as
a spatial surface, namely, a surface that extends along two spatial dimensions. The surface
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=ct

The world-sheets traced out by an open string (left) and by a closed string (right).

A spatial surface stretching between two rings. If the surface were a soap film, it would be
a minimal area surface.

exists in its entirety at any instant of time. We will first study these familiar surfaces, and
then we will apply our experience to the case of surfaces in spacetime.

A line in space can be parameterized using only one parameter. A surface in space is
two-dimensional, so it requires two parameters &' and £2. Given a parameterized surface,
we can draw on that surface the lines of constant &' and the lines of constant £2. These lines
cover the surface with a grid. We call rarget space the world where the two-dimensional
surface lives. In the case of a soap bubble in three dimensions, the target space is the three-
dimensional space x!, x2, and x3. The parameterized surface is described by the collection

of functions
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2
€ 3
dvz /77
de? dvy
> dv.
A

Left: the parameter space, with a little rectangle selected. Right: the target space surface
with the image of the little rectangle, a parallelogram whose sides are the vectors dvq and
dv; (shown magnified at the end of the wiggly arrow).

FE e = (xE e, e, e e). (6.1)

The parameter space is defined by the ranges of the parameters £! and £2. It may be a
square, for example, if we use parameters £!, &2 € [0, 7 ]. The physical surface is the image
of the parameter space under the map x (£, £2); it is a surface in target space. Alternatively,
we can view the parameters £! and &2 as coordinates on the physical surface, at least
locally. The map inverse to X takes the surface to the parameter space. Locally this map
is one-to-one and it assigns to each point on the surface two coordinates: the values of the
parameters g1 and £2.

We want to calculate the area of a small element of the target space surface. Let us start
by looking at an infinitesimal rectangle on the parameter space. Denote the sides of the
rectangle by d&! and d£2. We want to find d A, the area of the image of this little rectangle
in the target space. As shown in Figure 6.3, this is the area of the actual piece of surface
that corresponds to the infinitesimal rectangle on parameter space.

Of course, there is no reason why that infinitesimal area element in target space should
be a rectangle. In general, it is a parallelogram. Let us call the sides of this parallelogram
dvy and dv,. They are the images under the map X of the vectors (d£!, 0) and (0, d£2),
respectively. We can write them as

ax
9!
This makes sense: dx/d&', for example, represents the rate of variation of the space
coordinates with respect to &!. Multiplying this rate by the length d&! of the horizontal
side of the tiny parameter-space rectangle, gives us the vector dv; that represents this side

in the target space. Now let us calculate the area d A. Using the formula for the area of a
parallelogram,

ax

v dg?. (6.2)

dv; = de', dv, =
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dA = |dB,||da|| sin 6] = |dB;[|dDa]|v/1 — cos? 6
= \/|d61|2|d62|2 — |d61|2|d52|2cos29, (6.3)

where 0 is the angle between the vectors dvy and dv;. In terms of spatial dot products,
we have

dA = \/(dD; - d¥))(dD, - dVa) — (dD) - din)?. (6.4)
Finally, using (6.2),
X 09X\, 09X X X 09X \2
= 1 2 — e — —_— . ——— —_— —_— . —
dA = dg dg \/(351 agl)(ag2 352) (agl 352> ' 65

This is the general expression for the area element of a parameterized spatial surface. The
full area functional A is given by

0x 09X 0x 09X 0xX 09X \2
P 1 2 — i — — i — —_ — i —
A_/ds s \/(agl agl)(ag2 ag2> (agl 352) ’ 66)
The integral extends over the relevant ranges of the parameters &' and £2. The solution of

a minimal area problem for a spatial surface is the function ¥ (¢!, £2) that minimizes the
functional A.

6.2 Reparameterization invariance of the area
|

As we have seen, the parameterization of a surface allows us to write the area element in
an explicit form. The area of the surface, or even more, the area of any piece of the surface,
should be independent of the parameterization chosen to calculate it. This is what we mean
when we say that the area must be reparameterization invariant.

Because we will soon equate the relativistic string action to some notion of proper area,
it, too, will be reparameterization invariant. This means that we will be free to choose the
most useful parameterization without changing the underlying physics. A good choice of
parameterization will enable us to solve the equations of motion of the relativistic string in
an elegant way.

Reparameterization invariance is thus an important concept so it should be understood
thoroughly. To this end we will try to make it manifest in our formulae. The aim of the
following analysis is to show how this can be done.

Let us begin by asking: is the area functional A in (6.6) reparameterization invariant? We
would certainly hope it is. In fact, at first glance it appears to be manifestly reparameteri-
zation invariant. After all, if one reparameterizes the surface with £!(¢') and £2(£2), then
all of the derivatives introduced by the chain rule cancel appropriately.

Quick calculation 6.1 Verify the above statement. That is, show that (6.6), written fully
with tilde parameters (€', E?), equals (6.6) when el = E1(¢1) and €2 = E2(£2).
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The above reparameterization, however, is not completely general for it fails to mix the &'
and £2 coordinates. Suppose, instead, that we make a reparameterization El(g!, £2) and
§ 2(5 L 52). This time we can verify, using a somewhat laborious computation, that (6.6) is
invariant under such a reparameterization. But the invariance is no longer intuitively clear.
To make the reparameterization invariance of (6.6) manifest we will have to rewrite the
area functional in a different way.

We begin by observing how the measure of integration transforms. The change-of-
variable theorem from calculus tells us that

de\de? = ‘det( )‘dé dE? = |det M| dE\dE?, 6.7)
where M = [M;;] is the matrix defined by M;; = 3&'/3&/. Similarly,
dEVGE? = ‘d t( )‘ dE'dE? = | det M| dE\dE2 (6.8)

where M = [Mlj] is the matrix defined by Ml] = 9E! ' /9€/. Combining equations (6.7)
and (6.8), we see that

|det M||det M| = 1. (6.9)

Let us now consider a target space surface S described by the mapping functions x (¢!, £2).
Given a vector dXx tangent to the surface, let ds denote its length. Then we can write

s? = (ds)* = d¥ - dX. (6.10)

For surfaces in space, as we are considering now, it is not customary to include a minus
sign in front of ds? (compare with (2.21)). The vector dX can be expressed in terms of
partial derivatives and the differentials d&', d&?:

ox 0x X

di = —d dg? = — d&'. 6.11
B = prde! 4 de = o de (6.11)
The repeated index i is summed over its possible values 1 and 2. Back in (6.10),
ox . ox
2 _ (24 [T i J 1 J
ds” = (agidé) (8§J s ) FE agj dgdg?. 6.12)
This can be neatly summarized as
ds® = gij(§) d'dg’ | (6.13)
where g;; (&) is defined as
ax  9x
gi"(S):a_gi'@' (6.14)

The quantity g;;(¢) is known as the induced metric on S. It is called a metric because (6.13)
takes, up to a sign, the form of equation (3.78), where we introduced the general concept of
a metric. It is a metric on S because, with £ playing the role of coordinates on S, equation
(6.13) determines distances on S. It is said to be induced because it uses the metric on the
ambient space in which S lives to determine distances on S. Indeed, the dot product which
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appears in (6.14) is to be performed in the space where S lives and therefore presupposes
that a metric exists on that space. We only have two parameters & ! and £2, so the full matrix
gij takes the form:

ax  0x ax  o0x

agl el gl g2
= . 6.15
8ij 9% 9x 9% ax (©.15)

A I A
Now we see something truly nice! The determinant of g;; is precisely the quantity which
appears under the square root in (6.6). Letting

g = det(gij), (6.16)

we can write
A= fd§1d§2J§. (6.17)

This is an elegant formula for the area in terms of the determinant of the induced metric.
Instead of trying to understand the reparameterization invariance of (6.6), we now focus on
the equivalent but simpler expression (6.17).

We are now in position to understand the invariance of the area in terms of the trans-
formation properties of the metric g;;. The key to this lies in equation (6.13). The
length-squared ds? is a geometrical property of the vector dx that must not depend upon
the particular parameterization used to calculate it. For another set of parameters £ and
metric g(£), the following equality must therefore hold:

8ij(§) d§'d§7 = gpq (§) dEPdE". (6.18)
Making use of the chain rule to express the differentials € in terms of differentials d&,
S . Q&P pET
gij (&) d&'dg’ =gpq(§)a—5i@d§ld$]. (6.19)

Since this result holds for any choice of differentials d&, we find a relation between the
metric in & and & coordinates:

. - Q&P BEY
8ij(§) = &pq(&) 9 0E (6.20)
Making use of the definition of M below (6.8), we rewrite the above equation as
gl/(g) :gpq Mpi qu = (MT)ip gpq Mq/ . (621)

In matrix notation, the right-hand side is the product of three matrices. Taking the
determinant and using the notation in (6.16) gives

g = (det M) g (det M) = g(det M)?. (6.22)
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Taking a square root
V2 =1/ldetM|, (6.23)

we obtain the transformation property for the square root of the determinant of the metric.
We are finally ready to appreciate the reparameterization invariance of (6.17). Making
use of (6.7), (6.23), and (6.9) we have

/dglds;%/g: /d§1d§2|detM|\/§|det]\7I| = fd§1d§2f, (6.24)

which proves the reparameterization invariance of the area functional. To the trained
eye the area formula in (6.17) is manifestly reparameterization invariant. That is, once
you know how metrics transform, the invariance is reasonably simple to establish. No
cumbersome calculation is necessary.

Quick calculation 6.2 Consider the equation 3&7/3&/ = 8; and use the chain rule to show
the matrix property

MM =1. (6.25)

Show that MM = 1 holds as well. Finally, note that det M detM = 1, a result stronger
than the one we proved in (6.9).

6.3 Area functional for spacetime surfaces
[

Let us now move to our case of interest, the case of surfaces in spacetime. These surfaces
are obtained by representing in spacetime the history of strings, in the same way as a
spacetime world-line is obtained by representing the history of a particle. For the case of
strings, we obtain a two-dimensional surface called the world-sheet of the string. Spacetime
surfaces, such as string world-sheets, are not all that different from the spatial surfaces we
considered in the previous section. They are two-dimensional and require two parameters.
Instead of calling the parameters £! and &2, we give them special names: 7 and o

Given our usual spacetime coordinates x* = (xo, x . xd), the surface is described
by the mapping functions

xM(t,0), (6.26)

which take some region of the (7, o) parameter space into spacetime. Following a standard
convention in string theory, we change the notation slightly. We will denote the above
mapping functions with the capitalized symbols

XH(r,0). (6.27)

We are not changing the meaning of the functions. Given a fixed point (t, o) in the
parameter space, this point is mapped to a point with spacetime coordinates

X%, 0), X'(z,0), ..., X%z, 0)). (6.28)
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x0

O dv4

dv,

do []
dr

’ x2(x5,...)

Left: the parameter space (z, o), with a little square selected. Right: the surface in target
spacetime with the image of the little square, a parallelogram whose sides are the vectors
dv! and dv}.

Why do we capitalize the X? Suppose we used the same symbol to denote spacetime coor-
dinates and mapping functions. Then we could still distinguish between them by writing
x"* or x*(t, o), but we would not have the luxury of dropping the (z, o) arguments. On the
other hand, with X* we can drop the (7, o) arguments and still know that we are talking
about the mapping functions of the string. We will call X* the string coordinates.

As before, the parameters T and o can be viewed as coordinates on the world-sheet,
at least locally. The map inverse to X* takes the world-sheet to the parameter space, and
locally it assigns to each point on the surface two coordinates: the values of the parameters
T and o. Introducing some potential for confusion, physicists also use the term world-
sheet to denote the two-dimensional parameter space whose image under X* gives us
the... world-sheet! Unless explicitly stated, we wi