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Caltech's Physics 237-2002
Gravitational Waves

PART A:  GRAVITATIONAL-WAVE THEORY AND
SOURCES

Course Outline 
I. Overview of Gravitational-Wave Science [Lectures by Kip]

A. The nature of gravitational waves [GW's]: Week 1, Lecture 1, slides 1 - 18 
B. The GW spectrum: HF, LF, VLF, ELF bands
C. Detection techniques: 

1. resonant-mass detectors
2. interferometers: LIGO and its partners
3. LIGO details, noise curves, technology: Week 1, Lecture 2, slides 19 -

37
4. LISA

D. GW data analysis
E. GW sources and science

1. Inspiral of compact body into supermassive hole
2. Binary black hole mergers
3. Neutron-star / black-hole mergers: Week 2, Lecture 3 - Part 1, slides

38 - 47
4. Neutron-star / neutron-star inspiral
5. Spinning neutron stars
6. Neutron-star births
7. Binaries in our galaxy
8. The very early universe

II. Introduction to General Relativity [Lectures by Kip]
A. Tidal gravity in Newtonian theory: Week 2, Lecture 3 - Part 2

1. Motivation: tidal gravity as spacetime curvature
2. The Newtonian tidal gravity tensor
3. Relative acceleration of freely falling particles

B. The mathematics underlying general relativity: Week 2, Lecture 4
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1. Vectors, tensors, tensor algebra
2. Differentiation of tensors, connection coefficients
3. Commutators, coordinate and noncoordinate bases: Week 3, Lecture 5
4. Spacetime curvature: the Riemann and Ricci tensors
5. Relativistic tidal gravity; geodesic deviation

C. The Einstein field equations
1. Motivation via tidal gravity
2. "Derivation" of the Einstein equations; number of equations and number

of unknowns; contracted Bianchi identitity
III. Weak Gravitational Waves [GW's] in Flat Spacetime [Lectures by Kip]: Week

4, Lecture 6
A. Wave equation for Riemann tensor
B. Transverse-traceless [TT] GW field; + and x polarizations 
C. A GW's tidal forces (relative motion of freely falling particles)
D. Metric perturbations; TT gauge and other gauges
E. Proper reference frame of an observer: Week 4, Lecture 7
F. Physical measurements of GW's in a proper reference frame
G. Generation of GW's: The linearized Einstein field equations
H. Projecting out the TT GW field
I. Slow-motion, weak-stress approximation for GW sources: Week 5, Lecture

8
J. The quadrupole formula for GW generation

1. Derivation in slow-motion, weak-stress approximation
2. Validity  for slow-motion sources with strong internal gravity and

arbitrary stresses
IV. Propagation of GW's Through Curved Spacetime [Lectures by Kip]

A. Short wavelength approximation; two-lenghscale expansion
B. Curved-spacetime wave equation for Riemann tensor
C. Solution of wave equation via eikonal approximation (geometric optics) -

Foundations
D. Geometric optics - Details: Week 5, Lecture 9

1. gravitons and their propagation; graviton conservation
2. rays as graviton world lines; propagation of + and x GW fields along

rays
3. + and x polarizations and fields, rays and transport of waves along rays
4. gravitational focusing of GW's, e.g. by the sun; diffraction at the focus
5. stress-energy tensor for GW's; nonlocalizability of GW energy
6. conservation of GW energy and momentum
7. conseervation of a graviton's energy and momentum

E. Propagation of GW's through homogeneous matter:  Week 6, Lecture 10
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1. impact of matter on the waves is always negligible
2. propagation through dust, perfect fluid, viscous fluid, elastic medium
3. propagation through a cloud of neutron stars

V. Generation of GW's by Slow-Motion Sources in Curved Spacetime [Lectures
by Kip]: Week 6, Lecture 11

A. Strong-field region, weak-field near zone, local wave zone, distant wave
zone

B. Multipolar expansions of metric perturbation in weak-field near zone and
local wave zone

1. influence of source's mass and angular momentum
2. mass quadrupolar component of GW's; current quadrupolar component
3. rates of emission of energy, linear momentum, and angular momentum

C. Application to a binary star system with circular orbit
1. inspiral rate and timescale 
2. chirp waveform; chirp mass

VI. Astrophysical Phenomenology of Binary-Star GW Sources 
A. GW's from Binary Star Systems: Week 7, Lecture 12   [by E. Sterl

Phinney]
1. GW-driven inspiral of a single binary [review]
2. Inspiral evolution of a steady-sstate population of many binaries
3. Types of stars: main-sequence stars, white dwarfs [WD], neutron stars

[NS], black holes [BH]; their masses and radii
4. Binary systems observable by LIGO (and its partners), and by LISA

B. Issues relevant to estimating numbers of binary GW sources and their
merger rates

1. Cosmology: parameters describing the universe as a whole
2. Our Milky Way galaxy: its star-formation history, stellar populations and

binary populations 
3. Use of blue light to extrapolate from rates in Milky Way to rates in the

distant universe
C. Estimates of numbers of binary GW sources and inspiral/merger rates:

preview of next lecture
1. NS/NS rates based on binary-pulsar statistics and blue-light

extrapolation
2. Population synthesis as foundation for estimates

D. Estimates of numbers of binary GW sources [for LISA] and inspiral/merger
rates [for LIGO]: Week 8, Lecture 13  [by E. Sterl Phinney]

1. Estimates based on observed numbers in our galaxy
a. pitfalls
b. NS/NS; WD/WD, WD/NS
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2. Population synthesis
a. Foundations for population synthesis: 

i. stellar structure and evolution
ii. binary evolution: mass transfers etc.

b. Estimates of binary numbers for LISA
3. Estimates of NS/NS, NS/BH, and BH/BH numbers for LIGO -- Week 8,

Lecture 14 - Part 1  [by Kip]
VII. Binary Inspiral: Post-Newtonian Gravitational Waveforms for LIGO and Its

Partners -- 
A. Matched-filtering data analysis to detect inspiral waves
B. Foundations for post-Newtonian approximations to General Relativity 

1. Mathematical foundations
2. Physical effects at various orders

C. Post-Newtonian inspiral waveforms for circular orbits and vanishing spins --
 Week 8, Lecture 14 - Part 2  [by Alessandra Buonanno]

D. Expansion parameter v = (pi M f)^1/3
E. Phase evolution governed by energy balance
F. Waveform in time domain
G. Waveform in frequency domain, via stationary-phase approximation
H. Influence of spin-orbit and spin-spin coupling: Orbital and spin precession;

waveform modulation
1. NS/BH binary
2. BH/BH binary

I. Innermost stable circular orbit (ISCO) and transition from inspiral to plunge
J. The IBBH problem: failure of post-Newtonian waveforms in late inspiral;

methods to deal with this:
1. Pade resummation
2. Effective one-body formalism
3. Search templates designed to deal with uncertainties in our knowledge

of the waveforms
VIII. Supermassive Black Holes [SMBH's] and their Gravitational Waves [for

LISA/ --  Week 9, Lecture 15  [by E. Sterl Phinney]
A. Astrophysical phenomenology of SMBH's in galactic nuclei

1. Evidence for their existence
2. Measurement of SMBH masses via cusp in stellar velocity dispersion

(for masses above 10^6 Msun)
3. Correlation of SMBH masses with velocity dispersion in galactic bulges
4. Number of SMBH's per unit volume in universe; their distribution of

masses (for masses above 10^6 Msun)
5. Observed quasar and other electromagnetic emission from SMBH's;
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quiescence of most SMBH's
B. Mergers of galaxies

1. Statistics of mergers: observational data; predictions of CDM
simulations

2. Physics of mergers
3. Dynamical friction on SMBH's, SMBH binary formation

C. Evolution of SMBH binary
1. Interaction with stars; loss cone
2. Hangup and ways to overcome it: repopulation of loss cone; effect of

binary motion in galaxy core; effect of ellipticity of galactic potential;
interaction with gas

3. Gravitational radiation reaction
4. SMBH merger rates

D. Capture and inspiral of  stars by a SMBH
1. Loss cone and its repopulation
2. Tidal disruption of main-sequence stars
3. Capture of compact stars [WD, NS, small BH] into highly elliptical orbits
4. Evolution of orbital ellipticity during inspiral
5. Event rate estimates for captures

E. Gravitational waves from SMBH binary inspiral, as measured by LISA --
Week 9, Lecture 16  [by Kip]

1. Frequency evolution, signal-to-noise ratios
2. Cosmological influences on waves: gravitational redshift; gravitational

lensing
3. Observables: redshifted masses, luminosity distance, inclination angle

F. GW's from inspiral of a compact star (or BH) into a SMBH
1. Frequency evolution, signal to noise ratios
2. Loss of signal strength due to non-optimal signal processing - caused

by complexity of inspiral orbits and resulting complexity of waveforms
a. Implications for event rates
b. Implications for specifying the level of LISA's noise floor

IX. GW's from Big Bang: Amplification of Vacuum Fluctuations by Inflation
A. Basic idea: same as parametric amplification of classical waves
B. Mathematical details

1. Background cosmological metric
2. Geometric optics propagation of GW's at "late times'
3. Wave equation for GW's at all times
4. Frozen and decaying solutions when wavelength is much larger than

background radius of curvature
5. Matching solutions together: resulting wave amplification
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X. GW's from Neutron-Star Rotation and Pulsation --   Week 10, Lecture 17 [by
Lee Lindblom] 

A. GW's from a structurally deformed, rotating NS
1. Deformations maintained by a solid crust
2. Deformations maintained by stress of a strong internal magnetic field
3. Deformations due to temperature anisotropy induced by accretion of

gas onto NS [low-mass X-ray binaries; LMXB's]
4. Magnitudes of deformation (ellipticities) detectable by LIGO-I and LIGO-

II
B. GW's from pulsations in a rotating NS

1. Types of pulsational [bar-mode] instabilities: dynamical; secular
2. beta = T/W as diagnostic for instabilities
3. Instabilities in uniform-density Newtonian stars [Maclaurin Spheroids]
4. Mechanisms for forming rapidly rotating NS's: 

a. Collapse of degenerate stellar cores
b. Accretion-induced collapse of a white dwarf
c. Spinup by accretion
d. Merger of a low-mass NS/NS binary

5. NS's formed by collapse: differential rotation, values of beta,bar-mode
instabilities, numerical evolution of unstable stars

a. realistic models
b. models with extreme differential rotationg: instability at small beta

XI. Numerical Relativity as a Tool for Computing GW Generation -- Week 10,
Lecture 18  [by Marc Scheel] 

A. Motivation: Sources that require numerical relativity for their analysis
1. Binary black hole mergers

a. Relevance to LIGO & partners, and to LISA
b. Estimated event rates for LIGO-I, LIGO-II and LISA
c. Inspiral, merger, and ringdown; estimated wave strengths from

each
d. Rich physics expected in mergers: strong, nonlinear effects; spin-

spin and spin-orbit coupling; angular-momentum hangup
e. Importance of simulating mergers as foundation for interpreting

observations
2. Tidal disruption of NS by a BH companion

a. Estimated event rate for LIGO-II
b. Information carried by waves: NS structure and equation of state
c. Possible connection to gamma ray bursts
d. Importance of simulations for interpreting observations

3. Some other sources: NS/NS mergers, cosmic string vibrations, brane
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excitations in early universe
4. The necessity to use numerical relativity in simulations of these sources

B. Mathematical underpinnings of numerical relativity
1. 3+1 decomposition of spacetime into space plus time
2. Initial data must satisfy "constraint equations" 
3. Evolve via "dynamical Einstein equations"
4. Gauge freedom
5. Analogy with electromagnetic theory

C. Mathematical details
1. Spacetime slicing; lapse, shift, and 3-metric; extrinsic curvature
2. Hamiltonian constraint equation
3. Momentum constraint equations
4. Dynamical equations
5. Choices of lapse and shift

D. Current state of the art in numerical relativity; current efforts on BH/BH
inspiral & merger

 

Links to this course's other web pages:

    Course home page
    Course description
    Outlines of Part B:
        Part B: Gravitational-Wave Detection: original outline
        Part B: Gravitational-Wave Detection: alternative outline, with the order of the
lectures made more logical
    Course Materials (videos of lectures, reading, homework, solutions)

http://elmer.tapir.caltech.edu/ph237/
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Ph 237a: Gravitational Waves 9 January 2001

WEEK 1: OVERVIEW

Recommended Reading:

Note: Almost all readings will be available for downloading on the web; the url will be
given at the end of each reference.

1. Scott A. Hughes, Szabolcs Marka, Peter L. Bender and Craig J. Hogan, ”New physics
and astronomy with the new gravitational-wave observatories”, to be published in
Proceedings of the 2001 Snowmass Meeting,
http://xxx.lanl.gov/abs/astro-ph/0110349.

Possible Supplementary Reading [listed in reverse chronological order]:

2. Kip S. Thorne, ”The scientific case for advanced LIGO interferometers”, LIGO Doc-
ument Number P-000024-00-D, available as a pdf file on the Ph237 web site.

3. Barry C. Barish and Rainer Weiss, “LIGO and the detection of gravitational waves”,
Physics Today, 52, 44 (October 1999), not available electronically

4. Barry C. Barish, “The detection of gravitational waves with LIGO”, Proceedings of
DPF’99, http://xxx.lanl.gov/abs/gr-qc/9905026

5. Bernard F. Schutz, “Gravitational wave astronomy”, Classical and Quantum Gravity,
16, A131-A156 (1999), http://xxx.lanl.gov/abs/gr-qc/9911034

6. Eanna E. Flanagan, “Sources of gravitational radiation and prospects for their detec-
tion”, Proceedings of GR15, http://xxx.lanl.gov/abs/gr-qc/9804024

7. Kip S. Thorne, “Probing black holes and relativistic stars with gravitational waves”,
in Black Holes and Relativistic Stars, Proceedings of a Conference in Memory of S.
Chandrasekhar, ed. R. M. Wald (University of Chicago Press, Chicago, 1998), pp.
41-78. http://xxx.lanl.gov/abs/gr-qc/9706079

Assignment, to be turned in at beginning of class on Wednesday 16 January
by students registered in the course:

A. State what reading you have done, related to the course, during this past week.
B. Work those exercises, from the list below, that are useful for you (i.e. that are at the

appropriate level for you [neither much too hard nor too easy] and that have a ratio
of grunge to learning that is reasonable.

C. If A. and B. do not constitute enough to have taught you a reasonable amount about
this week’s topic, then do one or more of the following:

i. If you already know a lot about this week’s topic, just say so and stop.
ii. Invent your own exercises and work them.
iii. Carry out further reading and state what you have done.
iv. Seek private tutoring from a knowledgable person about this week’s topic.
v. Pursue some other method of learning about this week’s topic, and state what

you have done.

1



EXERCISES

Note: Work only those exercises that are useful for you!

1. Multipolar expansion of the gravitational-wave field
Fill in the details of the argument sketched on slide 10 of Kip’s lectures. In particular,
show that each of the terms in the expansion of h is dimensionless, and explain why
the terms could not have any other form.

2. Strengths of the waves for various multipoles
a. Give an order of magnitude formula for the contribution of each multipole to the

gravitational-wave field h — a formula analogous to that derived on slide 11 for
the mass quadrupole moment. Express your answer in terms of the source’s mass
and internal velocity, and the distance to the source.

b. Assuming that the internal velocity is generated by the source’s own gravitational
field, give an alternative answer in terms of the source’s mass and radius, and the
distance to the source.

c. Compare with similar order of magnitude formulas for the contributions of the
electric multipoles and magnetic multipoles to electromagnetic radiation.

d. What is the magnitude (a dimensionless number) of the multipole’s contribution
to h in the case of colliding black holes at a distance of 100Mpc (about 300 million
light years)? In the case of a neutron-star binary (with neutron-star masses equal
to 1.4 that of the sun) at 100Mpc distance when the emitted waves have the
frequency at which LIGO’s noise is smallest?

3. How LIGO works
On slide 13 of Kip’s lectures there is a graph in the lower left corner that he did not
discuss. Explain what it means and use it to explain in some detail how a LIGO
interferometer works.

4. Standard Quantum Limit for advanced LIGO interferometers
On slide 25 of Kip’s lectures there is a statement that the advanced interferometers in
LIGO will monitor the motions of their 40kg sapphire mirrors with an accuracy about
the half width of the mirror’s quantum (Schroedinger) wave function. This accuracy is
called the “standard quantum limit” because, for conventional interferometer designs
(such as that of the first LIGO interferometers), quantum mechanics prevents an
accuracy better than this from being achieved.

a. Derive a formula for the half width of the wave function in terms of Planck’s
constant, the mass of the mirror, and the frequency of the gravitational waves
(which is approximately f ∼ 0.5/(time during which each measurement of the
mirror’s center-of-mass position is made).

b. Evaluate your formula numerically, for the frequency of the minimum of the
advanced-detector noise curve, and thereby show that the detector does, indeed,
operate near the standard quantum limit.

5. Relative motions of LISA’s spacecraft
LISA’s spacecraft have an orbit shown in slide 27 of Kip’s lectures. This orbit is
disturbed by the gravitational fields of the planets, most especially Jupiter. Estimate

2



the relative motion of the spacecraft induced by Jupiter, and compare with the relative
motion quoted in Kip’s slide 27.

3

























Ph 237a: Gravitational Waves 16 January 2001

WEEK 2: THE MATHEMATICS UNDERLYING GENERAL RELATIVITY

Recommended Reading:

1. Roger D. Blandford and Kip S. Thorne, Applications of Classical Physics [cited hence-
forth as “Blandford and Thorne”], available on the web at
http://www.pma.caltech.edu/Courses/ph136/ph136.html

a. Sections 23.1–23.3 of Chapter 23, “From Special to General Relativity” (version
0023.2)

b. Equation (24.39) and Section 24.6 of Chapter 24, “The Field Equations of General
relativity” (version 0024.2).

Note: this introduction to the mathematics underlying general relativity assumes some
prior familiarity with special relativity from a particular point of view, which is pre-
sented in Chapter 1 of Blandford and Thorne, “Physics in Flat Spacetime: Geometric
Viewpoint” (available at above url). Some readers may wish to consult that chapter
as they study Chapters 23 and 24; there are extensive cross references to it.

Possible Supplementary Reading:

2. Blandford and Thorne, Chapter 1, “Physics in Flat Spacetime: Geometric Viewpoint”.
See note on item 1 above.

3. Bernard F. Schutz, A First Course in General Relativity (Cambridge University Press,
1985 & 1990), Chapters 2, 3, 5, 6. Not available on the web; a few copies are on sale
at the bookstore, and one copy is on reserve in Millikan Library.

4. Charles W. Misner, Kip S. Thorne, and John A. Wheeler, Gravitation (Freeman,
1973), Chapters 2, 3, 5, 8. Not available on the web; a few copies are on sale at the
bookstore, and one copy is on reserve in Millikan Library. Warning: This textbook is
terribly out of date, as are all other advanced textbooks on general relativity. However,
that does not affect the introduction to general relativity; only the applications are
out of date (black holes, gravitational waves, cosmology, experimental tests, ...).

Assignment, to be turned in at beginning of class on Wednesday 23 January
by students registered in the course:

A. State what reading you have done, related to the course, during this past week.
B. Work those exercises, from the list below, that are useful for you (i.e. that are at the

appropriate level for you [neither much too hard nor too easy] and that have a ratio
of grunge to learning that is reasonable.

C. If A. and B. do not constitute enough to have taught you a reasonable amount about
this week’s topic, then do one or more of the following:

i. If you already know a lot about this week’s topic, just say so and stop.
ii. Invent your own exercises and work them.
iii. Carry out further reading and state what you have done.

1



iv. Seek private tutoring from a knowledgable person about this week’s topic.
v. Pursue some other method of learning about this week’s topic, and state what

you have done.

EXERCISES

Note: There are more exercises here than any single person is expected to work. Work
only those exercises that are useful for you!

Exercises filling in the gaps in Kip’s Wednesday lecture

1. Computation of components of a tensor
From the duality relation ~eµ · ~eν = δµ

ν and expansions of a tensor T( , , ) in terms
of basis vectors, e.g. T = Tαβ

µ~eα ⊗ ~eβ ⊗ ~eµ, deduce that the components of a tensor
can be computed by inserting basis vectors into its slots and lining up the indices, e.g.
Tαβ

µ = T(~eα, ~eβ , ~eµ).

2. Raising and lowering of indices
From the properties of tensors discussed in exercise 1 and the definition of the metric
in terms of the inner product, g( ~A, ~B) = ~A · ~B, show that indices on tensors can be
raised and lowered using the metric components, e.g. Tαβ

µ = gαρgµσTρ
βσ.

3. Directional derivatives of bases
From the duality relation for bases and the definition ∇~eα

~eβ ≡ Γµ
βα~eµ of the connec-

tion coefficients, show that ∇~eα
~eρ ≡ −Γρ

να~eν .

4. Connection coefficients for the orthonormal basis associated with circular
polar coordinates, and their use
In Euclidean 2-space (a flat sheet of paper) construct circular polar coordinates (r, φ).

a. Show that the basis
er̂ ≡

∂

∂r
, eφ̂ ≡

1
r

∂

∂φ

is orthonormal; i.e. in this basis the components of the metric are the Kronecker
delta.

b. By drawing pictures, deduce the values of all the connection coefficients for this
basis.

c. Let Aα̂ be the components of a vector field A in this basis. Using your connection
coefficients, derive a formula for the divergence of A, ∇ ·A = Aα̂

;α̂ in terms of
partial derivatives of the components of A. Your answer should be the familiar
formula

∇ ·A =
1
r

∂(rAr̂)
∂r

+
1
r

∂Aφ̂

∂φ
.

5. Components of gradient of a tensor in terms of connection coefficients
By the same technique as is used in Eq. (23.29) of Blandford and Thorne, derive an
expression for Fα

β;µ in terms of Fα
β,µ and the components of F and the connection

coefficients of the chosen basis.

2



6. Components of commutator of two vector fields
Let ~A(P) and ~B(P) be two vector fields. In an arbitary basis (which might or might
not be a coordinate basis), derive a formula for the components of the commutator
[ ~A, ~B] in terms of the components Aα and Bβ , their derivatives along the basis vectors,
Aα

,µ and Bβ
,ν , and the basis’s commutation coefficients cαβγ . In a coordinate basis

your result should reduce to the one given by Kip in his lecture; cf. Eq. (23.24) of
Blandford and Thorne.

7. Formula for components of Riemann tensor in an arbitrary basis
Exercise 24.8 of Blandford and Thorne

8. Formula for components of Riemann tensor in a local Lorentz frame
Show that in a local Lorentz frame in spacetime, the components of the Riemann
tensor are given by Eq. (24.51) of Blandford and Thorne.

Additional Exercises

8. Practice with frame-independent tensors
Exercise 23.3 of Blandford and Thorne.

9. Practice with index shuffling
Let F be a second-rank tensor that is antisymmetric under interchange of its slots, i.e.
Fαβ = −Fβα, and that satisfies the relation

Fαβ;γ + Fβγ;α + Fγα;β = 0 .

Define Jα by Fαβ
;β = 4πJα, and define

Tµν =
1
4π

(
FµαF ν

α −
1
4
gµνFαβFαβ

)
.

(Actually, the electric and magnetic fields can be embodied in an antisymmetric field
tensor; if F is that tensor, then ~J is the charge-current 4-vector and T is the electro-
magnetic stress-energy tensor.) Show that

Tαβ
;β = −FαβJβ .

Actually, this equation describes the the rate at which energy and momentum are
transfered between the electromagnetic field and the charge-current distribution with
which it interacts.
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WEEK 3: INTRODUCTION TO GENERAL RELATIVITY
& GRAVITATIONAL WAVES

Recommended Reading:

1. Blandford and Thorne, Applications of Classical Physics, [available on the web at
http://www.pma.caltech.edu/Courses/ph136/ph136.html]: the following sections of
Chapter 23 (version 0023.2) and Chapter 24 (version 0024.2).

a. Section 23.4, “The Stress-Energy Tensor Revisited”; also item 2 in Possible Sup-
plementary Reading, below, if you are not already familiar with the stress-energy
tensor.

b. Sections 24.1 — 24.8. Pay special attention to Section 24.4 (in which, if you wish,
you can regard the particle as having a finite rest mass m and a 4-momentum
~p ≡ m~u where ~u is its 4-velocity, so the geodesic equation ∇~p~p = 0 is equivalent
to the one Kip gave in his Wednesday lecture, ∇~u~u = 0, and so ζ = τ/m). Also
pay special attention to Sections 24.5, 24.6 and 24.8.

Possible Supplementary Reading:

2. Blandford and Thorne, Chapter 1, “Physics in Flat Spacetime: Geometric Viewpoint”:
those portions cross referenced in the recommended reading, most especially

a. The discussion of the Levi-Civita tensor in Section 1.9
b. Section 1.11 “Volumes, Integration, and the Gauss and Stokes Theorems”,
c. Section 1.12 “The Stress-Energy Tensor and Conservation of 4-Momentum”.

3. Bernard F. Schutz, A First Course in General Relativity (Cambridge University Press,
1985 & 1990), Sections 6.4–6.7 and Chapter 8.

4. Charles W. Misner, Kip S. Thorne, and John A. Wheeler, Gravitation (Freeman,
1973), Section 8.7, Chapter 11 and Chapter 17.

Assignment, to be turned in at beginning of class on Wednesday 30 January
by students registered in the course:
A. State what reading you have done, related to the course, during this past week.
B. Work those exercises, from the list below, that are useful for you (i.e. that are at the

appropriate level for you [neither much too hard nor too easy] and that have a ratio
of grunge to learning that is reasonable.

C. If A. and B. do not constitute enough to have taught you a reasonable amount about
this week’s topic, then do one or more of the following:

i. If you already know a lot about this week’s topic, just say so and stop.
ii. Invent your own exercises and work them.
iii. Carry out further reading and state what you have done.
iv. Seek private tutoring from a knowledgable person about this week’s topic.
v. Pursue some other method of learning about this week’s topic, and state what

you have done.
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EXERCISES
Note: There are more exercises here than any single person is expected to work. You
may learn useful things by reading all the exercises, but work only those that are
useful for you.

1. Transformation of Coordinates; Fixing Four Components of the Metric
a. Suppose that one knows the components of a tensor Tαβ and Tµν in the coor-

dinate basis associated with a coordinate system xα(P). Introduce some other
“primed” coordinate system xσ′

(P). Then the primed coordinates can be writ-
ten as functions of the unprimed coordinates, xσ′

(x0, x1, x2, x3) or in abbreviated
notation xσ′

(xα); and similarly the unprimed coordinates can be written as func-
tions of the primed ones, xα(xσ′

). Show that the components of the tensor T
in the primed coordinate basis are related to those in the original, unprimed
coordinate basis by

Tσ′ρ′ =
∂xα

∂xσ′

∂xβ

∂xρ′ Tαβ , Tαβ =
∂xσ′

∂xα

∂xρ′

∂xβ
Tσ′ρ′ .

Note that the indices in these equations line up in the usual automatic way.
b. Suppose that one knows the components gαβ of the metric in the coordinate

basis associated with a coordinate system xµ(P), and one wants to find a coordi-
nate transformation xσ′

(xα) [and its inverse xµ(xσ′
)] to a new coordinate system

xσ′
(P), in which four of the metric components have the following special values:

g0′0′ = −1, g0′j′ = 0 with j′ = 1′, 2′, 3′. Exhibit a set of four differential equa-
tions for the four functions xµ(xσ′

) which, if satisfied, will guarantee that these
special values are achieved. It is possible, quite generally, to find solutions to
these four equations for the four unknowns xµ(xσ′

). It is this possibility of fixing
four components of the metric however one wishes (e.g. so g0′0′ = −1, g0′j′ = 0)
that forced Einstein to abandon his original guess Rµν = 4πGTµν for the field
equation: that guess gave 10 differential equations for the 10 components of the
metric, leaving no freedom to adjust 4 components at will. Note: A coordinate
system in which g0′0′ = −1 and g0′j′ = 0 is called a synchronous coordinate
system.

2. Vacuum Einstein Equations
Show that in vacuum the Einstein field equations Gαβ = 0 (where G is the Einstein
tensor) are equivalent to Rαβ = 0 (where R is the Ricci tensor, i.e. the contraction of
the Riemann tensor on its first and third slots); i.e. show that the vacuum Einstein
equations reduce to

Rαβ ≡ Rµ
αµβ = 0 . (1)

3. Vacuum Wave Equation for Riemann Tensor when Curvature is Weak
Consider the Riemann curvature tensor Rαβγδ describing a very weak warpage of
spacetime in vacuum — e.g. a gravitational wave propagating through intergalactic
space. When the curvature is ignored (zero-order approximation), we can introduce a
global Lorentz frame (global Minkowski coordinates) in which the metric coefficients
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are gαβ = ηαβ and the connection coefficients vanish. At first order in the curvature,
we can treat Rαβγδ as a linear field living in this global Lorentz frame. It then has the
following properties discussed in the reading and mentioned briefly in Kip’s lecture:
(i) It satisfies the Bianchi identity

Rαβγδ,ε + Rαβδε,γ + Rαβεγ,δ = 0 ; (2)

here the derivatives would normally be spacetime gradients (“covariant derivatives”,
replace comma by semicolon), but in our global Lorentz frame they reduce to partial
derivatives with respect to the coordinates and thus are written with commas rather
than semicolons. (ii) It satisfies the vacuum Einstein equations (1), in which the µ
index is raised using the flat-space metric ηµν since our reference frame is globally
Lorentz. (iii) It satisfies the symmetries

Rαβγδ = −Rβαγδ , Rαβγδ = −Rαβδγ , Rαβγδ = Rγδαβ . (3)

a. By contracting the Bianchi identity on its first and fifth slots and combining with
the vacuum Einstein equation, show that the Riemann tensor is divergence-free
on its first slot:

Rµ
βγδ,µ = 0 . (4)

b. By invoking Riemann’s symmetries, show that it is divergence-free on all four
slots.

c. By taking the divergence of the Bianchi identity on its last slot and using the fact
that Riemann is divergence-free, derive the wave equation

Rαβγδ,µνηµν =

[
−

(
∂

∂t

)2

+
(

∂

∂x

)2

+
(

∂

∂y

)2

+
(

∂

∂z

)2
]

Rαβγδ = 0 . (5)

Kip will use this wave equation as a starting point for his analysis of gravitational
waves next week.

4. Vacuum Wave Equation for Riemann Tensor when Curvature is Strong
Suppose that the spacetime curvature is strong, so one cannot introduce, as a zero-
order approximation, a global Lorentz frame. Then repeat the analysis of the previous
exercise to obtain a wave equation of the form

Rαβγδ;µνgµν = (terms involving products of the Riemann tensor with itself). (6)

[Note: in order to derive this equation you will have to generalize the defining equation
Aα

;βγ − Aα
;γβ = −Rα

;µβγAµ for the Riemann tensor, to get a formula for what
happens when you interchange gradient slots on a tensor of higher rank than one, e.g.
a formula for Bµνλρ;βγ−Bµνλρ;γβ for a fourth rank tensor B.] Kip will use the nonlinear
vacuum wave equation (6) as a starting point, later in this class, for analyzing the
propagation of gravitational waves through a strongly curved “background” spacetime.
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5. Local Lorentz Frame in Friedman Universe
a. Exercise 24.2 of Blandford and Thorne. Note: This exercise illustrates the fact

that, in a local Lorentz frame, the metric components have their flat spacetime
form in the vicinity of the spatial origin for all time, aside from corrections that
are second order in the spatial distance from the origin [Eq. (24.15) of Blandford
and Thorne].

6. Second Time Derivative in a Local Lorentz Frame
In his lecture on Wednesday, Kip asserted that, when one evaluates the equation of
geodesic deviation in the local Lorentz frame of one of the two freely falling particles,
the left-hand side of the equation, ∇~u∇~u

~ξ (where ~u is the 4-velocity of the particle
whose local Lorentz frame one is using and ~ξ is the separation vector between particles)
reduces to (∂/∂t)2ξα. Show that this is true using the result of the previous exercise.

7. Stress-Energy Tensor for a Perfect Fluid
Exercise 23.7(a) of Blandford and Thorne.

8. Orders of Magnitude of the Radius of Curvature of Spacetime
Exercise 24.7 of Blandford and Thorne.
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WEEK 4: WEAK GRAVITATIONAL WAVES IN OTHERWISE FLAT SPACETIME

Recommended Reading:

1. Blandford and Thorne, Applications of Classical Physics, [available on the web at
http://www.pma.caltech.edu/Courses/ph136/ph136.html]: the following sections of
Chapter 24 (version 0024.2) and Chapter 26 (version 0026.2).

a. Section 24.9, “Weak Gravitational Fields”; especially Sec. 24.9.2 on “Linearized
Theory”.

b. Sections 26.3.1, 26.3.2, 26.3.3, 26.3.7 on gravitational waves. Note: These sec-
tions are written from a more sophisticated viewpoint than we have taken as yet:
they are treating gravitational waves that propagate through curved spacetime,
not flat. However, they make extensive use of local Lorentz frames of the curved
background spacetime through which the waves are propagating, and if one re-
places these local Lorentz frames by global Lorentz frames of a flat background
spacetime, one obtains much of the material that Kip covered in class. This
replacement entails replacing every subscript “—” (gradient or covariant deriva-
tive with respect to the flat background) by a subscript comma (gradient in our
background global Lorentz frame, i.e. partial derivative).

Possible Supplementary Reading:

3. Bernard F. Schutz, A First Course in General Relativity (Cambridge University Press,
1985 & 1990), Sections 8.3, 9.1 and 9.2

4. Charles W. Misner, Kip S. Thorne, and John A. Wheeler, Gravitation (Freeman,
1973), Chapter 18 on the linearized approximation to general relativity, and Sections
35.1 to 35.6 on gravitational waves.

Assignment, to be turned in at beginning of class on Wednesday 6 February
by students registered in the course:

A. State what reading you have done, related to the course, during this past week.
B. Work those exercises, from the list below, that are useful for you (i.e. that are at the

appropriate level for you [neither much too hard nor too easy] and that have a ratio
of grunge to learning that is reasonable.

C. If A. and B. do not constitute enough to have taught you a reasonable amount about
this week’s topic, then do one or more of the following:

i. If you already know a lot about this week’s topic, just say so and stop.
ii. Invent your own exercises and work them.
iii. Carry out further reading and state what you have done.
iv. Seek private tutoring from a knowledgable person about this week’s topic.
v. Pursue some other method of learning about this week’s topic, and state what

you have done.
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EXERCISES

Note: There are more exercises here than any single person is expected to work. Work
only those exercises that are useful for you!

Exercises filling in the gaps in Kip’s lectures

1. Electromagnetic Analogs of hTT
jk , h+ and h×

The gravitational-wave analysis given in Kip’s lectures and in the exercises that follow
is closely analogous to the following treatment of electromagnetic waves.

Consider a plane electromagnetic wave propagating in the z direction through a
Lorentz frame of flat spacetime. The wave has an antisymmetric electromagnetic
field tensor Fµν(t − z) whose components are related to those of the electric and
magnetic field by Fj0 = −F0j = Ej and (F23, F31, F12) = (B1, B2, B3).

a. Use Maxwell’s equations to verify that E and B are transverse (have vanishing z
components), and that all components of Fµν can be expressed in terms of Fj0;
in other words, the magnetic field can be expressed in terms of the electric field.
This is analogous to the transversality of the tidal forces in a gravitational wave,
and to the fact that all components of the Riemann tensor for a gravitational
wave are expressable in terms of Rj0k0.

b. Define AT
j by Ej ≡ −AT

j,t. Here and throughout we use the notation that sub-
scripts 0, 1, 2, 3 are equivalent to subscripts t, x, y, z. This AT

j is the analog of
hTT
jk for a gravitational wave. Since the electromagnetic wave is transverse, the

only nonzero components of AT
j are AT

x (the analog of h+) and AT
y (the analog

of h×).
c. Now introduce the 4-vector potential Aµ (not to be confused with AT

j ), from which
the electromagnetic field tensor can be constructed via Fµν = Aν,µ−Aµ,ν . Show
that in Lorenz gauge, where Aµ,µ = 0, Maxwell’s equations reduce to the wave
equation for Aµ, and thence (since we are considering a plane wave propagating
in the z direction), Aµ is a function only of t− z. This is the analog of the trace
reversed metric peturbation for a plane gravitational wave being a function of
t− z in gravitational Lorenz gauge (discussed by Kip in his lectures).

d. Find a specific gauge-change generator Ψ(t − z) that brings Aµ into a special
Lorenz gauge in which A0 = Az = 0 so the that Aµ is transverse. Show that
in this special Lorenz gauge, the spatial components of the vector potential are
Aj = Aj

T. We call this Transverse gauge or T gauge. It is the electromagnetic
analog of TT gauge for a gravitational wave.

e. Show that the T-gauge fields AxT and Ay
T can be obtained from the vector

potential in any gauge where Aµ = Aµ(t − z) by simple projection — i.e., by
throwing way the temporal and longitudinal components of Aµ and setting AT

x =
Ax and AT

y = Ay. This is the analog of computing the components of hTT
jk by

projection, in any gauge where the metric perturbation is a function of t− z.
f. The fields AxT and Ay

T depend on one’s choice of reference frame. Show that
when one rotates the frame’s basis vectors in the transverse plane in the manner
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of Eq. (26.51), AxT and AyT change by

(AxT + iAy
T)new = (AxT + iAy

T)oldeiψ .

g. Show that, when one performs a boost along the z axis to a new reference frame
moving at speed β with respect to the old one, the fields AT

x and AT
y (which are

defined in terms of the electric fields measured in the two frames), are unchanged
at a fixed location in spacetime; i.e. they behave like scalars. This is not true of
the electric field itself! [Hint: use the result of part e.]

2. For a Weak, Plane Gravitational Wave, All Components of Riemann are
Determined by Rj0k0, Which is TT
Consider a solution of the gravitational wave equation for plane waves propagating in
the z direction through a global Lorentz frame,

Rαβγδ = Rαβγδ(t− z) . (6)

a. By integrating the Bianchi identity with respect to time for such a gravitational
wave, derive Eqs. (26.39) of Blandford and Thorne.

b. Use these relations and Riemann’s symmetries to show explicitly that all compo-
nents of the Riemann tensor for these waves can be expressed in terms of Rj0k0.
This is the analog of Exercise 1.a for the electromagnetic field.

c. Then use the vacuum Einstein equations to show explicitly that Rj0k0 is spatially
transverse and trace-free (TT), i.e. it satisfies Eqs. (26.40) of Blandford and
Thorne, and Rx0x0 + Ry0y0 = 0; cf. Eqs. (26.41); cf. the transversality of the
electric field, Exercise 1.a.

3. Gravitational Gauge Changes; Transformation to Lorenz Gauge
Exercise 24.13 of Blandford and Thorne. This is analogous to Exercise 1.c for the
electromagnetic field.

4. Transformation to TT Gauge
Consider a plane gravitational wave propagating in the z direction and analyzed in
any gauge in which hαβ is a function only of t− z (e.g. in any Lorenz gauge).

a. Exhibit a gauge transformation that brings this wave into TT gauge, so hnew
αβ =

hTT
αβ . This is analogous to Exercise 1.d.

b. Show that this gauge transformation can be achieved by TT projection — i.e., by
simply throwing away the time-time and time-space and longitudinal components
of halphaβ(t − z), keeping only the spatial and transverse components (those in
the x-y plane, and removing the trace of these components, so

h+ ≡ hTT
xx = hxx −

1
2
(hxx + hyy) =

1
2
(hxx − hyy) ,

−h+ = hTT
yy = hyy −

1
2
(hxx + hyy) = −1

2
(hxx − hyy) ,

h× ≡ hTT
xy = hTT

yx = hxy = hyx .
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This is analogous to Exercise 1.e.
5. Behavior of h+ and h× Under Rotations and Boosts

a. For a weak plane wave propagating in the z direction of a background Lorentz
frame, show that h+ and h× transform under rotations through an angle ψ about
the propagation direction in the manner of Eq. (26.51) of Blandford and Thorne.
Rewrite this transformation law in terms of cos 2ψ and sin 2ψ, and thereby recover
the formulas that Kip gave in his Monday lecture. This is analogous to Exercise
1.f.

b. For this same weak, plane wave, show that at any event in spacetime h+ and h×
are invariant under boosts along the waves’ propagation direction (z direction).
[This is analogous to Exercise 1.g.] One way to show this is: (i) apply a Lorentz
transformation to the components of the Riemann tensor, and then (ii) in each of
the two reference frames construct hTT

jk . This is a hard way with pitfalls. A much
simpler way is to use a result from Exercise 4.b that, in any gauge where the
metric perturbation has the speed-of-light-propagation form hαβ(t− x), one can
compute the gravitational wave field hjk

TT by projection. The idea, then, is to
begin in TT gauge of one of the two frames, with hαβ(t−z) equal to that frame’s
TT field, perform a Lorentz transformation of that field to take its components
to the other reference frame, then use projection to extract the second frame’s
TT field.

6. Motion of a Free Particle in TT Gauge
Consider a gravitational wave as described in TT gauge, so the spacetime metric has
the form gαβ = ηαβ + hTT

αβ (t − z). Consider a free particle that is at rest in this
coordinate system before the wave arrives. Use the geodesic equation to show that
the particle remains always at rest in this coordinate system, even while the wave is
interacting with it.
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WEEK 5: THE QUADRUPOLE FORMULA FOR GW GENERATION,
PROPAGATION OF GW’s THROUGH CURVED SPACETIME

AND THE GW STRESS-ENERGY TENSOR

Lectures 8 and 9

Recommended Reading:
Note: All of this material is on the course web site.

1. Derivation of the quadrupole formula for gravitational-wave generation (beginning of
Lecture 8): Charles W. Misner, Kip S. Thorne, and John A. Wheeler, Gravitation
(Freeman, 1973), Sections 36.9 and 36.10. [A copy of this will be put on the class’s
web site.]

Note: The treatment given in this section includes effects of self gravity in the
source’s interior, using the approach of Landau and Lifshitz, which Kip briefly
discussed in his lecture. The analysis given in Kip’s lecture corresponds to ne-
glecting self gravity and correspondingly setting tµν = 0 in the MTW analysis.

2. Wave propagation through curved spacetime (the remainder of Lecture 8 and most of
lecture 9): Kip S. Thorne, “The Theory of Gravitational Radiation: an Introductory
Review,” in Gravitational Radiation, eds. N. Dereulle and T. Piran (North Holland,
Amsterdam, 1983), pp. 1–57: Sections 1.2, 2.4.1, 2.4.2, and 2.5 and 2.6. 2.4.5.

3. The gravitational-wave stess-energy tensor (remainder of lecture 9): Kip S. Thorne,
“The Theory of Gravitational Radiation: an Introductory Review,” in Gravitational
Radiation, eds. N. Dereulle and T. Piran (North Holland, Amsterdam, 1983), pp.
1–57: Section 2.4.5.

Possible Supplementary Reading:

4. Charles W. Misner, Kip S. Thorne, and John A. Wheeler, Gravitation (Freeman,
1973): Sections 35.7–35.15, including the exercises at the end of the chapter. This
covers wave propagation through curved spacetime and the gravitational-wave stress-
energy tensor. [This material is not on the course web site.]

Assignment, to be turned in at beginning of class on Wednesday 13 February
by students registered in the course:

A. State what reading you have done, related to the course, during this past week.
B. Work those exercises, from the list below, that are useful for you (i.e. that are at the

appropriate level for you [neither much too hard nor too easy] and that have a ratio
of grunge to learning that is reasonable.

C. If A. and B. do not constitute enough to have taught you a reasonable amount about
this week’s topic, then do one or more of the following:

i. If you already know a lot about this week’s topic, just say so and stop.
ii. Invent your own exercises and work them.
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iii. Carry out further reading and state what you have done.
iv. Seek private tutoring from a knowledgable person about this week’s topic.
v. Pursue some other method of learning about this week’s topic, and state what

you have done.

EXERCISES
Note: There are more exercises here than any single person is expected to work. Work
only those exercises that are useful for you!

Exercises filling in the gaps in Kip’s lectures

1. Derivation of Quadrupole-moment formula
Carry out the full details of the derivation of the quadrupole-moment formula for
a source with negligible self gravity — i.e. a source whose internal accelerations are
produced by non-gravitational forces. In particular:

a. In a Lorentz frame in flat spacetime, use the energy-momentum conservation law
Tµν

,ν = 0 to show that

T 00
,00x

jxk = 2T jk + (T lmxjxk),ml − 2(T ljxk + T lkxj),l . (1)

b. Use this result to show that, in the slow-motion approximation, the standard
retarded-integral formula for the gravitational-wave field

hTT
jk = 4

[
Tjk(x′; t′ = t− |x− x′|)

|x− x′|
d3x′

]TT

(2)

reduces to
hTT

jk =
2
r

[
Ïjk(t− r)

]TT

=
2
r

[
Ïjk(t− r)

]TT

, (3)

where Ijk is the second moment of the source’s mass distribution, Ijk is the
source’s mass quadrupole moment, the dots denote time derivatives, and r is the
distance from the source’s center of mass to the observer. NOTE: IN HIS LEC-
TURE, KIP MISSED THE FACTOR 4 IN EQ. (2) AND THEREBY
WROTE DOWN THE WRONG FORM FOR EQ. (3): HE WROTE
1/2r INSTEAD OF 2/r.

2. Derivation of Geometric Optics Equations for GW Propagation
Carry out the full details of the derivation of the geometric-optics equations for
gravitational-wave propagation. In particular, begin by expressing the Lorenz-gauge
trace-reversed metric perturbation, in curved spacetime, in the form

h̄αβ = <(Aαβeiϕ) , (4)

where < means take the real part, ϕ is the waves’ phase which varies on the very short
lengthscale of the waves’ reduced wavelength λ̄, and Aαβ is the waves’ amplitude which
varies on a much longer lengthscale L (the smaller of the radius of curvature of the
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waves’ phase fronts and the radius of curvature of spacetime). Motivated by the form
ϕ = ω(z − t) of the phase for plane waves propagating in the z direction of a local
Lorentz frame, define the wave vector by ~k = ~∇ϕ (so in the local Lorentz frame
k0 = kz = ω).

a. Using an argument in the local Lorentz frame, explain why ~k must change on the
long lengthscale L and not on the short lengthscale λ̄.

b. Show that at leading order in the small parameter λ̄/L � 1, the Lorenz gauge
condition h

αβ
|β = 0 reduces to the transversality condition

h̄αβkβ = 0 . (5)

c. Show that at the leading order in λ̄/L, the gravitational wave equation hαβ|µ
µ

= 0
reduces to the statement that the wave vector is null ~k · ~k = 0, and that the
gradient of ~k · ~k = 0 implies that ~k is the tangent to a null geodesic (the waves’
ray).

d. Show that at the next order in λ̄/L, the gravitational wave equation reduces to
the following transport law for the trace-reversed metric perturbation:

h̄αβ|µkµ = −1
2
kµ

|µh̄αβ . (6)

Note that in his lecture, Kip wrote this equation in terms of Aαβ . Explain
explicitly why it can be written equally well in terms of h̄αβ and Aαβ .

3. Propagation Laws for h+, h×, and their polarization tensors
Express the trace-reversed metric perturbation in the form

h̄αβ = h+e+
αβ + h×e×αβ , (7)

where e+ and e× are polarization tensors that are defined to be parallel propagated
along the rays, ∇~ke

J = 0 (for J = +,×), and that in a local Lorentz frame of
the source, near the source, have the usual components: e+

xx = −e+
yy = 1, e×xy =

e×yx = 1, all other components vanish. (Here, on any chosen ray, we have oriented
the coordinates so the ray points spatially in the z direction.) We do not yet know
that the h+ and h× in Eq. (7) are the usual gravitational-wave fields measured by
observers; we shall show that this is so below.

a. Show that in the local Lorentz frame of the source, our Lorenz-gauge, trace-
reversed metric perturbation h̄αβ is trace free, and therefore is equal to the metric
perturbation itself, h̄αβ = hαβ .

b. Use the curved-spacetime wave equation for h̄αβ to show that it remains trace-
free as it propagates, so everywhere h̄αβ = hαβ . We did not have to choose our
gauge so this is true, but it was convenient to do so.

c. Show, from the parallel-transport law for the polarization tensors, that eJ
αβ always

remains trace free and always satisfies eJ
αβeJαβ = 2.

d. Consider an observer far from the source, whom the waves pass. Introduce the
observer’s local Lorentz frame and orient its axes so the waves are propagating
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in the z direction, and the + and × polarization axes are oriented in the usual
way. Show that, by virtue of the transversality relation (5) and the relation
eJ
αβeJαβ = 2, the observer’s TT projection of the polarization tensors will have

the usual form

(e+
xx)TT = −(e+

xx)TT = 1 , (e×xy)TT = −(e×yx)TT = 1 , (8)

all other components vanish. Explain why this, together with Eq. (7), implies
that, as seen in the local Lorentz frame of any observer, the h+ and h× of Eq.
(7) are the usual gravitational wave fields.

e. By inserting Eq. (7) into the propagation law (6) for h̄αβ , derive the following
law for propagation of the gravitational-wave fields along the waves’ rays:

∇~kh+ = −1
2
(~∇ · ~k)h+ , ∇~kh× = −1

2
(~∇ · ~k)h× . (9)

4. Gravitons
a. In Ref. 3 of the suggested reading (above) there is a written version of the deriva-

tion Kip gave in his Lecture 9, of the Isaacson stress-energy tensor for gravita-
tional waves. The final answer for TGW

µν is given in three different forms in Eq.
(2.47). Explain why the first of these forms reduces to the second in trace-free
Lorenz gauge (the gauge used in Exercise 3), and reduces to the third in the local
Lorentz frame of any observer. Show that the third reduces to

TGWµν
=

1
16π

〈h|µ
+ h

|ν
+ + h

|µ
×h

|ν
×〉 . (10)

b. Show that in the geometric optics limit, Isaacson’s gravitational-wave stress-
energy tensor reduces to a sum over contributions from the two polarizations,
each of which has the form

TGW J
αβ =

1
16π

〈h2
J〉kµkν . (11)

Here as above, J = + or ×.
c. These waves are carried by gravitons, each of which has a 4-momentum ~p = h̄~k.

This means that the energy density and energy flux for gravitons with polarization
J can be written as

T 00
GW J = N0

Jp0 , T i0
GW J = N i

Jp0 , (12)

where N0
J is the graviton number density and N i

J is the graviton flux. Write
down, similarly, the momentum density and the momentum flux in terms of pµ

and Nν
J .

d. Show, from Eq. (11), that the graviton number-flux 4-vector is given by

Nµ
J =

1
16πh̄

〈h2
J〉kµ . (13)
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e. Show that the equations of geometric optics imply that the gravitons parallel
transport their 4-momenta along their world lines, ∇~p~p = 0. Since their 4-
momenta are tangent to their world lines and are null, this means they move
along null geodesics.

f. Show that the transport law for the gravitational-wave field, Eq. (9), is equivalent
to the statement that gravitons are conserved, Nµ

J |µ = 0.
g. Show that graviton conservation and the geodesic motion of the gravitons together

guarantee conservation of energy and momentum, Tµν
GWJ |ν = 0.

h. Show that graviton conservation implies that hJ decreases as 1/
√
A, where A is

the cross sectional area of a bundle of rays along which the waves are propagating.
Hint: perform the calculation in a local Lorentz frame.

i. Show that graviton conservation implies that hJ decreases as 1/r, where r is the
radius of curvature of the waves’ phase fronts. Hint: perform the calculation in
a local Lorentz frame.

Some Applications

5. Gravitational Waves from an Equal-Mass Binary Star System with Circular
Orbit
Consider a binary system made of two identical stars, each with mass m and radius
R � m, separated by a distance a large compared to their radii.

a. Show that the binary satisfies the slow-motion assumption (internal velocity small
compared to the speed of light) and has weak gravity, |hµν | � 1, so the quadrupole
formula should be valid (thanks to the Landau-Lifshitz-type derivation that in-
cludes self gravity). Weak gravity and slow motion also imply that Newtonian
theory is quite accurate, which means that Kepler’s laws should be satisfied: the
orbital angular velocity is Ω =

√
2m/a3.

b. Place the binary’s center at the origin of a Cartesian coordinate system with the
orbit in the x-y plane and the stars on the x axis at time t = 0. Show that the
second moment of the mass distribution has as its only nonzero components

Ixx = 2ma2 cos2 Ωt = ma2(1+cos 2Ωt) , Iyy = 2ma2 sin2 Ωt = ma2(1−cos 2Ωt),

Ixy = Iyx = 2ma2 cos Ωt sinΩt = sin 2Ωt ; (14)

and thence that the second time derivative of this second moment is

Ïxx = −Ïyy = −4m(aΩ)2 cos 2Ωt , Ïxy = Ïyx = −4m(aΩ)2 sin 2Ωt . (15)

c. Introduce a spherical polar coordinate system (r, θ, φ) related to the Cartesian
coordinates in the usual way, and denote by eθ̂ and eφ̂ the unit vectors pointing
along the φ and θ directions. For an observer at location (r, θ, φ), use these basis
vectors as the polarization axes, so that

h+ =
2
r
ÏTT
θ̂θ̂

(t− r) = −2
r
ÏTT
φ̂φ̂

(t− r) , h× =
2
r
ÏTT
θ̂φ̂

(t− r) = −2
r
ÏTT
φ̂θ̂

(t− r) . (16)
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By computing from (15) the θ̂ and φ̂ components of Ïjk and then removing
the trace, obtain the TT components of Ïjk, and thereby conclude that the
gravitational-wave fields have the following forms. These forms are written in
a way that turns out to remain valid for a circular binary with unequal masses.

h+ = 2(1 + cos2 θ)
µ

r
(πMf)2/3 cos(2πft) h× = 4 cos θ

µ

r
(πMf)2/3 sin(2πft) .

(17)
Here f = 2(Ω/2π) = Ω/π is the waves’ frequency, µ = m/2 is the binary’s reduced
mass, M = 2m is the binary’s total mass, and (πMf)2/3 = (aΩ)2.

d. Show that these waveforms agree with the result, derived by dimensional anal-
ysis in Kip’s introductory lectures, that the gravitational-wave amplitude has a
magnitude equal to 1/c2 times the Newtonian gravitational potential produced
by the mass equivalent of the source’s internal kinetic energy.

6. Theorem: Conservation Laws Associated with Symmetries of the Metric
a. Consider a particle that moves along a geodesc though curved spacetime.

Parametrize the geodesic by a parameter ζ defined such that d/dζ = ~p, where ~p
is the particle’s 4-momentum. Show that if the particle has finite rest mass m,
then ζ is related to its proper time by ζ = τ/m. If the particle is a photon or
graviton and so has vanishing rest mass, m vanishes. Show that there also is no
proper time lapse along the particle’s world line, so τ is undefined. For such a
particle ζ is a valid parameter along its world line but τ is not. Show that the
geodesic equation for such a particle takes the form

d2xµ

dζ2
+ Γµ

αβ
dxα

dζ

dxβ

dζ
= 0. (18)

b. Suppose spacetime has a metric which, in some carefully chosen coordinate sys-
tem, is independent of the time coordinate, so gαβ,0 = 0. Show from the geodesic
equation that the component p0 = g0µpµ of the particle’s 4-momentum is con-
served. [Similarly, if gαβ,j = 0 for some specific j = 1, 2, 3, then pj is conserved.]

7. Gravitational Redshift of Gravitational Waves
Consider gravitational waves traveling through the spacetime of a nonspinning black
hole. In appropriate coordinates (t, r, θ, φ) the spacetime metric has the Schwarzschild
form

ds2 = −(1− 2M/r)dt2 +
dr2

1− 2M/r
+ r2(dθ2 + sin2 θdφ2) . (19)

Here M is the hole’s mass and the radial location r = 2M is the hole’s horizon. Far
from the hole, r � 2M , the metric becomes that of flat spacetime in spherical polar
coordinates.

a. Consider a family of observers who are at rest with respect to the black hole so
their 4-velocities ~u all point along the time direction. Show that

~u = ~e0̂ =
1√

1− 2M/r

∂

∂t
(20)
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b. Let the gravitational waves have a reduced wavelength small compared to the
hole’s size, λ̄ � 2M , and small compared to the radii of curvature of their phase
fronts. Then geometric optics is valid. Consider a graviton moving along a ray
of the waves. The at-rest observers measure the graviton’s energy as it passes.
Explain why the energy they measure is E = −~p · ~u = −~p · ~e0̂ = −p0̂.

c. Show that the measured energy is

E =
−p0√

1− 2M/r
. (21)

Show that p0 is conserved by virtue of Exercise 6. This means that as the gravitons
travel to larger and larger radii r, the graviton energy measured by the at-rest
observers grows smaller and smaller, i.e. it gets gravitationally redshifted by the
black hole’s spacetime curvature.

c. Show that, if the waves are traveling precisely radially through the black-hole
spacetime, then the amplitudes of their wave fields will decrease as 1/r, where
r is the radial coordinate. Hint: consider the cross sectional area of a bundle of
rays.

d. Assume that these radially traveling waves are monochromatic. Show that their
phase must have the form ϕ = σ(r∗− t), where r∗ = r + 2M ln(r/2M − 1). Hint:
show that the gradient of this phase function is null and has k0 = p0/h̄ constant.
Explain why this proves the desired result.

e. What is the energy E of a graviton for these waves, measured by an at-rest
observer, in terms of the constant σ? What is the frequency that the observer
measures?

e. Combining the results of (c) and (d), show that the radially traveling, monochro-
matic waves have the form

hJ =
AJ cos[σ(r∗ − t) + δJ ]

r
, (22)

where δJ is some arbitrary constant phase factor and AJ is a constant amplitude.
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