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5 Propagation of Gravitational Waves

In this chapter we shall study the propagation of gravitational waves from their source
to the earth. We begin in Sec. 5.A by writing down the propagation laws in their simplest
form, that appropriate to the geometric-optics approximation. Then in Secs. 5.B, 5.C,
and 5.D we derive those geometric-optics propagation laws in a careful manner, identifying
along the way the various assumptions that must be made. Each assumption entails
discarding physical effects that might be important in special but unusual situations.

For simplicity, our geometric-optics laws are specialized to propagation through
vacuum; however, as part of our derivation of them, we obtain in Secs. 5.B and 5.C a
propagation equation that describes the interaction of the waves with matter and with
electromagnetic fields. In Secs. 5.E and 5.F we seek insight into that interaction by
calculations with this propagation equation. Our calculations show that, although the
coupling of waves to matter and electromagnetism is fascinating in principle, it is almost
never significant in practice: In realistic astrophysical situations the vacuum approximation
to wave propagation is excellent.

In Sec. 5.G we study a wide variety of vacuum propagation phenomena (scattering and
parametric amplification by background curvature, tails of waves, gravitational focusing
and diffraction, nonlinear wave-wave coupling, . . .); we describe how to analyze these
effects; and we discuss their relevance to wave propagation in the real universe. We
conclude the chapter in Sec. 5.H with a brief discussion of two special, non-geometric-optics
analyses of wave propagation: a set of exact solutions to the Einstein field equation, which
describe propagating waves; and the theory of the asymptotic structure of the gravitational-
wave field outside an isolated source in an asymptotically flat spacetime.

In order to understand this chapter and Chap. 6, the reader will need prior familiarity
with general relativity at, e.g., the level of “track one” of MTW (Misner, Thorne, and
Wheeler, 1973). Readers without such familiarity can move on to Chaps. 7–12, which
should be understandable without mastery of Chaps. 5 and 6.

Our notation and mathematical conventions will be those of MTW. A key role will be
played, in the mathematical formalism, by a split of the full, gravitational-wave-endowed
spacetime into a background spacetime [obtained by averaging over several wavelengths
of the waves, cf. Eqs. (4.4) above and (5.6) below], plus the waves. After the split has
been made, the waves will be thought of as a field that propagates through the background
spacetime. We shall use a vertical slash to denote covariant derivatives, i.e., gradients, in
the background spacetime, so if Sα (also denoted abstractly as S) is a vector field that lives
in the background spacetime, then Sα

|µ (also denoted abstractly as ∇S) is its gradient.



Similarly, we shall use a semicolon to denote covariant derivatives in the full, pre-split,
wave-endowed spacetime, so if Aα lives in the full spacetime, then Aα

;µ is its gradient.

5.A. Geometric-optics propagation laws

Geometric optics is a very general formalism for studying the propagation of any kind
of wave through any kind of medium. This formalism is valid whenever the wave’s reduced
wavelength ¯λ is small compared to the radius of curvature of its wave fronts, and also small
compared to all inhomogeneity scales of the medium through which it propagates.

For gravitational waves in vacuum, the geometric-optics propagation can be described
as follows. (We shall derive this description in Secs. 5.B, 5.C, 5.D, and we shall show in
Secs. 5.E and 5.F that it is also valid to high accuracy for gravitational waves propagating
through astrophysically realistic matter.)

Fig. 5.1 Geometric-optics construction for the propagation of gravitational waves from a
source’s local asymptotic rest frame (region inside dotted circle) out through the external
universe (region outside dotted circle).

Consider, for concreteness, a source of gravitational waves somewhere far out in the
universe. In the vicinity of the source but some wavelengths away from it (so as to avoid
near-zone fields that will be discussed in Chap. 6), introduce a local Lorentz reference
frame in which the source is at rest (the source’s local asymptotic rest frame; Fig. 5.1).
In that frame construct spherical polar coordinates (t, r, θ, φ) centered on the source and
construct the associated orthonormal basis vectors e0, er, eθ, eφ. The gravitational waves



propagate radially through this asymptotic rest frame, with their retarded time τe and
their wave vector k = −∇τe (introduced in Sec. 4.D) given by

τe = t− r , k = e0 + er . (5.1a)

The gravitational-wave field hGW
αβ associated with the asymptotic rest frame will have the

form [Eq. (4.26)]
hGW

αβ = h+(aαaβ − bαbβ) + h×(aαbβ + bαaβ) , (5.1b)

Here aα and bα are polarization vectors that are purely spatial in the source’s asymptotic
rest frame, have unit length, and are orthogonal to each other and to the waves’ (radial)
propagation direction. For example, we are free to choose them to be the unit vectors in
the θ and φ directions

a = eθ̂ , b = eφ̂ . (5.1c)

Any other choice will be rotated relative to this choice by some angle ψ in the transverse
plane, and correspondingly h+ and h× will be modified in the manner of expression (4.23).
The propagation of the waves (5.1b) through the source’s asymptotic rest frame and then on
out through the entire universe is described by the following geometric-optics construction:

(i) The waves propagate along a family of null geodesics of the background spacetime,
which are called the waves’ rays. These rays are the specific solutions to the geodesic
equation

kα|βk
β = 0 , (5.2a)

which begin in the asymptotic rest frame with k = e0 + er and extend from there on
out through the universe (Fig. 5.1). Each ray is labeled by the direction (θ, φ) in which it
emerges from the source, and by the retarded time τe at which it emerges. By this labeling,
τe, θ, and φ are carried out through the universe on the rays. The tangent vector k to the
rays is given by

k = −∇τe , (5.2b)

not just in the source’s local asymptotic rest frame, but everywhere in the universe, as
one can verify by checking that this k satisfies the geodesic equation (5.2a). [Specifically,
kα|βk

β = τe|αβτe
|β , which, by commutation of the covariant derivatives of a scalar field,

is equal to τe|βατe
|β = 1/2(τe|βτe|β)|α, which vanishes because τe|β is null.] (ii) Next,

parallel transport the polarization vectors aα and bα along the waves’ rays out through
the universe,

aα|βk
β = 0 , bα|βk

β = 0 . (5.2c)

(iii) Define all along each ray a radius function r in the following way: Consider the 2-
dimensional bundle of rays, surrounding the ray of interest, which all have the same τe as
that ray but which have θ in the range ∆θ and φ in the range ∆φ, so they subtend, as
seen from the source, a solid angle ∆Ω = sin θ∆θ∆φ. As one moves out along the ray of
interest, the cross-sectional area ∆A of this bundle (which is locally Lorentz-invariant; cf.
Exercise 22.13 of MTW) changes, but by definition ∆Ω remains fixed. The radius function
is defined to be

r ≡ (∆A/∆Ω)1/2 . (5.2d)



Of course, in the source’s local asymptotic rest frame this is just equal to the distance to
the source. However, far out in the universe it might be quite different from that distance.
For example, gravitational lenses (to be discussed in Sec. 5.G.c below) can make the area
of the bundle and thence also r switch over from increasing along a ray to decreasing.
(iv) The (frame-invariant) gravitational-wave fields h+ and h× are carried outward along
each ray unchanged, except for an overall alteration proportional to 1/r (which is required
to conserve the waves’ energy as they propagate):

h+ =
Q+(τe, θ, φ)

r
, h× =

Q×(τe, θ, φ)
r

. (5.2e)

The functions Q+ and Q× can be evaluated in the source’s local asymptotic rest frame
using the theory of gravitational-wave generation (Chap. 6), and then can be carried out
along the rays unchanged. (v) The polarization tensors e+jk and e×jk associated with these
fields, as measured in any proper reference frame anywhere in the universe, are

e+jk = (ajak − bjbk)TT , e×jk = (ajbk + bjak)TT , (5.2f)

where the superscripts TT denote the transverse-traceless projection of Eq. (4.50).
(vi) Correspondingly, the gravitational-wave field

hGW
jk = h+e

+
jk + h×e

×
jk , (5.2g)

as measured in that proper reference frame, is given by

hGW
jk = (hjk)TT , (5.2h)

[Eq. (4.45)], where hjk is the spatial part of the field

hαβ ≡ h+(aαaβ − bαbβ) + h×(aαbβ + bαaβ) . (5.2i)

As a simple example, consider the propagation of gravitational waves through a closed
Friedman model for our universe. The background metric [obtained by averaging over the
waves’ short-wavelength ripples in the manner of Eq. (4.4a)] has the standard Friedman
form [MTW, Eqs. (27.46) and (27.23)]

ds2 = a2[−dη2 + dχ2 + sin2 χ(dθ2 + sin2 θdφ2)] , (5.3)

where a = a(η) is the universe’s “expansion factor”. (Never mind that this spacetime is
filled with matter rather than being vacuum; as we shall see in Sec. 5.E the presence of
matter has no significant influence on the propagation.) Place the source of gravitational
waves at the origin of the spatial coordinates, χ = 0. Then the waves’ rays are the radial
null geodesics χ = η − ηe, where ηe is the coordinate time at which the ray is emitted.
Retarded time on each ray is the proper time of emission, τe =

∫ ηe

0
adη; and the ray’s radial

function is r = a sinχ, which is the same radial function as appears in the expression for
the optical brightness of a source of electromagnetic radiation [Eq. (29.28) of MTW].



Expressed in terms of the “deceleration parameter” qo and “Hubble expansion rate” Ho

of the universe, and the redshift z of the source as viewed optically from earth, this radial
function is [Eq. (29.33) of MTW]

r =
Ho

−1

q2o(1 + z)
[−qo + 1 + qoz + (qo − 1)(2qo + 1)1/2] . (5.4)

Note that, if the waves are emitted in an epoch when the universe’s expansion factor is ae

and are received at earth when it is ao, then in terms of proper time t as measured in the
earth’s local proper reference frame, the source’s retarded time is τe = (ae/ao)t+ const. =
t/(1+z)+const., where z = ao/ae is the source’s “cosmological redshift”. Correspondingly,
the time dependence of the waveform as measured at earth is unchanged by the waves’
propagation, except for a frequency-independent redshift freceived/femitted = 1/(1 + z)
which is identically the same as for electromagnetic waves.

In fact, this similarity to electromagnetic waves is completely general: If one develops
the geometric-optics formalism for electromagnetic wave propagation, one finds that the
electromagnetic vector potential has the form

Aα = A1aα +A2bα , (5.5a)

where aα and bα are precisely the same polarization vectors as we used for gravitational
waves; and that

A1 =
Q1(τe, θ, φ)

r
, A2 =

Q2(τe, θ, φ)
r

, (5.5b)

where τe, θ, φ, r are precisely the same functions as we used above in the gravitational-wave
formulas. (See, e.g., the treatment of monochromatic, electromagnetic geometric optics in
Sec. 22.5 of MTW, translated into the notation of this book and with many frequencies
superposed to give waveforms with arbitrary time dependences.) By comparing Eqs. (5.2e)
and (5.5b) we infer that, in the geometric optics limit, the gravitational-wave fields h+

and h× experience precisely the same amplitude changes and redshift changes as do the
components A1 and A2 of the electromagnetic vector potential.

5.B. Linear Perturbations of Curved Spacetime

As a foundation for deriving the above geometric-optics description of vacuum wave
propagation (and also for discussing the effects discarded by geometric optics, the energy
and momentum carried by gravitational waves, the generation of gravitational waves, and
propagation through nonvacuum regions of spacetime), we shall develop in this section
some mathematical formalism. This formalism will describe linearized perturbations of an
arbitrary, nonvacuum spacetime geometry.

Whereas our description of gravitational waves thus far has focussed on the Riemann
curvature tensor, our analysis here will focus on the metric gαβ of spacetime. We shall
write that metric as the sum of a background metric gB

αβ and a perturbation hαβ :

gαβ = gB
αβ + hαβ . (5.6a)



The precise way of making the split into background plus perturbation will depend on
the situation. The background might be a smooth part, defined by averaging gαβ over
several wavelengths of gravitational radiation, and the perturbation then will be the
remaining, rippled part; or the background might be a spherically symmetric part, and
the perturbation the deviations from spherical symmetry; or the background might be the
equilibrium spacetime for a rotating black hole, and the perturbation the deviations from
that equilibrium. In order to be able to handle, with one formalism, all these situations and
more, we shall here regard the split (5.6a) as a purely formal one: The background metric
gB

αβ is one solution to the Einstein field equation with one stress-energy tensor Tαβ
B as its

source; the full metric gαβ is another solution, with another stress-energy tensor Tαβ ; and
the two solutions are nearly but not quite the same. Nearly identical coordinate systems
are set up in the spacetimes of these two solutions, the coordinates are given the same
names xµ, and events in the background spacetime and the full spacetime are regarded as
“the same” if they have the same coordinate values. The perturbation hαβ at location xµ

is then the difference between the two functions gαβ(xµ) and gB
αβ(xµ).

We shall regard the metric perturbation hαβ as a symmetric tensor field that lives in
the background spacetime, and correspondingly, we shall raise and lower indices on hαβ

using the background metric gB
αβ . Because gαβ is the inverse of gαβ (gαβg

βγ = δα
γ), gαβ

takes the form
gαβ = gαβ

B − hαβ , where hαβ = gαµ
B gβν

B hµν . (5.6b)

Note the opposite signs in expressions (5.6a,b) for gαβ and gαβ , and note that there is no
significance to whether the B (for background) is placed up or down.

The difference between the stress-energy tensor of the full spacetime and that of the
background spacetime, at the same coordinate locations xµ, we shall write in the form

Tαβ = Tαβ
B + T αβ − hµ(αT

β)
B µ . (5.7a)

Here and henceforth the parentheses on indices denote symmetrization:

hµ(αT
β)
B µ ≡ 1/2(hµαT β

Bµ + hµβTα
B µ) .

Equation (5.7a) serves as a definition of the stress-energy perturbation field T αβ . We
choose this specific definition because it simplifies subsequent equations [e.g., Eqs. (5.33)
and (5.34)]. We shall regard this T αβ , like hαβ , as a linear field that resides in the
background spacetime, with indices to be raised and lowered using gB

αβ . By lowering
indices on Tαβ with gαβ = gB

αβ + hαβ and linearizing in T αβ and hαβ , we obtain

Tαβ = TB
αβ + T αβ + hµ

(αT
B
β)µ . (5.7b)

Note the opposite signs on the last terms in expressions (5.7a) and (5.7b), completely
analogous to the opposite signs in (5.6a) and (5.6b).

The evolution of T αβ will be governed by first-order perturbations of the law of energy-
momentum conservation; and the evolution of hαβ , by first-order perturbations of the



Einstein field equation. In discussing these evolution laws, we shall use a semicolon to
denote a covariant derivative in the full spacetime, a vertical bar for a covariant derivative
in the background spacetime, and a comma for an ordinary partial derivative with respect
to our chosen coordinates. Correspondingly, the laws of energy-momentum conservation
in the full and background spacetimes are

Tαβ
;β ≡ Tαβ

,β + Γα
µβT

µβ + Γβ
µβT

αµ = 0 ; (5.8a)

Tαβ
B |β ≡ Tαβ

B ,β + ΓB α
µβT

µβ
B + ΓB β

µβT
αµ
B = 0 ; (5.8b)

Here Γα
βγ is the connection coefficient for the full spacetime, and ΓB α

βγ is that for the
background spacetime:

Γα
βγ = 1/2gαµ(gµβ,γ + gµγ,β − gβγ,µ) , ΓB α

βγ = 1/2gαµ
B (gB

µβ,γ + gB
µγ,β − gB

βγ,µ) ; (5.9)

[see, e.g., Eqs. (8.24b,c) of MTW]. Their difference can be evaluated to linear order with the
help of Eqs. (5.6). The result, expressed in terms of the background’s covariant derivative
of hαβ , is

Sα
βγ ≡ Γα

βγ − ΓB α
βγ = 1/2gαµ

B (hµβ|γ + hµγ|β − hβγ|α) . (5.10)

(For a sophisticated method of deriving this and the equations that follow, see Exer-
cise 35.11 of MTW. However, sophistication is not needed; one can derive these equations
by elementary algebra and index shuffling, plus a lot of sweat.)

It is a straightforward calculation to take the difference between the full and the
background laws of energy-momentum conservation [Eqs. (5.8a,b)] and express it in terms
of the perturbations of the stress-energy tensor and of the connection coefficients. The
result, after also using Eq. (5.10), is the following evolution equation for the stress-energy
perturbation:

T αµ
|µ = 1/2(hµν

|α − hα
µ|ν)Tµν

B + 1/2(hµν
|ν − hν

ν|µ)Tµα
B . (5.11)

This shows how gradients of the metric perturbations hαβ|γ couple to the background
stress-energy to generate stress-energy perturbations Tαβ .

One application of this equation is to gravitational-wave detection: there hαβ is the
metric perturbation associated with the gravitational radiation, Tαβ

B is the stress-energy
tensor of an unperturbed detector, and T αβ is the influence of the waves on the detector.
When the detector involves a set of masses on which the waves act, and the coordinate
system is a proper reference frame of gαβ and also of gB

αβ , in which the masses are nearly
at rest, then the dominant spatial term (driving force) on the right-hand side of (5.11) is

1/2h00
|jT 00

B = −(RGW
j0k0x

k)T 00
B

[cf. Eq. (4.39)]. This is the “per-unit-volume” version of the gravitational-wave force (4.12)
of Chap. 4.



The Riemann curvature tensors of our two spacetimes can be expressed in terms of the
connection coefficients and their derivatives by the standard formula [MTW, Eq. (8.44)]

Rα
βγδ = Γα

βδ,γ − Γα
βγ,δ + Γα

µγΓµ
βδ − Γα

µδΓµ
βγ , (5.12)

and the same formula for the background but with a superscript B on all quantitities. By
taking the difference between these two formulas and discarding terms nonlinear in the
metric perturbation, we obtain

δRα
βγδ ≡ Rα

βγδ −RB α
βγδ = Sα

βδ|γ − Sα
βγ|δ

= 1/2gαµ
B (hµβ|δγ + hµδ|βγ − hβδ|µγ − hµβ|γδ − hµγ|βδ + hβγ|µδ) . (5.13)

Since the Ricci curvature tensors are obtained by contracting on the first and third indices
of the Riemann tensors, Eq. (5.13) yields immediately for the perturbation of the Ricci
tensor

δRβδ ≡ Rβδ −RB
βδ = 1/2(hµβ|δ

µ + hµδ|β
µ − hβδ|µ

µ − h|βδ) , (5.14)

where the h with no subscripts denotes the contraction of hµν (using, of course, the
background metric: h ≡ hµνg

µν
B ).

It is the Einstein tensor, Gµν ≡ Rµν − 1/2Rgµν (where R ≡ Rαβg
αβ) that appears on

the left-hand side of the Einstein field equation. The perturbation in the Einstein tensor
is readily computed from Eq. (5.14) and the perturbation (5.6) in the metric. The result
is most nicely expressed not in terms of the metric perturbation hαβ , but rather in terms
of the trace-reversed metric perturbation

h̄αβ ≡ hαβ − 1/2hgB
αβ . (5.15)

The result is brought into the nicest form by commuting a pair of background covariant
derivatives [at the price of introducing a term proportional to the background Riemann
tensor; cf. Eqs. (16.6) of MTW]. The resulting, “nicest form” is

Gαβ −GB
αβ ≡ G

(1)
αβ(h) =− 1/2(h̄µ

αβ|µ + gB
αβh̄

µν
|µν − 2h̄µ(α|

µ
β) + 2RB

µανβh̄
µν

− 2RB
µ(αh̄β)

µ −RB
µν h̄

µνgB
αβ +RBh̄αβ) .

(5.16)

Here RB ≡ RBµ
µ is the background scalar curvature, and the parentheses on indices denote

symmetrization. This is the nicest form of G(1)
αβ because it simplifies so much when one

specializes the gauge:
By “gauge” we mean “the choice of which points in the full spacetime correspond to

which points in the background spacetime”. To change the gauge, we can hold fixed the
coordinates in the background spacetime, but change those in the full spacetime by the
following very small amount (i.e., the following “infinitesimal coordinate transformation”):

xα
old = xα

new − ξα(xµ
new) . (5.17)



This gauge change produces the following change in the metric coefficients of the full
spacetime:

gnew
αβ (xµ

new) = gold
ρσ (xµ

old)
∂xσ

old

∂xα
new

∂xσ
old

∂xβ
new

. (5.18)

By combining this with Eq. (5.17) and with Eq. (5.6) for both the old and the new gauges,
we obtain the relationship between the new and the old metric perturbations

hnew
αβ = hold

αβ − ξα|β − ξβ|α . (5.19)

Thus, the generator of the gauge change ξα, viewed as a field living in the background
spacetime, produces the change (5.19) in the metric perturbation. This is completely
analogous to gauge changes in electromagnetism: The hαβ here is the analog of the
electromagnetic vector potential Aα; the generator of the gauge change ξα is the analog
of the electromagnetic gauge-change generator ψ; and Eq. (5.19) is the analog of Anew

α =
Aold

α − ψ,α. Moreover, just as the electromagnetic evolution equation for Aα takes on an
especially simple form when one specializes to the “Lorentz gauge” (Aα

|α = 0), so also the
Einstein-tensor perturbation and thence the Einstein equation take on especially simple
forms when one specializes to the gravitational Lorentz gauge

h̄αβ
|β = 0 . (5.20)

If one is not initially in this Lorentz gauge, one can go there by the gauge change whose
generator satisfies the wave-equation-with-source

ξα|β
β = −RB

αβξ
β + hold

αβ |β . (5.21)

In Lorentz gauge the perturbation (5.16) of the Einstein tensor simplifies to

G
(1)
αβ(h) = −1/2(h̄αβ|µ

µ + 2RB
µανβh̄

µν − 2RB
µ(αh̄β)

µ −RB
µν h̄

µνgB
αβ +RBh̄αβ) , (5.22)

which involves only the wave operator plus the coupling of h̄αβ to background curvature.
The perturbed Einstein equation [with Newton’s gravitation constant G set to unity

as we shall do throughout Chaps. 5 and 6, cf. Eqs. (4.3)] equates this G(1)
αβ to 8π times the

stress-energy perturbation [Eq. (5.7b)]

G
(1)
αβ(h) = 8π(Tαβ − TB

αβ) = 8π(Tαβ + hµ
(αT

B
β)µ) . (5.23)

By combining Eqs. (5.22), (5.23), and the background Einstein equation Gαβ
B = 8πTαβ

B ,
we obtain our final Lorentz-gauge form for the first-order, perturbed Einstein equation:

h̄αβ|µ
µ + 2RB

µανβh̄
µν = −16π(Tαβ − 1/2h̄µνT

µν
B gB

αβ − 1/2h̄TB
αβ + 1/4h̄TBg

B
αβ) . (5.24)

The equation of motion (5.11) for Tαβ , which goes hand-in-hand with this wave equation,
takes the following form when expressed in terms of h̄αβ rather than hαβ , and when
specialized to Lorentz gauge:

T αµ
|µ = 1/2(h̄µν

|α − h̄α
µ|ν)Tµν

B + 1/2h̄|µT
µα
B − 1/4h̄|αTB . (5.25)



In Eqs. (5.24) and (5.25), h̄ and TB without indices denote the traces of h̄αβ and Tαβ
B :

h̄ ≡ h̄αβg
αβ
B and TB ≡ Tαβ

B gB
αβ .

Equations (5.24) and (5.25) describe the joint, coupled evolution of the gravitational
perturbations h̄αβ and the stress-energy perturbations Tαβ . In the remainder of this chapter
we shall use these coupled equations to study the propagation of gravitational waves in
the presence of matter and electromagnetic fields. In Chap. 6 we shall use them to study
the generation of gravitational waves by astrophysical sources.

5.C. Shortwave Formalism

Turn, now, from general formalism to a specific situation: the propagation of
gravitational radiation with reduced wavelength ∼ ¯λ through a background spacetime with
inhomogeneity scale L. Assume, as in Chap. 4, that ¯λ � L so the waves are well defined.
Then the propagation is beautifully described using a shortwave formalism due to Isaacson
(1968a,b). In this section we shall develop that formalism.

In our analysis we shall need, in addition to ¯λ and L, a third lengthscale: the radius
of curvature R of the background spacetime. We define it to be the inverse square root of
the largest components of the background Riemann tensor, evaluated in a proper reference
frame

R ≡ (minimum value of |RB
αβγδ|−1/2) : (5.26)

This lengthscale is depicted heuristically in Fig. 4.1 on page XX. We shall always define
the inhomogeneity lengthscale L to be no larger than the curvature lengthscale,

L <∼ R , (5.27)

because of a philosophical viewpoint that curvature itself is a form of inhomogeneity. (This
also simplifies some of the conceptual issues that follow.)

We introduce into the full spacetime a coordinate system which, for the moment, we
constrain in only one way: we demand that in it the metric coefficients gαβ , like the physical
curvature, vary on lengthscales ∼ ¯λ, ∼ L, and possibly � L, but not on any lengthscales
between ¯λ and L.

Following Isaacson (1968a), we shall call such a coordinate system steady . We then
define the background spacetime by the demand that there exist in it coordinates in which
the background metric coefficients are the average over several wavelengths of the steady
coordinates’ gαβ :

gB
αβ(xµ) ≡

〈
gαβ(xµ)

〉
. (5.28)

The difference between gαβ and gB
αβ describes, of course, the gravitational radiation. In

analyzing this radiation we shall be interested not only in linear effects, but also in nonlinear
ones—for example, the energy and momentum carried by the waves. In preparation for
discussing nonlinear effects, we shall write the difference between gαβ and gB

αβ not as a
single field hαβ , but rather as a power series:

gαβ =
gB

αβ

1,L
+
hαβ

h, ¯λ
+
jαβ

h2, ¯λ
+ . . . . (5.29)



Below each term we show the characteristic magnitude (1, h, h2) of the term, and also
the lengthscale (¯λ or L) on which it varies. Note that jαβ is a nonlinear correction to the
propagating waves. This nonlinear correction is not yet precisely defined. We are free to
shove pieces of it in and out of hαβ in such a way as to make the computational formalism
as simple as possible.

Similarly, we split up the covariant components of the stress-energy tensor in the
following way:

Tαβ = TB
αβ + Tαβ + hµ

(αT
B
β)µ + jµ

(αT
B
β)µ + . . . (5.30a)

[cf. Eq. (5.7b)]. Here, by definition, TB
αβ is the average of Tαβ over several wavelengths

TB
αβ ≡ 〈Tαβ〉 ; (5.30b)

and Tαβ + hµ(αT
B
β)µ + jµ

(αT
B
β)µ + . . . is the fluctuating part, which averages to zero. Our

chosen form (5.30a) of Tαβ amounts to a definition of the stress-energy perturbation field
Tαβ . This specific definition is carefully chosen to make the fluctuating parts of the field
equations [Eqs. (5.33) and (5.34) below] especially simple. We shall meet evidence of that
simplicity in specific calculations with the formalism in Sec. 5.E.

In formulating the mathematics of our shortwave formalism, as in the linear
perturbation theory of Sec. 5.C, we shall treat hαβ , jαβ , Tαβ , and all other quantities
except Tαβ and gαβ , as fields that reside in the background spacetime. Correspondingly,
we shall raise and lower their indices using the background metric gB

αβ .
By a calculation analogous to that of the last section, but one which includes nonlinear

terms as well as linear, one can derive a power-series expansion for the Einstein curvature
tensor Gαβ of the full spacetime:

Gαβ =
GB

αβ

<∼ R−2,L
+
G

(1)
αβ(h)

h¯λ−2, ¯λ
+
G

(2)
αβ(h)

h2¯λ−2, ¯λ
+
G

(1)
αβ(j)

h2¯λ−2, ¯λ
+ . . . . (5.31)

Here, as in Eq. (5.29), we write below each term its magnitude and the lengthscale on
which it varies. The notation has the following meanings: GB

αβ is the Einstein curvature

tensor of the background spacetime, computed from the metric gB
αβ ; G(1)

αβ(h), the piece

that is linear in the radiation field hαβ , is given by expression (5.16); G(1)
αβ(j) is this same

expression, but with hαβ replaced by jαβ ; and G(2)
αβ(h) is the piece that is quadratic in hαβ

[derivable from MTW Eqs. (35.58)].
Following Isaacson (1968a,b), we split the Einstein field equation Gαβ = 8πTαβ ,

through order h2, into three parts: a part which varies on scales L (obtained by averaging
over a few wavelengths)

GB
αβ = −

〈
G

(2)
αβ(h)

〉
+ 8πTB

αβ ; (5.32a)

a part whose individual terms have magnitude h¯λ−2 or smaller, vary on scales ¯λ, and average
to zero on larger scales

G
(1)
αβ(h) = 8π(Tαβ + hµ

(αT
B
β)µ) ; (5.32b)



and a part whose terms have magnitude h2¯λ−2 or smaller, vary on scales ¯λ, and average to
zero on larger scales

G
(1)
αβ(j) = −G(2)

αβ(h) +
〈
G

(2)
αβ(h)

〉
+ 8πjµ

(αT
B
β)µ . (5.32c)

This choice of how to split up the field equations determines the details of the split of the
waves into hαβ +jαβ . Changing the split-up [pulling a piece of Eq. (5.32c) into Eq. (5.32b)]
would shove a piece of jαβ into hαβ . Our specific choice of the split is guided by a desire
to make the first-order equation (5.32b) identical to the linearized equation (5.23), so that
when a weak wave enters a region of rapidly varying curvature L <∼ ¯λ (e.g., when it impinges
on a black hole), our first-order equation continues to be valid.

The first-order equation (5.32b) is a wave equation for the propagation of the first-
order gravitational wave hαβ . By specializing to Lorentz gauge, expressing the background
Ricci tensor in terms of the background Einstein tensor, using Eq. (5.36) below for the
background Einstein tensor, and discarding terms of the form h̄αβT

GW
γδ because they are

cubic in the wave amplitude h (one order smaller than the accuracy of our analysis), we
bring Eq. (5.32b) into the standard linearized form (5.24):

h̄αβ ≡ h̄αβ|µ
µ = −2RB

µανβh̄
µν − 16π(Tαβ − 1/2h̄µνT

µν
B gB

αβ − 1/2h̄TB
αβ + 1/4h̄TBg

B
αβ) .
(5.33)

Much of the rest of this chapter will be devoted to a discussion of this wave equation and
the physical effects associated with it.

In Lorentz gauge and in vacuum, Eq. (5.32c) takes on the form

̄αβ =− 2RB
µανβ ̄

µν + 8π(̄µνT
µν
B gB

αβ + ̄TB
αβ − 1/2̄TBg

B
αβ)

+ 2G(2)
αβ(h)− 2〈G(2)

αβ(h)〉 .
(5.34)

Here ̄αβ ≡ jαβ − 1/2jµµgB
αβ , and ̄ ≡ ̄µ

µ. The terms on the right-hand side involving
G(2)(h), which are quadratic in hαβ , act as a source for the nonlinear corrections jαβ to
hαβ . Thus, this equation describes nonlinear wave-wave coupling (“3-wave coupling” in
the standard jargon of nonlinear physics) analogous to that which occurs in plasma physics
or for electromagnetic waves in a nonlinear medium. We shall discuss the effects of this
wave-wave coupling in Sec. 5.G.e below.

Equation (5.32a) describes the waves’ nonlinear generation of background curvature.
This equation, in fact, is the foundation for Isaacson’s (1968b) description of the energy
and momentum carried by the waves: Isaacson defines the gravitational-wave stress-energy
tensor by

TGW
αβ ≡ − 1

8π
〈
G

(2)
αβ(h)

〉
, (5.35)

and then notes that in terms of this tensor Eq. (5.32a) takes on the same form as the
standard Einstein field equation

GB
αβ = 8π(TB

αβ + TGW
αβ ) . (5.36)



Equation (5.36) shows that the gravitational-wave stress-energy tensor, like any
nongravitational stress-energy tensor, generates spacetime curvature. Isaacson points
out, moreover, that because GB

αβ , like any Einstein tensor, automatically has vanishing
divergence, the sum TB

αβ + TGW
αβ is guaranteed also to have vanishing divergence:

(TB αβ + TGW αβ)|β = 0 . (5.37)
In other words, when averaged over a few wavelengths, the sum of the gravitational-wave
energy-momentum and the nongravitational energy-momentum is conserved. For example,
when a gravitational-wave detector is driven into motion by a passing wave, the detector’s
energy (embodied in TB αβ) goes up, and the wave’s energy (embodied in TGW αβ) goes
down.

A straightforward but tedious calculation (Isaacson, 1968b; Eq. (35.70) of MTW and
associated discussion) gives the following explicit expression for TGW

αβ in an arbitrary gauge:

TGW
αβ =

1
32π

〈
h̄µν|αh̄

µν
|β − 1/2h̄|αh̄|β − h̄µν

|ν h̄µα|β − h̄µν
|ν h̄µβ|α

〉
. (5.38)

Here h̄αβ is the trace-reversed, first-order metric perturbation [Eq. (5.15)]. Note that in
Lorentz gauge the last two terms vanish; and in a nearly Lorentz frame and TT gauge,
because h̄00 = h̄0j = 0 and h̄jk = hGW

jk which is trace free, Eq. (5.38) reduces to

TGW
αβ =

1
32π

〈
hGW

jk,αh
GW
jk,β

〉
. (5.39)

Here there is an implied summation on j and k, which are Cartesian, spatial indices.
When, moreover, the waves propagate in the z-direction of a nearly Lorentz frame so hGW

xx

= −hGW
yy = h+(t− z), hGW

xy = hGW
yx = h×(t− z), this becomes the expression (4.33) that

was discussed in Chap. 4.
Note that the magnitude of the gravitational-wave stress-energy tensor is TGW

αβ ∼
(h/¯λ)2; cf. Eq. (4.34). Since this stress-energy is a source of background curvature through
the averaged Einstein equation GB

αβ = 8π(TB
αβ + TGW

αβ ) [Eq. (5.36)], it must be that
GB

αβ
>∼ (h/¯λ)2. However, because GB

αβ is constructed as a sum of components of the
background Riemann tensor, the largest of which have magnitudes 1/R2, it must be that
GB

αβ
<∼ 1/R2. From these relations and R >∼ L we infer that

h <∼ ¯λ/R <∼ ¯λ/L . (5.40)
Since the very concept of a gravitational wave has meaning only when ¯λ � L, Eq. (5.40)
tells us that gravitational radiation always has a small dimensionless amplitude,

h� 1 . (5.41)

Equation (5.37) is only one portion of the law of conservation of energy-momentum:
the portion obtained by averaging Tαβ

;β = 0 over a few wavelengths. The other portion,
that which fluctuates on scales of order ¯λ and averages to zero, has the linearized form (5.25):

T αµ
|µ = 1/2(h̄µν

|α − h̄α
µ|ν)Tµν

B + 1/2h̄|µT
µα
B − 1/4h̄|αTB . (5.42)

The right side is the force exerted by the waves on the matter or fields through which they
propagate, and the left side is the response of the matter or fields to this gravitational
force.



5.D. Geometric Optics

Turn, next, to the task of solving the wave equation (5.33) for the propagation of h̄αβ

from its source to the earth. As we shall see in Secs. 5.E and 5.F, in the real astrophysical
universe (except near the Planck time) the effects of matter and electromagnetic fields on
the propagating waves are minuscule. This permits us to simplify our analysis by setting
to zero, in the propagation equation (5.33), the nongravitational stress-energies Tαβ and
TB

αβ—a procedure we shall call the vacuum approximation for wave propagation.
The wave equation (5.33) has already been simplified by specializing to Lorentz gauge;

and we shall now simplify it further by an additional specialization of the gauge: It is not
difficult to verify that the gauge will remain Lorentz (h̄αβ

|β = 0 will continue to be satisfied)
if the generator ξα of the gauge change (5.19) satisfies the wave equation ξα = 0. Note,
further, that the trace of the propagation equation (5.33) guarantees (in vacuum) that
h̄ = h̄α

α satisfies the wave equation h̄ = 0. Accordingly, if we choose ξα to be a
solution of the wave equation ξα = 0 such that ξα

|α = 1/2hold = −1/2h̄old, then the
gauge change (5.19) will remove the trace of hαβ . We make this gauge change, thereby
guaranteeing that

h = h̄ = 0 , h̄αβ = hαβ . (5.43)

This permits us to omit bars from hαβ in what follows.
We expect the field hαβ to be a rapidly varying function of the source’s retarded time

τe, and a slowly varying function of all other spacetime coordinates. More specifically, it
should vary in τe on a lengthscale ¯λ (the reduced wavelength of the waves); and all its other
variations should have lengthscales no longer than

D ≡ minimum of L and radius of curvature of wave fronts. (5.44)

Accordingly, we shall seek a solution of the propagation equation which is accurate only
to leading order in the small dimensionless parameter ¯λ/D—in other words, we shall solve
for the propagation using the vacuum, geometric-optics approximation.

As a formal mathematical tool in the solution, we introduce a parameter ε which tells
us at a glance the relative orders of magnitude of various terms: If a specific term is of
order (¯λ/D)n relative to other terms with which it is compared, then we shall prepend to
it a factor εn. However, we shall take the numerical value of ε to be one, thereby allowing
ourselves to drop it when it ceases to be useful. In this spirit, we write the field hαβ in the
form (“geometric optics expansion”)

hαβ = h
[0]
αβ(τe/ε, xµ) + εh

[1]
αβ(τe/ε, xµ) + ε2h

[2]
αβ(τe/ε, xµ) + . . . . (5.45)

The term h
[0]
αβ is the geometric optics approximation to hαβ , and h[1]

αβ , h[2]
αβ , . . . are “post-

geometric-optics corrections”. It will be straightforward to read off our formalism the
equations governing the corrections, but we will focus attention in the end only on the
leading term, h[0]

αβ . Each h[n]
αβ varies in τe on the scale ¯λ and in its argument xµ on the scale

D; i.e., it can be thought of as varying on scales of order unity in both τe/¯λ and xµ/D—
which means that by comparison with xµ, the τe in the functional form requires a factor



ε−1. That is why we write the functional form as h[n]
αβ(τe/ε, xµ). Because of this functional

form, we write the covariant derivative (gradient) of h[n]
αβ as

h
[n]
αβ|µ = −ε−1ḣ

[n]
αβkµ + h

[n]
αβ|µ′ . (5.46)

Here the dot denotes a derivative with respect to τe

ḣαβ ≡
(
∂hαβ

∂τe

)
xµ

; (5.47a)

kµ is the negative of the gradient of τe

kµ ≡ −τe|µ ; (5.47b)

and the prime on the last µ index indicates that the covariant derivative is to be taken
holding τe constant.

This notation makes straightforward the geometric-optics expansion of the propaga-
tion equation (5.33), the Lorentz gauge condition (5.20), and our auxiliary gauge condi-
tion (5.43). The result of those expansions is:

ε−2ḧ
[0]
αβkµk

µ + ε−1(−2ḣ[0]
αβ|µ′k

µ − ḣ
[0]
αβk

µ
|µ + ḧ

[1]
αβkµk

µ) + ε0(2RB
µανβh

[0] µν

+ h
[0]
αβ|µ′

|µ′

− 2ḣ[1]
αβ|µ′k

µ − ḣ
[1]
αβk

µ
|µ + ḧαβ[2]

kµk
µ) + O(ε) = 0 ; (5.48a)

− ε−1ḣ
[0]
αβk

β + ε0(h[0]
αβ

|β′

− ḣ
[1]
αβk

β) + O(ε) = 0 ; (5.48b)

h[0]
α

α
+ εh[1]

α

α
+ ε2h[2]

α

α
+ O(ε3) = 0 . (5.48c)

By equating to zero the leading two orders in (5.48a) and the leading order in (5.43b,c),
we obtain the geometric-optics equations that govern h[0]

αβ :

kµk
µ = 0 , h

[0]
αβ|µ′k

µ = −1/2kµ
|µh

[0]
αβ , h

[0]
αβk

β = 0 , h[0]
α

α
= 0 . (5.49)

The higher-order terms in (5.48) govern the post-geometric-optics corrections to the
propagation.

The first of Eqs. (5.49) tells us that the wave vector k = −∇τe is null, as it surely
should be since we chose τe to be retarded time. By taking the gradient of kµk

µ = 0,
then noting that kµ|ν = −τe|µν

= −τe|νµ
= kν|µ, we deduce that kν|µ

|µ = 0. Thus, the
wave vector is the tangent vector to a null geodesic. That null geodesic is a ray of the
propagating waves.

The second of Eqs. (5.49) tells us how the field h
[0]
αβ propagates along its rays. Note

that, because τe is constant along any ray, we do not need the prime on the gradient in this
propagation equation: with or without the prime, the left-hand side of the propagation
equation is sensitive only to the changes in hαβ that hold τe constant.



The third of Eqs. (5.49) tells us that the field h
[0]
αβ is orthogonal to its wave vector;

and the fourth tells us it is trace-free.
Henceforth we shall ignore all post-geometric-optics corrections, and shall use h[0]

αβ as
a high-accuracy approximation to hαβ . Accordingly, we shall rewrite the equations (5.49)
governing it as

kµk
µ = 0 , kν|µk

µ = 0 , (5.50a)

hαβk
β = 0 , hα

α = 0 , (5.50b)
hαβ|µk

µ = −1/2kµ
|µhαβ . (5.50c)

Notice that the curvature-coupling term RB
µανβh

µν , which appeared in the original
propagation equation (5.33), is gone in the geometric-optics limit. It shows up only as a
post-geometric-optics correction [the O(ε0) part of Eq. (5.48a), where the coupling of h[0]

αβ

to the curvature helps generate the tiny correction h[1]
αβ ]. Because that curvature coupling

is gone, in the geometric-optics limit hαβ satisfies the wave equation hαβ = 0; and because
the waves’ Riemann tensor is a linear sum of gradients of hαβ [Eq. (5.13)], it also satisfies
the wave equation:

RGW
αβγδ = 0 . (5.51)

This is the propagation equation (4.5) which was derived in a very different manner in
Sec. 4.A and was used as the foundation for the description of gravitational radiation in
Chap. 4. Note, further, that in the geometric-optics approximation the waves’ Riemann
tensor (5.13) takes the form

RGW
αβγδ = 1/2(ḧαδkβkγ + ḧβγkαkδ − ḧαγkβkδ) . (5.52)

This is identical in form to expression (4.27), except that here the field used is the
geometric-optics approximation to the trace-free, Lorentz-gauge metric perturbation hαβ ,
while in Chap. 4 the field used was the “gravitational-wave field” hGW

αβ . Recall that in
Chap. 4 there was a separate gravitational-wave field hGW

αβ associated with each nearly
Lorentz reference frame, but that all those fields, when inserted into (5.52), produced the
same frame-invariant Riemann tensor. In fact, in any specific small region of spacetime,
one can adjust hαβ to be the same as the hGW

αβ of any desired nearly Lorentz frame there
by a gauge change with a generator that has the geometric-optics form

ξα = ξα(τe/ε, xµ) , where ξαkα = 0 and ξα|µkµ = 0 . (5.53)

This gauge change, in fact, has precisely the same effect as the transverse-traceless
projection process introduced in Eq. (4.50). Correspondingly, in the chosen nearly Lorentz
frame the gravitational-wave field is

hGW
jk = (hjk)TT , (5.54)

where the superscript TT means “perform the TT projection process of Eq. (4.50)”.



We are ready, now, to make contact with the vacuum, geometric-optics propagation
laws presented in Sec. 5.A: The field (5.2i) constructed there is the solution hαβ of the
equations of propagation (5.50). To verify this is straightforward, except for one detail:
it is necessary to know that the cross sectional area ∆A of a bundle of rays obeys the
differential equation

∆A|µk
µ = kµ

|µ∆A . (5.55)

This is proved, for example, in Exercise 22.13 of MTW.
Finally, we note that for this geometric-optics solution (5.2i) to the propagation

equations, Isaacson’s gravitational-wave stress-energy tensor (5.38) reduces to

TGW
αβ =

1
16π

〈
(ḣ+)2 + (ḣ×)2

〉
kαkβ =

1
16πr2

〈
(Q̇+)2 + (Q̇×)2

〉
kαkβ , (5.56)

in accord with an assertion made in Chap. 4 [Eq. (4.32)].

5.E. Interaction with Matter

In developing the geometric optics formalism for gravitational-wave propagation, we
ignored the coupling of the waves to the matter and nongravitational fields through which
they propagate; i.e., we introduced the “vacuum approximation”. In this section we shall
study the coupling to matter, and in the next section, the coupling to electromagnetic
fields. These studies will show that the vacuum approximation is highly accurate in the
real astrophysical universe: the coupling to matter and electromagnetic fields can change
only slightly the properties of the propagating waves. The sole exception is for waves
emerging from the Planck era of the big bang. Near the Planck era, individual elementary
particles and gravitons were so energetic that they could interact significantly (Sec. 7.2 of
Zel’dovich and Novikov, 1983).

When gravitational waves pass through matter, they can be absorbed and scattered,
and can develop dispersion (frequency-dependent propagation speeds). In this section we
shall study absorption and dispersion, and shall describe and give references for scattering.

In our studies of absorption and dispersion, initially we shall confine attention to
matter which, before the waves arrive, is static and has isotropic stresses and self-gravity
that is negligible on lengthscales somewhat larger than the waves’ reduced wavelength.
More specifically, we shall assume that in the region of spacetime we are studying there
exists a local Lorentz frame of gB

αβ with size D � ¯λ in which

T 00
B = ρB , T 0j

B = 0 , T jk
B = pBδ

ij , (5.57)

with ρB (the density) and pB (the pressure) independent of time t = x0 but possibly
dependent on xj ; and we shall insist that throughout this frame the gravitational
interactions of the matter are negligible. By “negligible interactions” I mean that (i) gB

αβ

can be approximated by ηαβ , and (ii) when the matter is perturbed on scales <∼ D, the
gravitational influence of one element of matter on any other can be ignored. This rules out,
for example, using our analysis to study the coupling of gravitational waves to quadrupolar



normal modes of the earth; but it permits a study of coupling to short-wavelength sound
waves inside the earth, to the quadrupolar modes of resonant-bar gravitational-wave
detectors, and to primordial plasma in the early universe. Note that our local Lorentz
frame must always be small compared with the background radius of curvature, D � R,
since one can never approximate gB

αβ by ηαβ on scales of order R.
Specific examples that we shall study are a homogeneous perfect fluid (subsection a

below), a homogeneous viscous fluid (subsection b), an inhomogeneous elastic medium,
e.g., the earth (subsection c), a medium made of a large number of quadrupolar oscillators
(subsection d), and a plasma (subsection e).

We presume that gravitational waves propagate into our local Lorentz frame from very
far away, and thus are plane fronted on the scale of our frame. To simplify our calculations,
we shall describe the waves in a gauge that is TT as the waves enter our frame. Since, as
we shall see, interaction with the matter has only a tiny effect on the waves, on the right-
hand side of the wave equation (5.33) we can treat the waves as having the undisturbed
TT form

h̄00 = h̄0j = 0, h̄jk = hGW
jk (t− njx

j) . (5.58a)

Here nj is a unit vector in the propagation direction, and hGW
jk is the transverse-traceless

gravitational-wave field
hGW

jk nk = 0 , hGW
jk δjk = 0 . (5.58b)

This form of h̄αβ has h̄ = 0, and when contracted into the background stress-energy
tensor (5.57) it gives h̄αβT

αβ
B = 0, thereby bringing the wave equation (5.33) into the form

h̄αβ + 2RB
µανβh̄

µν = −16πTαβ . (5.59)

[Our original definition (5.7) of Tαβ was carefully crafted so that it alone would remain on
the right-hand side of (5.59). If we had used the more naive definition Tαβ = Tαβ − TB

αβ ,
then the right-hand side of (5.59) would have contained an additional term 16πpBh̄

αβ ,
thereby complicating our calculations but, of course, not changing their final physical
conclusions.]

Notice that in (5.59) only the TT part of Tαβ can contribute to the physically
measurable waves. All other parts (e.g., T00 and Tjkn

k) produce changes in h̄αβ that
are pure gauge, i.e., that contribute nothing to the waves’ Riemann tensor and thus can
be removed by a gauge transformation.

In the equation of motion (5.42) for the matter, as on the right-hand side of the wave
equation, we can use the undisturbed wave field (5.58). When Eqs. (5.58) and (5.57) are
inserted into Eq. (5.42), all terms on the right-hand side are found to vanish, leaving only

T αµ
|µ = 0 . (5.60)

At first sight one might think that this equation of motion implies the waves have no
influence at all on the matter. On the contrary, as we shall see, there is a coupling of
waves and matter embodied in T αβ and hence in (5.60). Equation (5.60) governs the



dynamical response of the matter to that coupling, and (5.59) governs the response of the
waves.

Although Eqs. (5.59) and (5.60) are valid only in a local Lorentz frame of size D � R,
they can be used to study wave propagation on scales >∼ R: All one need do is string a
series of local Lorentz frames together along the route of the waves, and as the waves enter
each frame transform them to that frame’s TT gauge.

To make these remarks more concrete and to get physical insight into wave-matter
coupling, we shall now study several specific situations.

a. Homogeneous perfect fluid

The coupling of gravitational waves to a homogeneous, perfect fluid has been studied
by a number of researchers over the years. The analysis which I like most is that of Gayer
and Kennel (1979). The following calculation is patterned on it.

For a homogeneous perfect fluid, the stress-energy tensor in the full spacetime has the
general form

Tαβ = (ρ+ p)uαuβ + pgαβ (5.61)

(see, e.g., Sec. 22.3 of MTW). Here uα is the fluid 4-velocity, and ρ and p are the density
and pressure as measured in the fluid’s local rest frame. Our background stress-energy
tensor (5.57) has this form with u0

B = 1 and uj
B = 0. Suppose that the fluid is perturbed

slightly, so that a particle originally at location xj gets moved to coordinate location
xj +ξj . This displacement produces a fractional increase in fluid volume δV/V = ξj

|j ; and
correspondingly (by energy conservation), the density changes by δρ = −(ρB + pB)ξj

|j ,
and the pressure changes by δp = −Kξj

|j , where K is the fluid’s bulk modulus. The time-
dependent displacement ξj also produces a first-order change δu0 = 0, δuj = ξ̇j in the
4-velocity, where the dot denotes ∂/∂t. These perturbations, together with δgαβ = −hαβ ,
all contribite to the stress-energy perturbation

Tαβ − Tαβ
B = (δρ+ δp)uα

Bu
β
B + 2(ρB + pB)u(αδuβ) + δpgαβ

B − phαβa . (5.62)

Our definition (5.7a) of T αβ has been carefully crafted so that the wave-dependent term
−phαβa will drop out of it. More specifically, by combining Eqs. (5.62) and (5.7a) and
inserting the above values of δρ, δp, and δuα, we obtain

T 00 = −(ρB + pB +K)ξi
|i , T 0j = (ρB + pB)ξ̇j , T jk = −Kξi

|iδ
jk . (5.63)

Notice that nowhere at all in this T αβ is there any gravitational-wave field h̄αβ , and
recall that there is no explicit appearance of the wave field in the fluid’s equation of
motion (5.60). Correspondingly, as Gayer and Kennel (1979) conclude (see also p. 420 of
Grishchuk and Polnarev, 1980 and references therein; XXXXXXX), a gravitational wave
cannot couple to a homogeneous, perfect fluid . This is true in two senses: (i) When
a wave hits the fluid, it leaves ξi = 0 and T αβ = 0; and correspondingly, the wave
propagates through the fluid in accord with the standard, vacuum propagation equation



h̄αβ + 2Rµανβh̄
µν = 0. (ii) When sound waves, governed by T αµ

|µ = 0, propagate
through the fluid, they carry a nonzero Tαβ [Eq. (5.63)] whose spatial part (at first order
in the fluid displacement) is a pure trace. Correspondingly, they generate via (5.59), a h̄αβ

wave whose spatial part is pure trace, and hence is pure gauge: it can be removed by a
subsequent gauge transformation. In other words, pressure waves in a homogeneous perfect
fluid cannot radiate gravitational radiation, at first order in the fluid displacement. [KIP:
HOW ABOUT HIGHER ORDERS? I THINK IT IS REPUTED TO VANISH THERE
ALSO.]

b. Homogeneous, viscous fluid

If our homogeneous fluid has shear viscosity as well as pressure and density, then its
full stress-energy tensor (5.61) is augmented by −2ησαβ , where η is the coefficient of shear
viscosity and σαβ is the fluid’s rate of shear (the symmetric, trace-removed part of the
gradient of the 4-velocity, projected orthogonal to the 4-velocity); see, e.g., Exercise 22.6
of MTW. For the unperturbed fluid, with 4-velocity u0

B = 1 and uj
B = 0, the shear vanishes

and the stress-energy tensor Tαβ
B has the form (5.57) considered above. However, when the

fluid undergoes the displacement ξj and a gravitational wave of the form (5.58) is passing,
the fluid experiences a rate of shear

σ00 = σ0j = 0 , σjk = ξ(j|k) − 1/3ξi
|iδjk + 1/2ḣGW

jk . (5.64)

(The term 1/2ḣGW
jk arises from a connection coefficient Γ0

jk in the computation of the
gradient of the 4-velocity.) Correspondingly, the stress-energy perturbation Tαβ has the
standard form for a slightly perturbed viscous fluid in flat spacetime, augmented by the
coupling term

δTjk = −ηḣGW
jk . (5.65)

This term has a nonzero TT part. Thus, it produces a genuine coupling of the fluid to the
gravitational waves.

The influence of this term on the waves can be studied by inserting it onto the right-
hand side of the wave equation (5.59), taking the TT part of that wave equation so as to
get rid of all extraneous, pure-gauge parts, and dropping the tiny curvature-coupling term
(which we shall study in Sec. 5.G below). The result is

hGW
jk = 16πηḣGW

jk . (5.66)

A straightforward solution shows that the time-derivative term on the right-hand side
produces a damping of the waves: The amplitude of the waves dies out as exp(−l/2latten),
and the energy dies out as exp(−l/latten), where l is the distance travelled and latten is the
energy attenuation length

latten =
1

32πη
. (5.67)



By restoring the factors of G and c, i.e., converting to cgs units via Eqs. (4.3), we bring
this attenuation length into the form

latten =
c6/G

32πη
= (4.2× 1018 lt yr)

(
1 poise
η

)
. (5.67′)

When we recall that 1 poise is 1 dyne cm sec−2, and that the viscosity of water is about
0.01 poise, we recognize that the gravitational waves’ viscosity-induced attenuation length
is exceedingly long.

Where does the gravitational waves’ energy go? Into the fluid, of course. The wave-
induced rate of shear, σjk = 1/2ḣGW

jk , working against the viscosity, produces heat, thereby
increasing the background energy density of the fluid at a rate ∂ρB/∂t = 2ησjkσ

jk (MTW,
Exercise 22.7). This rate of heating is precisely equal to the rate of loss of gravitational-
wave energy,

∂ρB

∂t
= −T 0j

GW|j =
T 0j

GWnj

latten
, (5.68)

as one can readily verify using expression (4.33) for the gravitational-wave energy flux and
expression (5.67) for the waves’ attenuation length. Notice, moreover, that this energy-
balance relation (5.68) is just the general law of energy-momentum conservation (5.37),
specialized to the present situation.

In order to estimate the magnitude of the attenuation length (5.67), we must consider
the microscopic, particulate nature of the fluid. If the fluid is made of particles that move
with mean speed v and that scatter off each other after traveling, on average, a mean free
path s� ¯λ =(inhomogeneity scale of the perturbed fluid), then kinetic theory dictates that
η ∼ ρBvs; see, e.g., XXXX. If s >∼ ¯λ, the diffusion approximation which underlies the theory
of viscous fluids breaks down, but one can show that the above formula for viscous heating
remains valid in order of magnitude if we set η ∼ ρBvs(¯λ/s)2. These expressions for the
viscosity η, together with the fact that the fluid produces a background radius of curvature
R ∼ 1/(Riemann tensor due to fluid)1/2 ∼ 1/(Einstein tensor due to fluid)1/2 ∼ 1/(energy
density ρB due to fluid)1/2, implies that

latten
R

∼ R
¯λ
1
v

max
(

¯λ
s

s

¯λ

)
. (5.69)

The magnitudes of the terms on the right-hand side are R/¯λ� 1 by virtue of the definition
of a gravitational wave, 1/v ≥ 1 since the fluid’s particles cannot travel faster than light,
and max(¯λ/s, s/¯λ) >∼ 1. Consequently, the attenuation length is always much larger than
the background radius of curvature of spacetime R produced by the fluid. Since the size
of the fluid cannot exceed by much the radius of curvature R (when it reaches a size a
bit larger than R, it curls space up into closure around itself), this means that no viscous
fluid can produce significant attenuation of gravitational radiation.

For more detailed treatments of the interaction between a viscous fluid and gravi-
tational waves see, e.g., Esposito (1971a,b), Papadopoulos and Esposito (1985), Szekeres
(1971), Sec. 4.2 of Grishchuk and Polnarev (1980) [KIP: CHECK THESE REFERENCES].



c. Inhomogeneous, elastic medium

For an inhomogeneous, elastic medium (e.g., a resonant-bar gravitational-wave
detector), the background stress-energy tensor Tαβ

B has the standard form (5.57), and
the stress-energy perturbation T αβ is that of a perfect fluid (5.61), augmented by a shear
restoring force

δT αβ = −2µΣαβ , (5.70a)

where µ is the shear modulus and Σαβ is the shear (the time integral of the rate of shear
σαβ . By time integrating expression (5.64) we obtain

Σ00 = Σ0j = 0 , Σjk = Σξ
jk + 1/2hGW

jk , (5.70b)

where Σξ
jk is the part of the shear produced by the displacement ξi

Σξ
jk = ξ(j|k) − 1/3ξi

|iδjk . (5.70c)

By augmenting (5.70) onto the Tαβ of Eq. (5.63) and then inserting that T αβ into the
equation of motion (5.60) and specializing to the nearly Newtonian regime pB � ρB,
K � ρB, we obtain

ρBξ̈j − (Kξi
|i)|j − 2(µΣξ

jk)|k = µ|khGW
jk . (5.71)

This is the standard equation of motion for a slightly perturbed, inhomogeneous,
nonrelativistic elastic medium, augmented by the gravitational-wave driving term µ|khGW

jk .
This equation was first derived by Dyson (1969) and was subsequently generalized and
studied in more elegant ways by Carter and Quintana (1977) and Carter (1983). Notice
that the waves drive the medium only through inhomogeneities of its shear modulus.

For an elastic body that is small compared to ¯λ (e.g., a resonant-bar gravitational-wave
detector), one can study the waves’ influence using the TT-gauge equation of motion (5.71),
or one can study it in the body’s proper reference frame, where the full metric gαβ =
gB

αβ + hαβ has the form (4.39). In the proper reference frame, the body’s equation of
motion will be the same as (5.71) but with the driving term µ|khGW

jk replaced by the
standard gravitational-wave driving term −1/2ρBḧ

GW
jk xk [Eqs. (4.12) and (4.15)]. The

two driving terms look completely different, and they give different displacement functions
ξj . The reason is that the spatial coordinates of the TT gauge wiggle dynamically relative
to those of the proper reference frame, thereby producing

ξTT
j = ξPRF

j − 1/2hGW
jk xk . (5.72)

If one wants to be able to rely on ordinary physical intuition, one should use spatial
coordinates that are as rigid as possible: proper reference-frame coordinates. However,
if one wants only to solve the equations of motion of the medium without refering to
elementary physical intuition, one is free to use either approach, proper-reference-frame
or TT. If the medium is large compared to a reduced wavelength (e.g., for studies of
the interaction of kilohertz waves with the earth’s crust), one is stuck: only the TT



analysis [Eq. (5.71)] is valid. The proper-reference-frame analysis fails. See the discussion
in Sec. 4.F.

Turn attention from the influence of the waves on the medium to the influence of
a homogeneous, elastic medium on the waves. The shear stress Tjk = −µhGW

jk , acting
back on the waves, produces dispersion; in addition, if there is viscosity, it will give rise
to a shear stress Tjk = −ηḣGW

jk [Eq. (5.65)] that damps the waves. We can see this
quantitatively with the help of the waves’ propagation equation (5.59). By (i) inserting
into that propagation equation the above elastic and viscous contributions to Tjk along
with the fluid contributions (5.63), (ii) taking the transverse-traceless part of the resulting
equation [in accord with the paragraph following Eq. (5.59)], and (iii) ignoring the tiny
curvature-coupling term, we obtain

hGW
jk = 16π(µhGW

jk + ηḣGW
jk ) . (5.73)

For waves with the sinusoidal form hGW
jk ∝ ei(kz−ωt), Eq. (5.73) gives the dispersion relation

ω2 = k2 + 16π(µ− iωη) . (5.74)
Since, as we shall see, 16π|µ− iωη| is always extremely small compared to ω2 ∼= k2 = 1/¯λ2,
this dispersion relation corresponds to (i) an attenuation of the waves with an energy
attenuation length the same as for a viscous fluid [Eq. (5.67)]

latten =
1

32πη
, (5.75)

and (ii) propagation with phase velocity vph = ω/k and group velocity vgp = ∂ω/∂k given
by

vph = 1 + 8πµ¯λ2 , vgp = 1− 8πµ¯λ2 . (5.76)

Ordinary solid bodies have η ∼ 103 g cm−1 sec−1 and µ ∼ 1010 dyne cm−2 which,
by virtue of c = 3 × 1010 cm sec−2 = 1 and G/c2 = 0.7 × 10−28 cm/g = 1, is the
same as η ∼ 10−36 cm−1 and µ ∼ 10−39 cm−2. Correspondingly, when propagating
through an ordinary solid such as the earth, the gravitational waves’ attenuation length
is latten ∼ 1034 cm ∼ 106 Hubble distances; and their phase and group velocities differ
from the speed of light by fractional amounts ∼ 10−24(¯λ/100 km)2. Thus, kilohertz-frequency
gravitational waves would have to propagate through earth-type matter a distance ldisp ∼
1024¯λ ∼ 1031 cm ∼ 103 Hubble distances in order for dispersion to cause their phase to slip
by just one radian.

More generally, because the velocity of propagation of shear waves in any elastic
medium is '

√
µ/ρB and cannot exceed light speed, it should always be true that µ <∼ ρB

∼ 1/R2. This means that gravitational waves in any elastic medium will have their phase
shifted by one radian due to dispersion only after traveling a distance

ldisp ∼
1
µ¯λ
>∼ R

R
¯λ
. (5.77)

Since the medium cannot be much larger than R, and since gravitational radiation by
definition must have ¯λ/R � 1, dispersion in an elastic medium can never produce a slippage
of phase by even one radian. Similarly, as was shown in Eq. (5.69), attenuation can never
be significant in an elastic medium.



d. Medium made of quadrupolar oscillators

Turn, next, to the attenuation of gravitational radiation by that type of medium which,
so far as I am aware, is the most effective of all realistic media for absorbing gravitational
radiation: a medium made of a large number of “quadrupolar oscillators” with internal
damping. By “quadrupolar oscillator”, I mean a solid body with size L <∼ ¯λ and with a
normal mode of oscillation that has a quadrupolar shape. Examples include resonant-bar
gravitational-wave detectors, planets like the earth, stars like the sun, neutron stars, and
black holes.

We can estimate the attenuation length in such a medium as latten = 1/nσ, where σ
(not to be confused with the rate of shear of a fluid) is the cross section for an individual
oscillator to absorb gravitational-wave energy and n is the number density of oscillators.
To evaluate the cross section σ we compute the response of an oscillator to a passing,
monochromatic gravitational wave. That response, in the oscillator’s proper reference
frame (not in TT gauge), is governed by the equation

d2δL

dt2
+

1
τ∗

dδL

dt
+ ωo

2δL ' L
d2h+

dt2
; (5.78)

cf. Exercise 37.10 of MTW. Here δL is the generalized coordinate of the oscillator’s
quadrupolar normal mode, so normalized as to be equal to the physical displacement of
a representative piece of the oscillator’s surface, and h+ is the gravitational-wave field
evaluated at the oscillator’s location. (Since the oscillator is smaller than a reduced
wavelength of the waves, L <∼ ¯λ, spatial variations of h+ are unimportant inside the
oscillator.) The left-hand side of (5.78) is the standard harmonic-oscillator equation for the
normal mode’s generalized coordinate, and the right-hand side is an order-of magnitude
estimate of the gravitational-wave driving force, based on Eqs. (4.12), (4.16) and (4.25).
The parameter ωo is the eigenfrequency of the normal mode, τ∗ is its damping time, L is
the oscillator’s linear size, and below we shall denote by M the oscillator’s mass and by
Q ≡ ωoτ∗/π the normal mode’s “quality factor”.

The approximate equation of motion (5.78) and the order-of-magnitude analysis that
follows are valid for bodies with strong self-gravity (e.g., neutron stars and black holes) as
well as weak (the earth or a resonant-bar gravitational-wave detector).

By setting h+ = he−iωt (where ω = 1/¯λ is the wave’s angular frequency and h is
its amplitude), solving (5.78) for δL, then computing the energy of oscillation Eosc ∼
1/2Mωo

2× (amplitude of δL)2, and then multiplying by 1/τ∗, we obtain the rate that
energy is fed into internal damping of the oscillator—a rate which, in this steady-state
situation, must equal the power absorbed by the oscillator from the gravitational wave,
Pabs. By equating this Pabs to the product of the cross section σ and the waves’ energy
flux (1/16π)ω2h2 [Eq. (4.34)], we obtain the following expression for the oscillator’s cross
section

σ(ω) ∼ ML2ω2/τ∗
ω2 − ωo

2 + (2τ∗)2
. (5.79)

We shall return to the frequency dependence of this expression in Chap. 10, when discussing
gravitational-wave detectors. For now, in order to put an upper limit on the effects of



absorption, we shall suppose that the waves are precisely on resonance, ω = ωo. Then σ
achieves its maximum value of

σmax ∼
M

L

L

¯λ
QL2 , (5.80)

and the attenuation length achieves its minimum possible value, latten = 1/nσmax.
Expressed in terms of the radius of curvature of the background spacetime produced by
the attenuating oscillators, R ∼ 1/ρ1/2 = (1/nM)1/2, this works out to be

latten
R

∼ R
¯λ

(
¯λ
L

)2 1
Q
. (5.81)

The first term, R/¯λ, is � 1 by the definition of a gravitational wave. The second term,
(¯λ/L)2, is equal to the speed of light divided by the velocity of sound inside the oscillating
body, squared, and thus is always >∼ 1. [For a black hole (¯λ/L)2 ∼ 1, for a neutron star
(¯λ/L)2 ∼ 10, for a white dwarf (¯λ/L)2 ∼ 104, for normal stars like the sun (¯λ/L)2 ∼ 106, for
the earth or a resonant-bar gravitational-wave detector (¯λ/L)2 ∼ 1010.] By contrast, the
third term, 1/Q, is generally � 1. However, for realistic astrophysical situations 1/Q is
never sufficiently small to make up for the large product of the first two terms. Moreoever,
when the resonant angular frequencies of the many oscillators are spread out randomly
over a band ∆ωo ∼ ωo, only a fraction ∼ 1/Q of the oscillators will be near enough
resonance to have σ ∼ σmax; and correspondingly the factor 1/Q in (5.81) will be replaced
by unity. Thus, although, in principle, gravitational waves could be attenuated significantly
by a medium of quadrupolar oscillators, in realistic situations the attenuation length greatly
exceeds the radius of curvature R produced by the oscillators; and thus, as in the case of a
viscous medium, attenuation cannot be astrophysically important .

A simple extension of this argument shows that dispersion also cannot be significant:
the total phase shift, due to dispersion, in traveling the distance R through a realistic
astrophysical medium is generally � 1; see Sec. 2.4.3 of Thorne (1983). It is instructive
and fun, however, to imagine and study theoretically an unrealistic form of matter
(“respondium”) with such strong dispersion that it actually reflects gravitational waves
(Press 1979).

The specific problem of the absorption and scattering of gravitational waves by black
holes has been studied in extensive detail. Those studies reveal a great richness of scattering
phenomena (superradiant scattering, “glories”, rotation of the waves’ polarization, . . .); see
De Logi and Kovacs (1977), Matzner and Ryan (1978), Matzner et al . (1985), Futterman,
Handler, and Matzner (1988), and references therein. For studies of absorption and
scattering by neutron stars and other stars see Linet (1984). For a study of how the energy
levels of atoms are shifted by the tidal gravity of passing gravitational waves [fractional
shifts no larger than h× (size of atom)2/¯λ2, which is almost certainly too small in the real
universe to be measurable], see Leen, Parker, and Pimentel (1983).

e. Plasmas

The most astrophysically ubiquitous of all media is a magnetized plasma. Careful
studies of the propagation of gravitational waves through plasmas are only now in process



(Ehlers, Prasanna, and Breuer, 1986; Bondi and Pirani, 1988), and there are no definitive
results at this writing, with one exeption: Gayer and Kennel (1979), and Grishchuk and
Polnarev (1980, p. 420 – KIP: CHECK) have shown that in an unmagnetized plasma, as in
the media studied above, dispersion is so extremely small that there is no hope for particles
with mass to “ride along with the crests” of a gravitational wave and produce Landau
damping. Landau damping of gravitational radiation in a plasma is totally negligible.
This result, and intuition built up from the above calculations for other media, make
me rather confident that a magnetized plasma cannot have any significant influence on
gravitational waves that propagate through it. Nevertheless, there are likely to be a number
of fascinating but tiny effects of the waves on the plasma and the plasma on the waves.

5.F. Interaction with Electromagnetic Fields

Turn attention from propagation of gravitational waves through matter, to propaga-
tion through electromagnetic fields.

Because gravitational and electromagnetic waves should propagate with the same
speed, they can interact in a coherent way (Gertsenshtein, 1962). The interaction is so
weak, however, that a substantial transformation of one into the other requires propagation
over a distance of order the radius of curvature R of the background spacetime which their
own energy density produces. Thus, such coherent interaction is not likely ever to be
important in the real universe—except possibly in gravity-wave detectors; see Sec. 12.A
below. For a review of the extensive literature on this subject see Grishchuk and Polnarev
(1980). For a brief pedagogical discussion see Sec. 17.9 of Zel’dovich and Novikov (1983).

The situation in which one might have expected the strongest resonant interaction is
for electromagnetic and gravitational waves propagating parallel to each other through
an otherwise empty spacetime. Remarkably, in this situation there is no interaction
whatsoever (Braginsky and Grishchuk, 1977 KIP: LEONYA CLAIMS THIS PAPER DOES
NOT EXIST AND SAYS TO CITE BRAGINSKY ET AL 1973; Grishchuk, 1977b – KIP:
LEONYA SAYS THIS REFERENCE IS NOT NECESSARY). It is easy to see why, for
the special issue of whether the stress-energy tensor of a propagating electromagnetic wave
generates a gravitational wave propagating along with it. That stress-energy tensor, in a
local Lorentz frame of the background metric, has the form

T 00 = T 0z = T z0 = T zz =
Eo

2

4π
cos2 ω(t− z) , (5.82)

where Eo is the amplitude of oscillation of the electric field and the wave is presumed to
be plane polarized and to propagate in the z-direction. The oscillatory part of Tµν , which
one might expect to generate gravitational waves, is

T 00 = T 0z = T z0 = T zz =
Eo

2

8π
cos 2ω(t− z) . (5.83)

When fed into the wave equation (5.33) (with the coupling of h̄αβ to the background fields
RB

αβγδ and TB
αβ ≡ 〈Tαβ〉 ignored because it can be important only over the extremely



long lengthscale R), this T αβ produces a trace-reversed metric perturbation h̄αβ that
propagates along with the electromagnetic waves at the speed of light, growing linearly
with the distance traveled. However, this h̄αβ , like the Tαβ that generates it, is purely
longitudinal; i.e., it has 00, 0z, z0, and zz components but no components in transverse
directions. This implies that this wavelike h̄αβ is “pure gauge”: it can be transformed
to zero by a change of gauge, as one can see most easily by noting that its transverse-
traceless projection (4.50) vanishes and therefore that it is associated with a vanishing
gravitational-wave field hGW

jk .
To achieve a resonant interaction between parallely propagating electromagnetic and

gravitational waves, one can send them through a time-independent (“DC”) electric or
magnetic field (Gertsenshtein, 1962). As a simple example, let a pure electromagnetic
wave, with electric field E = Eo cosω(t − z)ex, propagate from vacuum at z<0 into a
region of homogeneous, DC field E = EDCex at z>0; and assume that EDC � Eo. Then
the beating of the wave’s electric field against the DC field produces an oscillating stress-
energy tensor which has (among others) the transverse components

Txx = −Tyy =
EDCEo

4π
cosω(t− z) for z>0 . (5.84)

Fed into the wave equation (5.33) (with background-coupling effects neglected as above),
these Tαβ generate a trace-reversed metric perturbation

h̄xx = −h̄yy =
2EDCEo

ω
z sinω(t− z) for z>0 . (5.85)

The TT projection of this h̄αβ [Eq. (4.50)] gives a gravitational-wave field

h+ =
2EDCEo

ω
z sinω(t− z) , h× = 0 for z>0 . (5.86)

The amplitude of this wave grows linearly with the distance z travelled, and correspond-
ingly its energy density grows quadratically. It is easy to verify that the ratio of the energy
in the growing gravitational wave to that in the original electromagnetic wave is of order
(z/R)2, where R is the background radius of curvature produced by the DC field. By
virtue of total energy conservation, there is a back-action on the electromagnetic wave
which saps energy from it as the gravitational wave grows. A detailed analysis (XXXXX)
shows that, once all the wave energy has been fed into the gravitational wave, the beating
of that gravitational wave against the DC field begins to regenerate the electromagnetic
wave. The wave energy thereafter sloshes back and forth between electromagnetic and
gravitational waves, with a sloshing lengthscale of order R. [KIP: SEE GRISHCHUK’S
REFS. PRIVATELY HE SAYS ZEL’DOVICH JETP 65, 1311 (1973), SOV PHYS JETP
38, 652 (1974); ALSO GERLACH PRL 32, 1023 (1974)]

Because the background field cannot have a longitudinal extent much larger than R
(see above), the sloshing cannot continue for more than a few cycles. And, for realistic
laboratory or astrophysical parameters, there cannot be any sloshing at all; there is only
a fractionally tiny interconversion of one wave type into the other.



A specific, well-studied example of the above process is the interconversion of
gravitational and electromagnetic waves as they propagate near an electrically charged
black hole (XXXXXX). Another cute application is a proof that in principle (though
never in practice) this interconversion, plus interaction of the electromagnetic waves with
thermal matter, can be used to thermalize initially nonthermal gravitational radiation
(Garfinkle and Wald, 1985). A third application is to gravitational-wave detectors in
which a strong, DC field (e.g., the electric field in a parallel-plate capacitor) is driven
by incoming gravitational waves to produce a tiny amount of electromagnetic radiation
(Braginsky et al ., 1973; Sec. 12.A, below).

Interactions between gravitational and electromagnetic waves can be catalyzed not
only by a background, DC electromagnetic field, but also in other ways: (i) Parallely
propagating electromagnetic and gravitational waves can be coupled by a dielectric
medium, but the coupling is proportional to n − 1 where n is the dielectric’s index
of refraction, and the coupling is so weak that it probably is of no practical interest
(Grigor’ev, 1982). (ii) When electromagnetic and gravitational waves propagate through
vacuum in nonparallel directions, they interact weakly. For example, if the wavelength
of the gravitational wave is much longer than that of the electromagnetic wave, then the
gravitational wave can produce electromagnetic polarization (Polnarev, 1985), it can rotate
the plane of electromagnetic polarization (Cruise, 1983), and it can produce fluctuations in
the frequency, intensity, and direction of the electromagnetic wave (Zipoy, 1966; Bergman,
1971; Bertotti and Catenacci, 1975; Adams, Hellings, and Zimmerman, 1984). Such
interactions have only minuscule influence on either the gravitational or the electromagnetic
wave; but, thanks to high-precision technology, the tiny electromagnetic effects can be used
in a variety of promising ways for gravitational-wave detection (Sec. 12.C).

5.G. Catalog of Vacuum Wave-Propagation Effects

Having seen that the interaction of gravitational waves with matter and electromag-
netic fields is almost never significant, we now return to the vacuum approximation. There
are a number of peculiarities of vacuum wave propagation. Some show up in the equa-
tions of geometric optics, while others are removed by the approximations that underlie
the geometric-optics formalism. In this section we shall discuss the most interesting and
important of the vacuum propagation phenomena, and we shall examine their relationship
to geometric optics and their relevance to the real universe.

a. Scattering by background curvature, and tails of waves

Gravitational waves can sometimes encounter regions of spacetime where the back-
ground radius of curvature becomes comparable to or shorter than the reduced wavelength,
R <∼ ¯λ. When this happens, not only do the shortwave and geometric optics formalisms
break down, but the very concept of a gravitational wave becomes meaningless. Neverthe-
less, one can continue to analyze the evolution of the metric perturbations hαβ using the
formalism of Sec. 5.B.

Of particular interest when R <∼ ¯λ is the scattering of the perturbations by the
background curvature. Such scattering shows up in the vacuum wave equation h̄αβ +



2RB
µανβh̄

µν = 0 [Eq. (5.24)] as a result not only of the curvature-coupling term, but also of
the influence of the background on the wave operator . This scattering is very important
in some sources of waves, as the waves are trying to form. For example, it is responsible
for the normal-mode vibrations of black holes (Press, 1971; Goebel, 1972; Sec. 6.J), and
it leads to the formation of “tails” of the waves in a source’s near zone (Price, 1972a,b;
Thorne, 1972; Cunningham, Price, and Moncrief, 1979) and to radiative tails in the wave
zone (Leaver, 1986; Blanchet, 1987b; XXXX)—which, though they are very important in
principle (Newman and Penrose, 1965; Blanchet and Damour, 1988a), are not likely ever
to be observationally important. Remarkably, in a homogeneous cosmological model filled
with perfect fluid with vanishing pressure or with pressure equal to 1/3 the energy density,
there is no backscatter off the spacetime curvature whatsoever (Janis, 1985; Gayer and
Kennel, 1979).

b. Parametric amplification by background curvature

In regions of a dynamical spacetime (e.g., the expanding universe) in which the
characteristic wavelength ¯λ of gravitational waves is larger than or comparable to the
background radius of curvature R, ¯λ >∼ R, the waves can be parametrically amplified by
interaction with the dynamical background (Grishchuk, 1974, 1975a,b, 1977a; Grishchuk
and Polnarev, 1980; Allen, 1988; Sec. 9.D). Viewed quantum mechanically, the interaction
causes stimulated emission of new gravitons (XXXX). Viewed classically, the interaction
can be analyzed using the standard, perturbed, vacuum Einstein equation h̄αβ + 2RB

µανβ

= 0; and the parametric amplification comes about because of the time dependence not
only in Rµανβ but also in the background connection coefficients that appear in the wave
operator. Such parametric amplification may well have enabled the expansion of the
universe to take gravitational vacuum fluctuations that emerged from the Planck era of
the big-bang, and enlarge them into a strong, stochastic background of gravitational waves
today; see Sec. 9.D below.

c. Gravitational focusing

Lumps of background curvature associated with black holes, stars, star clusters,
and galaxies will focus gravitational waves in precisely the same manner as they focus
electromagnetic waves; i.e., they act as “gravitational lenses” for the waves. Just as
this focusing is observationally important for the light and radio waves from a few very
distant quasars, so it might also be important for distant discrete sources of gravitational
waves. Focusing by the sun, in the case of waves with sufficiently short wavelength, can
be significant, but not at earth; the focal point lies farther out in the solar system, near
the orbit of Jupiter (Cyranski and Lubkin, 1974). Gravitational focusing shows up clearly
in the waves’ geometric-optics propagation: A bundle of rays, along which the waves are
propagating, is focussed gravitationally. This causes the bundle’s cross sectional area ∆A
and radial variable r [Eq. (5.2d)] to decrease, and the h+ and h× of Eq. (5.2e) to increase.

d. Diffraction



Near the focal point of a gravitational lens, the radii of curvature of the wave fronts are
no longer huge compared to the waves’ reduced wavelength. As a result, the waves cease
to propagate along null rays and begin to diffract, thereby lessening the strength of the
focusing. The analysis of this is no different for gravitational waves than for electromagnetic
or scalar waves, since polarization plays no important role. The analysis can be carried
out using the flat-spacetime wave equation hαβ = 0 in a nearly Lorentz frame of the
focal region. One switches from geometric optics to this wave equation as the waves
near the focal point. Then, once the waves are well past the focal point, one can return
to geometric optics. One thereby finds that diffraction almost completely wipes out the
effects of gravitational focusing, unless the waves’ reduced wavelength ¯λ is small compared
to the lens’s gravitational radius 2GM/c2 = 3km(M/M�). (Here M is the lens’s mass.)
This criterion applies whether the lens is a black hole, or a star like the sun, or a galaxy.
For an order of magnitude discussion see, e.g., Sec. 2.6.1 of Thorne (1983); for full details
see Bontz and Haugan (1981).

e. Nonlinear wave-wave coupling (frequency doubling, etc.)

Because general relativistic gravity is nonlinear, there is a nonlinear self-coupling
of gravitational waves (“wave-wave coupling”). In principle this leads to such nonlinear
conversion processes as frequency doubling. One can compute the effects of nonlinearities
using an explicit version of Eq. (5.32c). Such a calculation shows that in practice wave-wave
coupling effects are not important in regions where the waves are waves (where ¯λ � L).
This is because, in such regions, the dimensionless amplitude h of the waves is small
compared to unity [Eq. (5.41) above]. For details see Sec. 2 of Thorne (1985). However,
in idealized situations where ¯λ becomes temporarily ∼ L and h becomes temporarily of
order unity, significant frequency doubling can occur. An example is the focusing of beams
of gravitational radiation into a region so small (of order ¯λ) and with such great beam
intensity (h ∼ 1) that the focused radiation almost but not quite forms a black hole. Upon
diffracting and reexploding, the radiation shows signficant frequency doubling (Abrahams,
1987).

Even when the waves’ amplitude h becomes of order unity (and, as a result, the
distinction between background curvature and wave curvature begins to break down),
there is no evidence in any calculations to date for a steepening of the waves to form
gravitational shocks (discontinuities in the waves’ Riemann tensor). This remains true
even when one adds additional nonlinearities to the Einstein field equation by augmenting
the Einstein-Hilbert Lagrangian by terms quadratic in the curvature tensor (Tomimatsu,
1987).

f. Generation of background curvature by the waves

The generation of background curvature by the stress-energy of the waves [Isaacson,
1968b; MTW Sec. 35.15; Eq. (5.38) above] is important in cosmological models in any epoch
when the waves are sufficiently strong that their energy density is comparable to that of
matter, or larger; see, e.g., Hu (1978) and Chap. 17 of Zel’dovich and Novikov (1983). It is
also important in a gravitational “geon”—i.e., a bundle of gravitational waves that is held



together by its own gravitational pull on itself (Wheeler, 1962; pp. 409–438 of Wheeler,
1964; Brill and Hartle, 1964). But geons surely do not exist in the real universe. There is
no reason to expect them to form, and if they did form they would quickly disrupt due to
a large-scale, global instability (XXXXXX). Nevertheless, geons are important theoretical
entities: they are useful for exploring issues in fundamental physics.

g. Nonlinear effects in collisions of gravitational waves

The head-on collisions of precisely planar gravitational waves (with infinite transverse
extent) have been studied using exact, rather than approximate solutions of the vacuum
Einstein field equation; see Sec. 5.H below. These solutions, and exact theorems about
them, reveal a number of interesting nonlinear features: (i) The background curvature
produced by each wave acts as a lens to focus the other wave. Because the waves have
infinite transverse extent, diffraction does not occur, and each focussed wave converges
onto its focal plane to produce a spacetime singularity (Kahn and Penrose, 1971; Szekeres,
1972; Nutku and Halil, 1977; Tipler, 1980; Matzner and Tipler, 1984). (ii) The singularity
has an “inhomogeneous Kasner structure” with infinite tidal squeezing along two spatial
axes and infinite stretching along the third (Yurtsever, 1987a, 1988). (iii) For special
forms of the pre-collision waves, some or all of the singularity gets replaced by a “Cauchy
horizon”. However, those special forms are nongeneric: arbitrarily weak changes in them
cause the collision to produce an all-embracing singularity rather than a Cauchy horizon
(Chandrasekhar and Xanthopoulos, 1986, 1987; Yurtsever, 1987a, 1988).

Exact theorems show that, in the more realistic case of colliding waves that are almost
planar but die out slowly at large transverse distances, if the transverse size is sufficiently
large compared to the initial wave amplitude, then the focusing still drives the amplitude
up far enough, before diffraction can act, to make nonlinear effects take over and produce
singularities (Yurtsever, 1987b, 1988). If the “cosmic censorship conjecture” is correct,
those singularities must be hidden inside one or two black-hole horizons; but it has not
yet been possible to determine whether this is so. Unfortunately, the wave size required
to produce a singularity is so huge that wave-wave collisions almost certainly do not form
singularites in the real universe, except possibly near the big bang (Yurtsever, 1987b,
1988).

Collisions of gravitational waves produce not only focusing, but also a rotation of
the polarization axes of one wave by the gravitational action of the other—a phenomenon
discovered in collisions of cylindrical waves by Piran and Safier (1985).

5.H. Asymptotic Analyses and Exact Solutions

We conclude this chapter with a brief description of studies of gravitational-wave
propagation in special circumstances.

a. Asymptotic analyses

Much has been learned about the geometric properties of gravitational radiation
by studying the idealized problem of the propagation of waves outward from a source



that resides alone in an otherwise empty and asymptotically flat spacetime: In analyses
that were central to building up confidence in our understanding of gravitational waves,
Bondi (1960), Bondi, van der Burg, and Metzner (1962), and Sachs (1962, 1963) expanded
the spacetime curvature along the outgoing light cone in inverse powers of the distance
to the source. Their expansions, carefully formulated and combined with conformal
transformations that bring “infinity” in to finite locations (Penrose 1963a,b) revealed an
elegant asymptotic structure for waves in asymptotically flat spacetime. The study of
this asymptotic structure has been pursued with vigor in recent years; for reviews and
references see Newman and Todd (1980), Ashtekar (1981, 1984), Walker (1983), Schmidt
(1979, 1986), Hobill (1984), Penrose and Rindler (1986), Friedrich (1986), Blanchet and
Damour (1986), Blanchet (1987a), Winicour (1988), and Ashtekar and Schmidt (1990).

b. Exact solutions to the vacuum Einstein field equation

Much insight into gravitational radiation has come from exact solutions to the vacuum
Einstein field equation.

One broad class of exact solutions, called “boost-rotation symmetric spacetimes”,
describes an idealized class of gravitational-wave sources that radiate into a (nearly)
asymptotically flat spacetime.

The sources are axially symmetric and invariant under a Lorentz-like “boost”. They
include such idealized configurations as two black holes with a spring between them, which
forces them to accelerate uniformly away from each other (the “C-metric”, discovered
by Levi-Civita, 1918 and explored and interpreted physically by Kinnersley and Walker,
1970; Bonnor, 1983; and others). The spacetime into which these special sources radiate
is asymptotically flat (like Minkowskii spacetime), except for a weak, cosmic-string-type
structure (circumference, divided by 2π× radius, equal to a constant slightly less than
one) along the direction of acceleration (the symmetry axis). For the general theory and
reviews of boost-rotation-symmetric spacetimes see Bi c ak (1968); Bi c ak, Hoenselaers
and Schmidt (1983); Bi c ak and Schmidt (1984); and Bi c ak (1985, 1988).

Although there are no other known exact solutions describing waves that propagate
out into asymptotically flat spacetime, there is a general formalism for a much broader
and more realistic class of solutions—a formalism sufficiently powerful to permit proof of
interesting theorems and to give promise of ultimately producing exact solutions. This
formalism, due to Robinson and Trautman (1962), describes wave-carrying spacetimes
whose rays are “geodesic and hypersurface orthogonal” (properties shared by the rays of
geometric optics) and in addition are free of shear. [KIP: CHECK - HOW CAN THEY BE
SHEAR-FREE?] Among the important, rigorous theorems that have been proved for such
spacetimes is one which says that the waves must die out at late times, leaving behind the
Schwarzschild spacetime of a nonrotating black hole (Forster and Newman, 1967; Lucacs
et al ., 1984). For reviews and references on the Robinson-Trautman formalism see, e.g.,
Kramer et al . (1980) and Schmidt (1987). For a first step in generalizing the Robinson-
Trautman theory to spacetimes whose rays have “twist”, see Chinea (1988).

Nonlinear interactions of gravitational waves with themselves and each other have
been studied extensively using exact solutions which are plane symmetric or cylindrically



symmetric—and, thus, which extend outward infinitely far in one or two transverse
directions. Powerful, soliton-theoretic techniques for generating such exact solutions have
been devised by Belinsky and Zakharov (XXXX); and other solution-generating techniques
have been developed by Chandrasekhar (1986 and refs. therein) and by Ernst, Garcia,
and Hauser (1988). For applications of these techniques see, e.g., Cespedes and Verdaguer
(1987); Garriga and Verdaguer (1987); and Ferrari, Ibanez, and Bruni (1987). The physical
properties of cylindrical gravitational waves have been explored, e.g., by Einstein and
Rosen (1936) and Weber and Wheeler (1957), who pioneered the subject; and by Thorne
(1965a,b), Schmidt (1981), Piran, Safier, and Katz (1986), Chandrasekhar and Ferrari
(1987), and others. For detailed studies of planar gravitational waves see Rosen (1937),
Bondi, Pirani, and Robinson (1959), and Ehlers and Kundt, 1962 (the pioneering papers),
and, more recently, the papers cited in Sec. 5.G.g in connection with gravitational-wave
collisions.

Insight into cosmological gravitational waves originating in the early universe comes
from a family of exact solutions generated by the Belinsky-Zakharov (XXXX) technique.
These solutions describe universes which, at early times, contain “frozen-in” inhomo-
geneities. As the cosmological horizon expands and becomes larger than the inhomo-
geneities’ reduced wavelength ¯λ, the inhomogeneities unfreeze and are smoothly transformed
into gravitational radiation propagating dynamically through an otherwise homogeneous
universe. For specific solutions of this type see Carr and Verdaguer (1983), Belinsky and
Francaviglia (1984), and Adams, Hellings, and Zimmerman (1985).

A final type of exact solution which is useful for insight is the extreme limit of
geometric optics, where the wavelength becomes so short that the radiation is compacted
into a gravitational shock wave. For the exact theory of gravitational shocks see, e.g.,
Pirani (1957), Papapetrou (1977), and references therein.
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1 Introduction and Overview

Throughout our 1989 proposal for LIGO, all our planning of LIGO, and all our presentations
to review committees and the National Science Board, we envisioned and proposed a two-stage
process for opening up the gravitational-wave window onto the universe. The first stage (often
called “LIGO-I”) was to build the facilities for LIGO and install in them a conservatively designed
set of interferometers, capable of reaching a sensitivity “10−21” at which it is plausible, but not
probable, that gravitational waves will be detected. A several year search with these initial
interferometers will give us the experience necessary for moving to the second stage, and might
produce the first firm detection of gravitational waves. The second stage (sometimes called
“LIGO-II”) is to upgrade the interferometers, bringing them to the best sensitivities robustly
achievable with the mid 2000’s technology — sensitivities at which it is probable that we will
detect a number of sources and begin extracting rich information about the gravitational-wave
universe. This proposal is for R&D and construction of these advanced interferometers in LIGO.

The advanced (“LIGO-II”) interferometers (IFOs) described in this proposal (i) will lower
the amplitude noise by a factor ∼ 15 at the frequencies of best sensitivity f ∼ 100–200 Hz, (ii)
will widen the band of high sensitivity at both low frequencies (pushing it down to ∼ 20 Hz) and
high frequencies (pushing it up to ∼ 1000 Hz), and (iii) will be capable of reshaping the noise
curve (lowering it at some frequencies at the price of raising it at others) so as to optimize the
sensitivity to specific sources; see Fig. 1. The lowered noise at optimal frequencies will increase
the event rate for distant, extragalactic sources by a factor ∼ 153 ' 3000. Opening up lower
and higher frequency bands will bring us into the domains of new sources: colliding, massive
black holes and stochastic background at low frequencies; low-mass X-ray binaries, fast pulsars
and tidal disruption of neutron stars by black holes at high frequencies. Noise-curve reshaping
can be used, for example, to reduce the noise by a factor ∼3 to 5 within some chosen narrow
frequency band ∆f/f ∼ 0.2 in which targeted periodic sources (e.g. low-mass X-ray binaries)
are expected to lie. We shall refer to this as “narrow-band tuning” of the IFO.

More specifically, as illustrated in Fig. 1:
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Figure 1: The noise h̃(f) in several LIGO interferometers plotted as a function of gravity-wave
frequency f , and compared with the estimated signal strengths h̃s(f) from various sources. The
signal strength h̃s(f) is defined in such a way that, wherever a signal point or curve lies above
the interferometer’s noise curve, the signal, coming from a random direction on the sky and with
a random orientation, is detectable with a false alarm probability of less than one per cent; see
the text for greater detail and discussion.
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We have two options for the test-mass material for the advanced IFOs, sapphire (our pref-
erence) and fused silica (our fallback). Whichever is chosen, we will be able to shape the noise
curves by adjusting the position and reflectivity of a signal-recycling mirror, so as to optimize
the noise for various kinds of signals (a capability absent in the initial IFOs). The figure shows
noise curves [square root of the spectral density of an IFO’s arm-length difference as a func-
tion of frequency, i.e. “strain per root Hertz” h̃(f) ≡

√
S∆L/L(f)] for two such optimizations:

(i) Advanced IFOs optimized to search for waves from inspiraling neutron-star / neutron-star
binaries (thick solid curve labeled WB Sapphire for “wide-band, Sapphire” and thin solid
curve labeled WB Silica for “wide-band, Silica”). (ii) Advanced IFOs optimized to search for
pulsars and low-mass X-ray binaries in the vicinity of f = 600 Hz (thick dotted curve labeled
NB Sapphire and thin dotted curve labeled NB Silica, where NB means “narrow-band”). In
general, the sapphire IFO is capable of somewhat lower noise than the fused-silica one, because
of lower total thermal noise in its test masses. [The fact that the specific Silica IFO in Fig. 1 has
better noise performance at low frequencies than the Sapphire one is a price that has been paid
in the Sapphire IFO: the noise curve has been shaped to produce the lowest possible noise at
its minimum, around 200 Hz, at the price of worsened noise below ∼ 50 Hz.] In our discussion
of the science, we will describe the performance of the sapphire IFOs, keeping in mind that, if
we are forced to the fused-silica fallback, there will be a modest (a few tens of per cent) loss of
signal to noise and corresponding factor ∼ 2 loss of event rate for typical sources.

Figure 1 shows, along with the noise curves, the estimated signal strengths h̃s(f) for various
sources. These signal strengths are defined in such a way [1] that the ratio h̃s(f)/h̃(f) is equal to
the ratio of signal S to noise threshold T , rms averaged over source directions and orientations,
h̃s(f)/h̃(f) = 〈S2/T 2〉1/2, with the threshold being that at which the false alarm probability
is one per cent when using the best currently known, practical data analysis algorithm. (For
broad-band sources, the algorithm is assumed to integrate over a bandwidth equal to frequency
and to use the output from LIGO’s two 4km IFOs and one 2km IFO [2], thereby removing all
non-Gaussian noise. For periodic sources such as spinning neutron stars, the algorithm uses
data from only one 4 km IFO, usually narrow banded, the noise again is assumed Gaussian,
and the signal is integrated for 107 sec, except in cases such as Low Mass X-Ray Binaries where
there is little gain from integrating so long.) This definition of h̃s(f) means that, wherever a
signal point or signal curve lies above the IFO noise curve, the signal, coming from a random
direction on the sky and with a random orientation, is detectable with a false alarm probability
of less than one per cent.

In this introductory section, we shall discuss the sources briefly, in turn, and then in sub-
sequent sections we shall discuss them in greater detail, focusing on the likelihood of detection
and the science we expect to extract from detected waves. Box 1 gives a brief summary of the
various sources and their detectability.

The three arrowed, long-dashed lines in Fig. 1 represent the signal h̃s(f) from neutron-
star (NS) and black-hole (BH) binaries in the last few minutes of their inspiral,
assuming masses M = 1.4M¯ for each NS and M = 10M¯ for each BH. These sources are best
searched for by the method of matched filters [4]. Using matched filters, LIGO’s initial IFOs
can detect NS/NS inspirals (with a 1 per cent false alarm probability) out to a distance of 20
Mpc [top arrowed line]; the wide-band advanced IFOs can do so 15 times farther, out to 300
Mpc for NS/NS and out to 650 Mpc for NS/BH [bittin arrowed line]. (The wide-band IFOs can
integrate up the signal over a wide range of frequencies, thereby achieving detection even though
the signal curve in Fig. 1 is a little below the noise curve.) For BH/BH inspiral, the wide-band
IFOs can see so far that cosmological effects are important. For definiteness, throughout this
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Box 1
Brief Summary of Detection Capabilities of Advanced LIGO Interferometers

• Inspiral of NS/NS, NS/BH and BH/BH Binaries: The table below [15, 2] shows
estimated rates Rgal in our galaxy (with masses ∼ 1.4M¯ for NS and ∼ 10M¯ for BH), the
distances DI and DWB to which initial IFOs and advanced WB IFOs can detect them, and
corresponding estimates of detection rates RI and RWB; Secs. 1.1 and 1.2.

NS/NS NS/BH BH/BH in field BH/BH in clusters

Rgal, yr−1 10−6–5 × 10−4 <∼ 10−7–10−4 <∼ 10−7–10−5 ∼ 10−6–10−5

DI 20 Mpc 43 Mpc 100 100
RI, yr−1 3 × 10−4 – 0.3 <∼ 4 × 10−4 – 0.6 <∼ 4 × 10−3 – 0.6 ∼ 0.04 – 0.6
DWB 300 Mpc 650 Mpc z = 0.4 z = 0.4
RWB, yr−1 1 – 800 <∼ 1 – 1500 <∼ 30 – 4000 ∼ 300 – 4000

• Tidal disruption of NS by BH in NS/BH binaries: First crude estimates suggest WB
IFOs can measure onset of disruption at 140Mpc well enough to deduce the NS radius to 15%
accuracy (compared to current uncertainties of a factor ∼ 2); see table above for rates; Sec. 1.3.
• BH/BH merger and ringdown: Rough estimates suggest detectability, by WB IFOs out
to the cosmological distances shown in Fig. 2(b); rates for BH/BH total mass ∼ 20M¯ are in
table above; rates for much larger masses are unknown; Sec. 1.4.
• Low-Mass X-Ray Binaries: If accretion’s spin-up torque on NS due is counterbalanced
by gravitational-wave-emission torque, then WB IFOs can detect Sco X-1, and NB IFOs can
detect ∼ 6 other known LMXB’s; Secs. 1.1, 1.5.
• Fast, Known Spinning NS’s (Pulsars with pulse frequency above 100 Hz): De-
tectable by a advanced NB IFO in 3 months’ integration time, if NS ellipticity is ε >∼
2× 10−8(1000Hz/f)2(r/10kpc), where f is gravity wave frequency (twice the pulsar frequency)
and r is distance; actual ellipticities are unknown, but plausible range is ε <∼ 10−6.
• Fast, Unknown Spinning NS’s: Unknown frequency wandering and doppler shifts degrade
the detectable ellipticity ε by a factor of a few to ∼ 15, so detection with a NB IFO requires
ε >∼ (0.6 to 3) × 10−5(100Hz/f)2(r/10kpc); Secs. 1.1 and 1.5.
• R-Modes in Newborn NS’s with Initial Spin Rates Faster than ∼ 100 Hz: Estimates
suggest detectability out to ∼ 15Mpc (the Virgo cluster) with WB or NB IFOs; NS birth rate
in Virgo is a few per year, but initial spins are unknown; Secs. 1.5 and 1.6;
• Centrifugally Hung-Up Proto Neutron Stars in White-Dwarf Accretion-Induced
Collapse and in Supernovae: Dynamics of star very poorly understood; if instability deforms
star into tumbling bar, may be detectable by WB IFOs to ∼ 20 Mpc (the Virgo Cluster), and
possibly farther; event rates uncertain but could be enough for detection; Sec. 1.6.
• Convection of Supernova Core: May be detectable by WB IFOs, via correlations with
neutrinos, for supernovae in our Galaxy and possibly Magellanic Clouds; Sec. 1.6
• Gamma Ray Bursts: If triggered by NS/BH mergers, a few per year could be detectable by
WB IFOs; if none are seen individually, statistical studies could nevertheless confirm gravity-
wave emission by the gamma-burst triggers; Sec. 1.7.
• Stochastic Background: Detectable by cross correlating Hanford and Livingston 4km
detector outputs, if Ω = (gravitational-wave energy in ∆f ∼ f ∼ 40 Hz) >∼ 8 × 10−9; there are
many possible sources of such waves in very early universe, all very speculative; Sec. 1.8.
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proposal we assume a Hubble expansion rate Ho = 65 km/s/Mpc, a cold-matter density 0.4
of that required to close the universe ΩM = 0.4, and a vacuum energy density (cosmological
constant) 0.6 of closure ΩΛ = 0.6 [3]. Then the wide-band IFOs can see (10M¯/10M¯) BH/BH
inspirals out to a cosmological redshift z = 0.4. The binary inspiral rates at these advanced IFO
distances are likely to be many per year; see Box 1. The middle arrowed line is the signal from
BH/BH inspiral at 400Mpc, where the geometric mean of the event-rate estimates for BH/BH
field binaries is three per year (third column of table in Box 1).

The tidal disruption of a NS by its BH companion at the endpoint of NS/BH inspiral
should produce gravitational waves that carry detailed information about the NS structure and
equation of state. The advanced IFOs may detect these waves and extract their information; see
Sec. 3. This tidal disruption is a promising candidate for the trigger of gamma-ray bursts,
as is the final merger of the two NS’s in a NS/NS binary. A gamma-burst / gravitational-wave
coincidence would be of great value in revealing the nature of gamma-burst sources; see Sec. 7

For BH/BH binaries much heavier than ∼ 10M¯/10M¯, most of the gravitational signal is
likely to come from the black holes’ merger and the vibrational ringdown of the final
black hole, rather than from the inspiral. Rough estimates discussed in Sec. 4 suggest that, if
the holes are rapidly spinning (within a few per cent of the fastest spin allowed, i.e. a/m >∼ 0.98
in the jargon of relativity theorists), then the wide-band IFOs can see the merger waves from two
20M¯ holes out to z = 1 and two 50M¯ holes out to z = 2; see the down-sloping, non-arrowed,
dashed lines in Fig. 1. The event rates at these distances could well be many per year, and the
waves from such mergers will carry rich physical and astrophysical information; see Sec. 4.

The triangles, star, large dots, and up-sloaping short-dashed lines in Fig. 1 represent signals
from slightly deformed, spinning neutron stars. The most interesting of these is a class of
objects called low-mass X-ray binaries (LMXB’s). These are neutron stars that are being
torqued by accretion from a companion, but that seem to be locked into spin periods in the
range ∼ 300 – 600 revolutions per second. The most plausible explanation for this apparent
locking is that the accretion is producing an asymmetry that radiates gravitational waves, which
torque the star’s spin down at the same rate as accretion torques it up [5, 6]. Assuming this
to be true, one can deduce an LMXB’s wave strength h̃s from its measured X-ray flux and
its spin frequency [with the frequency inferred, sometimes to within a few Hz but not better,
from nearly coherent oscillations (NCOs) in type-I X-ray bursts, or less reliably from frequency
splittings of quasiperiodic (QPO) X-ray oscillations[7].] The spin frequency, and thence the
gravitational-wave frequency, will wander somewhat due to fluctuations in accretion (which can
be estimated by monitoring the X-ray flux) and due to poorly known orbital parameters. As a
result, in searching for an LMXB’s waves one can only perform coherent integrations for about
20 days; thereafter, one must stack the signals incoherently, allowing for unknown shifts of the
wave frequency [8]. When one uses this “stack-slide” method of data analysis, the resulting
signal strengths improve only slightly for integration times longer than 20 days [8].

Assuming 20 days of integration using a single 4-km IFO, the estimated signal strengths and
frequencies for the strongest known LMXB’s are shown by the big dots and the star in Fig. 1.
The estimated strengths assume a steady-state balance of accretion torque by gravitational-wave
torque, which is expected if density inhomogeneities produce the gravitational waves [5]. How-
ever, if sloshing fluid motions (“r-modes”) produce the waves [9], then temperature-dependent
viscosity could trigger long-term (>∼ a few hundred year) oscillations in the gravitational-wave
emission, with short epochs of enhanced emission and long epochs of little or no emission [10];
a recent estimate [11] suggests a factor ∼ 10 enhancement of wave strength above those shown
in Fig. 1 for ∼ 10% of the time. The estimated wave frequencies are also somewhat uncer-
tain: The figure assumes density inhomogeneities, which means the wave frequency is twice
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the NS rotation frequency; if r-mode sloshing produces the waves, then they will be at ' 4/3
the rotation frequency (∼ 400 Hz rather than 600 Hz). For every LMXB in Fig. 1 except the
weakest one, the estimated rotation frequency is based on QPO splittings rather than NCOs,
which means that about half of the frequencies might be double these estimates: ∼ 1200 Hz for
density inhomogeneities and ∼ 800 Hz for r-mode sloshing, rather than ∼ 600 Hz. Doubling
the frequency above 600 Hz reduces the emission amplitude by a factor 2 (at fixed X-ray flux
assuming a steady-state torque balance), and increases the amplitude noise in a advanced NB
IFO by a factor ' √

2. As a result, at ∼ 1200 Hz frequency, Sco X-1 would still be readily
detectable in a NB IFO but not in a WB IFO, and the strongest of the other LMXB’s would
be marginal. By contrast, if the frequencies are ∼ 600 Hz or ∼ 400 Hz and the waves are in a
steady state, then Sco X-1 should be very easily detected by a WB IFO, and several LMXB’s
should be detectable by narrow banding (NB).

The large number of caveates and uncertainties in these LMXB estimates (which, however,
generally leave at least Sco X-1 detectable) illustrate a very important point: Gravitational-wave
observations have the potential to probe a rich range of complex physical processes in neutron
stars; see Sec. 5 for further discussion.

The advanced IFOs can perform interesting searches for waves from known radio pulsars,
such as the Crab and Vela for which the current upper limits (based on the pulsars’ observed
spindown rates) are shown as triangles. A Crab search, using coherent integrations based on
the star’s observed (slightly wandering) rotation period, could improve the limit on the Crab’s
wave amplitude by a factor 100 and constrain the star’s gravitational ellipticity to ε <∼ 7× 10−6

— which is approaching the realm of physically plausible ellipticities, ε <∼ 10−6 [6].
More interesting will be searches for waves from known, fast pulsars, since the signal

strength scales as h̃s ∝ εf2/r (where r is distance to the source). The up-sloaping short-
dashed lines in Fig. 1 show some examples of signal strengths. With a narrow-band IFO
tuned to the vicinity of such a fast pulsar, the waves would be detectable when ε >∼ 2 ×
10−6(100Hz/f)2(r/10kpc), which is in the realm of plausible ellipticities for pulsars through-
out our galaxy so long f exceeds 100 Hz, i.e. the spin frequency exceeds 50 Hz.

Also of great interest will be searches for previously unknown spinning neutron stars,
for which the signal strengths h̃s will be reduced by a factor of a few to ∼ 15 by the lack of
prior information about the frequency and its evolution and the direction to the source (which
determines the time-evolving doppler shift produced by the earth’s motion) [12, 8]. A tunable,
narrow-band IFO will be crucial to such searches. One can search more deeply by a factor of
several, using a narrow-banded IFO that dwells on a given frequency and its neighborhood for
a few days or weeks and then moves on to another frequency, than using a broad-interferometer
that collects signal at all frequencies simultaneously for a year. Such searches will be in the
band of physically plausible ellipticities, for stars throughout our galaxy, if f >∼ 200 Hz (spin
frequency above ∼ 100 revolutions per second).

One can search for a stochastic background of gravitational waves by cross correlating
the outputs of LIGO’s two 4 km detectors [13]. For such a search the signal strengths h̃s(f)
are shown in Fig. 1 as downward-sloaping dotted lines, assuming a cross-correlation of 4 months
of (not necessarily contiguous) data, and isotropic waves. The lines are labeled by the waves’
energy density Ω in a bandwidth equal to frequency and in units of the density to close the
universe, Ω = (fdEGW/df)/ρclosure. Unfortunately, the frequency of optimal à priori sensitivity,
f ∼ 70 Hz (where the noise curve is parallel to the dotted Ω lines), is near the center of a dead
band for LIGO. This dead band arises from the fact that 1/70Hz ' 14 ms is about the round-
trip gravity-wave travel time between the two LIGO sites [14]. The result is a net debilitation
of the stochastic background sensitivity by a factor of a few: the initial IFOs can detect an
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isotropic background with Ω down to ∼ 10−5, while advanced, wide-band IFOs can reach down
to Ω ∼ 5× 10−9, and a factor ∼ 2 lower than this if it is reoptimized for low frequencies. These
are interesting sensitivities, able to test a wide range of speculations about the physics of the
early universe and perhaps even detect waves. Such a detection could have profound implications
for physics and cosmology; see Sec. 8.

Other waves that advanced IFOs in LIGO will seek and may detect are those from the
stellar core collapse that triggers supernovae and the boiling of the nascent neutron
star and the endpoint of that collapse (Sec. 6), accretion induced collapse of white dwarfs
(Sec. 6), and totally unknown sources (Sec. 9).

We turn, now, to a discussion of each of the above sources, focusing especially on event rate
estimates and the information that the waves may bring.

2 Inspiraling NS and BH Binaries with MBH <∼ 10M¯

As we have discussed, wide-band advanced LIGO IFOs can detect the waves from NS/NS in-
spirals out to 300Mpc, NS/BH out to 650 Mpc, and BH/BH out to z = 0.4. The event rates
out to these distances can be estimated from observational data in our own galaxy [15], and
an extrapolation out through the universe based on the density of massive stars (which can be
deduced by several different methods) [16]. The resulting rates are quite uncertain but very
promising; see Box 1.

For NS/NS binaries, the event rate in our galaxy is constrained by the results of radio
astronomers’ searches for binary pulsars that will merge, due to gravitational radiation emission,
in less than the age of the universe, and by other aspects of pulsar searches [15]. The resulting
constraints, 10−6/yr <∼ Rgal <∼ 5 × 10−4/yr, extrapolate to a NS/NS event rate for advanced
IFOs between 1/yr and 800/yr. Searches in our galaxy for NS/BH binaries in which the NS is
a pulsar have failed to find any as yet, so we must turn to much less reliable estimates based
on “population synthesis” (simulations of the evolution of a population of progenitor binary
systems to determine the number that make NS/BH binaries compact enough to merge in less
than the universe’s age). Population synthesis gives a NS/BH event rate in our galaxy in the
range ∼ 10−7/yr <∼ Rgal <∼ 10−4/yr [21], though it is possible the rate could be even less than
this (hence the <∼ 10−7/yr in Box 1). Extrapolating out into the universe, we find a NS/BH
rate in WB advanced IFOs between <∼ 1/yr and about 1500/yr. A similar analysis for BH/BH
binaries based on population synthesis (third column of the table in Box 1) gives a rate between
<∼ 30/yr and ∼ 4000/yr [17]. Population synthesis ignores the likely role of globular clusters and
other types of dense star clusters as “machines” for making BH/BH binaries [18]: single black
holes, being heavier than most stars in a globular, sink to the center via tidal friction, find each
other, and make binaries; then the BH/BH binaries get “hardened” (made more compact) by
interaction with other black holes, reaching sizes where gravitational-wave emission will cause
them to merge in less than the age of the universe; and further interactions will often eject the
BH/BH binaries from the globular, to interstellar space where they merge. Simulations [18]
suggest that each dense cluster will make a number of such BH/BH binaries, and extrapolations
into the universe predict an event rate in WB advanced IFOs between ∼ 300 and ∼ 4000/yr
— though the uncertainties are probably larger than these numbers from the literature suggest
[18, 15].

These event rates are very encouraging. They make it seem quite likely that the advanced
IFOs will observe tens to thousands of BH and NS inspirals per year, while the initial IFOs will
be lucky to observe ∼ 1 per year.

7



The observed inspiral waves will last for between ∼ 1000 and 10, 000 cycles depending on
the binary’s masses, and will carry detailed information about the binary and about general
relativistic deviations from Newtonian gravity. This information can be extracted with good
precision using the method of matched filters. Specifically (denoting by M = M1 + M2 the
binary’s total mass and µ = M1M2/M its reduced mass):

(i) The binary’s chirp mass Mc ≡ µ3/5M2/5 will typically be measured, from the Newtonian
part of the signal’s upward frequency sweep, to ∼ 0.04% for a NS/NS binary and ∼ 0.3%
for a system containing at least one BH. (ii) If we are confident (e.g., on a statistical basis
from measurements of many previous binaries) that the binary’s spins are a few percent or
less of the maximum physically allowed, then the reduced mass µ will be measured to ∼ 1%
for NS/NS and NS/BH binaries, and ∼ 3% for BH/BH binaries. (iii) Because the frequency
dependences of the (relativistic) µ effects and spin effects are not sufficiently different to give
a clean separation between µ and the spins, if we have no prior knowledge of the spins, then
the spin/µ correlation will worsen the typical accuracy of µ by a large factor, to ∼ 30% for
NS/NS, ∼ 50% for NS/BH, and a factor ∼ 2 for BH/BH. These worsened accuracies should be
improved significantly (though we do not yet know how much) by waveform modulations due to
spin-induced precession of the orbit [20], and even without modulational information, a certain
combination of µ and the spins will be determined to a few per cent. (iv) The distance to the
binary (angle-effective distance at cosmological distances) can be inferred, from the observed
waveforms, to a precision ∼ 1/ρ <∼ 10%, where ρ is the amplitude signal-to-noise ratio in the
total LIGO network (which must exceed about 8 in order that the false alarm rate be less than
the threshold for detection). (v) With the aid of VIRGO and/or other international partners,
the location of the binary on the sky can be inferred, by time of flight between the detector
sites, to a precision of order one degree on the sky.

Advanced LIGO will likely produce a catalog of hundreds or thousands of binary inspirals and
their inferred parameters; this catalog will be a valuable data base for observational astronomy
and cosmology.

Important examples of the general relativistic effects that can be detected and measured with
precision, in the inspiral waves, are these: (i) As the waves emerge from the binary, some of them
get backscattered one or more times off the binary’s spacetime curvature, producing wave tails.
These tails act back on the binary, modifying its radiation reaction force and thence its inspiral
rate in a measurable way. (ii) If the orbital plane is inclined to one or both of the binary’s
spins, then the spins drag inertial frames in the binary’s vicinity (the “Lense-Thirring effect”),
this frame dragging causes the orbit to precess, and the precession modulates the waveforms
[20]. This precession and modulation should be very strong in a significant fraction of NS/BH
binaries [21].

3 Tidal Disruption of a NS by a BH: Measuring the Nuclear
Equation of State

As a NS/BH binary spirals inward, its NS experiences ever increasing tidal forces from the
BH’s gravitational field (its spacetime curvature). In many cases these tidal forces may tear
the NS apart before it begins its final, quick plunge into the hole’s horizon. The gravitational
waves from this tidal disruption and from the termination of inspiral should carry detailed
information about the NS’s equation of state (the equation of state of bulk nuclear matter at
∼ 10 times the density of an atomic nucleus). The disruption waves lie largely in the frequency
band ∼ 300Hz <∼ f <∼ 1000 Hz, where the wide-band, advanced IFOs have good sensitivity,
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Figure 2: Characteristics of the gravitational waves from the inspiral, merger, and final ringdown
of a BH/BH binary with equal masses M1 = M2 = M/2 and large spins, as computed by
combining the source estimates of Ref. [24] with the wide-band noise curves of Fig. 1. (a) The
amplitude signal to noise ratio, as a function of the binary’s total mass M for a binary at 300
Mpc distance, and for the three phases of the binary’s evolution: inspiral, merger, and ringdown.
(b) The cosmological redshift to which the binary can be seen by wide-band, advanced IFOs, as
a function of its total mass M .

and where narrow-band or some other optimized IFO can do even better. This suggests that
the advanced IFOs may be able to extract new information about the nuclear equation of state
from the tidal-disruption waves. A first, crude estimate [22] suggests, for example, that for
NS/BH binaries at 140 Mpc distance (where the event rate could be a few per year; see the
table in Box 1), tidal-disruption observations may enable the NS radius R to be measured to a
precision ∼ 15%, by contrast with its present uncertainty (for fixed NS mass) of about a factor
2. From the measured radii would follow the desired equation-of-state information. Detailed
numerical-relativity simulations will be required to firm up this estimate, and will be essential
as a foundation for interpreting any tidal-disruption waves that are observed.

The merger waves from NS/NS binaries, by contrast with NS/BH, are likely to lie outside
the band of good advanced-IFO sensitivity — at frequencies f >∼ 1500 Hz. However the onset of
NS/NS merger, triggered by a plunge of the two NS’s toward each other, may produce a strong
“cliff” in the waves’ spectrum, in a range f ∼ 400 — 1000 Hz of good sensitivity [23], and by
measuring the cliff frequency we may learn about the nuclear equation of state.

4 BH/BH Mergers and Ringdown: Observing The Nonlinear
Dynamics of Spacetime Curvature

Black holes are made not from ordinary matter, but rather from spacetime curvature. For a
single, quiescent black hole, this curvature has a rich structure: a trumpet-horn-like curvature
of space, a tornado-like whirling of space around the hole’s horizon, and a warpage of time that
becomes so strong near the horizon that, in a certain sense, the flow of time grinds to a halt
there. Even richer (and as yet only crudely understood) will be the spacetime curvature of a
BH/BH binary, as its holes near each other and merge. Among other things, it should entail
tornado-like whirlings of space around each of the two black holes caused by their spins, and
a third whirl of space around the binary as a whole, caused its orbital angular momentum. In
the half dozen years between now and the advanced IFOs’ first operation, numerical relativists
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will perfect their techniques for simulating such BH/BH mergers, in preparation for comparison
with LIGO’s observations. That comparison should bring a clear understanding of the highly
nonlinear dynamics of warped spacetime.

The numerical simulations are not yet sufficiently advanced to tell us much about the pre-
dicted waves, so we must rely, for now, on crude insights from perturbation theory. Those
insights suggest that, if the holes are rapidly spinning, then the wave strengths, quantified by
the net signal to noise ratio in wide-band advanced IFOs, are as shown in Fig. 2(a). For to-
tal mass M >∼ 30M¯, the merger waves are stronger than the inspiral waves; for M ∼ 100 to
2000M¯, the ringdown waves are comparable to the merger. Above M ∼ 2000M¯, the waves are
at too low frequency to be seen by the advanced IFOs. The distance to which the waves can be
detected, expressed in terms of cosmological redshift (assuming Ho = 65 km/s/Mpc, ΩM = 0.4,
ΩΛ = 0.6) is shown in Fig. 2(b). For M ∼ 100 to 1000M¯, the distance exceeds z = 1. We know
little about what the event rate may be, when M >∼ 40M¯. It is unlikely that main sequence
binaries form BH/BH binaries this massive; but they may well be formed by mergers of smaller
holes in galactic nuclei in sufficient numbers to produce many mergers per year at z ∼ 1[25].
LIGO’s observations may thereby bring us major new insights into the physics of galactic nuclei.

5 Spinning Neutron Stars

In Sec. 1.1 we discussed the signal strengths and search strategies for spinning neutron stars. As
we saw, tunable, narrow-band IFOs have good possibilities to detect such stars’ waves, especially
for LMXB’s.

For any detected waves, the features that can be measured include their frequency (or fre-
quencies if several lines are seen), the time evolution of the frequencies, the wave amplitudes and
their evolution, and correlations with electromagnetic observations of the same source (if any).
These quantities are governed by a wide variety of rich physics in the neutron-star interior, and by
the direction to the source. For example: (i) The modulation of the frequency due to the earth’s
motion can reveal the source direction to an accuracy of order one arc second [26], enabling
identification with electromagnetically observed objects. (ii) The ratio of the gravitational-wave
frequency to the electromagnetically observed rotation frequency can reveal the nature of the
inhomogeneities that emit the waves: for density inhomogeneities frozen into a spinning neu-
tron star, e.g. those of a deformed crust or core, fGW = 2frot. For a free-precessing (wobbling)
star with frozen-in inhomogeneities, there will be a second line at fGW = frot + fprecess ' frot.
For r-mode oscillations of a star’s fluid mantle driven by gravitational radiation reaction [27],
fGW ' 4

3frot. (iii) Depending on the nature of the inhomogeneities, each line’s frequency evo-
lution and amplitude can be influenced by a wide variety of different physical processes in the
neutron star, e.g., crust physics (thickness, elasticity moduli, breaking strain, ...), crust-core
mechanical and thermal couplings, superfluid transition temperature, magnetic field strength,
viscosity, etc. (iv) Correlated gravitational and electromagnetic observations after a frequency
“glitch” might be particularly informative about the neutron-star physics. (v) For precessing
pulsars, the gravitational-wave observations can determine the orientation of the pulsar angular
momentum vector relative to the line of sight, and this can be used to test models of the pul-
sar emission mechanism, which depend on the angle between the rotation axis and the pulsar
beam [28].
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6 Supernovae and Accretion-Induced Collapse of White Dwarfs

Type-II supernovae are triggered by the violent collapse of a stellar core to form a NS or BH.
The details of the collapse and NS or BH formation are poorly understood, and the optical
display sheds little light on them because the photons are emitted >∼ 100, 000 km from the
trigger and hours or more afterward. Neutrino observations provide one window on the trigger,
with emphasis on the thermal structure of the collapsed core. Gravitational waves provide
a complementary window, with emphasis on the compactness and density of the core, on its
asymmetry, and on whether the final remnant is a BH or a NS.

Observations show that many type-II supernovae produce neutron stars and give them kicks
of magnitude as large as ∼ 1000 km/s. Indeed, about half of all radio pulsars are born with a
kick larger than 500 km/s [29]. The observed kicks suggest that at least some newborn proto-
neutron-stars may be strongly asymmetric, perhaps due to fast rotation, and therefore could
produce significant gravitational radiation. Rapidly rotating proto-neutron-stars may also be
produced by the accretion-induced collapse of white dwarf stars (AIC) in some cases, depending
on the white-dwarf composition, central density and accretion rate [30].

If the newborn proto-neutron-star in an AIC or supernova is spinning so fast that it hangs
up centrifugally at a radius large compared to that of the final NS, then it may be dynamically
(or at least secularly) unstable to deforming into a bar-shaped object that tumbles end-over-end,
emitting gravitational waves in LIGO’s band of good sensitivity [31]. Recent simulations suggest
that the bar will be long-lived, rather than just wrapping itself up into an axisymmetric shape
and disappearing [32]. The simulations show that the waves from such a bar may sweep upward
in frequency, due to a gradual shrinkage of the proto-neutron-star, or may sweep downward due
to development of “Dedekind-like” internal circulation [33]. The discovery of the waves from
such a proto-neutron-star and observations of their frequency evolutions (which should mirror
the bar’s evolution) would teach us much. Though the strengths of the waves and the best signal
processing techniques and thresholds are all ill-understood, a rough estimate [34] suggests that
the advanced IFOs’ range for detection might be the distance of the VIRGO cluster of galaxies
(about 15 Mpc) and conceivably significantly larger, suggesting event rates that could be some
per year but might be far less.

Even if the proto-neutron-star does not hang up centrifugally, if it is born spinning faster than
∼ 100 revolutions per second, then its r-modes of oscillation (oscillatory, quadrupolar circulation
patterns) may be driven unstable by gravitational radiation reaction. Estimates suggest that the
r-modes may radiate for some months, gradually slowing the star’s rotation to ∼ 100 revolutions
per second, and their waves may be detectable by LIGO’s wide-band or narrow-band IFOs out
to the Virgo Cluster; cf. Sec. 5. Theoretical astrophysicists and relativists are struggling to
understand the physics that governs and influences the r-modes [35], but it is so complex that a
reliable understanding will likely only come from LIGO’s observations of (or failure to observe)
the r-modes’ waves.

Numerical models of supernovae suggest that, even if it is slowly rotating, the newborn proto-
neutron-star will be convectively unstable, and that the gravitational waves from the convective
overturn in the first ∼one second of the star’s life may be detectable throughout our galaxy and
its orbiting companions, the Magellanic Clouds [36]. Although the supernova rate is low in our
galaxy and its companions (<∼ 1/30yrs), one observed event could be very valuable scientifically:
The bulk of the supernova’s neutrinos are thought to come from the same convecting material
as produces the gravitational waves, so there should be correlations between the neutrinos and
the waves, which could teach us much about the proto-neutron-star’s dynamics.

If the advanced WB IFOs detect no gravitational waves from a supernova at distance r,
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during a time T preceeding the beginning of the optical outburst or over a time T during a
neutrino outburst, then one can thereby place a limit on the emitted gravitational-wave energy.
In the band from ∼ 100 to 300 Hz this limit is ∆EGW <∼ 0.05(r/15Mpc)1/2(T/1h)1/2M¯. In
the case of a neutrino-emitting supernova in our own galaxy, with T ∼ 1 sec, this limit is very
impressive: ∼ 10−9M¯.

7 Gamma Ray Bursts

Cosmic gamma-ray bursts, observed ∼ once per day by detectors on spacecraft, are believed
to arise from shocks in a relativistic fireball, generated by rapid accretion onto a newly formed
black hole [37]. The gamma-ray production must occur rather far from the BH (1013 − 1015

cm), making it difficult to test the BH involvement by conventional astronomical observations.
Gravitational waves are more promising: The BH and its accretion flow are thought to form
violently, by the collapse of a massive star (perhaps initiated by merger with a companion) [“a
hypernova”], or by the merger of a binary made of compact objects: a NS/NS binary, a BH/NS
binary, a BH/white-dwarf or a BH/He-core binary [37]. Statistical evidence points to several
subclasses of gamma-ray bursts [38], so several of these “triggers” might occur in nature.

Each of these gamma-burst triggers should emit strong gravitational waves that carry de-
tailed information about its source. NS/BH mergers and hypernovae are promising trigger
candidates for long bursts (duration >∼ 2 s), for which a number of distances have been measured
via afterglows. From the measured distances and the distribution of gamma-burst fluences, one
can estimate a long-burst event rate of ∼ 1 per year out to 650 Mpc — a distance at which
advanced IFOs should be able to detect NS/BH inspirals but will likely not be able to detect
the gravitational waves from hypernovae. NS/NS mergers are a promising trigger candidate for
short bursts (duration <∼ 2 s). The distances to the short bursts are unknown (no after glows
have been detected), but they could well be near enough (event rate >∼ 1/yr at 300 Mpc) for the
advanced IFOs to detect the inspiral waves from a NS/NS trigger.

If gravitational waves are detected from one or more gamma-burst triggers, the waves will
almost certainly reveal the physical nature of the trigger. Moreover, by comparing the arrival
times of the gravitational waves and the earliest gamma rays, it should be possible to measure
the relative propagation speeds of light and gravitational waves to an accuracy ∼ 1 sec/1010 yr ∼
10−17.

If no gravitational waves are detected from any individual gamma burst, the correlation
between gamma bursts and gravitational waves might nevertheless be established by statistical
studies of the advanced IFOs’ gravitational-wave data in narrow time windows preceeding the
gamma bursts [39].

8 Sources of Stochastic Background

The most plausible sources of a stochastic gravitational-wave background in LIGO’s frequency
band are processes in the very early universe. The current best limit on the strength of such waves
is Ω <∼ 10−5; a wave energy larger than this would have caused the universe to expand too rapidly
through the era of primordial nucleosynthesis (universe age ∼ a few minutes), thereby distorting
the universal abundances of light elements away from their observed values. LIGO’s advanced
interferometers would improve on this current limit by a factor ∼ 10, 000, to Ω ' 5 × 10−9 —
an improvement enabling LIGO to test a number of current speculations about the very early
universe. A positive detection would have profound consequences.
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Inflationary models of the early universe predicts that vacuum fluctuations, created in the
Planck era when the universe was being born, should have been parametrically amplified, during
the first ∼ 10−25 sec of the universe’s life, to produce a stochastic gravitational wave background
in the LIGO band. Unfortunately, if “standard” inflation theory is correct, then the amplified
waves are much too weak for LIGO to detect, Ω <∼ 10−15 [40]. The most plausible modifications
of standard inflation push Ω downward from this [40], but some less plausible modifications push
it upward, to the point of detectability [41].

The first, tentative efforts to combine superstring theory with inflationary ideas have pro-
duced a new description of the very early universe called the “pre-big-bang model”, in which
string effects cause the gravitational-wave spectrum to rise steeply at high frequencies — most
likely at frequencies above LIGO’s band, but quite possibly in or below that band [42]. The
result could be waves strong enough for LIGO to detect. A non-detection would significantly
constrain the pre-big-bang model.

There are a wide variety of postulated mechanisms that could have produced strong gravi-
tational waves, with wavelengths of order the horizon size, at various epochs in the very early
universe. Those waves (if any) produced at (universe age)∼ 10−25 sec, corresponding to (uni-
verse temperature T ) ∼ 109 GeV, would have been redshifted into the LIGO band today and
might be detectable. The temperature (energy) region ∼ 109 GeV is tera incognita; LIGO’s
advanced detectors will provide our first opportunity for a serious experimental exploration of
it. Among the speculated wave-generating mechanisms that could operate there, and that LIGO
could constrain (or discover!), are these:

• A first-order phase transition in the states of quantum fields at T ∼ 109 K. Such a phase
transition would nucleate bubbles of the new phase that expand at near the speed of
light and collide to produce gravitational waves; and their collisions would also generate
turbulence that radiates waves. If the transition is strongly first order, the waves would
be strong enough for LIGO’s advanced IFOs to detect. [43]

• Goldstone modes (coherent, classical excitations) of scalar fields that arise in supersym-
metric and string theories. If strongly excited, these modes will entail coherent flows of
energy that radiate gravitational waves strong enough for detection. [44]

• Coherent excitations of our 3+1 dimensional universe, regarded as a “brane” (defect sur-
face) in a higher dimensional universe. The excitations could be of a “radion” field that
controls the size or curvature of the additional dimensions, or they could be of the loca-
tion and shape of our universe’s brane in the higher dimensions; in either case, if there
is an equipartition of energy between these excitations, in the very early universe, and
other forms of energy, then the excitations will produce gravitational waves easily strong
enough for detection by LIGO’s advanced IFOs. LIGO would thereby probe one or two
additional dimensions of size or curvature length ∼ 10−10 – 10−13 mm; by contrast, LISA’s
lower-frequency observations would probe lengths ∼ 1 – 10−5 mm. If the number of extra
dimensions is larger than 2, the probes reach to much smaller scales [45]

Cosmic strings (not to be confused with superstrings), produced in the early universe, were
once regarded as candidates for seeding galaxy formation, but recent cosmological observations
have ruled them out as seeds. Nevertheless, it remains possible that a network of vibrating
cosmic strings too weak to seed galaxy formation was formed in the early universe. LIGO
can search for the presence of such a network in two ways: (i) Via the stochastic background
of gravitational waves that the strings’ vibrations produce; this background would be strong
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enough for the advanced IFOs to detect if the strings’ mass per unit length is >∼ 10−8. [46]
(ii) Via occasional non-Gaussian, strong bursts (“spikes”) of gravitational waves produced by
kinks (cusps) in the string shapes. These bursts could be detectable even if the accompanying
stochastic background is too weak for detection. [47]

9 Unknown Sources

Each of these cosmological speculations is plausible, though not highly likely. Perhaps their
greatest value is to remind us of how terribly ignorant we are of physics and astrophysics in the
domain that LIGO’s advanced IFOs will probe. Our ignorance may well be even greater than
that of the pioneering radio astronomers of 1940 and X-ray astronomers of 1960; and as there,
so also here, the first waves to be discovered may well be from sources that were previously
unknown. Advanced LIGO could bring us a revolution of insights into the universe, and even
into gravity, comparable to the revolutions wrought by radio and X-ray astronomy.
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