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The angle is equal to the arc length

θ = s

Define Euclidian angles



Euclidian (Circle) 
Geometry and Trigonometry

Distance (Pythagoras)
d2 = x2+y2

Fundamental Identity
cos2(θ) + sin2(θ) = 1

Adding Angles  (add arcs)
θ1 = s1

θ2 = s2

θ3 = θ1 + θ2 = s1 + s2 = s3

Trig Identities
sin(θ+φ) = sin(θ)cos(φ)+cos(θ)sin(φ)



s1

s2

s3=s1+s2

θ1

θ2

θ3

θ3= θ1 + θ2

To add angles
add arc lengths



The angle is equal to the arc length

Define Hyperbolic angles





Hyperbolic 
Geometry and Trigonometry

Distance (Pythagoras)
d2 = t2 - x2

Fundamental Identity
cosh2(θ) - sinh2(θ) = 1

Adding Angles  (add arcs)
θ1 = s1
θ2 = s2
θ1 + θ2 = s1 + s2

Trig Identities
sinh(θ+φ) =
sinh(θ)cosh(φ)+cosh(θ)sinh(φ)



Add Hyperbolic angles

The angle is equal to the arc length



Euclidian Triangle Trig

Hyperbolic Triangle Trig



Euclidian Triangles
cos2(θ) = [ 1 + tan2(θ) ]-1

32 + 42 = 52

Hyperbolic Triangles
cosh2(θ) = [ 1 - tanh2(θ) ]-1

52 - 32 = 42
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Even More Right Triangles





cosh sinh tanh











Warning!
The following article is from 

The Great Soviet Encyclopedia 
(1979). 

It might be outdated or 
ideologically biased.





http://en.wikipedia.org/wiki/File:HyperbolicAnimation.gif

http://en.wikipedia.org/wiki/File:HyperbolicAnimation.gif


Euclidian Calculus

d cos(θ)/dθ = - sin(θ)
d sin(θ)/dθ = cos(θ)
d tan(θ)/dθ = sec2(θ)

Hyperbolic Calculus

d cosh(θ)/dθ = sinh(θ)
d sinh(θ)/dθ = cosh(θ)
d tanh(θ)/dθ = 1-tan2(θ)



Euclidian to Hyperbolic
cos(θ) = cosh(iθ)
sin(θ) = i sinh(iθ)
tan(θ) = i tanh(iθ)
cot(θ) = -i coth(iθ)
sec(θ) = sech(iθ)
csc(θ) = -i csch(iθ)

Hyperbolic to Euclidian
cosh(θ) = cos(iθ)
sinh(θ) = -i sin(iθ)
tanh(θ) = -i tan(iθ)
coth(θ) = i tan(iθ)
sech(θ) = sec(iθ)
csch(θ) = i csc(iθ)



Rapidity

The dimensionless velocities
β1

 = v1 / c

β2
 = v2 / c

Rapidity
β = tanh(r)  

Rapidity adds
r3 = r1 + r2

β = tanh( r1 + r2 )

β = (tanh(r1)+tanh(r2))/(1+tanh(r1) tanh(r2))

Einstein velocity addition

β = (β1 + β2) / (1 + β1 β2)
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Two events simultaneous in 
one frame are not simultaneous 
in any other frame
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Now that we have plotted (a region of the) inertial reference frame S′ moving at 0.5relv = relative 
to S, we can test the statement regarding the relativity of simultaneity by graphical means. 
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Figure 3-II.2 Relativity of simultaneity. 

 
For an observer in S , we represent simultaneous events A and B occurring at time t , by plotting a 
line parallel to the x axis through points A and B. For an observer in S′ , similar lines plotted 
parallel to the x′ axis through point A and B correspond with time measurements A′and B′ on the 
t′ axis. Not only are events A and B not simultaneous in S′ , their chronological order is reversed. 
 

3-1. Relativity and swimming 
 
The idea here is to illustrate how remarkable is the invariance of the speed of light (speed of light is 
the same in all free-float frames) by contrasting it with the case of a swimmer making her way 
through water.  
 
Light goes through space at 83 10× meters per second, and the swimmer goes through water at 1 
meter per second. “But how can there otherwise be any difference?” one at first asks oneself. 
 
For a light flash to go down the length of a 30-meter spaceship and back again it takes 
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Minkowski diagrams

Two great things
(1) Arbitrarily many reference frames
(2) Constantly reminded that space is hyperbolic

One not so great thing
(1) Hyperbolic distortion
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Time Dilation



Length Contraction
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X’ is Moving Right



X is Moving Left



Lorentz transformation matrix Λ

Λ =


cosh θ sinh θ 0 0
sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1



Λ =


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1





Cartesian 

Hyperbolic



Making Photons using 
Relativistic Electrons

Synchrotrons
Wigglers

Undulators
and

X-Ray Lasers





Compression of the

Electric Field Lines



Before β = 0.95 

After β = 0

radial lines ~ r-2

tangential lines ~ r-1



At rest, then acceleration a for 

time τ, finally at fixed velocity v



From the Geometry

Transverse component = vt sin θ
Radial component = cτ



Transverse 

Magnetic Field



Low Velocity Limit
Non-Relativistic Limit



Dipole Pattern 

β = 0.90



Relativistic with 

Acceleration Parallel 
to the Velocity



Synchrotron Radiation
β = 0.95

x



Synchrotrons are

Ultra-Relativistic 
with Acceleration 

Perpendicular to 
the Velocity



Low Velocity Limit
Non-Relativistic Limit



Electron Frame

Lab Frame





BrightPowrfulXRs.ai

Bright and Powerful X-Rays
from Relativistic Electrons 

ψ

θ

e–

Undulator radiationSynchrotron radiation

e–

• 1010 brighter than the
 most powerful (compact)
 laboratory source

• An x-ray “light bulb” in
 that it radiates all “colors”
 (wavelengths, photons energies)

• Lasers exist for the IR, visible,
 UV, VUV, and EUV

• Undulator radiation is quasi-
 monochromatic and highly
 directional, approximating
 many of the desired properties
 of an x-ray laser

N

N
N

N

S

S

S

S

Professor David Attwood
Univ. California, Berkeley Intro to Synchrotron Radiation, EE290F, 16 Jan 2007



Ch05_F11VG_Oct05.ai

Synchrotron Radiation in a Narrow Forward Cone

a′ sin2Θ′

θ′

Θ′
θ – 1

2γ~

(5.1)

(5.2)

Frame moving with electron Laboratory frame of reference

Professor David Attwood
Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007



Ch05_F11modif_VG.ai

Relativistic Electrons Radiate
in a Narrow Forward Cone

a′ sin2Θ′

k′ k

k′ = 2π/λ′

Lorentz
transformationk′

k′

Θ′
θ 

θθ′

1
2γ

kx
kz

k′
2γk′

tanθ′
2γ

1
2γθ   

Dipole radiation

Frame of reference
moving with electrons

Laboratory frame of reference

x

z

kx = k′

kz = 2γk′ (Relativistic Doppler shift)z

x
z

=

x

Professor David Attwood
Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007
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Ch05_F01_03VG.ai

Bending magnet
radiation

Wiggler radiation

Undulator radiation

Three Forms of Synchrotron Radiation

Professor David Attwood
Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007



Ch05_F08VG.ai

Narrow Cone Undulator Radiation,
Generated by Relativistic Electrons
Traversing a Periodic Magnet Structure

Magnetic undulator
(N periods)

Relativistic
electron beam,
Ee = γmc2
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Professor David Attwood
Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007



An Undulator Up Close

Undulator_Close.ai

ALS U5 undulator, beamline 7.0, N = 89, λu = 50 mm
Professor David Attwood
Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007



Undulator Radiation

e–

N
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N

N N

S S

λu

E = γmc2

γ =
1

1 – v2

c2

N = # periods

e–
sin2Θ θ ~– 1

2γ θcen

e– radiates at the
Lorentz contracted
wavelength:

Doppler shortened
wavelength on axis:

Laboratory Frame
of Reference

Frame of
Moving e–

Frame of
Observer

 Following
Monochromator

For 1
N

∆λ
λ

θcen
1

γ    N

θcen 40 rad

λ′ = 
λu
γ

Bandwidth:

λ′ N

λ = λ′γ(1 – βcosθ) 

λ =        (1 + γ2θ2)

Accounting for transverse
motion due to the periodic
magnetic field:

λu

2γ2

λu

2γ 2
λ =       (1 +      + γ 2θ2)K2

2

where K = eB0λu /2πmc
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Professor David Attwood
Univ. California, Berkeley Intro Synchrotron Radiation, Bending Magnet Radiation, EE290F, 8 Feb. 2007



The Synchrotrons

that
I Have Loved




























