Circles

VS

Hyperbolas

Geometries
Trigonometries
Calcului

Define Euclidian angles

$$
\theta=s
$$

The angle is equal to the arc length

Euclidian (Circle)

Geometry and Trigonometry

Distance (Pythagoras)

$$
d^{2}=x^{2}+y^{2}
$$

Fundamental Identity

$$
\cos ^{2}(\theta)+\sin ^{2}(\theta)=1
$$

Adding Angles (add arcs)

$$
\begin{aligned}
& \theta_{1}=\mathbf{s}_{1} \\
& \theta_{\mathbf{2}}=\mathbf{s}_{2} \\
& \theta_{\mathbf{3}}=\theta_{1}+\theta_{2}=\mathbf{s}_{1}+\mathbf{s}_{\mathbf{2}}=\mathbf{s}_{3}
\end{aligned}
$$

Define Hyperbolic angles

The angle is equal to the arc length

Hyperbolic

Geometry and Trigonometry

Distance (Pythagoras)

$$
d^{2}=t^{2}-x^{2}
$$

Fundamental Identity

$$
\cosh ^{2}(\theta)-\sinh ^{2}(\theta)=1
$$

Adding Angles (add arcs)

$$
\theta_{1}=\mathbf{s} 1
$$

$$
\theta_{\mathbf{2}}=\mathbf{s} \mathbf{2}
$$

$$
\theta_{1}+\theta_{\mathbf{2}}=\mathbf{s}_{1}+\mathbf{s}_{2}
$$

```
Trig Identities
\(\sinh (\theta+\phi)=\) \(\sinh (\theta) \cosh (\phi)+\cosh (\theta) \sinh (\phi)\)
```


Add Hyperbolic angles

The angle is equal to the arc length

Euclidian Triangle Trig

Hyperbolic Triangle Trig

Euclidian Triangles
$\cos ^{2}(\theta)=\left[1+\tan ^{2}(\theta)\right]^{-1}$
$3^{2}+4^{2}=5^{2}$

Hyperbolic Triangles
$\cosh ^{2}(\theta)=\left[1-\tanh ^{2}(\theta)\right]^{-1}$
$5^{2}-3^{2}=4^{2}$

Figure 5.3: Some hyperbolic right triangles.

Figure 5.4: More hyperbolic right triangles. The right angle is on the left!

Even More Right Triangles

Trigonometric functions on R (cos: purple; sin: red; tan: blue)

Hyperbolic functions on r (cosh: purple; sinh: red; tanh: blue)

Warning!

The following article is from The Great Soviet Encyclopedia (1979).

It might be outdated or ideologically biased.

Figure 2. Graphs of trigonometric functions: (1) sine, (2) cosine, (3) tangent, (4) cotangent, (5) secant, (6) cosecant

http://en.wikipedia.org/wiki/File:HyperbolicAnimation.gif

Euclidian Calculus

$$
\begin{aligned}
& \text { d } \cos (\theta) / d \theta=-\sin (\theta) \\
& \text { d } \sin (\theta) / d \theta=\cos (\theta) \\
& \text { d } \tan (\theta) / d \theta=\sec ^{2}(\theta)
\end{aligned}
$$

Hyperbolic Calculus

> d $\cosh (\theta) / d \theta=\sinh (\theta)$
> d $\sinh (\theta) / \mathbf{d} \theta=\cosh (\theta)$
> $d \tanh (\theta) / d \theta=1-\tan ^{2}(\theta)$

Euclidian to Hyperbolic

$$
\begin{aligned}
& \cos (\theta)=\cosh (i \theta) \\
& \sin (\theta)=i \sinh (i \theta) \\
& \tan (\theta)=i \tanh (i \theta) \\
& \cot (\theta)=-i \operatorname{coth}(i \theta) \\
& \sec (\theta)=\operatorname{sech}(i \theta) \\
& \csc (\theta)=-i \operatorname{csch}(i \theta)
\end{aligned}
$$

Hyperbolic to Euclidian

$$
\begin{aligned}
& \cosh (\theta)=\cos (i \theta) \\
& \sinh (\theta)=-i \sin (i \theta) \\
& \tanh (\theta)=-i \tan (i \theta) \\
& \operatorname{coth}(\theta)=i \tan (i \theta) \\
& \operatorname{sech}(\theta)=\sec (i \theta) \\
& \operatorname{csch}(\theta)=i \csc (i \theta)
\end{aligned}
$$

Rapidity

The dimensionless velocities
$\beta_{1}=v_{1} / c$
$\beta_{2}=v_{2} / \mathbf{c}$

Rapidity
$\beta=\boldsymbol{\operatorname { t a n h }}(\mathbf{r})$

Rapidity adds
$r_{3}=r_{1}+r_{2}$
$\beta=\tanh \left(\mathbf{r}_{1}+\mathbf{r}_{\mathbf{2}}\right)$
$\beta=\left(\tanh \left(r_{1}\right)+\tanh \left(r_{2}\right)\right) /\left(1+\tanh \left(r_{1}\right) \tanh \left(r_{2}\right)\right)$

Einstein velocity addition

$$
\beta=\left(\beta_{1}+\beta_{2}\right) /\left(1+\beta_{1} \beta_{2}\right)
$$

Two events simultaneous in one frame are not simultaneous in any other frame

Now that we have plotted (a region of the) inertial reference frame S^{\prime} moving at $v_{\text {rel }}=0.5$ relative to S, we can test the statement regarding the relativity of simultaneity by graphical means.

Figure 3-II. 2 Relativity of simultaneity.

For an observer in S, we represent simultaneous events A and B occurring at time t, by plotting a line parallel to the x axis through points A and B . For an observer in S^{\prime}, similar lines plotted parallel to the x^{\prime} axis through point A and B correspond with time measurements A^{\prime} and B^{\prime} on the t^{\prime} axis. Not only are events A and B not simultaneous in S^{\prime}, their chronological order is reversed.

3-1. Relativity and swimming

The idea here is to illustrate how remarkable is the invariance of the speed of light (speed of light is the same in all free-float frames) by contrasting it with the case of a swimmer making her way through water.

Light goes through space at 3×10^{8} meters per second, and the swimmer goes through water at 1 meter per second. "But how can there otherwise be any difference?" one at first asks oneself.

For a light flash to go down the length of a 30-meter spaceship and back again it takes

$$
\begin{aligned}
\text { time } & =(\text { distance }) /(\text { speed }) \\
& =2 \times(30 \text { metes }) /\left(3 \times 10^{8} \text { meters } / \text { second }\right) \\
& =2 \times 10^{-7} \text { second }
\end{aligned}
$$

Two events at the same place in one frame are not at the same place in any other frame

Minkowski diagrams

Two great things
(1) Arbitrarily many reference frames
(2) Constantly reminded that space is hyperbolic

One not so great thing
(1) Hyperbolic distortion

Time Dilation

Length Contraction

X^{\prime} is Moving Right

Figure L-VI. $1 \boldsymbol{x}^{\prime}$ moving to the right of \boldsymbol{x}.

X is Moving Left

Figure L-VI. $2 \boldsymbol{x}$ moving to the left of \boldsymbol{x}^{\prime}.

Lorentz transformation matrix Λ

$$
\begin{aligned}
& \boldsymbol{\Lambda}=\left[\begin{array}{cccc}
\cosh \theta & \sinh \theta & 0 & 0 \\
\sinh \theta & \cosh \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \boldsymbol{\Lambda}=\left[\begin{array}{cccc}
\gamma & \gamma \beta & 0 & 0 \\
\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Cartesian

$$
\binom{x}{y}=\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{x^{\prime}}{y^{\prime}}
$$

Hyperbolic

$$
\binom{x}{c t}=\left(\begin{array}{cc}
\cosh \beta & \sinh \beta \\
\sinh \beta & \cosh \beta
\end{array}\right)\binom{x^{\prime}}{c t^{\prime}}
$$

Making Photons using Relativistic Electrons

Synchrotrons
Wigglers
Undulators
and
X-Ray Lasers

Figure 10: The electric field lines of a point charge.

Compression of the Electric Field Lines

Before $\beta=0.95$

After $\beta=0$

radial lines $\sim \mathbf{r a}^{\mathbf{- 2}}$
tangential lines $\sim \mathbf{r}^{-1}$

At rest, then acceleration a for time τ, finally at fixed velocity v

From the Geometry
Transverse component $=\mathrm{vt} \sin \theta$ Radial component $=\mathbf{c} \tau$

Transverse Magnetic Field

Low Velocity Limit Non-Relativistic Limit

Dipole Pattern $\beta=0.90$

Relativistic with
 Acceleration Parallel to the Velocity

Synchrotron Radiation $\beta=0.95$

Synchrotrons are Ultra-Relativistic with Acceleration Perpendicular to the Velocity

Low Velocity Limit Non-Relativistic Limit

Electron Frame

Lab Frame

Bright and Powerful X-Rays from Relativistic Electrons

Synchrotron radiation

- 10^{10} brighter than the
most powerful (compact) laboratory source
- An x-ray "light bulb" in that it radiates all "colors" (wavelengths, photons energies)

Undulator radiation

- Lasers exist for the IR, visible, UV, VUV, and EUV
- Undulator radiation is quasimonochromatic and highly directional, approximating many of the desired properties of an x-ray laser

Synchrotron Radiation in a Narrow Forward Cone

Frame moving with electron
Laboratory frame of reference

$$
\begin{gather*}
\tan \theta=\frac{\sin \theta^{\prime}}{\gamma\left(\beta+\cos \theta^{\prime}\right)} \tag{5.1}\\
\theta \simeq \frac{1}{2 \gamma} \tag{5.2}
\end{gather*}
$$

Relativistic Electrons Radiate in a Narrow Forward Cone

Dipole radiation

Frame of reference moving with electrons

Three Forms of Synchrotron Radiation

Narrow Cone Undulator Radiation, Generated by Relativistic Electrons Traversing a Periodic Magnet Structure

An Undulator Up Close

ALS U5 undulator, beamline $7.0, \mathrm{~N}=89, \lambda_{\mathrm{u}}=50 \mathrm{~mm}$

Undulator Radiation

$\mathrm{E}=\gamma \mathrm{mc}^{2}$
$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$N=$ \# periods

e^{-}radiates at the Lorentz contracted wavelength:

$$
\lambda^{\prime}=\frac{\lambda_{\mathrm{u}}}{\gamma}
$$

Bandwidth:

$$
\frac{\lambda^{\prime}}{\Delta \lambda^{\prime}} \simeq \mathrm{N}
$$

Frame of Observer

Doppler shortened wavelength on axis:

$$
\begin{aligned}
& \lambda=\lambda^{\prime} \gamma(1-\beta \cos \theta) \\
& \lambda=\frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\gamma^{2} \theta^{2}\right)
\end{aligned}
$$

Accounting for transverse motion due to the periodic magnetic field:

$$
\begin{aligned}
& \lambda=\frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{\mathrm{K}^{2}}{2}+\gamma^{2} \theta^{2}\right) \\
& \text { where } \mathrm{K}=\mathrm{eB}_{0} \lambda_{\mathrm{u}} / 2 \pi \mathrm{mc}
\end{aligned}
$$

Following Monochromator

For $\frac{\Delta \lambda}{\lambda} \simeq \frac{1}{N}$

$$
\theta_{\text {cen }} \simeq \frac{1}{\gamma \sqrt{N}}
$$

typically

$$
\theta_{\text {cen }} \simeq 40 \mathrm{rad}
$$

The Synchrotrons that
 I Have Loved

