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Hyperbolic Geometry Websites
http://www.maths.gla.ac.uk/~wws/cabripages/hyperbolic/experiment.html

http://www.geom.uiuc.edu/~crobles/hyperbolic/hypr/modl/
http://www.geom.uiuc.edu/~crobles/hyperbolic/hypr/ibm/

http://cs.unm.edu/~joel/NonEuclid/NonEuclid.html

Hyperbolic Tesselations
http://aleph0.clarku.edu/~djoyce/poincare/poincare.html

http://aleph0.clarku.edu/~djoyce/poincare/other_tess.html

http://www.plunk.org/~hatch/HyperbolicTesselations

Hyperbolic Computer Graphics
http://graphics.stanford.edu/papers/h3cga/

http://www.geom.uiuc.edu/docs/research/webviz/webviz/node2.html
http://sigchi.org/chi95/proceedings/papers/jl_bdy.htm
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http://graphics.stanford.edu/papers/h3cga/
http://www.geom.uiuc.edu/docs/research/webviz/webviz/node2.html
http://sigchi.org/chi95/proceedings/papers/jl_bdy.htm










Cinderella Story

Hyperbolic geometry is the Cinderella story of mathematics. 
Rejected and hidden while her two sisters (spherical and 
euclidean geometry) hogged the limelight, hyperbolic 
geometry was eventually rescued and emerged to outshine 
them both. The first part of this saga---how Bolyai and 
Lobachevsky laboured in vain to win recognition for their 
subject---is well known, and English translations of the key 
documents are available in Bonola's classic Non-Euclidean 
Geometry. However, the turning point of the story has not 
been documented in English until now. 

Beltrami came to the rescue of hyperbolic geometry in 1868 
by interpreting it on a surface of constant negative curvature. 
By giving a concrete meaning to the hyperbolic plane, he put 
Bolyai's and Lobachevsky's work on a sound logical 
foundation for the first time, and showed that it was a part of 
classical differential geometry. This was quickly followed by 
interpretations in projective geometry by Klein in 1871, and 
in the complex numbers by Poincare in 1882. 

Hyperbolic geometry had arrived, and with Poincare it joined 
the main-stream of mathematics. He used it immediately in 
differential equations, complex analysis, and number theory, 
and its place has been secure in these disciplines ever 
since. He also began to use it in low-dimensional topology, 
an idea kept alive by a handful of topologists until the 
spectacular blossoming of this field under Thurston in the 
late 1970s. Now, hyperbolic geometry is the generic 
geometry in dimensions 2 and 3. 



"For God's sake, please give it up. Fear it no 
less than the sensual passions, because it, too, 
may take up all your time and deprive you of 
your health, peace of mind and happiness in 
life." 

Wolfgang Bolyai to his son Janos Bolyai 
on the dangers of hyperbolic geometry 

What exactly is a hyperbolic plane?

DH: There are many ways of describing the hyperbolic plane. In 
formal geometric terms, it is "a simply connected Riemannian 
manifold with negative Gaussian curvature." In higher-level 
mathematics courses it is often defined as the geometry that is 
described by the upper half-plane model. One way of understanding it 
is that it's the geometric opposite of the sphere. On a sphere, the 
surface curves in on itself and is closed. A hyperbolic plane is a 
surface in which the space curves away from itself at every point. 
Like a Euclidean plane it is open and infinite, but it has a more 
complex and counterintuitive geometry.



The hyperbolic plane is sometimes described 

as a surface in which the space expands?

DH: Actually that is true for many spaces, but it's true for hyperbolic 
space in a particular way. Consider how circles on a surface behave. 
If you think of a series of circles around a point on a regular 
Euclidean plane, as you draw larger circles the length of the 
circumference increases linearly. Now on a hyperbolic plane, the 
circumference of the circles doesn't just increase linearly, but 
exponentially. The perimeter and also the area of the circles gets 
bigger much faster. On a sphere, the circles get larger at first, but 
then as you go further they actually begin to get smaller. On a 
sphere the circumference of a circle is always less than 2!r, on a 
hyperbolic plane it is more. A similar thing happens with the area, 
which also increases much faster in hyperbolic space.

Spherical geometry is pretty easy to understand because we see 
spheres all around us. But when mathematicians first started to 
study hyperbolic geometry, they didn't have any idea what this 
space might look like and they were nearly driven mad trying to 
understand this space. In 1997, Daina, you worked out how to make 
a physical model of the hyperbolic plane using crochet. How did that 
discovery come about?

DT: For the past 125 years or so mathematicians had conceptual 
models of the hyperbolic plane, such as the Poincaré disc model, 
developed by the French mathematician Henri Poincaré. Some of the 
models had great aesthetic appeal, especially given the enormous 
variety of repeating patterns that are possible in the hyperbolic 
plane. After the geometer Donald Coxeter explained these 
conceptual models to Escher, he used patterns based on these 
models in several of his prints.



Does that mean geometry is going to 
have some sort of renaissance?

DH: Oh yes, geometry is having a renaissance. One indication of this 
is the number of geometry courses being taught around the country. 
For example, when I first came to Cornell there was only one 
undergraduate geometry course; now we have eight. A further 
indication is the work of William Thurston, who has hypothesized a 
classification for the different types of three-dimensional manifolds - 
the three-dimensional analogues of two-dimensional surfaces (such 
as the surface of a sphere or a donut). Where two-dimensional 
geometry comes in just three types---the Euclidean plane, the 
sphere, and the hyperbolic plane---Thurston's Hypothesis says that 
there are eight distinct 3-D spatial types. Over the past year the 
mathematical world has been excited by the news that Thurston's 
Hypothesis might have been proved. If that turns out to be true, then 
mathematics most famous geometric problem - the Poincaré 
Conjecture - will also have been proved, and there's a million dollar 
prize attached to that discovery.









Crocheting What Euclid Couldn't Grasp

A visiting scholar at Cornell University has taken both the math world 
and, more recently, the art world by storm with a touchable form of 
advanced geometry. Daina Taimina, a mathematician and crocheter, 
discovered a way to create durable and easy-to-use models of 
hyperbolic space. People have been attempting this ever since the 
concept emerged in the early 1800s and overturned Euclidean 
geometry's assumptions about parallel lines.

Students are excited by the crochet creations, some of which resemble 
curvy leaves of lettuce or kale. Straight lines of one color of yarn are 
stitched into models made of another color. By bending the forms, 
students see a new three-dimensional relationship between parallel 
lines.

"Maybe there's something psychological about using the yarns and the 
handicraft.... It just takes out the anxiety. It's not the same as looking 
at some abstract formula," Dr. Taimina says. "People say, 'It's very 
important that we can touch it - we can learn through feeling.' "



Hilbert proved that it is impossible to represent 
the hyperbolic plane in three-dimensional 
space analytically.

Hyperbolic geometry, conceived by mathematician Carl Gauss in 1816, 
is stranger still. Like planar geometry, it posits that the shortest 
distance between two points is a straight line. And hyperbolic space, 
like spherical space, has a constant curvature—except the curvature is 
negative rather than positive. Hyperbolic geometry describes a world 
that is curving away from itself at every point, making it the precise 
opposite of a sphere, whatever that might look like. (One is tempted to 
picture an inside-out sphere, but that still describes a positive 
curvature, since space is curving toward itself at each point.) 

The rediscovery of hyperbolic space was not greeted enthusiastically 
by the analytically oriented German and Austrian mathematicians who 
dominated mathematics in the West; they dreamed of a logical, orderly 
universe that could be represented through equations. Not until very 
recently—after the fall of the iron curtain—did the strange and illogical 
beauty of hyperbolic forms emerge yet again to claim the attention of 
mathematicians.

I ask Henderson how it is that shapes that cannot be imagined 
nonetheless can be found in his wife's knitting bowl. "A hundred years 
ago, the mathematician David Hilbert proved a theorem that it is 
impossible to represent the hyperbolic plane in three-dimensional 
space analytically," he says. " 'Analytically' means 'with equations.' 
Everybody left off the word analytically later on. They were worried that 
mistakes or errors would creep into mathematics through geometric 
intuition, and so they discouraged the study of geometry and everything 
associated with this weird kind of thinking." 

http://theiff.org/oexhibits/oe1.html
http://discovermagazine.com/2006/mar/knit-theory
http://www.news.cornell.edu/stories/Dec05/Taimina.hyperbolic.lg.html

http://theiff.org/oexhibits/oe1.html
http://discovermagazine.com/2006/mar/knit-theory
http://www.news.cornell.edu/stories/Dec05/Taimina.hyperbolic.lg.html


Heisenberg’s first graduate student was Felix 

Bloch.  One day, while walking together, they 

started to discuss the concepts of space and 

time.  Bloch had just finished reading Weyl’s 

book Space, Time, Matter, the same book that

Heisenberg had read as a young man. Still very 

much under the influence of this scholarly 

work, Bloch declared that he now understood 

that space was simply the field of affine 

transformations. 

Heisenberg paused, looked at him, and replied: 

“Nonsense, space is 

blue and birds fly 

through it.”



After Poincare

Hyperbolic geometry took a new turn with the advent of 
Poincare. Beltrami and Klein were primarily geometers, who 
used known geometry to construct realisations of what was, 
until then, an unknown geometry. Poincare began in other 
fields, and made the surprising discovery that hyperbolic 
geometry was already present in mainstream mathematics. 
In a famous passage, he described how the revelation came 
to him: 

Just at this time I left Caen, where I was then living, to go on 
a geological excursion under the auspices of the school of 
mines. The changes of travel made me forget about my 
mathematical work. Having reached Coutances, we entered 
an omnibus to go some place or other. At the moment when I 
put my foot on the step the idea came to me, without 
anything in my former thoughts seeming to have paved the 
way for it, that the transformations I had used to define 
Fuchsian functions were identical with those of non-
Euclidean geometry. I did not verify the idea: I should not 
have had time, as, upon taking my seat in the omnibus, I 
went on with a conversation already commenced, but I felt a 
perfect certainty. On my return to Caen, for conscience' sake 
I verified the result at my leisure. 

Then I turned my attention to the study of some arithmetic 
questions apparently without success and without a 
suspicion of any connection with my previous researches. 
Disgusted with my failure, I went to spend a few days at the 
seaside, and thought of something else. One morning, 
walking along the bluff, the idea came to me, with just the 
same characteristics of brevity, suddenness and immediate 



certainty, that the arithmetic tranformations of ternary 
quadratic forms were identical with those of non-Euclidean 
geometry.

This discovery cast hyperbolic geometry in an entirely new 
light. Now it could be seen as not merely logically valid, but 
also natural, familiar and potentially useful. Poincare 
proceeded to show how useful it was with a slew of 
applications to complex analysis, differential equations, 
number theory and later topology. 

Poincare developed new models of hyperbolic geometry: two 
long papers on the group theory of differential equations and 
a third, which is not so well known on the applications of 
hyperbolic geometry to number theory.  As we shall see, 
number theory contains possibly the earliest hints of 
hyperbolic geometry in mainstream mathematics, some 
being visible in the memoir of Lagrange on quadratic forms.
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FIG. 3: The hyperbolic map of the Internet is similar to a synthetic Einsteinian network in Fig. 2. The size of AS nodes is
proportional to the logarithm of their degrees. For the sake of clarity, only ASs with degree above 3, and only the connections
with probability p(x) > 0.5 given by Eq. (2) are shown. The font size of the country names is proportional to the logarithm of
the number of ASs that the country has. Only the names of countries with more than 10 ASs are included. The methods used
to map ASs to their countries are described in Appendix D.

single connected component. Using this property along
with the statistical independence of the graph edges, it
becomes possible to infer coordinates of ASs in G(kT )
ignoring the remainder of the AS graph. This property
is practically important because the size of G(kT ) de-
creases very fast as kT increases, which speeds up likeli-
hood maximisation algorithms tremendously. In a nut-
shell, our method starts with a subgraph G(kT ) small
enough for standard maximisation algorithms being able
to reliably and quickly infer the coordinates of ASs in

G(kT ). Once these are found, we gradually increase kT

to iteratively add layers of lower-degree ASs. While doing
so, we use the already inferred AS coordinates as a ref-
erence frame to assign initial coordinates to newly added
ASs. This initial coordinate assignment significantly im-
proves the convergence time of maximisation algorithms.
All other details of our mapping method can be found in
Appendix B.
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The Poincare Conjecture

With no mass, we are left with "pure" space. This is a 3-D manifold that 
has some sort of geometry. With our now homogeneous 3-D manifold 
(the inhomogeneous curving effects of mass have been mitigated), the 
possible geometries are analogous to the geometries of the surfaces of 
the 2-D objects that we examined before. Now, however, instead of 
being polygons, the tiles will be polyhedra, and the type or types of 
polyhedra that will tile or "pack" a particular space are determined by 
the specific geometry of that space.

So, the question remains: what are the possible geometries? In 1982 
William Thurston, one of the most influential modern geometers and 
topologists, proposed that there are eight possible geometries, 
Euclidean, spherical, hyperbolic, and five other systems. In the early 
and mid-2000s Perelman proved Thurston's claims to be correct. This 
result also proved the Poincaré conjecture, which considered only 
spherical 3-D manifolds.

Now that Thurston's geometrization conjecture has been proven to be 
correct— and has earned the title of "theorem"—we have essentially a 
complete list of possibilities for the fundamental geometry of our 
space. The task now is to determine which geometry actually governs 
the real world we live in. This is essentially what Gauss tried to do on 
his mountaintops so many years ago. The problem, as we have seen, is 
that to reach a definitive answer, we need to be able to look at 
extremely large shapes, much larger than anything on Earth or even in 
our galaxy, perhaps.

So we are, indeed, much like the ant on its surface: we know what is 
happening with the local curvature, but we are looking too closely to be 
able to discern much about the large-scale geometry of our system. If 
we had to guess the specific geometry of our space, we, like the ant, 
would do well to guess hyperbolic. Indeed, Thurston's Geometrization 
Theorem confirms that most spaces are spaces that obey the "many 
parallels" version of Euclid's fifth postulate.

http://www.youtube.com/watch?v=qsE2UKkIKXU

http://www.youtube.com/watch?v=qsE2UKkIKXU


The Poincare Conjecture and the Thurston Conjecture
become

the Poincare Theorem and the Thurston Theorem

http://en.wikipedia.org/wiki/Poincare_conjecture

http://en.wikipedia.org/wiki/Solution_of_the_Poincare_conjecture

http://www.claymath.org/poincare/

http://comet.lehman.cuny.edu/sormani/others/perelman/introperelman.html

http://www.math.unl.edu/~mbrittenham2/ldt/poincare.html

http://en.wikipedia.org/wiki/Poincare_conjecture
http://en.wikipedia.org/wiki/Solution_of_the_Poincare_conjecture
http://www.claymath.org/poincare/
http://comet.lehman.cuny.edu/sormani/others/perelman/introperelman.html
http://www.math.unl.edu/~mbrittenham2/ldt/poincare.html


August 15, 2006

Elusive Proof, Elusive Prover: A New Mathematical Mystery
By DENNIS OVERBYE

Correction Appended

Grisha Perelman, where are you?

Three years ago, a Russian mathematician by the name of Grigory Perelman, a k a Grisha, in St. Petersburg, announced that he had solved a famous and intractable
mathematical problem, known as the Poincaré conjecture, about the nature of space.

After posting a few short papers on the Internet and making a whirlwind lecture tour of the United States, Dr. Perelman disappeared back into the Russian woods in the
spring of 2003, leaving the world’s mathematicians to pick up the pieces and decide if he was right.

Now they say they have finished his work, and the evidence is circulating among scholars in the form of three book-length papers with about 1,000 pages of dense
mathematics and prose between them.

As a result there is a growing feeling, a cautious optimism that they have finally achieved a landmark not just of mathematics, but of human thought.

“It’s really a great moment in mathematics,” said Bruce Kleiner of Yale, who has spent the last three years helping to explicate Dr. Perelman’s work. “It could have
happened 100 years from now, or never.”

In a speech at a conference in Beijing this summer, Shing-Tung Yau of Harvard said the understanding of three-dimensional space brought about by Poincaré’s
conjecture could be one of the major pillars of math in the 21st century.

Quoting Poincaré himself, Dr.Yau said, “Thought is only a flash in the middle of a long night, but the flash that means everything.”

But at the moment of his putative triumph, Dr. Perelman is nowhere in sight. He is an odds-on favorite to win a Fields Medal, math’s version of the Nobel Prize, when the
International Mathematics Union convenes in Madrid next Tuesday. But there is no indication whether he will show up.

Also left hanging, for now, is $1 million offered by the Clay Mathematics Institute in Cambridge, Mass., for the first published proof of the conjecture, one of seven
outstanding questions for which they offered a ransom back at the beginning of the millennium.

“It’s very unusual in math that somebody announces a result this big and leaves it hanging,” said John Morgan of Columbia, one of the scholars who has also been filling
in the details of Dr. Perelman’s work.

Mathematicians have been waiting for this result for more than 100 years, ever since the French polymath Henri Poincaré posed the problem in 1904. And they
acknowledge that it may be another 100 years before its full implications for math and physics are understood. For now, they say, it is just beautiful, like art or a
challenging new opera.

Dr. Morgan said the excitement came not from the final proof of the conjecture, which everybody felt was true, but the method, “finding deep connections between what
were unrelated fields of mathematics.”

William Thurston of Cornell, the author of a deeper conjecture that includes Poincaré’s and that is now apparently proved, said, “Math is really about the human mind,
about how people can think effectively, and why curiosity is quite a good guide,” explaining that curiosity is tied in some way with intuition.

“You don’t see what you’re seeing until you see it,” Dr. Thurston said, “but when you do see it, it lets you see many other things.”

Depending on who is talking, Poincaré’s conjecture can sound either daunting or deceptively simple. It asserts that if any loop in a certain kind of three-dimensional
space can be shrunk to a point without ripping or tearing either the loop or the space, the space is equivalent to a sphere.

The conjecture is fundamental to topology, the branch of math that deals with shapes, sometimes described as geometry without the details. To a topologist, a sphere, a
cigar and a rabbit’s head are all the same because they can be deformed into one another. Likewise, a coffee mug and a doughnut are also the same because each has one
hole, but they are not equivalent to a sphere.

In effect, what Poincaré suggested was that anything without holes has to be a sphere. The one qualification was that this “anything” had to be what mathematicians call
compact, or closed, meaning that it has a finite extent: no matter how far you strike out in one direction or another, you can get only so far away before you start coming
back, the way you can never get more than 12,500 miles from home on the Earth.

In the case of two dimensions, like the surface of a sphere or a doughnut, it is easy to see what Poincaré was talking about: imagine a rubber band stretched around an
apple or a doughnut; on the apple, the rubber band can be shrunk without limit, but on the doughnut it is stopped by the hole.

With three dimensions, it is harder to discern the overall shape of something; we cannot see where the holes might be. “We can’t draw pictures of 3-D spaces,” Dr.
Morgan said, explaining that when we envision the surface of a sphere or an apple, we are really seeing a two-dimensional object embedded in three dimensions. Indeed,
astronomers are still arguing about the overall shape of the universe, wondering if its topology resembles a sphere, a bagel or something even more complicated.

Poincaré’s conjecture was subsequently generalized to any number of dimensions, but in fact the three-dimensional version has turned out to be the most difficult of all
cases to prove. In 1960 Stephen Smale, now at the Toyota Technological Institute at Chicago, proved that it is true in five or more dimensions and was awarded a Fields
Medal. In 1983, Michael Freedman, now at Microsoft, proved that it is true in four dimensions and also won a Fields.
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“You get a Fields Medal for just getting close to this conjecture,” Dr. Morgan said.

In the late 1970’s, Dr. Thurston extended Poincaré’s conjecture, showing that it was only a special case of a more powerful and general conjecture about three-
dimensional geometry, namely that any space can be decomposed into a few basic shapes.

Mathematicians had known since the time of Georg Friedrich Bernhard Riemann, in the 19th century, that in two dimensions there are only three possible shapes: flat
like a sheet of paper, closed like a sphere, or curved uniformly in two opposite directions like a saddle or the flare of a trumpet. Dr. Thurston suggested that eight different
shapes could be used to make up any three-dimensional space.

“Thurston’s conjecture almost leads to a list,” Dr. Morgan said. “If it is true,” he added, “Poincaré’s conjecture falls out immediately.” Dr. Thurston won a Fields in 1982.

Topologists have developed an elaborate set of tools to study and dissect shapes, including imaginary cutting and pasting, which they refer to as “surgery,” but they were
not getting anywhere for a long time.

In the early 1980’s Richard Hamilton of Columbia suggested a new technique, called the Ricci flow, borrowed from the kind of mathematics that underlies Einstein’s
general theory of relativity and string theory, to investigate the shapes of spaces.

Dr. Hamilton’s technique makes use of the fact that for any kind of geometric space there is a formula called the metric, which determines the distance between any pair
of nearby points. Applied mathematically to this metric, the Ricci flow acts like heat, flowing through the space in question, smoothing and straightening all its bumps
and curves to reveal its essential shape, the way a hair dryer shrink-wraps plastic.

Dr. Hamilton succeeded in showing that certain generally round objects, like a head, would evolve into spheres under this process, but the fates of more complicated
objects were problematic. As the Ricci flow progressed, kinks and neck pinches, places of infinite density known as singularities, could appear, pinch off and even shrink
away. Topologists could cut them away, but there was no guarantee that new ones would not keep popping up forever.

“All sorts of things can potentially happen in the Ricci flow,” said Robert Greene, a mathematician at the University of California, Los Angeles. Nobody knew what to do
with these things, so the result was a logjam.

It was Dr. Perelman who broke the logjam. He was able to show that the singularities were all friendly. They turned into spheres or tubes. Moreover, they did it in a finite
time once the Ricci flow started. That meant topologists could, in their fashion, cut them off, and allow the Ricci process to continue to its end, revealing the topologically
spherical essence of the space in question, and thus proving the conjectures of both Poincaré and Thurston.

Dr. Perelman’s first paper, promising “a sketch of an eclectic proof,” came as a bolt from the blue when it was posted on the Internet in November 2002. “Nobody knew
he was working on the Poincaré conjecture,” said Michael T. Anderson of the State University of New York in Stony Brook.

Dr. Perelman had already established himself as a master of differential geometry, the study of curves and surfaces, which is essential to, among other things, relativity
and string theory Born in St. Petersburg in 1966, he distinguished himself as a high school student by winning a gold medal with a perfect score in the International
Mathematical Olympiad in 1982. After getting a Ph.D. from St. Petersburg State, he joined the Steklov Institute of Mathematics at St. Petersburg.

In a series of postdoctoral fellowships in the United States in the early 1990’s, Dr. Perelman impressed his colleagues as “a kind of unworldly person,” in the words of Dr.
Greene of U.C.L.A. — friendly, but shy and not interested in material wealth.

“He looked like Rasputin, with long hair and fingernails,” Dr. Greene said.

Asked about Dr. Perelman’s pleasures, Dr. Anderson said that he talked a lot about hiking in the woods near St. Petersburg looking for mushrooms.

Dr. Perelman returned to those woods, and the Steklov Institute, in 1995, spurning offers from Stanford and Princeton, among others. In 1996 he added to his legend by
turning down a prize for young mathematicians from the European Mathematics Society.

Until his papers on Poincaré started appearing, some friends thought Dr. Perelman had left mathematics. Although they were so technical and abbreviated that few
mathematicians could read them, they quickly attracted interest among experts. In the spring of 2003, Dr. Perelman came back to the United States to give a series of
lectures at Stony Brook and the Massachusetts Institute of Technology, and also spoke at Columbia, New York University and Princeton.

But once he was back in St. Petersburg, he did not respond to further invitations. The e-mail gradually ceased.

“He came once, he explained things, and that was it,” Dr. Anderson said. “Anything else was superfluous.”

Recently, Dr. Perelman is said to have resigned from Steklov. E-mail messages addressed to him and to the Steklov Institute went unanswered.

In his absence, others have taken the lead in trying to verify and disseminate his work. Dr. Kleiner of Yale and John Lott of the University of Michigan have assembled a
monograph annotating and explicating Dr. Perelman’s proof of the two conjectures.

Dr. Morgan of Columbia and Gang Tian of Princeton have followed Dr. Perelman’s prescription to produce a more detailed 473-page step-by-step proof only of Poincaré’s
Conjecture. “Perelman did all the work,” Dr. Morgan said. “This is just explaining it.”

Both works were supported by the Clay institute, which has posted them on its Web site, claymath.org. Meanwhile, Huai-Dong Cao of Lehigh University and Xi-Ping Zhu
of Zhongshan University in Guangzhou, China, have published their own 318-page proof of both conjectures in The Asian Journal of Mathematics
(www.ims.cuhk.edu.hk/).

Although these works were all hammered out in the midst of discussion and argument by experts, in workshops and lectures, they are about to receive even stricter
scrutiny and perhaps crossfire. “Caution is appropriate,” said Dr. Kleiner, because the Poincaré conjecture is not just famous, but important.

James Carlson, president of the Clay Institute, said the appearance of these papers had started the clock ticking on a two-year waiting period mandated by the rules of the
Clay Millennium Prize. After two years, he said, a committee will be appointed to recommend a winner or winners if it decides the proof has stood the test of time.
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“There is nothing in the rules to prevent Perelman from receiving all or part of the prize,” Dr. Carlson said, saying that Dr. Perelman and Dr. Hamilton had obviously
made the main contributions to the proof.

In a lecture at M.I.T. in 2003, Dr. Perelman described himself “in a way” as Dr. Hamilton’s disciple, although they had never worked together. Dr. Hamilton, who got his
Ph.D. from Princeton in 1966, is too old to win the Fields medal, which is given only up to the age of 40, but he is slated to give the major address about the Poincaré
conjecture in Madrid next week. He did not respond to requests for an interview.

Allowing that Dr. Perelman, should he win the Clay Prize, might refuse the honor, Dr. Carlson said the institute could decide instead to use award money to support
Russian mathematicians, the Steklov Institute or even the Math Olympiad.

Dr. Anderson said that to some extent the new round of papers already represented a kind of peer review of Dr. Perelman’s work. “All these together make the case pretty
clear,” he said. “The community accepts the validity of his work. It’s commendable that the community has gotten together.”

Correction: Aug. 21, 2006

An article in Science Times on Tuesday about a mathematical problem called the Poincaré conjecture misstated the year William Thurston, the author of a deeper conjecture that includes Poincaré’s,
was awarded a Fields Medal. It was 1982, not 1986.
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Credit: Andrey Krasnov

Mathematician solves Poincaré,
rejects prize

Grigory Perelman solved the
100-year-old Poincaré conjecture, which
won him the right to be the first
mathematician ever to turn down the
Field’s Medal. Click here to read his
story.

In a 1904 paper, the French mathematician Jules Henri Poincaré stated that a
sphere is a sphere is a sphere. You can punch, kick and throw it; you can inflate
or deflate it; you can mold the sphere into another shape. But in the world of
topology, no matter what you do to it, the resulting deformed, twisted and
complicated form is still a sphere.

Also, you cannot poke a hole in it. You cannot, for example, turn your sphere into
a donut. You cannot turn it into a coffee cup with a handle, frames for your
eyeglasses or a key ring. You can stick your finger into it, but you can’t actually
puncture the surface or reach inside. If you break the surface in any way you’ve
ventured into a different genus of topological objects.

Say you’re walking down a street, and you encounter a strange and complicated
shape whose surface sports peaks and valleys, mountains and molehills, but no
holes. If you were a mathematician, you may want to study the way that
functions behave on it. Poincaré‘s conjecture says that no matter what it looks
like, it’s a sphere. The conjecture gives mathematicians a short and easy way to
identify a deformed blob as a sphere in disguise.

There is one more complication: When most people think of a sphere, they generally consider the space that a sphere occupies—a
ping-pong ball, for example. When topologists talk about a sphere, they are talking exclusively about its surface.

A 1-sphere, for example, is the outside of a circle. A 2-sphere is the curved surface of what we consider a sphere. It is two-dimensional
because, if you stand on the surface and look around, it appears that you are in a two-dimensional space. The surface of the Earth serves
as a rough analogy—the world essentially appears flat when we stand on the ground and survey the horizon.

In its original form, however, the Poincaré conjecture concerned three-dimensional spheres
(i.e., 3-spheres). These shapes are difficult, perhaps impossible, to visualize—the universe, for
instance, is thought of as a 3-sphere. Even without being able to picture it, draw it or know that
it exists, we can do math on a 3-sphere. We can calculate distances between points. Any system
that can be characterized by three numbers automatically determines a three-dimensional
shape. In baseball, for example, if you tally the numbers of runs, pitches and fouls for each
inning of a game that doesn’t go into extra innings, you have established nine data points in a
three-dimensional space. With those nine points, you can make statements about the “shape”
you have created.

Now imagine that this 3-sphere universe is distorted, wadded, dilated and deformed (but not punctured). If we lived on this deformed
3-sphere, you could feasibly walk across the Golden Gate Bridge and end up to Mars.

Or, you could think about it this way: You tie a lasso around your blob and tighten it until the string lies on the surface. If, for every
different way you can tie the lasso, you can slip it off, then the blob is a sphere. The term for this is “simply connected.” If it is possible to
tie the lasso in such a way that it proves impossible to remove the lasso without breaking either the rope or the blob, it is not a sphere.

A donut, for example, is not “simply connected.” If your lasso passes through the center of a donut, you cannot remove it without either
altering the shape of the donut or cutting the rope. Though this is not its mathematically precise term, “breaking the donut” is
absolutely, positively not allowed in the world of topology.

To illustrate Perelman’s work, Jim Carlson, president of the Clay Mathematical Institute, draws a very complicated, closed
squiggle. “This is really a circle, but it’s a very wild circle,” he says. (If his squiggle were an island, it would be an island ringed with
fjords.)

“The idea is, in some sense, to apply heat to the shape and to allow the heat to simplify it. Take this very complicated wild circle, and
imagine putting a little air hose in here and inflating it,” he said, drawing a little box next to the squiggle. “It will dilate, and eventually it
will achieve a round shape. Imagine a crinkled up balloon - you want to know what its real shape is, well blow it up with air, and then
look at it. It achieves the simplest possible shape after you blow it up enough.”

This notion of adding air, or heat, to a complicated shape was first developed by Richard Hamilton in the 1980s and is called Ricci Flow.
Hamilton came close to solving the Poincaré conjecture, but he failed to successfully account for all singularities that may arise on the
object. Singularities might be thought of as places where the fabric of the object is ‘pinched.’ Imagine that the balloon, for example,
turned out to be shaped like a barbell. In that case, the two sides of the barbell would continue to inflate, while the connecting rod
became thinner and thinner. As time goes on, it will not resemble a sphere. This connecting rod would be considered a singularity. 
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Perelman’s insight was to essentially ‘snip’ the rod. By utilizing abstract scissors, Perelman’s method allowed each side of the barbell to
become its own sphere. The two resulting spheres would be topologically indistinguishable. Mathematicians refer to this process as
‘surgery’ on a 3-dimensional object.

Perelman’s use of surgery on these complicated surfaces was unprecedented and unexpected.

What is The Poincare Conjecture? § SEEDMAGAZINE.COM http://seedmagazine.com/content/print/what_is_the_poincare_conjecture/

2 of 2 4/12/11 6:29 AM



 By Jordan Ellenberg

Posted Friday, Aug. 18, 2006, at 11:59 AM
ET

 The New York Times recently reported
that reclusive Russian geometer Grigory
Perelman has apparently proved the
century-old Poincaré conjecture. The  
Times calls Poincaré "a landmark not just
of mathematics, but of human thought."
But just why it's so significant is left a
bit hazy. Big mathematical advances
often generate the same kind of lofty but c
ontent-free rhetoric found in political
speeches about "the family." Like the
family, math is a subject everyone agrees
is very important without being able to
specify exactly why.

I'm here to help. (With the Poincaré
conjecture. As for the family, you're on
your own.) Poincaré conjectured that
three-dimensional shapes that share

 certain easy-to-check properties with
spheres actually are spheres. What are
these properties? My fellow geometer
Christina Sormani describes the setup as
follows:

That's zingier than anything the Times
will run, but may still leave you without
a clear picture of Perelman's theorem.
Indeed, it's pretty hard to give an
elementary account of the statement that
Poincaré conjectured and that Perelman
seems to have confirmed. (If that's what
you're after, Sormani's home page links
to a variety of expositions, including one
in the form of a short story.) Instead, I'll
try to explain why Perelman's theorem
matters without explaining what it is.

The entities we study in science fall into
two categories: those which can be
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 classified in a way a human can
understand, and those which are
unclassifiably wild. Numbers are in the
first class—you would agree that
although you cannot list all the whole
numbers, you have a good sense of what
numbers are out there. Platonic solids are
another good example. There are just
five: the tetrahedron, the cube, the
octahedron, the dodecahedron, and the
icosahedron. End of story—you know
them all. These mathematical objects
behave something like the chemical
elements, which are neatly classified by
Mendeleev's periodic table. Many
properties of an element are determined
by its place in the table. For instance, we
knew a lot about how metals like
germanium and gallium would behave
before they were actually discovered in
nature!

In the second class are things like
networks (in mathematical lingo, graphs)
and beetles. There doesn't appear to be
any nice, orderly structure on the set of
all beetles, and we've got no way to
predict what kinds of novel species will
turn up. All we can do is observe some
features that most beetles seem to share,
most of the time. But there's no periodic
table of beetles, and there probably
couldn't be.

Mathematicians are much happier when

 a mathematical subject turns out to be of
the first, more structured, type. We are
much sadder when a subject turns out to
be a variegated mass of beetles. (But have
a look at Fields Medalist Timothy Gowers'
beautiful essay "The Two Cultures of
Mathematics" for a spirited defense of
mathematical enterprises of the second
sort.)

So, where do three-dimensional shapes,
the subject of the Poincaré conjecture, fit
in? To simplify, let's think about two-
dimensional shapes first. These fall
firmly in the "periodic table" category.
The only such shapes are the surfaces of
"doughnuts" with multiple holes. The
number of holes is called the genus of
the surface and plays the role that the
atomic number does for chemical
elements. (Here is a picture of the
surfaces of genus 0, 1, 2, and 3.)
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 Geometer William Thurston (another
Fields winner) made the daring
conjecture that three-dimensional
shapes, too, can be classified in a more
complicated but equally structured way.
Perelman has proved this conjecture,
which has Poincaré as a straightforward
corollary. That means, in turn, that we
can think about proving general
statements about three-dimensional
geometry in a way that we can't hope to
about beetles or graphs.

Perelman's work isn't important because
of its applications. It won't help anyone
build a bridge, aim a rocket, crack a code,
or privatize Social Security.
Mathematicians, no dummies, like to
point out that, in some unspecified
future, Perelman's theorem might pitch in
to help with these problems in ways that
aren't obvious now. But its real
significance is like that of the fact that a
times b is equal to b times a; it's a basic
structural statement about how the
world is organized. If you prefer order to
chaos, that's something worth caring
about.
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HISTORY AND BACKGROUND

In the latter part of the nineteenth century, the French mathematician Henri Poincaré was studying 
the problem of whether the solar system is stable.  Do the planets and asteroids in the solar system 
continue in regular orbits for all time, or will some of them be ejected into the far reaches of the 
galaxy or, alternatively, crash into the sun?  In this work he was led to topology, a still new kind of 
mathematics related to geometry, and to the study of shapes (compact manifolds) of all dimensions.  

The simplest such shape was the circle, or distorted versions of it such as the ellipse or something 
much wilder: lay a piece of string on the table, tie one end to the other to make a loop, and then 
move it around at random, making sure that the string does not touch itself.  The next simplest shape 
is the two-sphere, which we find in nature as the idealized skin of an orange, the surface of a 
baseball, or the surface of the earth, and which we find in Greek geometry and philosophy as the 
"perfect shape."  Again, there are distorted versions of the shape, such as the surface of an egg, as 
well as still wilder objects. Both the circle and the two-sphere can be described in words or in 
equations as the set of points at a fixed distance from a given point (the center).  Thus it makes 
sense to talk about the three-sphere, the four-sphere, etc.  These shapes are hard to visualize, since 
they naturally are contained in four-dimensional space, five-dimensional space, and so on, whereas 
we live in three-dimensional space.  Nonetheless, with mathematical training, shapes in higher-
dimensional spaces can be studied just as well as shapes in dimensions two and three.

In topology, two shapes are considered the same if the points of one correspond to the points of 
another in a continuous way.  Thus the circle, the ellipse, and the wild piece of string are considered 
the same.  This is much like what happens in the geometry of Euclid. Suppose that one shape can 
be moved, without changing lengths or angles, onto another shape.  Then the two shapes are 
considered the same (think of congruent triangles).  A round, perfect two-sphere, like the surface of a 
ping-pong ball, is topologically the same as the surface of an egg.  

In 1904 Poincaré asked whether a three-dimensional shape that satisfies the "simple connectivity 
test" is the same, topologically, as the ordinary round three-sphere.  The round three-sphere is the 
set of points equidistant from a given point in four-dimensional space.  His test is something that can 
be performed by an imaginary being who lives inside the three-dimensional shape and cannot see it 
from "outside."  The test is that every loop in the shape can be drawn back to the point of departure 
without leaving the shape.  This can be done for the two-sphere and the three-sphere.  But it cannot 
be done for the surface of a doughnut, where a loop may get stuck around the hole in the doughnut.

The question raised became known as the Poincaré conjecture.  Over the years, many outstanding 
mathematicians tried to solve it—Poincaré himself, Whitehead, Bing, Papakirioukopolos, Stallings, 
and others. While their efforts frequently led to the creation of significant new mathematics, each 
time a flaw was found in the proof.  In 1961 came astonishing news.  Stephen Smale, then of the 
University of California at Berkeley (now at the City University of Hong Kong) proved that the 
analogue of the Poincaré conjecture was true for spheres of five or more dimensions.  The higher-
dimensional version of the conjecture required a more stringent version of Poincaré's test; it asks 
whether a so-called homotopy sphere is a true sphere.  Smale's theorem was an achievement of 
extraordinary proportions.  It did not, however, answer Poincaré's original question.  The search for 
an answer became all the more alluring.

Smale's theorem suggested that the theory of spheres of dimensions three and four was unlike the 
theory of spheres in higher dimension.  This notion was confirmed a decade later, when Michael 
Freedman, then at the University of California, San Diego, now of Microsoft Research Station Q, 
announced a proof of the Poincaré conjecture in dimension four.  His work used techniques quite 
different from those of Smale.  Freedman also gave a classification, or kind of species list, of all 
simply connected four-dimensional manifolds.  
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Both Smale (in 1966) and Freedman (in 1986) received Fields medals for their work.

There remained the original conjecture of Poincaré in dimension three.  It seemed to be the most 
difficult of all, as the continuing series of failed efforts, both to prove and to disprove it, showed.  In 
the meantime, however, there came three developments that would play crucial roles in Perelman's 
solution of the conjecture.  

Geometrization

The first of these developments was William Thurston's geometrization conjecture.  It laid out a 
program for understanding all three-dimensional shapes in a coherent way, much as had been done 
for two-dimensional shapes in the latter half of the nineteenth century.  According to Thurston, three-
dimensional shapes could be broken down into pieces governed by one of eight geometries, 
somewhat as a molecule can be broken into its constituent, much simpler atoms.  This is the origin 
of the name, "geometrization conjecture." 

A remarkable feature of the geometrization conjecture was that it implied the Poincaré conjecture as 
a special case.  Such a bold assertion was accordingly thought to be far, far out of reach—perhaps a 
subject of research for the twenty-second century.  Nonetheless, in an imaginative tour de force that 
drew on many fields of mathematics, Thurston was able to prove the geometrization conjecture for a 
wide class of shapes (Haken manifolds) that have a sufficient degree of complexity. While these 
methods did not apply to the three-sphere, Thurston's work shed new light on the central role of 
Poincaré's conjecture and placed it in a far broader mathematical context.

Limits of spaces

The second current of ideas did not appear to have a connection with the Poincaré conjecture until 
much later.  While technical in nature, the work, in which the names of Cheeger and Perelman figure 
prominently, has to do with how one can take limits of geometric shapes, just as we learned to take 
limits in beginning calculus class.  Think of Zeno and his paradox: you walk half the distance from 
where you are standing to the wall of your living room.  Then you walk half the remaining distance.  
And so on.  With each step you get closer to the wall.  The wall is your "limiting position," but you 
never reach it in a finite number of steps.  Now imagine a shape changing with time.  With each 
"step" it changes shape, but can nonetheless be a "nice" shape at each step— smooth, as the 
mathematicians say.  For the limiting shape the situation is different.  It may be nice and smooth, or it 
may have special points that are different from all the others, that is, singular points, or 
“singularities.”  Imagine a Y-shaped piece of tubing that is collapsing: as time increases, the diameter 
of the tube gets smaller and smaller.  Imagine further that one second after the tube begins its 
collapse, the diameter has gone to zero.  Now the shape is different: it is a Y shape of infinitely thin 
wire.  The point where the arms of the Y meet is different from all the others.  It is the singular point 
of this shape. The kinds of shapes that can occur as limits are called Aleksandrov spaces, named 
after the Russian mathematician A. D. Aleksandrov who initiated and developed their theory.

Differential equations

The third development concerns differential equations.  These equations involve rates of change in 
the unknown quantities of the equation, e.g., the rate of change of the position of an apple as it falls 
from a tree towards the earth's center.  Differential equations are expressed in the language of 
calculus, which Isaac Newton invented in the 1680s in order to explain how material bodies (apples, 
the moon, and so on) move under the influence of an external force.  Nowadays physicists use 
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differential equations to study a great range of phenomena: the motion of galaxies and the stars 
within them,  the flow of air and water, the propagation of sound and light, the conduction of heat, 
and even the creation, interaction, and annihilation of elementary particles such as electrons, 
protons, and quarks.  

In our story, conduction of heat and change of temperature play a special role.  This kind of physics 
was first treated mathematically by Joseph Fourier in his 1822 book, Théorie Analytique de la 
Chaleur.  The differential equation that governs change of temperature is called the heat equation.  It 
has the remarkable property that as time increases, irregularities in the distribution of temperature 
decrease.

Differential equations apply to geometric and topological problems as well as to physical ones.  But 
one studies not the rate at which temperature changes, but rather the rate of change in some 
geometric quantity as it relates to other quantities such as curvature.  A piece of paper lying on the 
table has curvature zero.  A sphere has positive curvature.  The curvature is a large number for a 
small sphere, but is a small number for a large sphere such as the surface of the earth.  Indeed, the 
curvature of the earth is so small that its surface has sometimes mistakenly been thought to be flat.  
For an example of negative curvature, think of a point on the bell of a trumpet.  In some directions 
the metal bends away from your eye; in others it bends towards it.
 
An early landmark in the application of differential equations to geometric problems was the 1963 
paper of J. Eells and J. Sampson.  The authors introduced the "harmonic map equation," a kind of 
nonlinear version of Fourier's heat equation.  It proved to be a powerful tool for the solution of 
geometric and topological problems.  There are now many important nonlinear heat equations—the 
equations for mean curvature flow, scalar curvature flow, and Ricci flow.  

Also notable is the Yang-Mills equation, which came into mathematics from the physics of quantum 
fields.  In 1983 this equation was used to establish very strong restrictions on the topology of four-
dimensional shapes on which it was possible to do calculus [D].  These results helped renew hopes 
of obtaining other strong geometric results from analytic arguments—that is, from calculus and 
differential equations.  Optimism for such applications had been tempered to some extent by the 
examples of René Thom (on cycles not representable by smooth submanifolds) and Milnor (on 
diffeomorphisms of the six-sphere). 

Ricci flow

The differential equation that was to play a key role in solving the Poincaré conjecture is the Ricci 
flow equation.  It was discovered two times, independently.  In physics, the equation originated with 
the thesis of Friedan [F, 1985], although it was perhaps implicit in the work of Honerkamp [Ho, 1972].  
In mathematics it originated with the 1982 paper of Richard Hamilton [Ha1].  The physicists were 
working on the renormalization group of quantum field theory, while Hamilton was interested in 
geometric applications of the Ricci flow equation itself.  Hamilton, now at Columbia University, was 
then at Cornell University.  

On the left-hand side of the Ricci flow equation is a quantity that expresses how the geometry 
changes with time—the derivative of the metric tensor, as the mathematicians like to say.  On the 
right-hand side is the Ricci tensor, a measure of the extent to which the shape is curved.  The Ricci 
tensor, based on Riemann's theory of geometry (1854), also appears in Einstein's equations for 
general relativity (1915).  Those equations govern the interaction of matter, energy, curvature of 
space, and the motion of material bodies.  

The Ricci flow equation is the analogue, in the geometric context, of Fourier's heat equation.  The 
idea, grosso modo, for its application to geometry is that, just as Fourier's heat equation disperses 
temperature, the Ricci flow equation disperses curvature. Thus, even if a shape was irregular and 
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distorted, Ricci flow would gradually remove these anomalies, resulting in a very regular shape 
whose topological nature was evident.  Indeed, in 1982 Hamilton showed that for positively curved, 
simply connected shapes of dimension three (compact three-manifolds) the Ricci flow transforms the 
shape into one that is ever more like the round three-sphere.  In the long run, it becomes almost 
indistinguishable from this perfect, ideal shape.   When the curvature is not strictly positive, however, 
solutions of the Ricci flow equation behave in a much more complicated way.  This is because the 
equation is nonlinear.   While parts of the shape may evolve towards a smoother, more regular state, 
other parts might develop singularities.  This richer behavior posed serious difficulties.  But it also 
held promise: it was conceivable that the formation of singularities could reveal Thurston's 
decomposition of a shape into its constituent geometric atoms.   

Richard Hamilton

Hamilton was the driving force in developing the theory of Ricci flow in mathematics, both 
conceptually and technically.  Among his many notable results is his 1999 paper [Ha2], which 
showed that in a Ricci flow, the curvature is pushed towards the positive near a singularity.  In that 
paper Hamilton also made use of the collapsing theory [C-G] mentioned earlier.  Another result 
[Ha3], which played a crucial role in Perelman's proof, was the Hamilton Harnack inequality, which 
generalized to positive Ricci flows a result of Peter Li and Shing-Tung Yau for positive solutions of 
Fourier's heat equation.

Hamilton had established the Ricci flow equation as a tool with the potential to resolve both 
conjectures as well as other geometric problems.  Nevertheless, serious obstacles barred the way to 
a proof of the Poincaré conjecture.  Notable among these obstacles was lack of an adequate 
understanding of the formation of singularities in Ricci flow, akin to the formation of black holes in the 
evolution of the cosmos.  Indeed, it was not at all clear how or if formation of singularities could be 
understood.  Despite the new front opened by Hamilton, and despite continued work by others using 
traditional topological tools for either a proof or a disproof, progress on the conjectures came to a 
standstill.  

Such was the state of affairs in 2000, when John Milnor wrote an article describing the Poincaré 
conjecture and the many attempts to solve it.  At that writing, it was not clear whether the conjecture 
was true or false, and it was not clear which method might decide the issue.  Analytic methods 
(differential equations) were mentioned in a later version (2004).  See [M1] and [M2].

Perelman announces a solution of the Poincaré conjecture

It was thus a huge surprise when Grigoriy Perelman announced, in a series of preprints posted on 
ArXiv.org in 2002 and 2003, a solution not only of the Poincaré conjecture, but also of Thurston's 
geometrization conjecture [P1, P2, P3].

The core of Perelman's method of proof is the theory of Ricci flow.  To its applications in topology he 
brought not only great technical virtuosity, but also new ideas.  One was to combine collapsing 
theory in Riemannian geometry with Ricci flow to give an understanding of the parts of the shape 
that were collapsing onto a lower-dimensional space.  Another was the introduction of a new 
quantity, the entropy, which instead of measuring disorder at the atomic level, as in the classical 
theory of heat exchange, measures disorder in the global geometry of the space.  Perelmanʼs 
entropy, like the thermodynamic entropy, is increasing in time:  there is no turning back.  Using his 
entropy function and a related local version (the L-length functional), Perelman was able to 
understand the nature of the singularities that formed under Ricci flow.  There were just a few kinds, 
and one could write down simple models of their formation.  This was a breakthrough of first 
importance.
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Once the simple models of singularities were understood, it was clear how to cut out the parts of the 
shape near them as to continue the Ricci flow past the times at which they would otherwise form.  
With these results in hand, Perelman showed that the formation times of the singularities could not 
run into Zeno's wall: imagine a singularity that occurs after one second, then after half a second 
more, then after a quarter of a second more, and so on.  If this were to occur, the "wall," which one 
would reach two seconds after departure, would correspond to a time at which the mathematics of 
Ricci flow would cease to hold.  The proof would be unattainable.  But with this new mathematics in 
hand, attainable it was. 

The posting of Perelman's preprints and his subsequent talks at MIT, SUNY–Stony Brook, Princeton, 
and the University of Pennsylvania set off a worldwide effort to understand and verify his 
groundbreaking work. In the US, Bruce Kleiner and John Lott wrote a set of detailed notes on 
Perelman's work.  These were posted online as the verification effort proceeded.  A final version was 
posted to ArXiv.org in May 2006, and the refereed article appeared in Geometry and Topology in 
2008.  This was the first time that work on a problem of such importance was facilitated via a public 
website.  John Morgan and Gang Tian wrote a book-long exposition of Perelman's proof, posted on 
ArXiv.org in July of 2006, and published by the American Mathematical Society in CMI's monograph 
series (August 2007).  These expositions, those by other teams, and, importantly, the multi-year 
scrutiny of the mathematical community, provided the needed verification. Perelman had solved the 
Poincaré conjecture.  After a century's wait, it was settled!

Among other articles that appeared following Perelman's work is a paper in the Asian Journal of 
Mathematics, posted on ArXiv.org in June of 2006 by the American-Chinese team, Huai-Dong Cao 
(Lehigh University) and Xi-Ping Zhu (Zhongshan University).  Another is a paper by the European 
group of Bessières, Besson, Boileau, Maillot, and Porti, posted on ArXiv.org in June of 2007. It was 
accepted for publication by Inventiones Mathematicae in October of 2009.  It gives an alternative 
approach to the last step in Perelman's proof of the geometrization conjecture. 

Perelman's proof of the Poincaré and geometrization conjectures is a major mathematical advance.  
His ideas and methods have already found new applications in analysis and geometry; surely the 
future will bring many more.         

— JC, March 18, 2010## # # # # # #       (corrections, 3/19/2010)
# # # # # #
# # # # # # # # # # # # #
# # # # # # # # #
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The Vector Potential

Aharonov-Bohm Effect

Gauge Transformations 



Feynman’s Paradox

A paradox is a situation which gives one answer 
when analyzed one way, and a different answer 
when analyzed another way, so that we are left 
in somewhat of a quandary as to actually what 
would happen. Of course, in physics there are 
never any real paradoxes because there is one 
correct answer; at least we believe that nature 
will act in only one way (and that is the right 
way, naturally).  So a paradox in physics is only 
a confusion in our understanding.





The Vector Potential

EM Field Carries Momentum

A Turns into Photons



Generalized Momentum π
Particle Momentum p

Field Momentum (e/c)A

π = p - (e/c) A

E =  π2 / 2m

2mE = p2 -2 (e/c) p.A + (e/c)2 A2



The Aharonov-Bohm Effect

An electron moving in a region 

where E and B are zero, but A is 

not exhibits physical effects.

Therefore A is real whereas

E and B are not.





















Gauge Transformations

φ determines E

and 

A determines B

But φ and A are not unique

Gauge Transformations produce the different 
choices of φ and A that give the same E and B



Lots of Gauges

Coulomb Gauge
Lorenz Gauge
Axial Gauge

Temporal Gauge
Velocity Gauge
Kirchhoff Gauge
Landau Gauge

Feynman Gauge
t’ Hooft Gauge
Unitary Gauge







Historical roots of gauge invariance

J. D. Jackson*
University of California and Lawrence Berkeley National Laboratory, Berkeley,
California 94720

L. B. Okun†
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Federation, 117218 Moscow, Russia
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Gauge invariance is the basis of the modern theory of electroweak and strong interactions (the
so-called standard model). A number of authors have discussed the ideas and history of quantum
guage theories, beginning with the 1920s, but the roots of gauge invariance go back to the year 1820
when electromagnetism was discovered and the first electrodynamic theory was proposed. We
describe the 19th century developments that led to the discovery that different forms of the vector
potential (differing by the gradient of a scalar function) are physically equivalent, if accompanied by
a change in the scalar potential: A→A!!A"!" , #→#!!##$"/c$ t . L. V. Lorenz proposed the
condition $%A%!0 in the mid-1860s, but this constraint is generally misattributed to the better known
H. A. Lorentz. In the work in 1926 on the relativistic wave equation for a charged spinless particle in
an electromagnetic field by Schrödinger, Klein, and Fock, it was Fock who discovered the invariance
of the equation under the above changes in A and # if the wave function was transformed according
to &→&!!& exp(ie"/'c). In 1929, H. Weyl proclaimed this invariance as a general principle and called
it Eichinvarianz in German and gauge invariance in English. The present era of non-Abelian gauge
theories started in 1954 with the paper by Yang and Mills on isospin gauge invariance.
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I. INTRODUCTION

The principle of gauge invariance plays a key role in
the standard model, which describes electroweak and
strong interactions of elementary particles. Its origins
can be traced to Fock (1926b), who extended the known
freedom of choosing the electromagnetic potentials in

classical electrodynamics to the quantum mechanics of
charged particles interacting with electromagnetic fields.
Equations (5) and (9) of Fock’s paper are, in his nota-
tion,

A!A1"!f ,

(!(1#
1
c

$f
$t

, Fock’s (5)

p!p1#
e
c

f ,

and

& ! &0e2)ip/h. Fock’s (9)

In present-day notation we write

A→A!!A"!" , (1a)

#→#!!##
1
c

$"

$t
, (1b)

&→&!!& exp* ie"/'c +. (1c)

Here A is the vector potential, # is the scalar potential,
and " is known as the gauge function. The Maxwell
equations of classical electromagnetism for the electric
and magnetic fields are invariant under the transforma-
tions (1a) and (1b) of the potentials. What Fock discov-
ered was that, for the quantum dynamics, that is, the
form of the quantum equation, to remain unchanged by
these transformations, the wave function must undergo
the transformation (1c), whereby it is multiplied by a
local (space-time-dependent) phase. The concept was
declared a general principle and ‘‘consecrated’’ by Her-
mann Weyl (1928, 1929a, 1929b). The invariance of a
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General Relativity

The gauge transformations for general relativity are arbitrary 
coordinate transformations. Technically, the transformations must be 
invertible, and both the transformation and its inverse must be smooth, 
in the sense of being differentiable an arbitrary number of times.

Einstein's Field Equations

In Einstein's general relativity, coordinates like x, y, z, and t are not 
only "relative" in the global sense of translations like t \rightarrow t+C, 
rotations, etc., but become completely arbitrary, so that for example 
one can define an entirely new timelike coordinate according to some 
arbitrary rule such as 

t => t’= t2/to 

where to has units of time, and yet Einstein's equations will have the 

same form.

Invariance of the form of an equation under an arbitrary coordinate 
transformation is customarily referred to as general covariance and 
equations with this property are referred to as written in the covariant 
form. General covariance is a subclass of gauge invariance.

Maxwell's equations can also be expressed in a generally covariant 
form, which is as invariant under general coordinate transformation as 
are Einstein's Field Equations.

Translation Invariance

Space translation  r => r’ = r + 1 light year
Time translation  t => t’ = t + 10 million years
These are global symmetries











Gauge theories in elementary particle physics
 
This was the topic of the 1999 Nobel Prize. An idea was proposed by 
C.N. Yang and Robert Mills in 1954: they suggested that particles in the 
sub-atomic world might interact via fields that are similar to, but more 
general than electricity and magnetism. But, even though the 
interactions that had been registered in experiments showed some 
vague resemblance to the Yang-Mills equations, the details seemed to 
be all wrong. Attempts to perform accurate calculations were 
frustrated by infinite---hence meaningless---results. Together with my 
advisor then, and my co-Nobel-laureate now, M. Veltman, I found in 
1970 how to renormalize the theory, and, more importantly, we 
identified the theories for which this works, and what conditions they 
must fullfil. One must, for instance, have a so-called Higgs-particle. 
These theories are now called gauge theories.

It was subsequently discovered that, indeed, the observed details of all 
known forces exactly agree with this picture. First it was found that the 
so-called weak force, in combination with the more familiar electro-
magnetic one, is exactly described by a Yang-Mills theory. In 1973 it 
was concluded that also the strong force is a Yang-Mills theory. I was 
among the small number of people who were already convinced of this 
from early 1971. During the later 1970s, all pieces fell into place. Of all 
simple models describing the fundamental particles, one was standing 
out, the so-called Standard Model. 

Gauge theories are the backbone of this Standard Model. But now it 
also became clear that this is much more than just a model: it is the 
Standard Theory. Great precision can be reached, though the practical 
difficulties in some sectors are still substantial, and it would be great if 
one could devise more powerful calculation techniques. Also, in spite 
of all its successes, the Standard Model, as it is formulated at present, 
shows deficiencies. It cannot be exactly right. Significant refinements 
are expected when the results of new experiments become known, 
hopefully during 2010 and subsequent years, when the European 
particle accelerator LHC becomes fully operational.

http://www.staff.science.uu.nl/~hooft101/



Will the Higgs be found?

More and more frequently, I receive letters and mails from wise people outside 
physics, telling me that "they know" that the Higgs will not be found, that our 
theories are baloney, how dare we spend billions of public funds to build machines 
such as LHC, "to prove, against better judgment, that our theories still stand a 
chance of being correct", and so on.

Well, dear friends, I am not going to answer all of you in person. Please do 
consider the scientific facts concerning the Standard Model. Fact is that the W+, 
W? and the Z boson each carry three spin degrees of freedom, whereas the Yang-
Mills field quanta, which describe their interactions correctly in great detail, each 
carry only two. Those remaining modes come from the Higgs field. What this 
means is that three quarters of the field of the Higgs have already been found. The 
fourth is still missing, and if you calculate its properties, it is also clear why it is 
missing: it is hiding in the form of a particle that is difficult to detect. LHC will 
have to work for several years before it stands a chance to see the statistical 
signals of this Higgs particle. What compounds the matter even more is that there 
may well be several sets of Higgs fields. If there are two, which is eight quarters 
of the field, we will get five Higgses rather than one. This would be a quite 
realistic possibility but it would make the detection of each one of them even 
harder, because they cause more complex statistical signals that are more 
difficult to predict.

Theories without any Higgs particle are possible but ugly and have been 
practically ruled out by observations. In such theories, composite bound states of 
other particles have to play the role of a Higgs, which requires the existence of 
very strong new interactions, of which there is presently no evidence at all, and it 
would make the perfect agreement found today between observations and the 
Standard Model highly improbable.

If no Higgs is found at all, and all present ideas would be ruled out by LHC - which 
is unlikely - this would in no way make LHC useless. Quite to the contrary, this 
would lead to lots of work for theoreticians to do, and, more importantly, this 
would imply the existence of new strong forces with a plethora of highly 
interesting particles just round the corner, waiting to be discovered by LHC or its 
successors. There's no way that this field of research can become dull.

http://www.staff.science.uu.nl/~hooft101/
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What is a gauge?

27 September, 2008 in expository, math.AP, math.CO, math.DG, math.DS, math.MP | Tags: connections,
curvature, fibre bundles, gauge fixing, gauge invariance, sections | by Terence Tao

“Gauge theory” is a term which has connotations of being a fearsomely complicated part of mathematics
– for instance, playing an important role in quantum field theory, general relativity, geometric PDE, and
so forth.  But the underlying concept is really quite simple: a gauge is nothing more than a “coordinate
system” that varies depending on one’s “location” with respect to some “base space” or “parameter
space”, a gauge transform is a change of coordinates applied to each such location, and a gauge theory is
a model for some physical or mathematical system to which gauge transforms can be applied (and is
typically gauge invariant, in that all physically meaningful quantities are left unchanged (or transform
naturally) under gauge transformations).  By fixing a gauge (thus breaking or spending the gauge
symmetry), the model becomes something easier to analyse mathematically, such as a system of partial
differential equations (in classical gauge theories) or a perturbative quantum field theory (in quantum
gauge theories), though the tractability of the resulting problem can be heavily dependent on the choice of
gauge that one fixed.  Deciding exactly how to fix a gauge (or whether one should spend the gauge
symmetry at all) is a key question in the analysis of gauge theories, and one that often requires the input
of geometric ideas and intuition into that analysis.

I was asked recently to explain what a gauge theory was, and so I will try to do so in this post.  For
simplicity, I will focus exclusively on classical gauge theories; quantum gauge theories are the
quantization of classical gauge theories and have their own set of conceptual difficulties (coming from
quantum field theory) that I will not discuss here. While gauge theories originated from physics, I will not
discuss the physical significance of these theories much here, instead focusing just on their mathematical
aspects.  My discussion will be informal, as I want to try to convey the geometric intuition rather than the
rigorous formalism (which can, of course, be found in any graduate text on differential geometry).

– Coordinate systems –

Before I discuss gauges, I first review the more familiar concept of a coordinate system, which is
basically the special case of a gauge when the base space (or parameter space) is trivial.

Classical mathematics, such as practised by the ancient Greeks, could be loosely divided into two
disciplines, geometry and number theory, where I use the latter term very broadly, to encompass all sorts
of mathematics dealing with any sort of number.  The two disciplines are unified by the concept of a
coordinate system, which allows one to convert geometric objects to numeric ones or vice versa.  The
most well known example of a coordinate system is the Cartesian coordinate system for the plane (or
more generally for a Euclidean space), but this is just one example of many such systems.  For instance:

1. One can convert a length (of, say, an interval) into an (unsigned) real number, or vice versa, once
one fixes a unit of length (e.g. the metre or the foot).  In this case, the coordinate system is
specified by the choice of length unit.

2. One can convert a displacement along a line into a (signed) real number, or vice versa, once one
fixes a unit of length and an orientation along that line.  In this case, the coordinate system is
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fixes a unit of length and an orientation along that line.  In this case, the coordinate system is
specified by the length unit together with the choice of orientation.  Alternatively, one can replace
the unit of length and the orientation by a unit displacement vector  along the line.

3. One can convert a position (i.e. a point) on a line into a real number, or vice versa, once one fixes a
unit of length, an orientation along the line, and an origin on that line.  Equivalently, one can pick
an origin  and a unit displacement vector .  This coordinate system essentially identifies the
original line with the standard real line .

4. One can generalise these systems to higher dimensions.  For instance, one can convert a
displacement along a plane into a vector in , or vice versa, once one fixes two linearly
independent displacement vectors  (i.e. a basis) to span that plane; the Cartesian coordinate
system is just one special case of this general scheme.  Similarly, one can convert a position on a
plane to a vector in  once one picks a basis  for that plane as well as an origin , thus
identifying that plane with the standard Euclidean plane .  (To put it another way, units of
measurement are nothing more than one-dimensional (i.e. scalar) coordinate systems.)

5. To convert an angle in a plane to a signed number (modulo multiples of ), or vice versa, one
needs to pick an orientation on the plane (e.g. to decide that anti-clockwise angles are positive).

6. To convert a direction in a plane to a signed number (again modulo multiples of ), or vice versa,
one needs to pick an orientation on the plane, as well as a reference direction (e.g. true or magnetic
north is often used in the case of ocean navigation).

7. Similarly, to convert a position on a circle to a number (modulo multiples of ), or vice versa, one
needs to pick an orientation on that circle, together with an origin on that circle.  Such a coordinate
system then equates the original circle to the standard unit circle  (with the
standard origin  and the standard anticlockwise orientation ).

8. To convert a position on a two-dimensional sphere (e.g. the surface of the Earth, as a first
approximation) to a point on the standard unit sphere , one
can pick an orientation on that sphere, an “origin” (or “north pole”) for that sphere, and a “prime
meridian” connecting the north pole to its antipode.  Alternatively, one can view this coordinate
system as determining a pair of Euler angles  (or a latitude and longitude) to be assigned to
every point on one’s original sphere.

9. The above examples were all geometric in nature, but one can also consider “combinatorial”
coordinate systems, which allow one to identify combinatorial objects with numerical ones.  An
extremely familiar example of this is enumeration: one can identify a set A of (say) five elements
with the numbers 1,2,3,4,5 simply by choosing an enumeration  of the set A.  One can
similarly enumerate other combinatorial objects (e.g. graphs, relations, trees, partial orders, etc.),
and indeed this is done all the time in combinatorics.  Similarly for algebraic objects, such as cosets
of a subgroup H (or more generally, torsors of a group G); one can identify such a coset with H
itself by designating an element of that coset to be the “identity” or “origin”.

More generally, a coordinate system  can be viewed as an isomorphism  between a given
geometric (or combinatorial) object A in some class (e.g. a circle), and a standard object G in that class
(e.g. the standard unit circle).  (To be pedantic, this is what a global coordinate system is; a local
coordinate system, such as the coordinate charts on a manifold, is an isomorphism between a local piece
of a geometric or combinatorial object in a class, and a local piece of a standard object in that class.  I
will restrict attention to global coordinate systems for this discussion.)

Coordinate systems identify geometric or combinatorial objects with numerical (or standard) ones, but in
many cases, there is no natural (or canonical) choice of this identification; instead, one may be faced with
a variety of coordinate systems, all equally valid.  One can of course just fix one such system once and
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a variety of coordinate systems, all equally valid.  One can of course just fix one such system once and
for all, in which case there is no real harm in thinking of the geometric and numeric objects as being
equivalent.  If however one plans to change from one system to the next (or to avoid using such systems
altogether), then it becomes important to carefully distinguish these two types of objects, to avoid
confusion.  For instance, if an interval AB is measured to have a length of 3 yards, then it is OK to write 

 (identifying the geometric concept of length with the numeric concept of a positive real
number) so long as you plan to stick to having the yard as the unit of length for the rest of one’s analysis. 
But if one was also planning to use, say, feet, as a unit of length also, then to avoid confusing statements
such as “  and “,  one should specify the coordinate systems explicitly, e.g. “

 and “.  Similarly, identifying a point P in a plane with its coordinates (e.g.
) is safe as long as one intends to only use a single coordinate system throughout; but if one

intends to change coordinates at some point (or to switch to a coordinate-free perspective) then one
should be more careful, e.g. writing , or even , if the origin O and
basis vectors  of one’s coordinate systems might be subject to future change.

As mentioned above, it is possible to in many cases to dispense with coordinates altogether.  For instance,
one can view the length  of a line segment AB not as a number (which requires one to select a unit
of length), but more abstractly as the equivalence class of all line segments CD that are congruent to AB. 
With this perspective,  no longer lies in the standard semigroup , but in a more abstract semigroup

 (the space of line segments quotiented by congruence), with addition now defined geometrically (by
concatenation of intervals) rather than numerically.  A unit of length can now be viewed as just one of
many different isomorphisms  between  and , but one can abandon the use of such units
and just work with  directly.  Many statements in Euclidean geometry involving length can be phrased
in this manner.  For instance, if B lies in AC, then the statement  can be stated in ,
and does not require any units to convert  to ; with a bit more work, one can also make sense of
such statements as  for a right-angled triangle ABC (i.e. Pythagoras’ theorem)
while avoiding units, by defining a symmetric bilinear product operation  from the
abstract semigroup  of lengths to the abstract semigroup  of areas.  (Indeed, this is basically how the
ancient Greeks, who did not quite possess the modern real number system , viewed geometry, though of
course without the assistance of such modern terminology as “semigroup” or “bilinear”.)

The above abstract coordinate-free perspective is equivalent to a more concrete coordinate-invariant
perspective, in which we do allow the use of coordinates to convert all geometric quantities to numeric
ones, but insist that every statement that we write down is invariant under changes of coordinates.  For
instance, if we shrink our chosen unit of length by a factor , then the numerical length of every
interval increases by a factor of , e.g. .  The coordinate-invariant approach to length
measurement then treats lengths such as  as numbers, but requires all statements involving such
lengths to be invariant under the above scaling symmetry.  For instance, a statement such as 

 is legitimate under this perspective, but a statement such as  or 
 is not.  [In other words, co-ordinate invariance here is the same thing as being dimensionally

consistent.  Indeed, dimensional analysis is nothing more than the analysis of the scaling symmetries in
one's coordinate systems.]  One can retain this coordinate-invariance symmetry throughout one’s
arguments; or one can, at some point, choose to spend (or break) this coordinate invariance by selecting
(or fixing) the coordinate system (which, in this case, means selecting a unit length).  The advantage in
spending such a symmetry is that one can often normalise one or more quantities to equal a particularly
nice value; for instance, if a length  is appearing everywhere in one’s arguments, and one has

http://en.wikipedia.org/wiki/Congruence_(geometry)
http://en.wikipedia.org/wiki/Semigroup
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/Dimensional_analysis


4/11/11 4:24 PMWhat is a gauge? « What’s new

Page 4 of 24http://terrytao.wordpress.com/2008/09/27/what-is-a-gauge/

carefully retained coordinate-invariance up until some key point, then it can be convenient to spend this
invariance to normalise  to equal 1.  (In this case, one only has a one-dimensional family of
symmetries, and so can only normalise one quantity at a time; but when one’s symmetry group is larger,
one can often normalise many more quantities at once; as a rule of thumb, one can normalise one
quantity for each degree of freedom in the symmetry group.)  Conversely, if one has already spent the
coordinate invariance, one can often buy it back by converting all the facts, hypotheses, and desired
conclusions one currently possesses in the situation back to a coordinate-invariant formulation.  Thus one
could imagine performing one normalisation to do one set of calculations, then undoing that normalisation
to return to a coordinate-free perspective, doing some coordinate-free manipulations, and then performing
a different normalisation to work on another part of the problem, and so forth.  (For instance, in Euclidean
geometry problems, it is often convenient to temporarily assign one key point to be the origin (thus
spending translation invariance symmetry), then another, then switch back to a translation-invariant
perspective, and so forth.  As long as one is correctly accounting for what symmetries are being spent and
bought at any given time, this can be a very powerful way of simplifying one’s calculations.)

Given a coordinate system  that identifies some geometric object A with a standard object G,
and some isomorphism  of that standard object, we can obtain a new coordinate system 

 of A by composing the two isomorphisms.  [I will be vague on what "isomorphism"
means; one can formalise the concept using the language of category theory.] Conversely, every other
coordinate system  of  arises in this manner.  Thus, the space of coordinate systems on A is
(non-canonically) identifiable with the isomorphism group  of G.  This isomorphism group is
called the structure group (or gauge group) of the class of geometric objects.  For example, the structure
group for lengths is ; the structure group for angles is ; the structure group for lines is the affine
group ; the structure group for -dimensional Euclidean geometry is the Euclidean group ;
the structure group for (oriented) 2-spheres is the (special) orthogonal group ; and so forth. 
(Indeed, one can basically describe each of the classical geometries (Euclidean, affine, projective,
spherical, hyperbolic, Minkowski, etc.) as a homogeneous space for its structure group, as per the
Erlangen program.)

– Gauges –

In our discussion of coordinate systems, we focused on a single geometric (or combinatorial) object : a
single line, a single circle, a single set, etc.  We then used a single coordinate system to identify that
object with a standard representative of such an object.

Now let us consider the more general situation in which one has a family (or fibre bundle)  of
geometric (or combinatorial) objects (or fibres) : a family of lines (i.e. a line bundle), a family of
circles (i.e. a circle bundle), a family of sets, etc.  This family is parameterised by some parameter set or
base point x, which ranges in some parameter space or base space X.  In many cases one also requires
some topological or differentiable compatibility between the various fibres; for instance, continuous (or
smooth) variations of the base point should lead to continuous (or smooth) variations in the fibre.  For
sake of discussion, however, let us gloss over these compatibility conditions.

In many cases, each individual fibre  in a bundle , being a geometric object of a certain class,
can be identified with a standard object  in that class, by means of a separate coordinate system 

 for each base point x.  The entire collection  is then referred to as a (global)
gauge or trivialisation for this bundle (provided that it is compatible with whatever topological or
differentiable structures one has placed on the bundle, but never mind that for now).  Equivalently, a
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differentiable structures one has placed on the bundle, but never mind that for now).  Equivalently, a
gauge is a bundle isomorphism  from the original bundle  to the trivial bundle , in
which every fibre is the standard geometric object G.  (There are also local gauges, which only trivialise a
portion of the bundle, but let’s ignore this distinction for now.)

Let’s give three concrete examples of bundles and gauges; one from differential geometry, one from
dynamical systems, and one from combinatorics.

Example 1: the circle bundle of the sphere. Recall from the previous section that the space of
directions in a plane (which can be viewed as the circle of unit vectors) can be identified with the
standard circle  after picking an orientation and a reference direction.  Now let us work not on the
plane, but on a sphere, and specifically, on the surface X of the earth.  At each point x on this surface,
there is a circle  of directions that one can travel along the sphere from x; the collection 

 of all such circles is then a circle bundle with base space X (known as the circle bundle;
it could also be viewed as the sphere bundle, cosphere bundle, or orthonormal frame bundle of X). The
structure group of this bundle is the circle group  if one preserves orientation, or the semi-
direct product  otherwise.

Now suppose, at every point x on the earth X, the wind is blowing in some direction .  (This is
not actually possible globally, thanks to the hairy ball theorem, but let’s ignore this technicality for now.) 
Thus wind direction can be thought of as a collection  of representatives from the fibres of
the fibre bundle ; such a collection is known as a section of the fibre bundle (it is to bundles as
the concept of a graph  of a function  is to the trivial bundle 

).

At present, this section has not been represented in terms of numbers; instead, the wind direction 
 is a collection of points on various different circles in the circle bundle SX.  But one can

convert this section w into a collection of numbers (and more specifically, a function  from X
to ) by choosing a gauge for this circle bundle – in other words, by selecting an orientation  and a
reference direction  for each point x on the surface of the Earth X.  For instance, one can pick the
anticlockwise orientation  and true north for every point x (ignore for now the problem that this is not
defined at the north and south poles, and so is merely a local gauge rather than a global one), and then
each wind direction  can now be identified with a unit complex number  (e.g.  if the
wind is blowing in the northwest direction at x).  Now that one has a numerical function u to play with,
rather than a geometric object w, one can now use analytical tools (e.g. differentiation, integration,
Fourier transforms, etc.) to analyse the wind direction if one desires.  But one should be aware that this
function reflects the choice of gauge as well as the original object of study.  If one changes the gauge
(e.g. by using magnetic north instead of true north), then the function u changes, even though the wind
direction w is still the same.  If one does not want to spend the U(1) gauge symmetry, one would have to
take care that all operations one performs on these functions are gauge-invariant; unfortunately, this
restrictive requirement eliminates wide swathes of analytic tools (in particular, integration and the Fourier
transform) and so one is often forced to break the gauge symmetry in order to use analysis.  The
challenge is then to select the gauge that maximises the effectiveness of analytic methods.  

Example 2: circle extensions of a dynamical system. Recall (see e.g. my lecture notes) that a dynamical
system is a pair X = (X,T), where X is a space and  is an invertible map.  (One can also place
additional topological or measure-theoretic structures on this system, as is done in those notes, but we
will ignore these structures for this discussion.)  Given such a system, and given a cocycle 
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will ignore these structures for this discussion.)  Given such a system, and given a cocycle 
(which, in this context, is simply a function from X to the unit circle), we can define the skew product 

 of X and the unit circle , twisted by the cocycle , to be the Cartesian product 
 with the shift ; this is easily seen to be

another dynamical system.  (If one wishes to have a topological or measure-theoretic dynamical system,
then  will have to be continuous or measurable here, but let us ignore such issues for this discussion.) 
Observe that there is a free action  of the circle group  on the skew product 

 that commutes with the shift ; the quotient space  of this action is isomorphic to
X, thus leading to a factor map , which is of course just the projection map 

.  (An example is provided by the skew shift system, described in my lecture notes.)

Conversely, suppose that one had a dynamical system  which had a free  action 
 commuting with the shift .  If we set  to be the quotient space, we thus

have a factor map , whose level sets  are all isomorphic to the circle ; we call  a
circle extension of the dynamical system X.  We can thus view  as a circle bundle  with
base space X, thus the level sets  are now the fibres of the bundle, and the structure group is . 
If one picks a gauge for this bundle, by choosing a reference point  in the fibre for each
base point x (thus in this context a gauge is the same thing as a section ; this is basically
because this bundle is a principal bundle), then one can identify  with a skew product  by
identifying the point  with the point  for all , and letting  be
the cocycle defined by the formula

One can check that this is indeed an isomorphism of dynamical systems; if all the various objects here are
continuous (resp. measurable), then one also has an isomorphism of topological dynamical systems (resp.
measure-preserving systems).  Thus we see that gauges allow us to write circle extensions as skew
products.  However, more than one gauge is available for any given circle extension; two gauges ,

 will give rise to two skew products ,  which are isomorphic but not identical. 
Indeed, if we let  be a rotation map that sends  to , thus , then we see that
the two cocycles  and  are related by the formula

.  (1)

Two cocycles that obey the above relation are called cohomologous; their skew products are isomorphic
to each other.  An important general question in dynamical systems is to understand when two given
cocycles are in fact cohomologous, for instance by introducing non-trivial cohomological invariants for
such cocycles.

As an example of a circle extension, consider the sphere  from Example 1, with a rotation shift T
given by, say, rotating anti-clockwise by some given angle  around the axis connecting the north and
south poles.  This rotation also induces a rotation on the circle bundle , thus giving a circle
extension of the original system .  One can then use a gauge to write this system as a skew
product.  For instance, if one selects the gauge that chooses  to be the true north direction at each point
x (ignoring for now the fact that this is not defined at the two poles), then this system becomes the
ordinary product  of the original system X with the circle , with the cocycle being the trivial
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ordinary product  of the original system X with the circle , with the cocycle being the trivial
cocycle 0.  If we were however to use a different gauge, e.g. magnetic north instead of true north, one
would obtain a different skew-product , where  is some cocycle which is cohomologous to the
trivial cocycle (except at the poles).  (A cocycle which is globally cohomologous to the trivial cocycle is
known as a coboundary.  Not every cocycle is a coboundary, especially once one imposes topological or
measure-theoretic structure, thanks to the presence of various topological or measure-theoretic invariants,
such as degree.)

There was nothing terribly special about circles in this example; one can also define group extensions, or
more generally homogeneous space extensions, of dynamical systems, and have a similar theory, although
one has to take a little care with the order of operations when the structure group is non-abelian; see e.g.
my lecture notes on isometric extensions. 

Example 3: Orienting an undirected graph. The language of gauge theory is not often used in
combinatorics, but nevertheless combinatorics does provide some simple discrete examples of bundles
and gauges which can be useful in getting an intuitive grasp of the concept.  Consider for instance an
undirected graph G = (V,E) of vertices and edges.  I will let X=E denote the space of edges (not the space
of vertices)!.  Every edge  can be oriented (or directed) in two different ways; let  be the pair of
directed edges of e arising in this manner.  Then  is a fibre bundle with base space X and with
each fibre isomorphic (in the category of sets) to the standard two-element set , with structure
group .

A priori, there is no reason to prefer one orientation of an edge e over another, and so there is no
canonical way to identify each fibre  with the standard set .  Nevertheless, we can go ahead
and arbitrary select a gauge for X by orienting the graph G.  This orientation assigns an oriented edge 

 to each edge , thus creating a gauge (or section)  of the bundle .  Once one
selects such a gauge, we can now identify the fibre bundle  with the trivial bundle 

 by identifying the preferred oriented edge  of each unoriented edge  with ,
and the other oriented edge with .  In particular, any other orientation of the graph G can be
expressed relative to this reference orientation as a function , which measures when
the two orientations agree or disagree with each other. 

Recall that every isomorphism  of a standard geometric object G allowed one to transform a
coordinate system  on a geometric object A to another coordinate system . 
We can generalise this observation to gauges: every family  of isomorphisms on G allows
one to transform a gauge  to another gauge  (again assuming that  respects
whatever topological or differentiable structure is present).  Such a collection  is known as a gauge
transformation.  For instance, in Example 1, one could rotate the reference direction  at each point 

 anti-clockwise by some angle ; this would cause the function  to rotate to .   In
Example 2, a gauge transformation is just a map  (which may need to be continuous or
measurable, depending on the structures one places on X); it rotates a point  to 
, and it also transforms the cocycle  by the formula (1).  In Example 3, a gauge transformation would be
a map ; it rotates a point  to .

Gauge transformations transform functions on the base X in many ways, but some things remain gauge-
invariant.  For instance, in Example 1, the winding number of a function  along a closed loop 
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 would not change under a gauge transformation (as long as no singularities in the gauge are
created, moved, or destroyed, and the orientation is not reversed).  But such topological gauge-invariants
are not the only gauge invariants of interest; there are important differential gauge-invariants which make
gauge theory a crucial component of modern differential geometry and geometric PDE.  But to describe
these, one needs an additional gauge-theoretic concept, namely that of a connection on a fibre bundle.

– Connections –

There are many essentially equivalent ways to introduce the concept of a connection; I will use the
formulation based primarily on parallel transport, and on differentiation of sections.  To avoid some
technical details I will work (somewhat non-rigorously) with infinitesimals such as dx.  (There are ways
to make the use of infinitesimals rigorous, such as non-standard analysis, but this is not the focus of my
post today.)

In single variable calculus, we learn that if we want to differentiate a function  at some
point x, then we need to compare the value f(x) of f at x with its value f(x+dx) at some infinitesimally
close point x+dx, take the difference , and then divide by dx, taking limits as , if
one does not like to use infinitesimals:

In several variable calculus, we learn several generalisations of this concept in which the domain and
range of f to be multi-dimensional.  For instance, if  is now a vector-valued function on some
multi-dimensional domain (e.g. a manifold) X, and v is a tangent vector to X at some point x, we can
define the directional derivative  of f at x by comparing  with  for some
infinitesimal dt, take the difference , divide by dt, and then take limits as :

.

[Strictly speaking, if X is not flat, then x+vdt is only defined up to an ambiguity of o(dt), but let us ignore
this minor issue here, as it is not important in the limit.]  If f is sufficiently smooth (being continuously
differentiable will do), the directional derivative is linear in v, thus for instance 

. One can also generalise the range of f to other multi-dimensional
domains than ; the directional derivative then lives in a tangent space of that domain.

In all of the above examples, though, we were differentiating functions , thus each element 
 in the base (or domain) gets mapped to an element  in the same range Y.  However, in many

geometrical situations we would like to differentiate sections  instead of functions, thus f
now maps each point  in the base to an element  of some fibre in a fibre bundle . 
For instance, one might want to know how the wind direction  changes as one moves x in
some direction v; thus computing a directional derivative  of w at x in direction v.  One can try to
mimic the previous definitions in order to define this directional derivative.  For instance, one can move x
along v by some infinitesimal amount dt, creating a nearby point , and then evaluate w at this
point to obtain .  But here we hit a snag: we cannot directly compare  with ,
because the former lives in the fibre  while the latter lives in the fibre .
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With a gauge, of course, we can identify all the fibres (and in particular,  and ) with a common
object G, in which case there is no difficulty comparing  with .  But this would lead to a
notion of derivative which is not gauge-invariant, known as the non-covariant or ordinary derivative in
physics.

But there is another way to take a derivative, which does not require the full strength of a gauge (which
identifies all fibres simultaneously together).  Indeed, in order to compute a derivative , one only
needs to identify (or connect) two infinitesimally close fibres together:  and .  In practice, these
two fibres are already “within O(dt) of each other” in some sense, but suppose in fact that we have some
means  of identifying these two fibres together.  Then, we can pull back 

 from  to  through  to define the covariant derivative:

.

In order to retain the basic property that  is linear in v, and to allow one to extend the infinitesimal
identifications  to non-infinitesimal identifications, we impose the property that the 

 to be approximately transitive in that

 (1)

for all x, dx, dx’, where the  symbol indicates that the error between the two sides is o(|dx| + |dx’|). 
[The precise nature of this error is actually rather important, being essentially the curvature of the
connection  at x in the directions , but let us ignore this for now.]  To oversimplify a little bit, any
collection  of infinitesimal maps  obeying this property (and some technical regularity
properties) is a connection.

[There are many other important ways to view connections, for instance the Christoffel symbol
perspective that we will discuss a bit later.  Another approach is to focus on the differentiation operation 

 rather than the identifications  or , and in particular on the algebraic properties of
this operation, such as linearity in v or derivation-type properties (in particular, obeying various variants
of the Leibnitz rule).  This approach is particularly important in algebraic geometry, in which the notion
of an infinitesimal or of a path may not always be obviously available, but we will not discuss it here.]

The way we have defined it, a connection is a means of identifying two infinitesimally close fibres 
 of a fibre bundle .  But, thanks to (1), we can also identify two distant fibres ,

provided that we have a path  from  to , by concatenating the
infinitesimal identifications by a non-commutative variant of a Riemann sum:

 (2)

where  ranges over partitions.  This gives us a parallel transport map 
 identifying  with , which in view of its Riemann sum definition, can be viewed as

the “integral” of the connection  along the curve .  This map does not depend on how one parametrises
the path , but it can depend on the choice of path used to travel from x to y.

We illustrate these concepts using several examples, including the three examples introduced earlier.
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Example 1 continued. (Circle bundle of the sphere) The geometry of the sphere X in Example 1 provides
a natural connection on the circle bundle SX, the Levi-Civita connection , that lets one transport
directions around the sphere in as “parallel” a manner as possible; the precise definition is a little
technical (see e.g. my lecture notes for a brief description).  Suppose for instance one starts at some
location x on the equator of the earth, and moves to the antipodal point y by a great semi-circle  going
through the north pole.  The parallel transport  along this path will map the north direction
at x to the south direction at y.  On the other hand, if we went from x to y by a great semi-circle  going
along the equator, then the north direction at x would be transported to the north direction at y.  Given a
section u of this circle bundle, the quantity  can be interpreted as the rate at which u rotates as one
travels from x with velocity v. 

Example 2 continued. (Circle extensions) In Example 2, we change the notion of “infinitesimally close”
by declaring x and Tx to be infinitesimally close for any x in the base space X (and more generally, x and

 are non-infinitesimally close for any positive integer n, being connected by the path 
, and similarly for negative n).  A cocycle  can then be viewed as

defining a connection on the skew product , by setting  (and also 
 and  to ensure compatibility with (1); to avoid notational

ambiguities let us assume for sake of discussion that  are always distinct from each other). 
The non-infinitesimal connections  are then given by the formula 

 for positive n (with a similar formula for negative n).  Note that these
iterated cocycles  also describe the iterations of the shift , indeed 

. 

Example 3 continued. (Oriented graphs) In Example 3, we declare two edges e, e’ in X to be
“infinitesimally close” if they are adjacent.  Then there is a natural notion of parallel transport on the
bundle ; given two adjacent edges , , we let  be the isomorphism
from  to  that maps  to  and  to .  Any path 

 of edges then gives rise to a connection  identifying 
with .  For instance, the triangular path  induces the identity
map on , whereas the U-turn path  induces the anti-identity
map on .

Given an orientation  of the graph G, one can “differentiate”  at an edge  in the
direction  to obtain a number , defined as +1 if the
parallel transport from  and  preserves the orientations given by , and -1 otherwise.  This
number of course depends on the choice of orientation.  But certain combinations of these numbers are
independent of such a choice; for instance, given any closed path  of
edges in X, the “integral”  is independent of the choice of orientation 
(indeed, it is equal to +1 if  is the identity, and -1 if  is the anti-identity.  

Example 4. (Monodromy)  One can interpret the monodromy maps of a covering space in the language
of connections.  Suppose for instance that we have a covering space  of a topological space X
whose fibres  are discrete; thus  is a discrete fibre bundle over X.  The discreteness induces a
natural connection  on this space, which is given by the lifting map; in particular, if one integrates this
connection on a closed loop based at some point x, one obtains the monodromy map of that loop at x. 
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connection on a closed loop based at some point x, one obtains the monodromy map of that loop at x. 

Example 5. (Definite integrals) In view of the definition (2), it should not be surprising that the definite
integral  of a scalar function  can be interpreted as an integral of a connection. 
Indeed, set , and let  be the trivial line bundle over X.  The function f induces a
connection  on this bundle by setting

The integral  of this connection along  is then just the operation of translation by 
 in the real line. 

Example 6. (Line integrals) One can generalise Example 5 to encompass line integrals in several variable
calculus.  Indeed, if  is an n-dimensional domain, then a vector field 
induces a connection  on the trivial line bundle  by setting

The integral  of this connection along a curve  is then just the operation of translation by the line
integral  in the real line.

Note that a gauge transformation in this context is just a vertical translation  of
the bundle  by some potential function , which we will assume to be
smooth for sake of discussion.  This transformation conjugates the connection  to the connection 

.  Note that this is a conservative transformation: the integral of a connection along a closed loop is
unchanged by gauge transformation. 

Example 7. (ODE) A different way to generalise Example 5 can be obtained by using the fundamental
theorem of calculus to interpret  as the final value  of the solution to the initial value
problem

for the ordinary differential equation .  More generally, the solution u(b) to the initial value
problem

for some  taking values in some manifold Y, where  is a function
(let us take it to be Lipschitz, to avoid technical issues), can also be interpreted as the integral of a
connection  on the trivial vector space bundle , defined by the formula

Then  will map  to , this is nothing more than the Euler method for solving ODE.   Note that
the method of integrating factors in solving ODE can be interpreted as an attempt to simplify the
connection  via a gauge transformation.  Indeed, it can be profitable to view the entire theory of
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connection  via a gauge transformation.  Indeed, it can be profitable to view the entire theory of
connections as a multidimensional “variable-coefficient” generalisation of the theory of ODE.  

Once one selects a gauge, one can express a connection in terms of that gauge.  In the case of vector
bundles (in which every fibre is a d-dimensional vector space for some fixed d), the covariant derivative 

 of a section w of that bundle along some vector v emanating from x can be expressed in any
given gauge by the formula

where we use the gauge to express w(x) as a vector , the indices  are
summed over the fibre dimensions (and  summed over the base dimensions) as per the usual
conventions, and the  are the Christoffel symbols of this connection relative to this
gauge.

One example of this, which models electromagnetism, is a connection on a complex line bundle 
 in spacetime .  Such a bundle assigns a complex line

 (i.e. a one-dimensional complex vector space, and thus isomorphic to ) to every point  in
spacetime.  The structure group here is U(1) (strictly speaking, this means that we view the fibres as
normed one-dimensional complex vector spaces, otherwise the structure group would be ). A gauge
identifies V with the trivial complex line bundle , thus converting sections  of
this bundle into complex-valued functions .  A connection on V, when described in this
gauge, can be given in terms of fields  for ; the covariant derivative of a
section in this gauge is then given by the formula

.

In the theory of electromagnetism,  and  are known (up to some normalising constants) as
the electric potential and magnetic potential respectively.  Sections of V do not show up directly in
Maxwell’s equations of electromagnetism, but appear in more complicated variants of these equations,
such as the Maxwell-Klein-Gordon equation.

A gauge transformation of V is given by a map ; it transforms sections by the formula 
, and connections by the formula , or equivalently

.   (2)

In particular, the electromagnetic potential  is not gauge invariant (which broadly corresponds to the
concept of being nonphysical or nonmeasurable in physics), as gauge symmetry allows one to add an
arbitrary gradient function to this potential.  However, the curvature tensor

of the connection is gauge-invariant, and physically measurable in electromagnetism; the components 
 for  of this field have a physical interpretation as the electric field, and the

components  for  have a physical interpretation as the magnetic field.  (The
curvature tensor  can be interpreted as describing the parallel transport of infinitesimal rectangles; it
measures how far off the connection is from being flat, which means that it can be (locally)
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measures how far off the connection is from being flat, which means that it can be (locally)
“straightened” via some choice of gauge to be the trivial connection.  In nonabelian gauge theories, in
which the structure group is more complicated than just the abelian group U(1), the curvature tensor is
non-scalar, but remains gauge-invariant in a tensor sense (gauge transformations will transform the
curvature as they would transform a tensor of the same rank).

Gauge theories can often be expressed succinctly in terms of a connection and its curvatures.  For
instance, Maxwell’s equations in free space, which describes how electromagnetic radiation propagates in
the presence of charges and currents (but no media other than vacuum), can be written (after normalising
away some physical constants) as

where  is the 4-current.  (Actually, this is only half of Maxwell’s equations, but the other half are a
consequence of the interpretation (*) of the electromagnetic field as a curvature of a U(1) connection. 
Thus this purely geometric interpretation of electromagnetism has some non-trivial physical implications,
for instance ruling out the possibility of (classical) magnetic monopoles.)  If one generalises from
complex line bundles to higher-dimensional vector bundles (with a larger structure group), one can then
write down the (classical) Yang-Mills equation

which is the classical model for three of the four fundamental forces in physics: the electromagnetic,
weak, and strong nuclear forces (with structure groups U(1), SU(2), and SU(3) respectively).  (The
classical model for the fourth force, gravitation, is given by a somewhat different geometric equation,
namely the Einstein equations , though this equation is also “gauge-invariant” in some
sense.)

The gauge invariance (or gauge freedom) inherent in these equations complicates their analysis.  For
instance, due to the gauge freedom (2), Maxwell’s equations, when viewed in terms of the
electromagnetic potential , are ill-posed: specifying the initial value of this potential at time zero does
not uniquely specify the future value of this potential (even if one also specifies any number of additional
time derivatives of this potential at time zero), since one can use (2) with a gauge function U that is
trivial at time zero but non-trivial at some future time to demonstrate the non-uniqueness.  Thus, in order
to use standard PDE methods to solve these equations, it is necessary to first fix the gauge to a sufficient
extent that it eliminates this sort of ambiguity.  If one were in a one-dimensional situation (as opposed to
the four-dimensional situation of spacetime), with a trivial topology (i.e. the domain is a line rather than a
circle), then it is possible to gauge transform the connection to be completely trivial, for reasons
generalising both the fundamental theorem of calculus and the fundamental theorem of ODEs.  (Indeed,
to trivialise a connection  on a line , one can pick an arbitrary origin  and gauge transform each
point  by .)  However, in higher dimensions, one cannot hope to completely trivialise a
connection by gauge transforms (mainly because of the possibility of a non-zero curvature form); in
general, one cannot hope to do much better than setting a single component of the connection to equal
zero.  For instance, for Maxwell’s equations (or the Yang-Mills equations), one can trivialise the
connection  in the time direction, leading to the temporal gauge condition

.
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This gauge is indeed useful for providing an easy proof of local existence for these equations, at least for
smooth initial data.  But there are many other useful gauges also that one can fix; for instance one has the
Lorenz gauge

which has the nice property of being Lorentz-invariant, and transforms the Maxwell or Yang-Mills
equations into linear or nonlinear wave equations respectively.  Another important gauge is the Coulomb
gauge

where i only ranges over spatial indices 1,2,3 rather than over spacetime indices 0,1,2,3.  This gauge has
an elliptic variational formulation (Coulomb gauges are critical points of the functional )
and thus are expected to be “smaller” and “smoother” than many other gauges; this intuition can be borne
out by standard elliptic theory (or Hodge theory, in the case of Maxwell’s equations).  In some cases, the
correct selection of a gauge is crucial in order to establish basic properties of the underlying equation,
such as local existence.  For instance, the simplest proof of local existence of the Einstein equations uses
a harmonic gauge, which is analogous to the Lorenz gauge mentioned earlier; the simplest proof of local
existence of Ricci flow uses a gauge of de Turck that is also related to harmonic maps (see e.g. my
lecture notes); and in my own work on wave maps, a certain “caloric gauge” based on harmonic map heat
flow is crucial (see e.g. this post of mine).  But in many situations, it is not yet fully understood whether
the use of the correct choice of gauge is a mere technical convenience, or is more innate to the equation. 
It is definitely conceivable, for instance, that a given gauge field equation is well-posed with one choice
of gauge but ill-posed with another.  It would also be desirable to have a more gauge-invariant theory of
PDEs that did not rely so heavily on gauge theory at all, but this seems to be rather difficult; many of our
most powerful tools in PDE (for instance, the Fourier transform) are highly non-gauge-invariant, which
makes it very inconvenient to try to analyse these equations in a purely gauge-invariant setting.
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