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In order to bring these results within the power of symbolical calculation, I then
express them in the form of the General Equations of the Electromagnetic Field.
These equations express— '

(A) The relation between electric displacement, true conduction, and the total

current, compounded of both. - :

(B) The relation between the lines of magnetic force and the inductive coefficients of
a circuit, as already deduced from the laws of induction.

(C) The relation between the strength of a current and its magnetic effects, according
to the electromagnetic system of measurement. ' -

(D) The value of the electromotive force in a body, as arising from the motion of the
body in the field, the alteration of the field itself, and the variation of electnc
potential from one part of the field to another. :

(E) The relation between electric displacement, and the electromotive force whlch

produces it.
(F) The relation between an electric current, and the electlomotlve force which pro-

duces it.

(G) The relation between the amount of free electricity at any point, and the electric
displacements in the neighbourhood.

(H) The relation between the increase or diminution of free electr1c1ty and the elec-

tric currents in the neighbourhood.
There are twenty of these equations in all; involving twenty variable quantities.
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(70) In these equations of the electromagnetic field we have assumed twenty variable
3U2
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quantities, namely,
For Electromagnetic Momentum

Magnetic Intensity
Electromotive Force
Current due to true conduction .

Electric Displacement . : e -
Total Current (including variation of dlsplacement)

Quantity of free Electricity .
,» Hlectric Potential

Between these twenty quantities we have found twenty equations, viz.
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Three equations of Magnetic Force . . . . . . . ., . (B)
i Electric Currents. . . . . . . . . (C)
55 Electromotive Force. . . . . . . . (D)
3 Blecttic Blastioity . . . . . | . < (BE)
- Electric Resistance . . . . .'. . ., (F)
e Total Currents .. < « &» o & & = 2 (A)
One equation of Free Electricity . . . . . . . . . . (G)
i Comtinuity . ¢ s oiord w'd 5 & o fH)

These equations are therefore sufficient to detelmme all the quantities which occur .
in them, provided we know the conditions of the problem. In many questions, how-.

ever, only a few of the equations are required.



Maxwell’s Equations

The Original Equations

With the knowledge of fluid mechanics MAXWELL!"” has introduced the following eight
equations to the electromagnetic fields (the right equations correspond with the original text,
the left equations correspond with today’s vector notation):
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This original equations do not strictly correspond to today’s vector equations. The original
equations, for example, contains the vector potential A, which today usually is eliminated.

Three Maxwell equations can be found quickly in the original set, together with OHM’s
law (1.6), the FARADAY-force (1.4) and the continuity equation (1.8) for a region containing
charges.

The Original Quaternion Form of Maxwell‘s Equations
In his Treatise!® of 1873 MAXWELL has already modified his original equations of 1865. In
addition Maxwell tried to introduce the quaternion notation by writing down his results also
in a quaternion form. However, he has never really calculated with quaternions but only uses
either the scalar or the vector part of a quaternion in his equations.

A general quaternion has a scalar (real) and a vector (imaginary) part. In the example be-
low ,a‘ is the scalar part and ‘ib + jc + kd’ is the vector part.

Q=a+ib+jc+kd

Here a, b, ¢ and d are real numbers and i, j, k are the so-called HAMILTON ian!”! unit vectors
with the magnitude of V-1. They fulfill the equations
F=j=K=ik=-1
and
ij=k jk=i ki=j
ij=-ji jk=-ki ki=-ik

A nice presentation about the rotation capabilities of the HAMILTON’ian unit vectors in a
three-dimensional ARGAND diagram was published by GOUGH'®),

Now MAXWELL has defined the field vectors (for example B = B,i + B,j + B3k) as quater-

nions without scalar part and scalars as quaternions without vector part. In addition he
defined a quaternion operator without scalar part

V=il+i]+ik s
dx, dx,  dx,

which he used in his equations. Maxwell devided a single quaternion with two prefixes into a
scalar and vector. This prefixes he defined according to

SQ=S.(a+ib+jc+kd)=a

VQ=V.(a+ib+jc+kd)=ib+jc+kd

The original Maxwell quaternion equations are now for isotrope media (no changes except
fonts, normal letter = scalar, capital letter = quaternion without scalar):
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Table 15-1

FALSE IN GENERAL (true only for statics) TRUE ALWAYS
1 qig2 )
= —_— (Coulomb’s law) F =q(E + v X B) (Lorentz force)
4req r2
= V-E = L (Gauss’ law)
€0
B ,
VXE=0 —’VXE=——67 (Faraday’s law)
04
= — E = —V¢ — —
E Vo ¢ EY
EQl) = ————p(zlelz dvs
4meo r2,
For conductors, E = 0, ¢ = constant. Q = CV In a conductor, E makes currents.
= V:-B=0 (No magnetic charges)
B=V XA
j j JE
v X B = EA (Ampere’s law) - 2y X B = ER + =
€0 €0 ot

By — / i@ X ez

2 2
47 eoc r2,

2 p . . 2 1 0% P
Vg = — — (Poisson’s equation) Vi$p — 5% = — —
€0 c2 912 €0
and
19°4 i
veq = — I 2 294 _ _ 1
€oc? v 2 012 €oc2
with with
vV-d=0 Av-a+2 o
ot
1 2 ¢
¢(1)=——/”—(2—)de ¢(1,t)=~1—/”(”)dv2
4rreg rie 4mreg rie
and
_ 1 (i 1 / i@, 1)
A(l) - 47r60(:2 / riz v A(l’t) = 47r€()c2 ri2 de
with
fo=1— 12
(4

2
U=%/p¢dV+%/j-AdV U=/<‘—2°E-E+E9;—B-B>dV

The equations marked by an arrow (=) are Maxwell’s equations.
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BASIC EQUATIONS OF ELECTRODYNAMICS

Maxwell’s Equations

In general :

Auxiliary Fields

Definitions :
D=¢E+P

1
H=—B-M
1o

JE
VxB= M0J+M060—t

In matter -

V-D=py

VXE:—E
at

V-B=0

oD
VxH= —
X Jf+8t

Linear media -

P=¢x.E, D=¢cE

1
M=yx,H H=-B



Feynman: These Eight Equations Contain All of Classical Physics
(1-4) Maxwell’s Equations
V-E=p/e
V-B=0
VxE=-0B/ot
V x B = pupJ + poeg OE/0t
(5) The Conservation of Charge
V-J=—-0p/ot
(6) The Lorentz Force Law
F=qgqE+qvxB
(7) The Law of Motion
dp/dt = F where p = ymv
(8) Newton’s Law of Gravitation

F = —Gm1m2 f‘/T2



Maxwell’s Equations

Two vector fields, E and B

Two Divergence Equations

Gauss’ Law for Electricity
V-E=p/e

Gauss’ Law for Magnetism

V-B=0

Two Curl Equations

Faraday’s Law of Induction
VxE=-0B/ot

Ampere’s Law with Maxwell’s Extension
V x B = upJ + poegOE/0t
V x B = pod + poda

Maxwell called J4 the displacement current



For static fields, the four Maxwell Equations are the best formulation
V-E=p/e

V.-B=0

V xE=-0B/ot

V x B = puoJ + poegdE/0t

Maxwell’s equations are four coupled first-order differential equations

The sources are p, J, and each other

For dynamic fields, the wave equations are the best formulation

Decoupling the four Maxwell Equations produces two second-order differ-
ential equations

V2E = pgeg O*°E/0%t = (1/c?) 0?°E /0%t
V2B = pgeg 0?°B/0*t = (1/c2) 9°B /9%t

These two wave equations have six degrees-of-freedom, three for E and
three for B. They apply in regions where there are no sources.



The vector potential and the scalar potential obey the same wave equation

V2A = 9?°A /9%t
V3¢ = 0%¢/0%t

These two wave equations have four degrees-of-freedom, one for ¢ and
three for A

As we will see later, the vector potential and the scalar potential are the
components of the four-potential A4,

Au = (¢7 Am7 Aya Az)
In the radiation gauge,

0p/ot+V-A=0

the four-potential A, obeys the same wave equation

[V2-0%/0°t] ¢ =

[V2—82/8%] Az = 0
[V2—82/8%] Ay =0
[V2—82/0%] Az =0

Using Feynman’s four-vector notation, Maxwell’s equations, in the radia-
tion gauge, are given by

ViV Ay = ju/€o

Viju=0
Note that V,V, becomes [ 9?/%t,—V? | but V, becomes [ 9/0t,V |
Using modern notation, Maxwell’s equations, in the radiation gauge, are
given by

0,0t AV = 4w j¥

85" =0



TABLE 3.1 ANALOGY BETWEEN THE ELECTROMAGNETIC AND

GRAVITATIONAL FIELD THEORIES

Electromagnetism
~ Source of field N id

Conservation law 0,j" =
Field ’ AY
Field equation 3,0 A — 978, A* = Amj
Gauge transformation A* — A* + *A
Preferred gauge

condition 9, A*=0
Field equation in

preferred gauge 9,04 = 4mj”

Energy-momentum
exchange between Tt = FunJ?
field and particle

Equation of motion

of particle aPr= qF nu”
Energy-momentum of
particle Du = mu,

Proper time interval dr® = nedx®dx®

Gravitation

. (Linear Approximation)

Tll»v
9, T* =0
h“'ll,'

3\ — 28,9Vh*™ + 349%h
‘ —"n‘“’a;\a"h + n“"a)\aah’“’ =—xT"

h* — h* + a(vAu)

du(h* — ™) =0

a)\a)\(h'uv — %.nl—‘«vh) = —xTH*

P, = mu, + mkhyu*
dr? = (s + Khog)dx*dx?



The Principle of Relativity

All laws of physics must be invariant under Lorentz transformations.
Invariant means:

(1) The law has the same mathematical form

(2) All numerical constants have the same values

A potpouri of four-vectors and four-operators

spacetime 4-vector s = (t,z,y, 2)

energy-momentum 4-vector (E,p;,py,p-)

4-potential A, = (¢, Az, Ay, A.)

4-current j, = (p, jz, Jy, jz)

Feynman’s V in 4-dimensions V, = (9/0t, V)

Feynman’s D’Alembertian = V,V,, = (8%/0t?, —V?) 4-Laplacian

In modern notation we use 9,, and 9,0*

All 4-vectors transform in precisely the same way.



The Structure of Spacetime
Virtual Text 2 starts by saying

“Lorentz transformations are just hyperbolic rotations.”

I am going to go one step further by asserting

Special Relativity is hyperbolic geometry.

Newtonian Space And Time

Space and time are different separate entities.

Distances are calculated using the Pythagorean Theorem

§2 = 22 £ y? 4 22

Euclidean Spacetime, Cartesian Spacetime, Galilean Spacetime

For 90 proofs of the Pythagorean Theorem see:
http://www.cut-the-knot.org/pythagoras/index.shtml

Spacetime in SR (aka Minkowski Spacetime)
Space and time are one entity.

Distances are calculated differently

2 _ 42 2 2

s — 2 —y? -z
In two dimensions

2 _ 42 2

S — X

This is how distance is measured in two-dimensional hyperbolic geometry.



Calculating Distances

In Euclidean Spacetime, distances are calculated using the inner product
x
r =
)
r-r=|r[?=a2%+y?

In Minkowski Spacetime, distances are calculated using a different inner
product

N

S =

x
s-s=|s|*’=t?—x

2

Formally, we can define the inner product using a matrix

For Euclidean Spacetime

(10
M=o Y]
For Minkowski Spacetime
(10
M= )

Distance is given by the inner product s-s =s” M s

The matrix M that defines distance is called the metric.

On the west coast

1 0 0 0
_ |0 L0 0 2_42_ .2 .2 2
M = 0 0 -1 0 and s*=t*—z°—y°—z2
0 O 0 -1

-1 0 0 O
_ |0 1 .00 2 _ 42 2 24,2
M = 0 0 1 0 and s*=-—-t"4+z°+y° "+ =z
0 0 0 1

The important thing about distances—also called intervals—is that they
have the same value independent of the coordinate system used to measure
them.



The Lorentz Transformations

Coordinate system changes in Minkowski Spacetime are given by the
Lorentz transformations

The Lorentz transformations are the only linear coordinate transforma-
tions that produce invariant distances. The transformations must be lin-
ear so that the worldlines of free particles are straight lines in all coordi-
nate systems.

t' = At + Bx
2 =Ct—+ Dx

The Lorentz transformations are given by

,  t—uwz/e

SV )

;o T — vt
1—(v?/c?)

Written more compactly

t' =t — pyx

' =~yx — Byt
Where

g =uv/c
1

VI

As the author of Virtual Text 2 asserted, we will see later that the Lorentz
transformations are hyperbolic rotations.

http://www.univie.ac.at/future.media/moe/galerie/struct /struct.html

http://webphysics.davidson.edu/applets/Minkowski/Minkowski FEL.html



Matrix form

This Lorentz transformation is called a "boost" in the x-direction and is often expressed in matrix form as

ct’ v =3~ 0 0] [t
2l [-By v 0 0f|«x
v | 0 0 1 0]y
2 0 0 0 1f|z]

This transformation matrix is universal for all four-vectors.

More generally for a boost in any arbitrary direction ( x,B y,ﬁz),

7 —Pz ) —Py By |
et |-Ber 1+ -0E= (o o2k T
g ' B 75 ih
- - “—lly'{x 1 _V ,,_1{,1’/.'::
i/: 3,7 (0 )63; + (v — )33 (v—1) 3232
i ! I
—B.v (v—1) 32 (v — 1) ' y 1+ (v — 1)_
where 3 — 2 mand') — 1




Hyperbolic Geometry

Three forms of geometry
Euclid’s Fifth Postulate

1 parallel line => Flat (zero curvature)
Euclidean Geometry

no parallel lines => positive curvature
Spherical Geometry

infinite number => negative curvature
Hyperbolic Geometry



The three geometries

Elliptical Parabolic Hyperbolic
Spherical Planar Saddle
Riemannian Euclidean Lobachevskian
curvature positive 0 negative
triangles >180° =180° <180°
parallel lines zero 1 infinite
projections Mercator Poincare disk
Gall-Peters Poincare half plane
Dymaxion Klein disk

Cuboctahedron Minkowski



For this spherical triangle the sum of
the internal angles = 270 degrees







Fra. 234a P1i. 234b Fi1c. 234¢



S~
o

—
1

Hyperbolic Euclidean Elliptic

- RN
~_ L

—




~_ non-intersecting lines

< right-hand parallel

) N\

lefi-hand parallel angle of parallelism

—.—D—.—
A B







How can we project the hyperbolic

plane onto the Euclidian plane?
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