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Maxwell’s Equations

The Original Equations
With the knowledge of fluid mechanics MAXWELL[15] has introduced the following eight
equations to the electromagnetic fields (the right equations correspond with the original text,
the left equations correspond with today’s vector notation):

1
1 1

2
2 2

3
3 3

Dd J jp p
tdt

Ddq q J j
dt t t

d Dr r J j
dt t

f'

g'

h'

∂ ⎫⎫ = += + ⎪⎪ ∂ ⎪⎪
∂ ∂⎪ ⎪

= + → = + ⇒ = +⎬ ⎬
∂ ∂⎪ ⎪
∂⎪ ⎪

= + = +⎪ ⎪∂⎭ ⎭

DJ j (1.1)

3 2
1

31
2

2 1
3

A AdH dG H
y zdy dz

AAdF dH H
dz dx z x
dG dF A AH
dx dy x y

∂ ∂ ⎫⎫ µ = −µα = − ⎪⎪ ∂ ∂ ⎪⎪
∂ ⎪∂⎪

µβ = − → µ = − ⇒ µ =∇×⎬ ⎬
∂ ∂⎪ ⎪
∂ ∂⎪ ⎪

µγ = − µ = −⎪ ⎪∂ ∂⎭ ⎭

H A (1.2)

3 2
1

31
2

2 1
3

H Hd d 4 J4 p
y zdy dz

HHd d 4 q 4 J
dz dx z x
d d H H4 r 4 J
dx dy x y

'

'

'

∂ ∂γ β ⎫⎫ − = π− = π ⎪⎪ ∂ ∂ ⎪⎪
∂ ⎪∂α γ ⎪

− = π → − = π ⇒ ∇× =⎬ ⎬
∂ ∂⎪ ⎪

β α ∂ ∂⎪ ⎪
− = π − = π⎪ ⎪∂ ∂⎭ ⎭

H J (1.3)

( )

( )

( )

( )

1
1 3 2 2 3

2
2 1 3 3 1

3
3 2 1 1 2

dy dz dF d dA dP E H v H vdt dt dt dx dt dx
dAdz dx dG d dQ E H v H v

dt dt dt dy dt dy
dA ddx dy dH d E H v H vR
dt dzdt dt dt dz

t

⎫Ψ⎛ ⎞ ⎫ϕ= µ γ −β − − = µ − − −⎜ ⎟ ⎪ ⎪⎝ ⎠ ⎪ ⎪
⎪Ψ ϕ⎪ ⎪⎛ ⎞= µ α − γ − − → = µ − − −⎬ ⎬⎜ ⎟

⎝ ⎠ ⎪ ⎪
⎪ ⎪ϕΨ⎛ ⎞ = µ − − −= µ β −α − − ⎪ ⎪⎜ ⎟ ⎭⎪⎝ ⎠ ⎭

∂
⇒ = µ × − −∇ϕ

∂
AE v H

(1.4)

1 1

2 2

3 3

P k E D
Q k E D
R k E D

f
g
h

= ε =⎫ ⎫
⎪ ⎪

= → ε = ⇒ ε =⎬ ⎬
⎪ ⎪= ε =⎭ ⎭

E D (1.5)

1 1

2 2

3 3

P p E j
Q q E j
R r E j

= −ζ σ =⎫ ⎫
⎪ ⎪

= −ζ → σ = ⇒ σ =⎬ ⎬
⎪ ⎪= −ζ σ =⎭ ⎭

E j (1.6)



copyright © (2000) by AW-Verlag,  www.aw-verlag.ch Page 3

31 2 DD Dd d de 0 0
dx dy dz x y z

f g h ∂∂ ∂
+ + + = → ρ + + + = ⇒ −ρ =∇

∂ ∂ ∂
Di (1.7)

31 2 jj jde dp dq dr 0 0
dt dx dy dz t x y z t

∂∂ ∂∂ρ ∂ρ
+ + + = → + + + = ⇒ − =∇

∂ ∂ ∂ ∂ ∂
ji (1.8)

This original equations do not strictly correspond to today’s vector equations. The original
equations, for example, contains the vector potential A, which today usually is eliminated.

Three Maxwell equations can be found quickly in the original set, together with OHM’s
law (1.6), the FARADAY-force (1.4) and the continuity equation (1.8) for a region containing
charges.

The Original Quaternion Form of Maxwell‘s Equations
In his Treatise[16] of 1873 MAXWELL has already modified his original equations of 1865. In
addition Maxwell tried to introduce the quaternion notation by writing down his results also
in a quaternion form. However, he has never really calculated with quaternions but only uses
either the scalar or the vector part of a quaternion in his equations.

A general quaternion has a scalar (real) and a vector (imaginary) part. In the example be-
low ‚a‘ is the scalar part and ‘ib + jc + kd’ is the vector part.

Q = a + ib + jc + kd

Here a, b, c and d are real numbers and i, j, k are the so-called HAMILTON‘ian[7] unit vectors
with the magnitude of √-1. They fulfill the equations

i2 = j2 = k2 = ijk = −1
and

ij = k      jk = i      ki = j
ij = − ji      jk = − kj      ki = − ik

A nice presentation about the rotation capabilities of the HAMILTON’ian unit vectors in a
three-dimensional ARGAND diagram was published by GOUGH[6].

Now MAXWELL has defined the field vectors (for example B = B1i + B2j + B3k) as quater-
nions without scalar part and scalars as quaternions without vector part. In addition he
defined a quaternion operator without scalar part

1 2 3

d d d
dx dx dx

i j k∇ = + +   ,

which he used in his equations. Maxwell devided a single quaternion with two prefixes into a
scalar and vector. This prefixes he defined according to

S.Q = S.(a + ib + jc + kd) = a

V.Q = V.(a + ib + jc + kd) = ib + jc + kd

The original Maxwell quaternion equations are now for isotrope media (no changes except
fonts, normal letter = scalar, capital letter = quaternion without scalar):







Feynman: These Eight Equations Contain All of Classical Physics

(1-4) Maxwell’s Equations

∇ ·E = ρ/ε0

∇ ·B = 0

∇×E = −∂B/∂t

∇×B = µ0J + µ0ε0 ∂E/∂t

(5) The Conservation of Charge

∇ · J = −∂ρ/∂t

(6) The Lorentz Force Law

F = qE + qv ×B

(7) The Law of Motion

dp/dt = F where p = γmv

(8) Newton’s Law of Gravitation

F = −Gm1m2 r̂/r2



Maxwell’s Equations

Two vector fields, E and B

Two Divergence Equations

Gauss’ Law for Electricity

∇ ·E = ρ/ε0

Gauss’ Law for Magnetism

∇ ·B = 0

Two Curl Equations

Faraday’s Law of Induction

∇×E = −∂B/∂t

Ampere’s Law with Maxwell’s Extension

∇×B = µ0J + µ0ε0∂E/∂t

∇×B = µ0J + µ0Jd

Maxwell called Jd the displacement current



For static fields, the four Maxwell Equations are the best formulation

∇ ·E = ρ/ε0

∇ ·B = 0

∇×E = −∂B/∂t

∇×B = µ0J + µ0ε0∂E/∂t

Maxwell’s equations are four coupled first-order differential equations

The sources are ρ, J, and each other

For dynamic fields, the wave equations are the best formulation

Decoupling the four Maxwell Equations produces two second-order differ-
ential equations

∇2E = µ0ε0 ∂
2E/∂2t = (1/c2) ∂2E/∂2t

∇2B = µ0ε0 ∂
2B/∂2t = (1/c2) ∂2B/∂2t

These two wave equations have six degrees-of-freedom, three for E and
three for B. They apply in regions where there are no sources.



The vector potential and the scalar potential obey the same wave equation

∇2A = ∂2A/∂2t
∇2φ = ∂2φ/∂2t

These two wave equations have four degrees-of-freedom, one for φ and
three for A

As we will see later, the vector potential and the scalar potential are the
components of the four-potential Aµ

Aµ = (φ,Ax, Ay, Az)

In the radiation gauge,

∂φ/∂t+∇ ·A = 0

the four-potential Aµ obeys the same wave equation

[ ∇2 − ∂2/∂2t ] φ = 0

[ ∇2 − ∂2/∂2t ] Ax = 0

[ ∇2 − ∂2/∂2t ] Ay = 0

[ ∇2 − ∂2/∂2t ] Az = 0

Using Feynman’s four-vector notation, Maxwell’s equations, in the radia-
tion gauge, are given by

∇µ∇µ Aµ = jµ/ε0

∇µ jµ = 0

Note that ∇µ∇µ becomes [ ∂2/∂2t,−∇2 ] but ∇µ becomes [ ∂/∂t,∇ ]

Using modern notation, Maxwell’s equations, in the radiation gauge, are
given by

∂µ∂
µ Aν = 4π jν

∂νj
ν = 0





The Principle of Relativity

All laws of physics must be invariant under Lorentz transformations.

Invariant means:

(1) The law has the same mathematical form

(2) All numerical constants have the same values

A potpouri of four-vectors and four-operators

spacetime 4-vector s = (t, x, y, z)

energy-momentum 4-vector (E, px, py, pz)

4-potential Aµ = (φ,Ax, Ay, Az)

4-current jµ = (ρ, jx, jy, jz)

Feynman’s ∇ in 4-dimensions ∇µ = (∂/∂t,∇)

Feynman’s D’Alembertian = ∇µ∇µ = (∂2/∂t2,−∇2) 4-Laplacian

In modern notation we use ∂µ and ∂µ∂
µ

All 4-vectors transform in precisely the same way.



The Structure of Spacetime

Virtual Text 2 starts by saying

“Lorentz transformations are just hyperbolic rotations.”

I am going to go one step further by asserting

Special Relativity is hyperbolic geometry.

Newtonian Space And Time

Space and time are different separate entities.

Distances are calculated using the Pythagorean Theorem

s2 = x2 + y2 + z2

Euclidean Spacetime, Cartesian Spacetime, Galilean Spacetime

For 90 proofs of the Pythagorean Theorem see:

http://www.cut-the-knot.org/pythagoras/index.shtml

Spacetime in SR (aka Minkowski Spacetime)

Space and time are one entity.

Distances are calculated differently

s2 = t2 − x2 − y2 − z2

In two dimensions

s2 = t2 − x2

This is how distance is measured in two-dimensional hyperbolic geometry.



Calculating Distances

In Euclidean Spacetime, distances are calculated using the inner product

r =

[
x
y

]
r · r =| r |2= x2 + y2

In Minkowski Spacetime, distances are calculated using a different inner
product

s =

[
t
x

]
s · s =| s |2= t2 − x2

Formally, we can define the inner product using a matrix

For Euclidean Spacetime

M =

[
1 0
0 1

]
For Minkowski Spacetime

M =

[
1 0
0 −1

]
Distance is given by the inner product s · s = sT M s

The matrix M that defines distance is called the metric.

On the west coast

M =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 and s2 = t2 − x2 − y2 − z2

On the east coast

M =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and s2 = −t2 + x2 + y2 + z2

The important thing about distances—also called intervals—is that they
have the same value independent of the coordinate system used to measure
them.



The Lorentz Transformations

Coordinate system changes in Minkowski Spacetime are given by the
Lorentz transformations

The Lorentz transformations are the only linear coordinate transforma-
tions that produce invariant distances. The transformations must be lin-
ear so that the worldlines of free particles are straight lines in all coordi-
nate systems.

t′ = At+Bx

x′ = Ct+Dx

The Lorentz transformations are given by

t′ =
t− vx/c√
1− (v2/c2)

x′ =
x− vt√

1− (v2/c2)

Written more compactly

t′ = γt− βγx

x′ = γx− βγt

Where

β = v/c

γ =
1√

1− (v2/c2)

As the author of Virtual Text 2 asserted, we will see later that the Lorentz
transformations are hyperbolic rotations.

http://www.univie.ac.at/future.media/moe/galerie/struct/struct.html

http://webphysics.davidson.edu/applets/Minkowski/Minkowski FEL.html





 Hyperbolic Geometry

Three forms of geometry
Euclid’s Fifth Postulate

1 parallel line => Flat (zero curvature)
Euclidean Geometry

no parallel lines => positive curvature
Spherical Geometry

infinite number => negative curvature
Hyperbolic Geometry



The three geometries

Elliptical Parabolic Hyperbolic

Spherical Planar Saddle

Riemannian Euclidean Lobachevskian

curvature positive 0 negative

triangles >180o =180o <180o

parallel lines zero 1 infinite

projections Mercator Poincare disk

Gall-Peters Poincare half plane

Dymaxion Klein disk

Cuboctahedron Minkowski



For this spherical triangle the sum of 

the internal angles = 270 degrees
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