
Matter tells space how to curve
Space tells matter how to move 

  The boundary of a boundary is zero 

John Wheeler

“a gravitationally completely collapsed object”

A black hole has no hair, Mass without Mass, 
Law without Law, Magic without Magic

No phenomenon is a physical phenomenon until 
it is an observed phenomenon.



Time is defined so that motion looks simple.

We live on an island surrounded by a sea of ignorance. As our 

island of knowledge grows, so does the shore of our ignorance. 

If you haven't found something strange during the day, it hasn't 

been much of a day.

“Time is what prevents everything from happening at once”

Behind it all is surely an idea so simple, so beautiful, that when 

we grasp it - in a decade, a century, or a millennium - we will all 

say to each other, how could it have been otherwise? How could 

we have been so stupid?

In any field, find the strangest thing and then explore it.



What’s new?



In contrast to other “popular” books on gravitation which attempt no more than a broad panoramic survey, 
Wheeler’s A Journey into Gravity and Spacetime seeks depth. Wheeler’s goal is a thorough 
explanation of how gravitation works, how “mass grips spacetime, telling it how to curve” and how 
“spacetime grips mass, telling it how to move.” To provide such an explaation without the help of tensors 
or differential forms is a daunting task, but Wheeler approaches this challenge with his characteristic zeal 
and joyful enthusiasm. From his lectures at Princeton 25 years ago, I still remember the intensity and 
passion that permeated his explanations, and I was gald to see that these explanations permeate this 
book. For Wheeler, an explanation is a battle of ideas, to be won by a skillful, spirited attack on several 
fronts, aided by a battery of clever, multicolored diagrams. He has the unique ability to breathe life and 
excitement into even the dullest of topics---who else could lend excitement to the Bianchi identity, which 
appears in the guise of “the boundary of a boundary is zero”?  ......  At the heart of the book he presents 
us with a remarkable statement linking the curvature of spacetime to the distribution of matter: For any 
(small) cube, the sum of the moments of rotation of the geodesics forming the edges equals 8π times the 
amount of “momenergy” enclosed in the cube. This marvelously simple and concise formulation of 
Einstein’s equation is analogous to Gauss’ law for electricity. It is an adaptation of the mathematical 
treatment of differential forms, given in chapter 15 of Misner, Thorne, and Wheeler’s Gravitation 
textbook. I had read that chapter years ago, but it made little impression on me, because there the physics 
is camoflaged by a thick layer of Cartan calculus. In A Journey into Gravity and Spacetime the 
physics is laid bare, and the surprising simplicity of Einstein’s gravitational equation stands revealed.

--Hans C. Ohanian

Most difficult for a layman to understand is how spacetime acts on masive objects, but the author explains 
it brilliantly in the next chapter, taught via the concept of "momenergy". This entity is a 4-vector, and the 
author uses it to show how its creation in a spacetime region can be written as the sum of 8 terms, 
reflecting the fact that the "boundary" of a four-dimensional block in spacetime consists of eight three-
dimensional cubes. That the contents of these cubes sum to zero is the famous "boundary of a boundary 
is zero", which is discussed in the next chapter. This chapter is one of the best explanations ever given (at 
this level) of the physics behind spacetime curvature and massive objects. The actual mathematical 
quantification of curvature is detailed in chapters 8 and 9, using elementary mathematics. The author 
discusses nicely the famous Scharwzschild geometry.

--Lee D. Carlson

















Stress TensorStress Tensor



Normal StressNormal Stress

 A stress measures theA stress measures the
surface force per unit area.surface force per unit area.
•• Elastic for small changesElastic for small changes

 A normal stress acts normalA normal stress acts normal
to a surface.to a surface.
•• Compression or tensionCompression or tension
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Shear StressShear Stress

 A shear stress acts parallelA shear stress acts parallel
to a surface.to a surface.
•• Also elastic for smallAlso elastic for small

changeschanges

 Ideal fluids at rest have noIdeal fluids at rest have no
shear stress.shear stress.
•• SolidsSolids
•• Viscous fluidsViscous fluids
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Volume StressVolume Stress

 Fluids exert a force in allFluids exert a force in all
directions.directions.
•• Same force in all directionsSame force in all directions

 The force compared to theThe force compared to the
area is the pressure.area is the pressure.
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Symmetric FormSymmetric Form

 The stress tensor includesThe stress tensor includes
normal and shear stresses.normal and shear stresses.
•• Diagonal normalDiagonal normal
•• Off-diagonal shearOff-diagonal shear

 An ideal fluid has only pressure.An ideal fluid has only pressure.
•• Normal stressNormal stress
•• IsotropicIsotropic

 A viscous fluid includes shear.A viscous fluid includes shear.
•• SymmetricSymmetric
•• 6 component tensor6 component tensor
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Force DensityForce Density

 The total force is found byThe total force is found by
integrationintegration..
•• Closed volume with GaussClosed volume with Gauss’’

lawlaw
•• Outward unit vectorsOutward unit vectors

 A force density due to stressA force density due to stress
can be defined from thecan be defined from the
tensor.tensor.
•• Due to differences in stressDue to differences in stress

as a function of positionas a function of position
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CHAPTER 15

BIANCHI IDENTITIES AND
THE BOUNDARY OF A BOUNDARY

§15.1. BIANCHI IDENTITIES IN BRIEF

This chapter is entirely Track 2.
As preparation, one needs to

have covered (1) Chapter 4
(differential forms) and (2)
Chapter 14 (computation of
curvature) .

In reading it, one will be
helped by Chapters 9-11
and 13.

It is not needed as
preparation for any later
chapter, but it will be helpful
in Chapter 17 (Einstein field
equations).

Identities and conservation of
the source: electromagnetism
and gravitation compared:

Geometry gives instructions to matter, but how does matter manage to give instruc­
tions to geometry? Geometry conveys its instructions to matter by a simple handle:
"pursue a world line of extremal lapse of proper time (geodesic)." What is the handle
by which matter can act back on geometry? How can one identify the right handle
when the metric geometry ofRiemann and Einstein has scores of interesting features?
Physics tells one what to look for: a machinery of coupling between gravitation
(spacetime curvature) and source (matter; stress-energy tensor T) that will guarantee
the automatic conservation of the source (V . T = 0). Physics thereforea~mathe­
matics: "What tensor-like feature of the geometry is automatically conserv~ -­
Mathematics comes back with the answer: "The Einstein tensor." Physics queries,
"How does this conservation come about?" Mathematics, in the person of Elie
Cartan, replies, "Through the principle that 'the boundary of a boundary is zero'"
(Box 15.1).

Actually, two features of the curvature are automatically conserved; or, otherwise
stated, the curvature satisfies two Bianchi identities, the subject of this chapter. Both
features of the curvature, both "geometric objects," lend themselves to representation
in diagrams, moreover, diagrams that show in action the principle that "the boundary
of a boundary is zero." In this respect, the geometry of spacetime shows a striking
analogy to the field of Maxwell electrodynamics.

In electrodynamics there are four potentials that are united in the I-form A =
A,.. dx"'. Out of this quantity by differentiation follows the Faraday, F = dA. This



field satisfies the identity dF = °(identity, yes; identity lending itself to the definition dF = 0
of a conserved source, no).

In gravitation there are ten potentials (metric coefficients g /.I') that are united in
the metric tensor 9 = g/.l' dx/.l ® dx·. Out of this quantity by two differentiations
follows the curvature operator

§ 15.1. BIANCHI IDENTITIES IN BRIEF

qz = 1.e /\ e R/.I· dxa /\ dx fJ
4 /.I • afJ •
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(continued on page 370)

This curvature operator satisfies the Bianchi identity cMl = 0, where now "d" is a
generalization of Cartan's exterior derivative, described more fully in Chapter 14
(again an identity, but again one that does not lend itself to the definition of a
conserved source).

In electromagnetism, one has to go to the dual, *F, to have any feature of the
field that offers a handle to the source, d*F = 4'1T *J. The conservation of the
source, d*J = 0, appears as a consequence of the identity dd*F = 0; or, by a
rewording of the reasoning (Box 15.1), as a consequence of the vanishing of the
boundary of a boundary.

Box 15.1 THE BOUNDARY OF A BOUNDARY IS ZERO

A. The Idea in Its 1-2-3-Dimensional Form

dd*F =0 plus Maxwell
equations~ d*J = 0

Begin with an oriented cube or approximation to
a cube (3-dimensional).

Its boundary is composed of six oriented faces,
each two-dimensional. Orientation of each face is
indicated by an arrow.

Boundary of anyone oriented face consists of
four oriented edges or arrows, each one-dimen­
sional.

Every edge unites one face with another. No
edge stands by itself in isolation.

"Sum" over all these edges, with due regard to
sign. Find that any given edge is counted twice,
once going one way, once going the other.

Conclude that the one-dimensional boundary of
the two-dimensional boundary of the three-di­
mensional cube is identically zero.

~·r
.r .
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B. The Idea in Its 2-3-4-Dimensional Form

---- - --.----

~z
x

++++

its three-dimensional faces, which are "exploded
off of it" into the surrounding area of the diagram,
where they can be inspected in detail.

The boundary of the 4-cube is composed ofeight
oriented hyperfaces, each of them three-dimen­
sional (top hyperface with extension L1x L1y Liz,
for example; a "front" hyperface with extension
Lit L1y Liz; etc.)

~Y
x

r--~-+++

1:= -1/2411

+---

Begin with an oriented four-dimensional cube or
approximation thereto. The coordinates of the
typical corner of the four-cube may be taken to
be (to -I- ! Lit, X o -I- ! L1x, Yo -I- ! L1y, =0 -I- ! Liz);
and, accordingly, a sample corner itself, in an
obvious abbreviation, is conveniently abbreviated
+ - - +. There are 16 of these corners. Less com­
plicated in appearance than the 4-cube itself are

Box 15.1 (continued)
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Boundary of anyone hyperface ("cube") consists of six oriented faces, each
two-dimensional.

Every face (for example, the hatched face .:1x L1y in the lower lefthand corner)
unites one hypersurface with another (the "3-cube side face" L1t.:1x L1y in the lower
lefthand corner with the "3-cube top face" .:1x L1y LIz, in this example). No face stands
by itself in isolation. The three-dimensional boundary of the 4-cube exposes no
2-surface to the outside world. It is faceless.

"Sum" over all these faces, with due regard to orientation. Find any given face
is counted twice, once with one orientation, once with the opposite orientation.

Conclude that the two-dimensional boundary of the three-dimensional boundary
of the four-dimensional cube is identically zero.

C. The Idea in Its General Abstract Form

00 = 0 (the boundary of a boundary is zero).

D. Idea Behind Application to Gravitation and Electromagnetism

. The one central point is a law of conservation (conservation of charge; conservation
of momentum-energy).

The other central point is "automatic fulfillment" of this conservation law.
"Automatic conservation" requires that source not be an agent free to vary

arbitrarily from place to place and instant to instant.
Source needs a tie to something that, while having degrees of freedom of its own,

will cut down the otherwise arbitrary degrees of freedom of the source sufficiently
to guarantee that the source automatically fulfills the conservation law. Give the
name "field" to this something.

Define this field and "wire it up" to the source in such a way that the conservation
of the source shall be an automatic consequence ofthe "zero boundary ofa boundary. "
Or, more explicitly: Conservation demands no creation or destruction ofsource inside
the four-dimensional cube shown in the diagram. Equivalently, integral of "creation
events" (integral of d*J for electric charge; integral of d*T for energy-momentum)
over this four-dimensional region is required to be zero.

Integral of creation over this four-dimensional region translates into integral of
source density-current (*J or *T) over three-dimensional boundary of this region.
This boundary consists ofeight hyperfaces, each taken with due regard to orientation.
Integral over upper hyperface ("L1x L1y Liz)" gives amount of source present at later
moment; over lower hyperface gives amount of souee present at earlier moment;
over such hyperfaces as "Lit L1x L1y" gives outflow of source over intervening period
of time. Conservation demands that sum of these eight three-dimensional integrals
shall be zero (details in Chapter 5).
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Box 15.1 (continued)

15. BIANCHI IDENTITIES AND THE BOUNDARY OF A BOUNDARY

VaUishing of this sum of three-dimensional integrals states the conservation
requirement, but does not provide the machinery for "automatically" (or, in mathe­
matical terms, "identically") meeting this requirement. For that, turn to principle
that "boundary of a boundary is zero."

Demand that integral of source density-current over any oriented hyperface '1/
(three-dimensional region; "cube") shall equal integral of field over faces of this
"cube" (each face being taken with the appropriate orientation and the cube being
infinitesimal):

4'1Tf *J =f *F;
'TO ilT

8 f f (moment Of)
'1T 'TO *T = il'T' rotation .

Sum over the six faces of this cube and continue summing until the faces of all
eight cubes are covered. Find that any given face (as, for example, the hatched face
in the diagram) is counted twice, once with one orientation, once with the other
("boundary of a boundary is zero"). Thus is guaranteed the conservation of source:
integral of source density-current over three-dimensional boundary of four-dimen­
sional region is automatically zero, making integral of creation over interior of that
four-dimensional region also identically zero.

Repeat calculation with boundary of that four-dimensional region slightly dis­
placed in one locality [the "bubble differentiation" ofTomonaga (1946) and Schwin­
ger (1948)], and conclude that conservation is guaranteed, notonly in the four-di­
mensional region as a whole,· but at every point within it, and, by extension,
everywhere in spacetime.

E. Relation of Source to Field

One view: Source is primary. Field may have other duties, but its prime duty is
to serve as "slave" of source. Conservation of source comes first; field has to adjust
itself accordingly.

Alternative view: Field is primary. Field takes the responsibility of seeing to it
that the source obeys the conservation law. Source would not know what to do in
absence of the field, and would not even exist. Source is "built" from field. Conser­
vation of source is consequence of this construction.

One model illustrating this view in an elementary context: Concept of "classical"
electric charge as nothing but "electric lines of force trapped in the topology of a
multiply connected space" [Weyl (1924b); Wheeler (1955); Misner and Wheeler
(1957)].

On any view: Integral of source density-current over any three-dimensional region
(a "cube" in simplified analysis above) equals integral of field over boundary of
this region (the six faces of the cube above). No one has ever found any other way
to understand the correlation between field law and conservation law.
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F. Electromagnetism as a Model: How to "Wire Up" Source to Field
to Give Automatic Conservation of Source Via "00 = 0" in Its
2-3-4-Dimensional Form

Conservation means zero creation of charge (zero creation in four-dimensional
region g).

Conservation therefore demands zero value for integral of charge density-current
over three-dimensional boundary of this volume; thus,

in the Track-l language of Chapters 3 and 5. Equivalently, in the coordinate-free
abstract language of §§4.3-4.6, one has

o= f d *J =I *J,
il ail

where

*J = *J123 dx 1 1\ dx 2 1\ dx 3 + *J023 dxo 1\ dx 2 1\ dx 3

+ *J031 dxo 1\ dx3 1\ dx 1 + *J0l2 dxo 1\ dx 1 1\ dx 2

("eggcrate-like structure" of the 3-form of charge-density and current-density).
Fulfill this conservation requirement automatically ("identically") through the

principle that "the boundary of a boundary is zero" by writing 4'1T *J = d*F; thus,

4'1T I *J = I d*F = I *F =0
ail ail aaJ](zero!)

or, in Track-l language, write 4'1TJIl = F/lV;v, and have

In other words, half of Maxwell's equations in their familiar flat-space form,

div E = V . E = 4'1Tp, curl B = V X B = E + 4'1TJ,

"wire up" the source to the field in such a way that the law of conservation of source
follows directly from "aag = 0."

G. Electromagnetism Also Employs "00 = 0" in its
1-2-3-Dimensional Form ("No Magnetic Charge")

Magnetic charge is linked with field via 4...J rnag = dF (see point F above for transla­
tion of this compact Track-2 language into equivalent Track-l terms). Absence of
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Box 15.1 (continued)

15. BIANCHI IDENTITIES AND THE BOUNDARY OF A BOUNDARY

any magnetic charge says that integral of J mag over any 3-volume '1' is necessarily
zero; or ("integration by parts," generalized Stokes theorem)

o= rdF = r F = (to~~l magnetic flUX).
J'l' JeW eXItmg through O'Y

In order to satisfy this requirement "automatically," via principle that "the boundary
of a boundary is zero," write F = dA ("expression of field in terms of 4-potential"),
and have

i F = i dA = i A =O.
eW d'i' dd'i' (zero!)

H. Structure of Electrodynamics in Outline Form

A (potential)

+
F (field; Faraday) = dA

t
dF = 0 (identity based

on aa = 0)

- *F (dual field; Maxwell)
~ .

d*F = 41T*J

+
d*J = 0 (expressed as an

identity based
on aa = 0)

d*J=Oor'lf'J=O

("automatic" conservation of source)

In gravitation physics, one has to go to the "double dual" (two pairs of alternating
indices, two places to take the dual) G = *R* of Riemann to have a feature of
the field that offers a handle to the source:

G = TrG = Einstein = 8'1TT = 8'1T X (density of energy-momentum).

The conservation of the source T = e /I.T!J..w' can be stated V· T = O. But better
suited for the present purpose is the form (see Chapter 14 and exercise 14.18)
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I. Structure of Geometrodynamics in Outline Form

371

where

9 (metric)

~
'" = d (parallel transport; covariant derivative;! generalized exterior derivative)

tJl = d 2 (curvature --- 6 = *R* (doublet operator) dual)

dtJl = 0 (full Bianchi
identity;
based on
aa = 0)

d*T = 0,

d*G = 0 (contracted
Bianchi identity
based on aa = 0)

or "'·T = 0

("automatic
conservation of source)

d*G =0 plus Einstein field
equation =- d*T = 0

This conservation law arises as a consequence of the "contracted Bianchi identity",
d*G = 0, again interpretable in terms of the vanishing of the boundary of a
boundary.
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=
Aatend

IlA

x

Figure 15.1.
Combine rotations associated with each of the six faces of the illus­
trated 3-volume and end up with zero net rotation ("full Bianchi
identity"). Reason: Contribution of any face is measured by change
in a test vector A carried in parallel transport around the perimeter
of that face. Combine contributions of all faces and end up with each
edge traversed twice, once in one direction, once in the other direction
[boundary (here one-dimensional) of boundary (two-dimensional) of
indicated three-dimensional figure is zero]. Detail: The vector A,
residing at the indicated site, is transported parallel to itself over to
the indicated face, then carried around the perimeter of that face by
parallel transport, experiencing in the process a rotation measured by
the spacetime curvature associated with that face, then transported
parallel to itself back to the original site. To the lowest relevant order
of small quantities one can write

(change in A) = - 41)' 41z !il(ev' ez ) A

in operator notation; or in coordinate language,

-SA" = R"/lv.<at x + 41x)A/l 41)' 41z.

Bianchi identity, d(>i =0,
interpreted in terms of
parallel transport around the
six faces of a cube.

§15.2. BIANCHI IDENTITY dtJl = 0 AS A MANIFESTATION
OF "BOUNDARY OF BOUNDARY = 0"

Such is the story of the two Bianchi identities in outline form; it is now appropriate
to fill in the details. Figure 15.1 illustrates the full Bianchi identity, d&l = 0 (see
exercise 14.17), saying in brief, "The sum of the curvature-induced rotations associ­
ated with the six faces of any elementary cube is zero." The change in a vector A
associated with transport around the perimeter of the indicated face evaluated to
the lowest relevant order of small quantities is given by

-oA'" = R"'f3l1z (at x + .::lx)Af3 L1yLlz. (15.1)

The opposite face gives a similar contribution, except that now the sign is reversed
and the evaluation takes place at x rather than at x + .::lx. The combination of the
contributions from the two faces gives

(15.2)



when Riemann normal coordinates are in use. In such coordinates, the vanishing
of the total - oA'" contributed by all six faces implies

§ 15.3. MOMENT OF ROTATION: KEY TO BIANCHI IDENTITY

R'"f3l1z ;z + R'" f3zz;1I + R'"f3zlI;z = 0.

373

(15.3)

Here semicolons (covariant derivatives) can be and have been inserted instead of
commas (ordinary derivatives), because the two are identical in the context of
Riemann normal coordinates; and the covariant version (15.3) generalizes itself to
arbitrary curvilinear coordinates. Tum from an xyz cube to a cube defined by any
set of coordinate axes, and write Bianchi's identity in the form

(15.4)

(See exercise 14.17 for one reexpression of this identity in the abstract coordinate­
independent form, d&l = 0, and §15.3 for another.) This identity occupies much the
same place in gravitation physics as that occupied by the identity dF = ddA °
in electromagnetism:

(15.5)

§15.3. MOMENT OF ROTATION: KEY TO CONTRACTED
BIANCHI IDENTITY

The contracted Bianchi identity, the identity that offers a "handle to couple to the
source," was shown by Elie Cartan to deal with "moments of rotation" [Canan
(1928); Wheeler (1964b); Misner and Wheeler (1972)]. Moments are familiar in
elementary mechanics. A rigid body will not remain at rest unless all the forces acting
on it sum to zero:

(15.6)

Although necessary, this condition is not sufficient. The sum of the moments of these
forces about some point qp must also be zero:

(15.7)

Exactly what point these moments are taken about happily does not matter, and
this for a simple reason. The arbitrary point in the vector product (15.7) has for
coefficient the quantity IiF(i), which already has been required to vanish. The
situation is similar in the elementary cube ofFigure 15.1. Here the rotation associated
with a given face is the analog of the force F(i) in mechanics. That the sum of these
rotations vanishes when extended over all six faces of the cube is the analog of the
vanishing of the sum of the forces F(i).

What is the analog for curvature of the moment of the force that one encounters
in mechanics? It is the moment of the rotation associated with a given face of the
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Net moment of rotation over
all six faces of a cube:

(1) described

(2) equated to integral of
source, f *T. over interior of
cube

cube. The value of any individual moment depends on the reference point 'cPo
However, the sum of these moments taken over all six faces of the cube will have
a value independent of the reference point qp, for the same reason as in mechanics.
Therefore <jJ can be taken where one pleases, inside the elementary cube or outside
it. Moreover, the cube may be viewed as a bit of a hypersurface sliced through
spacetime. Therefore <j-' can as well be off the slice as on it. It is only required that
all distances involved be short enough that one obtains the required precision by
calculating the moments and the sum of moments in a local Riemann-normal
coordinate system. One thus arrives at a P-independent totalized moment of rotation
(not necessarily zero; gravitation is not mechanics!) associated with the cube in
question.

Now comes the magic of "the boundary of the boundary is zero." Identify this
net moment of rotation of the cube, evaluated by summing individual moments of
rotation associated with individual faces, with the integral of the source density­
current (energy-momentum tensor *T) over the interior of the 3-cube. Make this
identification not only for the one 3-cube, but for all eight 3-cubes (hyperfaces) that
bound the four-dimensional cube in Box 15.1. Sum the integrated source density­
current *Tnot only for the one hyperface of the 4-cube, but for all eight hyperfaces.
Thus have

f (:::~:n) = f
4-cube d *T 3·boundary

of this 4-cube

(
source current-)
density, *T

=
(

net moment of rotatiOn)
2: associated with speci-

these eight fi d b
bounding e cu e
3-cubes

= 2:
eight

bounding
3·cubes

2:
six faces
bounding

given 3·cube

(

moment of rotation )
associated with specified .
face of specified cube

(15.8)

(3) conserved

(zero!)

Let the moments of rotation, not only for the six faces of one cube, but for all the
faces of all the cubes, be taken with respect to one and the same point P. Recall
(Box 15.1) that any given face joins two cubes or hyperfaces. It therefore appears
twice in the count of faces, once with one orientation ("sense of circumnavigation
in parallel transport to evaluate rotation") and once with the opposite orientation.
Therefore the double sum vanishes identically (boundary of a boundary is zero!)
This identity establishes existence of a new geometric object, a feature of the curva­
ture, that is conserved, and therefore provides a handle to which to couple a source.
The desired result has been achieved. Now to translate it into standard mathematics!



§ 15.4. CALCULATION OF THE MOMENT OF ROTATION

§15.4. CALCULATION OF THE MOMENT OF ROTATION
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(15.9)

It remains to find the tensorial character and value of this conserved Cartan moment
of rotation that appertains to any elementary 3-volume. The rotation associated with (4) evaluated

the front face L1y Llze ll /\ ez of the cube in Figure 15.1 will be represented by the
bivector

(
rotation associated ) = e /\ e RIAI'I LI Liz
with front L1y LIz face A I' liZ ~

"-located -at Pfro~t = (t =- ! Lit, x + L1x, Y + ! L1y, z + ! LIz). This equation uses Rie­
mann normal coordinates; indices enclosed by strokes, as in IA!-tl, are summed with
the restriction A < !-t. The moment of this rotation with respect to the point '!l will
be represented by the trivector

(

moment of rotation)
associated with = (q>center - q» 1\ e A 1\ el'RIAI'!lIz L1y Liz.

f ., of front
ront L1y Liz laCe face

(15.10)

Here neither q>centerfront nor q> has any well-defined meaning whatsoever as a vec­
tor, but their difference is a vector in the limit of infinitesimal separation, L1q> =
q>center front - q>. With the back face a similar moment of rotation is associated,
with the opposite sign, and with q>centerfront replaced by Pcenterback' In the difference
between the two terms, the factor q> is of no interest. because one is already assured
it will cancel out [Bianchi identity (15.4); analog of IF(i) = 0 in mechanics]. The
difference P center front - q>center back has the value L1xez· Summing over all six faces,
one has

(

~:t~~:::~~~~ted ) =
with cube or hyper­
face L1x L1y LIz

e z /\ e A /\ e I'RIAI'IIIZ L1x L1y Liz (front and back)
. + ell /\ e A /\ el'RIAl'lzzLlyLlzLlx (sides)
+ e z /\ e A /\ el'RIAl'lzlI Liz L1x L1y (top and bottom). (I 5.1 1)

This sum one recognizes as the value (on the volume element e z /\ ell /\ e z L1x
L1y Liz) of the 3-form

e /\ e /\ e RIAI'I dx" /\ dxa /\ dx(3
" A I' la(31 .

Moreover this 3-form is defined, and precisely defined, at a point, whereas (I 5.1 1),
applying as it does to an extended region, does not lend itself to an analysis that
is at the same time brief and precise. Therefore forego (I 5.1 1) in favor of the 3-form.
Only remember, when it comes down to interpretation, that this 3-form is to be
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evaluated for the "cube" e z /\ ell /\ e z ..1x L1y Liz. Now note that the "trivector­
valued moment-of-rotation 3-form" can also be written as

(5) abstracted to give
d'3' 1\ ~t (

moment of) _. I I f3=dqiJ /\ <Jl = e /\ e /\ e R AI' dx v /\ dxa /\ dx .
rotation v A I' laf31

Here

(15.12)

(15.13)

is Cartan's (D unit tensor. Also tJl is the curvature operator. treated as a bivector­
valued 2-form:

(15.14)

Using the language of components as in (15.11), or the abstract language intro­
duced in (15.12), one finds oneself dealing with a trivector. A trivector can be left
a trivector, as, in quite another context, an element of 3-volume on a hypersurface
in 4-space can be left as a trivector. However, there it is more convenient to take
the dual representation, and speak of the element of volume as a vector. Denote
by * a duality operation that acts only on contravariant vectors, trivectors, etc. (but
not on forms). Then in a Lorentz frame one has *(e1 /\ e 2 /\ e 3) = eo; but
*(dx3) = dx3. More generally,

(15.15)

(6) abstracted to give
*(dtJ> 1\ ~) = fI"G"Td32 T

In this notation, the "vector-valued moment-of-rotation 3-form" is

(
moment ). = *(d?l /\ tJl) = e e "RIAI'I dx v /\ dx a /\ dx f3
of rotatIOn " VAP. laf31

= e ,,(*R)v" laf31 dx V
/\ dx a

/\ dx f3 ,

or, in one more step,

( momen~ ) = *(d?l /\ tJl) = e (*R*) "VT d 3I .
of rotatIon " v T

Here d 3I T is a notation for basis 3-forms, as in Box 5.4; thus,

(15.16)

(15.17)

(In a local Lorentz frame, dx1 /\ dx2 /\ dx3 = d3I o.)
Nothing is more central to the analysis of curvature than the formula (15.16).

It starts with an element of 3-volume and ends up giving the moment of rotation
in that 3-volume. The tensor that connects the starting volume with the final moment,
the "contracted double-dual" of Riemann, is so important that it deserves and
receives a name of its own, G Einstein; thus

(15.18)

This tensor received attention in §§13.5 and 14.2, and also in the examples at the



end of Chapter 14. In terms of Einstein, the connection between element of 3-vol­
ume and "vector-valued moment of rotation" is

§ 15.5 CONSERVATION OF MOMENT OF ROTATION FROM "00 = 0" 377

(momen~ ) = *(d?f/\ qil) = e GUT d3:E .
of rotatIon U T

(15.19)

The amount of "vector-valued moment of rotation" contained in the element of
3-volume d3:E IJ. is identified by general relativity with the amount of energy-mo­
mentum contained in that 3-volume. However, defer this identification for now.
Concentrate instead on the conservation properties of this moment of rotation. See
them once in the formulation of integral calculus, as a consequence of the principle
"00 0." See them then a second time, in differential formulation, as a consequence
of "dd 0."

§15.5. CONSERVATION OF MOMENT OF ROTATION SEEN
FROM "BOUNDARY OF A BOUNDARY IS ZERO"

The moment of rotation defines an automatically conserved quantity. In other words,
the value of the moment of rotation for an elementary 3-volume .J.x .Jy.Jz after the
lapse of a time .Jt is equal to the value of the moment of rotation for the same
3-volume at the beginning of that time, corrected by the inflow ofmoment of rotation
over the six faces of the 3-volume in that time interval (quantities proportional to
.Jy.Jz .Jt, etc.) Now verify this conservation of moment of rotation in the language
of"the boundary of a boundary." Follow the pattern of equation (15.8), but translate
the words into formulas, item by item. Evaluate the amount of moment of rotation
created in the elementary 4-cube [}, and find

Conservation of net moment
of rotation:

(1) derived from "00 = 0"

(

"creation of moment of )
"creation" f rotation" in the elementary =f d*G;t 4-cube of spacetime [} t [J

definition definition

step 4

moment of rotation

associated with
specified 3-cube

f (cit 1\ tJl)
3-cube*2:

the eight
3-cubes

that bound [J

f d*G =f *G =f *(tJ6.J 1\ ~il) =

o i"O i
M

1
step 1 step 2 step 3

= 2:

1
eight bonnding

3-cubes

step 4

2: *
six fa("e~ hounding'

specified 3·cube

moment of rotation

f (~1J 1\ (off)
face

associated with
specified face of
specified cube

o.

1
step 5

(15.20)
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Here step 1 is the theorem of Stokes. Step 2 is the identification established by (15.19)
between the Einstein tensor and the moment of rotation. Step 3 breaks down the
integral over the entire boundary ail into integrals over the individual 3-cubes that
constitute this boundary. Moreover, in all these integrals, the star * is treated as
a constant and taken outside the sign of integration. The reason for such treatment
is simple: the duality operation * involves only the metric, and the metric is locally
constant throughout the infinitesimal 4-cube over the boundary of which the inte­
gration extends. Step 4 uses the formula

d(':i' 1\ !'Jl) = di' 1\ qz + ~J 1\ dtJl = diP 1\ (oil (15.21 )

(2) derived from ..dd = 0··

and the theorem of Stokes to express each 3-cube integral as an integral of q> 1\ tJl
over the two-dimensional boundary of that cube. The culminating step is 5. It has
nothing to do with the integrand. It depends solely on the principle aa o.

In brief, the conservation of moment of rotation follows from two circumstances.
(1) The moment of rotation associated with any elementary 3-cube is by definition
a net value, obtained by adding the six moments of rotation associated with the
six faces of that cube. (2) When one sums these net values for all eight 3-cubes
in (15.20), which are the boundary of the elementary 4-cube il, one counts the
contribution of a given 2-face twice, once with one sign and once with the opposite
sign. In virtue of the principle that "the boundary of a boundary is zero," the
conservation of moment of rotation is thus an identity.

§15.6. CONSERVATION OF MOMENT OF ROTATION
EXPRESSED IN DIFFERENTIAL FORM

Every conservation law stated in integral form lends itself to restatement in differ­
ential form, and conservation of moment of rotation is no exception. The calculation
is brief. Evaluate the generalized exterior derivative of the moment of rotation in
three steps, and find that it vanishes; thus:

d*G = d[*(dq> 1\ tJl)]
= *[d(d?P 1\ tJl)] jstep 1
=*[d2q> 1\ tJl _ d?P 1\ dtJl] step 2
=0 step 3

Step 1 uses the relation d* = *d. The star duality and the generalized exterior
derivative commute because when d is applied to a contravariant vector, it acts as
a covariant derivative, and when * is applied to a covariant vector or I-form, it
is without effect. Step 2 applies the standard rule for the action of d on a product
of tensor-valued forms [see equation (14.l3b)]. Step 3 deals with two terms. The
first term vanishes because the first factor in it vanishes; thus, d 2q> = 0 [Cartan's
equation of structure; expresses the "vanishing torsion" of the covariant derivative;
see equation (1426)]. The second term also vanishes, in this case, because the second
factor in it vanishes; thus, dtJl = 0 (the full Bianchi identity). Thus briefly is conser­
vation of moment of rotation established.



Box 15.2 THE SOURCE OF GRAVITATION AND THE MOMENT OF ROTATION:
THE TWO KEY QUANTITIES AND THE MOST USEFUL MATHEMATICAL
REPRESENTATIONS FOR THEM

Representation as a vector-valued
3-form, a coordinate-independent
geometric object

Representation as a (~)-tensor

(also a coordinate independent
geometric object)

Representation in language of
components (values depend on
choice of coordinate system)

Conservation law in language of
components

Conservation in abstract lan­
guage. for the (~)-tensor

Conservation in abstract lan­
guage. as translated into exterior
derivative of the dual tensor (vec­
tor-valued 3-form)

Same conservation law expressed
in integral form for an element
of 4-volume fJ

Energy-momentum as source of
gravitation (curvature of space­
time)

Machine to tell how much energy­
momentum is contained in an
elementary 3-volume:

"T = e.T"TtFIT
("dual of stress-energy tensor")

Stress-energy tensor itself:

T = e.TaTeT

TaT;T = 0

"7'T=O

d'T= 0

f "T= 0
an

Moment of rotation as automati­
cally conserved feature of the
geometry

Machine to tell how much net
moment of rotation-expressed
as a vector-is obtained by add·
ing the six moments of rotation
associated with the six faces of
the elementary 3-cube:

*(d9/\ t;il) ="G = e.GaTrPIT
('"dual of Einstein")

Einstein itself:

GaT;T =0

"7'G:=O

d"G=O or
d*(cf}! /\ (~) = 0

J "G =0 or
iln

*f (d:1' /\ 'il) = 0 or
iln

*f (:1' /\ ~~)=O
ailn

§15.7. FROM CONSERVATION OF MOMENT OF ROTATION TO
EINSTEIN'S GEOMETRODYNAMICS: A PREVIEW

Mass, or mass-energy, is the source of gravitation. Mass-energy is one component
of the energy-momentum 4-vector. Energy and momentum are conserved. The
amount of energy-momentum in the element of 3-volume d 3E is

(15.22)

(see Box 15.2). Conservation of energy-momentum for an elementary 4-cube [}
expresses itself in the form

Einstein field equation
"derived" from demand that
(conservation of net moment
of rotation) => (conservation
of source)

f *T = O.
ail

(15.23)
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(15.24)

This conservation is not an accident. According to Einstein and Cartan, it is "auto­
matic"; and automatic, moreover, as a consequence of exact equality between
energy-momentum and an automatically conserved feature of the geometry. What
is this feature? It is the moment of rotation, which satisfies the law of automatic
conservation,

i *G = o.
au

In other words, the conservation of momentum-energy is to be made geometric in
character and automatic in action by the following prescription: Identify the stress­

energy tensor (up to a factor 8'lT, or 8'lTG/c4, or other factor that depends on choice
of units) with the moment of rotation; thus,

*(dq> 1\ 91) = *G = 8'lT *T;

or equivalently (still in the language of vector-valued 3-forms)

(
moment Of). = *(dP 1\ fJl) = e GUT d 3:E = 8'lTe TUT d 3:E ;rotatIOn U T U T

or, in the language of tensors,

or, in the language of components,

(15.25)

(15.26)

(15.27)

(15.28)

EXERCISES

(Einstein's field equation; more detail, and more on the question of uniqueness, will
be found in Chapter 17; see also Box 15.3). Thus simply is all of general relativity
tied to the principle that the boundary of a boundary is zero. No one has ever
discovered a more compelling foundation for the principle of conservation of mo­
mentum and energy. No one has ever seen more deeply into that action of matter
on space, and space on matter, which one calls gravitation.

In summary, the Einstein theory realizes the conservation of energy-momentum as

the identity, "the boundary of a boundary is zero. "

Exercise 15.1. THE BOUNDARY OF THE BOUNDARY OF A 4-SIMPLEX

In the analysis of the development in time of a geometry lacking all symmetry, when one
is compelled to resort to a computer, one can, as one option, break up the 4-geometry into
simplexes [four-dimensional analog of two-dimensional triangle, three-dimensional tetrahe­
dron; vertices of "central simplex" conveniently considered to be at (t, x,y, z) =(0, 1, 1, 1),
(0,1, -1, -1), (0, -1, 1, -1), (0, -1, -1, 1), (5112,0,0,0), for example], sufficiently nu­
merous, and each sufficiently small, that the geometry inside each can be idealized as fiat
(Lorentzian), with all the curvature concentrated at the join between simplices (see discussion
of dynamics of geometry via Regge calculus in Chapter 42). Determine ("give a mathematical
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Box 15.3 OTHER IDENTITIES SATISFIED BY THE CURVATURE

1
r = 8'lT2[det gl'vl 1/ 2 (qil12 1\ qil30 + qil13 1\ qil02

+ qillO 1\ qil23)·

(2)

(1) The source of gravitation is energy-momentum.
(2) Energy-momentum is expressed by stress­
energy tensor (or by its dual) as a vector-valued
3-form ("energy-momentum per unit 3-volume").
(3) This source is conserved (no creation in an
elementary spacetime 4-cube).

These principles form the background for the
probe in this chapter of the Bianchi identities. That
is why two otherwise most interesting identities
[Allendoerfer and Weil (1943); Chern (1955,1962)]
are dropped from attention. One deals with the
4-form

II - 1 "y (JaN) 1\ N)

- 24'lT2 g g :n"(J :nya ,

and the other with the 4-form

(1)

spacetime geometry interior to that surface (pro­
vided that these changes neither abandon the con­
tinuity nor change the connectivity of the 4-geom­
etry in that region). Property (1) kills any
possibility of identifying the integral, a scalar, with
energy-momentum, a 4-vector. Property (2) kills
it for the purpose of a conservation law, because
it implies a non-zero creation in Q.

Also omitted here is the Bel-Robinson tensor
(see exercise 15.2), built bilinearly out of the cur­
vature tensor, and other tensors for which see, e.g.,
Synge (1962).

One or all of these quantities may be found
someday to have important physical content.

The integral of the 4-form r of equation (2)
over the entire manifold gives a number, an inte­
ger, the so-called Euler-Poincare characteristic of
the manifold, whenever the integral and the inte­
ger are well-defined. This result is the four-dimen­
sional generalization of the Gauss-Bonnet integral,
widely known in the context of two-dimensional
geometry:

Both quantities are built from the tensorial "cur­
vature 2-forms"

(

Riemannian scalar curvature)f invariant (value 2/a2 gl/2 d 2x.
for a sphere of radius a)

The four-dimensional integral of either quantity
over a four-dimensional region Q has a value that
(1) is a scalar, (2) is not identically equal to zero,
(3) depends on the boundary of the region of
spacetime over which the integral is extended, but
(4) is independent of any changes made in the

This integral has the value 8'lT for any closed,
oriented, two-dimensional manifold with the to­
pology of a 2-sphere, no matter how badly dis­
torted; and the value 0 for any 2-torus, again no
matter how rippled and twisted; and other equally
specific values for other topologies.

description of") the boundary (three-dimensional) of such a simplex. Take one piece of this
boundary and determine its boundary (two-dimensional). For one piece of this two-dimen­
sional boundary. verify that there is at exactly one other place, and no more, in the book­
keeping on the boundary of a boundary. another two-dimensional piece that cancels it
("facelessness" of the 3-boundary of the simplex).
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Exercise 15.2. THE BEL-ROBINSON TENSOR [Bel (1958, 1959, 1962),
Robinson (1959b), Sejnowski (1973); see also Pirani (1957)
and Lichnerowicz (1962)].

Define the Bel-Robinson tensor by

(15.29)

Show that in empty spacetime this tensor can be rewritten as

Show also that in empty spacetime

Ta{3ya:a = 0,

T a{3ya is symmetric and traceless on all pairs of indices.

(l5.30a)

(l5.30b)

(15.30c)

Discussion: It turns out that Einstein's "canonical energy-momentum pseudotensor" (§20.3)
for the gravitational field in empty spacetime has a second derivative which, in a Riemann­
normal coordinate system, is

(l5.3la)

Here T a{3ya is the completely symmetric Bel-Robinson tensor, and Sa{3ya is defined by

(l5.3Ib)

SI1{3ya appears in the empty-space covariant wave equation

where L1 is a variant of the Lichnerowicz-de Rham wave operator [Lichnerowicz (1964)],
when one rewrites this wave equation as

(15.3Id)



PART IV

EINSTEIN'S GEOMETRIC
THEORY OF GRAVITY

Wherein the reader is seduced into marriage with the most elegant
temptress of all-Geometrodynamics-and learns from her

the magic potions and incantations that control the universe.



CHAPTER 42
REGGE CALCULUS

§42.1. WHY THE REGGE CALCULUS?

This chapter is entirely Track 2.
As preparation for it, Chapter
21 (variational principle and
initial-value formalism) is
needed. It is not needed as
preparation for any later
chapter, though it will be
helpful in Chapter 43
(dynamics of geometry).

The need for Regge calculus
as a computational tool

Approximation of smooth
geometries by skeleton
structures

Gravitation theory is entering an era when situations of greater and greater com­
plexity must be analyzed. Before about 1965 the problems of central interest could
mostly be handled by idealizations of special symmetry or special simplicity or both.
The Schwarzschild geometry and its generalizations, the Friedmann cosmology and
its generalizations, the joining together of the Schwarzschild geometry and the
Friedmann geometry to describe the collapse of a bounded collection of matter, the
vibrations of relativistic stars, weak gravitational waves propagating in an otherwise
flat space: all these problems and others were solved by elementary means.

But today one is pressed to understand situations devoid of symmetry and not
amenable to perturbation theory: How do two black holes alter in shape, and how
much gravitational radiation do they emit when they collide and coalesce? What
are the structures and properties of the singularities at the endpoint of gravitational
collapse, predicted by the theorems of Penrose, Hawking, and Geroch? Can a
Universe that begins completely chaotic smooth itself out quickly by processes such
as inhomogeneous mixmaster oscillations?

To solve such problems, one needs new kinds of mathematical tools-and in
response to this need, new tools are being developed. The "global methods" of
Chapter 34 provide one set of tools. The Regge Calculus provides another' [Regge
(1961); see also pp. 467-500 of Wheeler (1964a)].

§42.2. REGGE CALCULUS IN BRIEF

Consider the geodesic dome that covers a great auditorium, made of a multitude
of flat triangles joined edge to edge and vertex to vertex. Similarly envisage space­
time, in the Regge calculus, as made of flat-space "simplexes" (four-dimensional



item in this progression: two dimensions, triangle; three dimensions, tetrahedron;
four dimensions, simplex) joined face to face, edge to edge, and vertex to vertex.
To specify the lengths of the edges is to give the engineer all he needs in order to
know the shape of the roof, and the scientist all he needs in order to know the
geometry of the spacetime under consideration. A smooth auditorium roof can be
approximated arbitrarily closely by a geodesic dome constructed ofsufficiently small
triangles. A smooth spacetime manifold can be approximated arbitrarily closely by
a locked-together assembly of sufficiently small simplexes. Thus the Regge calculus,
reaching beyond ordinary algebraic expressions for the metric, provides a way to
analyze physical situations deprived, as so many situations are, of spherical symme­
try, and systems even altogether lacking in symmetry.

If the designer can give the roof any shape he pleases, he has more freedom than
the an~yst who is charting out the geometry of spacetime. Given the geometry of
spacetime up to some spacelike slice that, for want of a better name, one may call
"now," one has no freedom at all in the geometry from that instant on. Einstein's
geometrodynamic law is fully deterministic. Translated into the language of the
Regge calculus, it provides a means to calculate the edge lengths of new simplexes
from the dimensions of the simplexes that have gone before. Though the geometry
is deterministically specified, how it will be approximated is not. The original
spacelike hypersurface ("now") is approximated as a collection of tetrahedrons joined
together face to face; but how many tetrahedrons there will be and where their
vertices will be placed is the option of the analyst. He can endow the skeleton more
densely with bones in a region of high curvature than in a region of low curvature
to get the most "accuracy profit" from a specified number of points. Some of this
freedom of choice for the lengths of the bones remains as one applies the geometro­
dynamic law in the form given by Regge (1961) to calculate the future from the
past. This freedom would be disastrous to any computer program that one tried
to write, unless the programmer removed all indefiniteness by adding supplementary
conditions of his own choice, either tailored to give good "accuracy profit," or
otherwise fixed.

Having determined the lengths of all the bones in the portion of skeletonized
spacetime of interest, one can examine any chosen local cluster of bones in and
by themselves. In this way one can find out all there is to be learned about the
geometry in that region. Of course, the accuracy of one's findings will depend on
the fineness with which the skeletonization has been carried out. But in principle
that is no limit to the fineness, or therefore to the accuracy, so long as one is working
in the context of classical physics. Thus one ends up with a catalog of all the bones,
showing the lengths of each. Then one can examine the geometry of whatever
spacelike surface one pleases, and look into many other questions besides. For this
purpose one has only to pick out the relevant bones and see how they fit together.

§42.3. SIMPLEXES AND DEFICIT ANGLES 1167

Role of Einstein field
equation in fixing the
skeleton Structure

§42.3. SIMPLEXES AND DEFICIT ANGLES

Figure 42.1 recalls how a smoothly curved surface can be approximated by flat
triangles. All the curvature is concentrated at the vertices. No curvature resides at
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Deficit angle as a
skeletonized measure of
curvature:

(1) in two dimensions

Figure 42.1.
A 2-geometry with continuously varying curvature can be approximated arbitrarily closely by a polyhedron
built of triangles, provided only that the number of triangles is made sufficiently great and the size of
each sufficiently small. The geometry in each triangle is Euclidean. The curvature of the surface shows
up in the amount of deficit angle at each vertex (portion ABeD of polyhedron laid out above on a
flat surface).

the edge between one triangle and the next, despite one's first impression. A vector
carried by parallel transport from A through Band C to D, and then carried back
by another route through C and B to A returns to its starting point unchanged in
direction, as one sees most easily by laying out this complex of triangles on a fiat
surface. Only if the route is allowed to encircle the vertex common to A, B, C, and
D does the vector experience a net rotation. The magnitude of the rotation is equal
to the indicated deficit angle, 8, at the vertex. The sum of the deficit angles over
all the vertices has the same value, 4'17, as does the half-integral of the continuously
distributed scalar curvature (2)R = 2/a2 for a sphere of radius a) taken over the
entirety of the original smooth figure,

2: 8i =1 J (2)R d(surface) = 4'17.
skeleton 2 actual smooth
geometry geometry

(42.1 )

(2) in n (or four) dimensions Generalizing from the example of a 2-geometry, Regge calculus approximates a
smoothly curved n-dimensional Riemannian manifold as a collection of n-dimen­
sional blocks, each free ofany curvature at all,joined by (n - 2)-dimensional regions
in which all the curvature is concentrated (Box 42.1). For the four-dimensional
spacetime of general relativity, the "hinge" at which the curvature is concentrated
has the shape of a triangle, as indicated schematically in the bottom row of Figure
42.2. In the example illustrated there, ten tetrahedrons have that triangle in common.
Between one of these tetrahedrons and the next fits a four-dimensional simplex.
Every feature of this simplex is determined by the lengths of its ten edges. One
of the features is the angle a between one of the indicated tetrahedrons or "faces"
of the simplex and the next. Thus a represents the angle subtended by this simplex
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Box 42.1 THE HINGES WHERE THE' CURVATURE IS CONCENTRATED IN THE
"ANGLE OF RATTLE" BETWEEN BUILDING BLOCKS IN A SKELETON MANIFOLD

Dimensionality of manifold

Elementary flat-space
building block:

Edge lengths to define it:

Hinge where cycle of such
blocks meet with a deficit
angle or "angle of rattle" 8:

Dimensionality of hinge:

I
"Content" of such a hinge:

Contribution from all hinges
within a given small region
to curvature of manifold:

2

triangle

3

vertex

o

" 8·~ that "
region

3 4

tetrahedron simplex

4 5

edge triangle

2

length 1 area A

L 1;8. L Aj 8j
that " that

region region

Continuum limit of this quantity
expressed as an integral over
the same small region:

at the hinge. Summing the angles a for all the simplexes that meet on the given
hinge 9f2&l, and subtracting from 2'17, one gets the deficit angle associated with that
hinge. And by then summing the deficit angles in a given small n-volume with
appropriate weigh ting (Box 42.1), one obtains a number equal to the volume integral
of the scalar curvature of the original smooth n-geometry. See Box 42.2.

§42.4. SKELETON FORM OF FIELD EQUATIONS

Rather than translate Einstein's field equations directly into the language of the
skeleton calculus, Regge turns to a standard variational principle from which Ein­
stein's law lets itself be derived. It says (see §§21.2 and 43.3) adjust the 4-geometry
throughout an extended region of spacetime, subject to certain specified conditions
on the boundary, so that the dimensionless integral (action in units of Ii!),

Einstein-Hilbert variational
principle reduced to skeleton
form

I = (c3/ I6'17IiG)JR( - g)l/2 d4x, (42.2)

is an extremum. This statement applies when space is free of matter and electromag-
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t'

~i)

'1'

2

Figure 42.2.
Cycle of building blocks associated with a single hinge. Top row. tWO dimensions: left, schematic
association of vertices S, 5", '~I, 'Y, '?i( with "hinge" at the vertex '!I'; right, same, but with elementary
triangles indicated in full. Middle row, three dimensions: left, schematic; right, perspective representation
of the six tetrahedrons that meet on the "hinge" ~.p!:2. Bottom row, four dimensions; shown only
schematically. The five vertices '!I'!2!Y/e,j) belong to one simplex, a four-dimensional region throughout
the interior of which space is flat. The five vertices ,::P!:2!Y/'V$ belong to the next simplex; and so on around
the cycle of simplexes. The two simplexes just named interface at the tetrahedron ';:P!:]fi/,j), inside which
the geometry is also flat. Between that tetrahedron and the next, '!I'!2!Y/$, there is a certain hyperdihedral
angle ex subtended at the "hinge" ?i'!2'.1/. The value of this angle is completely fixed by the ten edge
lengths of the intervening simplex ~.p!2':il'l)$. This dihedral angle, plus the corresponding dihedral angles
subtended at the hinge ':P12!'i/ by the other simplexes of the cycle, do not in general add up to 217. The
deficit, the "angle of rattle" or deficit angle IJ, gives the amount of curvature concentrated at the hinge
'!I'!f!!Y/. There is no actual rattle or looseness of fit, unless one tries to imbed the cycle into an over-all
flat four-dimensional space (analog of "stamping on" the collection of triangles, and seeing them open
out by the amount of the deficit angle, as indicated in inset in Figure 42.1).

(42.3)

netic fields; a simplification that will be made in the subsequent discussion to keep
it from becoming too extended. When in addition all lengths are expressed in units
of the Planck length i

L* = (fiG/ C3)1/2 = 1.6 X 10-33 em,

and the curvature integral is approximated by its expression in terms ofdeficit angles,
Regge shows that the statement fJI = 0 (condition for an extremum!) becomes

H

(l /817) /) 2: Ah /)h = O.
hinges
h=l

(42.4)
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A skeleton 4-geometry is completely determined by all its edge lengths. From the
edge lengths one gets the integrated curvature by pursuing, for each hinge in the
4-geometry, the following flow diagram:

cycle of blocks
swinging on this hinge

lone of these blocks I
t

the two tetrahedral "faces" that set this block off from
the blocks before and after it in the cycle of blocks

angle a between these two faces fixed by
the block's n(n - 1)/2 edge lengths

deficit angle at the given hinge is

{) = 2'17 - '" aL..J blocks swinging
on that hinge

contribution to integrated curvature
(Box 42.1) is {) times area of hinge

One finds it natural to apply this analysis in either of two ways. First, one can probe
a given 4-geometry (given set of edge lengths!) in the sense

edge lengths I
t

I curvature



1172

Box 42.2 (continued)

42. REGGE CALCULUS

Second-and this is the rationale of Regge calculus-one can use the skeleton
calculus to deduce a previously unknown 4-geometry from Einstein's geometrody­
namic law, proceeding in the direction

initial conditions
translated into

information about
some of the edge lengths

Einstein's equations
expressed as con­

ditions on the
curvature (deficit

angle of each hinge)

fix remainder of the
edge lengths (apart

from natural options
in fineness of zoning)

In the changes contemplated in this variational principle, certain edge lengths are
thought of as being fixed. They have to do with the conditions specified at the
boundaries of the region of spacetime under study. It is not necessary here to enter
into the precise formulation of these boundary conditions, fortunately, since some
questions of principle still remain to be clarified about the precise formulation of
boundary conditions in general relativity (see §21.12). Rather, what is important
is the effect of changes in the lengths of the edges of the blocks in the interior of
the region being analyzed, as they augment or decrease the deficit angles at the
various hinges. In his basic paper on the subject, Regge (1961) notes that the typical
deficit angle 8" depends in a complicated trigonometric way on the values ofnumer­
ous edge lengths lp. However, he proves (Appendix of his paper) that "quite reo
markably, we can carry out the variation as if the 8" were constants," thus reducing
the variational principle to the form

H

(1/8'17) 2: 8" 8A" = O.
hinges
1!=1

(42.5)

Here the change in area of the h-th triangle-shaped hinge, according to elementary
trigonometry, is

(42.6)
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In this equation 0ph is the angle opposite to the p-th edge in the triangle. Conse­
quently, Einstein's equations in empty space reduce in skeleton geometry to the form

2: 8h cotan 0ph = 0,
hinges that

have the
given edge

pincommon

(p == 1,2, ...), (42.7) Einstein field equation
reduced to skeleton form

one equation for each edge length in the interior of the region of spacetime being
analyzed.

§42.5. THE CHOICE OF LATTICE STRUCTURE

Two l4.uestions arise in the actual application of Regge calculus, and it is not clear
that either has yet received the resolution which is most convenient for practical
applications of this skeleton analysis: What kind of lattice to use? How best to
capitalize on the freedom that exists in the choice of edge lengths? The first question
is discussed in this section, the second in the next section.

It might seem most natural to use a lattice made of small, nearly rectangular
blocks, the departure of each from rectangularity being conditioned by the amount
and directionality of the local curvature. However, such building blocks are "floppy."
One could give them rigidity by specifying certain angles as well as the edge lengths.
But then one would lose the cleanness of Regge's prescription: give edge lengths,
and give only edge lengths, and give each edge length freely and independently,
in order to define a geometry. In addition one would have to rederive.the Regge
equations, including new equations for the determination of the new angles. There­
fore one discards the quasirectangle in favor of the simplex with its 5· 4/2 == 10 edge
lengths. This decided, one also concludes that even in flat spacetime the simplexes
cannot all have identical edge lengths. Two-dimensional flat space can be filled with
identical equilateral triangles, but already at three dimensions it ceases to be possible
to fill out the manifold with identical equilateral tetrahedrons. One knows that a
given carbon atom in diamond is joined to its nearest neighbors with tetrahedral
bonds, but a little reflection shows that the cell assignable to the given atom is far
from having the shape of an equilateral tetrahedron.

Synthesis would appear to be a natural way to put together the building blocks:
first make one-dimensional structures; assemble these into two-dimensional struc­
tures; these, into three-dimensional ones; and these, into the final four-dimensional
structure. The one-dimensional structure is made of points, 1, 2, 3, ... , alternating
with line segments, 12, 23, 34, .... To start building a two-dimensional structure,
pick up a second one-dimensional structure. It might seem natural to label its points
1', 2', 3', ... , etc. However, that labeling would imply a cross-connection between
1 and 1', between 2 and 2', etc., after the fashion of a ladder. Then the elementary
cells would be quasirectangles. They would have the "floppiness" that is to be
excluded. Therefore relabel the points of the second one-dimensional structure as
If, 2f, 3f, etc. The implication is that one cross-connects 2~' with points 2 and 3
of the original one-dimensional structure, etc. One ends up with something like the

The choice of lattice structure:

(1) avoiding floppiness

(2) necessity for unequal
edge lengths

(3) construction of two­
dimensional structures
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(4) 3-D structures built from
2-D structures by
"method of blocks"

(5) 3-D structures from 2-D
by "method of spheres"

girder structure of a bridge, fully rigid in the context of two dimensions, as desired.
The same construction, extended, fills out the plane with triangles. One now has
a simple, standard two-dimensional structure. One might mistakenly conclude that
one is. ready to go ahead to build up a three-dimensional structure: the mistake
lies in the tacit assumption that the flat-space topology is necessarily correct.

Let it be the problem, for example, to determine the development in time of a
3-geometry that has the topology of a 3-sphere. This 3-sphere is perhaps strongly
deformed from ideality by long-wavelength gravitational waves. A right arrangement
of the points is the immediate desideratum. Therefore put aside for the present any
consideration of the deformation of the geometry by the waves (alteration of edge
lengths from ideality). Ask how to divide a perfect 3-sphere into two-dimensional
sheets. Here each sheet is understood to be separated from the next by a certain
distance. At this point two alternative approaches suggest themselves that one can
call for brevity "blocks" and "spheres."

(1) Blocks. Note that a 3-sphere lets itself be decomposed into 5 identical, tetra­
hedron-like solid blocks (5 vertices; 5 ways to leave out anyone of these vertices!)
Fix on one of these "tetrahedrons." Select one vertex as summit and the face through
the other three vertices as base. Give that base the two-dimensional lattice structure
already described. Introduce a multitude ofadditional sheets piled above it as evenly
spaced layers reaching to the summit. Each layer has fewer points than the layer
before. The decomposition of the 3-geometry inside one "tetrahedron" is thereby
accomplished. However, an unresolved question remains; not merely how to join
on this layered structure in a regular way to the corresponding structure in the
adjacent "tetrahedrons"; but even whether such a regular joinup is at all possible.
The same question can be asked about the other two ways to break up the 3-sphere
into identical "tetrahedrons" [Coxeter (1948), esp. pp. 292-293: 16 tetrahedrons
defined by a total of 8 vertices or 600 tetrahedrons defined by a total of 120 verticesJ.
One can eliminate the question of joinup of structure in a simple way, but at the
price of putting a ceiling on the accuracy attainable: take the stated number of
vertices (5 or 8 or 120) as the total number of points that will be employed in the
skeletonization of the 3-geometry (no further subdivision required or admitted).
Considering the boundedness of the memory capacity of any computer, it is hardly
ridiculous to contemplate a limitation to 120 tracer points in exploratory calculations!

(2) Spheres. An alternative approach to the "atomization" of the 3-sphere begins
by introducing on the 3-sphere a North Pole and a South Pole and the hyperspherical
angle X (X == 0 at the first pole, X == 'TT at the second, X == 'TT/2 at the equator; see
Box 27.2). Let each two-dimensional layer lie on a surface of constant X (~ equal
to some integer times some interval .1X). The structure of this 2-sphere is already
to be regarded as skeletonized into elementary triangles ("fully complete Buckminster
Fuller geodesic dome"). Therefore the number of "faces" or triangles F, the number
of edge lengths E, and the number of vertices V must be connected by the relation
of Euler:

F _ E + V == (a topology-dependent ) == {2 for 2-sphere, (42.8)
number or "Euler character" 0 for 2-torus.

It follows from this relation that it is impossible for each vertex to sit at the center
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(42.9)

of a hexagon (each vertex the point of convergence of 6 triangles). This being the
case, one is not astonished that a close inspection of the pattern of a geodesic dome
shows several vertices where only 5 triangles meet. It is enough to have 12 such
5-triangle vertices among what are otherwise all6-triangle vertices in order to meet
the requirements of the Euler relation:

n 5-triangle vertices

V - n 6-triangle vertices

F = (V - n)(6/3) + n(5/3) triangles

E = (V - n)(6/2) + n(5/2) edges

V = (V - n)(6/6) + n vertices

2 = F - E + V = n/6 Euler characteristic

n = 12

Among all figures with triangular faces, the icosahedron is the one with the smallest
number of faces that meets this condition (5-triangle vertices exclusively!)

If each 2-surface has the pattern of vertices of a geodesic dome, how is one dome
to be joined to the next to make a rigid skeleton 3-geometry? Were the domes
imbedded in a flat 3-geometry, rigidity would be no issue. Each dome would already
be rigid in and by itself. However, the 3-geometry is not given to be flat. Only by
a completely deterministic skeletonization of the space between the two 2-spheres
will they be given rigidity in the context ofcurved space geometry. (1) Not by running
a single connector from each vertex in one surface to the corresponding vertex in
the next ("floppy structure"!) (2) Not by displacing one surface so each of its vertices
comes above, or nearly ab6ve,- the center of a triangle in the surface "below." First,
the numbers of vertices and triangles ordinarily will not agree. Second, even when
they do, it will not give the structure the necessary rigidity to connect the vertex
of the surface above to the three vertices of the triangle below. The space between
will contain some tetrahedrons, but it will not be throughout decomposed into
tetrahedrons. (3) A natural and workable approach to the skeletonization of the
3-geometry is to run a connector from each vertex in the one surface to the corre­
sponding vertex in the next, but to flesh out this connection with additional structure
that will give rigidity to the 3-geometry: intervening vertices and connectors as
illustrated in Box 42.3.

In working up from the skeletonization of a 3-geometry to the skeletonization
ofa 4-geometry, it is natural to proceed similarly. (1) Use identical patterns of points
in the two 3-geometries. (2) Tie corresponding points together by single connectors.
(3) Halfway, or approximately halfway between the two 3-geometries insert a whole
additional pattern of vertices. Each of these supplementary vertices is "dual" to and
lies nearly "below" the center of a tetrahedron in the 3-geometry immediately above.
(4) Connect each supplementary vertex to the vertices of the tetrahedron immediately
above, to the vertices of the tetrahedron immediately below, and to those other
supplementary vertices that are its immediate neighbors. (5) In this way get the edge
lengths needed to divide the 4-geometry into simplexes, each of rigidly dt:fined
dimensions.

(6) 4-D structures built from
3-D structures
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Box 42.3 SYNTHESIS OF HIGHER-DIMENSIONAL SKELETON GEOMETRIES OUT OF
LOWER-DIMENSIONAL SKELETON GEOMETRIES

$' ''11'

(1) One-dimensional structure as alternation of
points and line segments. (2) Two-dimensional
structure (a) "floppy" (unacceptable) and (b) rigid­
ified (angles of triangles fully determined by edge
lengths). When this structure is extended, as at
right, the "normal" vertex has six triangles hinging
on it. However, at least twelve 5-triangle vertices
of the type indicated at tl are to be interpolated
if the 2-geometry is to be able to close up into
a 2-sphere. (3) Skeleton 3-geometry obtained by
filling in between the skeleton 2-geometry ...
tltJ3 ... ~ge ... $6j) and the similar structure
... tl'tJ3' '.' ~'9'e' $'6j)' ... as follows. (a) In-
sert direct connectors such as 99' between
corresponding points in the two 2-geometries. (b)
Insert an intermediate layer of "supplementary
vertices" such as SV~O/"¥.X .... Each of these
supplementary vertices lies roughly halfway be­
tween the center of the triangle "above" it and the
center of the corresponding triangle "below" it. (c)

Connect each such "supplementary vertex" with
its immediate neighbors above, below, and in the
same plane. (d) Give all edge lengths. (e) Then
the skeleton 3-geometry between the two 2-ge­
ometries is rigidly specified. It is made up of five
types of tetrahedrons, as follows. (1) "Right­
through blocks," such as 99'SV (six of these
hinge on 99' when 9 is a normal vertex; five,
when it is a 5-fold vertex, such as indicated by tl
at the upper right). (2) "Lower-facing blocks," such
as tltJ39v. (3) "Lower-packing blocks," such as
tl9Sv. (4, 5) Corresponding "upper-facing blocks"
and "upper-packing blocks" (not shown). The
number of blocks of each kind is appropriately
listed here for the two extreme cases of a 2-geom­
etry that consists (a) of a normal hexagonal lattice
extending indefinitely in a plane and (b) of a lat­
tice consisting of the minimum number of 5-fold
vertices ("type tl vertices") that will permit close­
up into a 2-sphere.
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2-geometry of upper
(or lower, face

Its topology
Vertices on upper face
Nature of these vertices
Edge lengths on upper fac¥
Triangles on upper face
Number of "supplementary vertices"

Outer facing blocks
Outer packing blocks
Right through blocks
Inner packing blocks
Inner facing blocks

t

Hexagonal pattern
of tdangles

Infinite 2-plane
V

6-fold
3V
2V
2V

2V
3V
6V
3V
2V

Icosahedron
made of tdangles

2-sphere
12

S-fold
W=30

20
20

20
30
60
30
20

1177

§42.6. THE CHOICE OF EDGE LENGTHS

So much for the lattice structure of the 4-geometry; now for the other issue, the
freedom that exists in the choice of edge lengths. Why not make the simplest choice
and let all edges be light rays? Because the 4-geometry would not then be fully
determined. The geometry ga/3(x JL ) differs from the geometry ;\.(x JL ) ga/3(x JL ), even
though the same points that are connected by light rays in the one geometry are
also connected by light rays in the other geometry.

If none of the edges is null, it is nevertheless natural to take some of the edge
lengths to be spacelike and some to be timelike. In consequence the area A of the
triangle in some cases will be real, in other cases imaginary. In 3-space the parallelo­
gram (double triangle) spanned by two vectors Band C is described by a vector

2A=BXC

perpendicular to the two vectors. One obtains the magnitude of A from the formula

In 4-space, let Band C be two edges of the triangle. Then, as in three dimensions,
2A is dual to the bivector built from Band C. In other words, if B goes in the t
direction and C in the z direction, then A is a bivector lying in the (x,y) plane.
Consequently its magnitude A is to be thought of as a real quantity. Therefore the
appropriate formula for the area A is (Tullio Regge)

The choice of edge lengths:

(1) choose some timelike,
others spacelike

(42.10)

The quantity A is real when the deficit angle S is real. Thus the geometrically
important product AS is also real.
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(2) choose timelike lengths
comparable to spacelike
lengths

When the hinge lies in the (x,y) plane, on the other hand, the quantity A is purely
imaginary. In that instance a test vector taken around the cycle of simplexes that
swing on this hinge has undergone change only in its z and t components; that is,
it has experienced a Lorentz boost; that is, the deficit angle Sis also purely imaginary.
So again the product AS is a purely real quantity.

Turn now from character of edge lengths to magnitude of edge lengths. It is
desirable that the elementary building blocks sample the curvatures of space in
different directions on a roughly equal basis. In other words, it is desirable not to
have long needle-shaped building blocks nor pancake-shaped tetrahedrons and
simplexes. This natural requirement means that the step forward in time should be
comparable to the steps "sidewise" in space. The very fact that one should have
to state such a requirement brings out one circumstance that should have been
obvious before: the "hinge equations"

2: Sh cotan ()ph =°
hinges h that
haveedgep
in common

(p = 1,2, ...), (42.7)

(3) why some lengths must
be chosen arbitrarily

Deficit angles in terms of
edge lengths

Past applications of Regge
calculus

though they are as numerous as the edges, cannot be regarded as adequate to
determine all edge lengths. There are necessarily relations between these equations
that keep them from being independent. The equations cannot determine all the
details of the necessarily largely arbitrary skeletonization process. They cannot do
so any more than the field equations of general relativity can determine the coordi­
nate system. With a given pattern of vertices (four-dimensional generalization of
drawings in Box 42.3), one still has (a) the option how close together one will take
successive layers of the structure and (b) how one will distribute a given number
of points in space on a given layer to achieve the maximum payoff in accuracy
(greater density of points in regions of greater curvature). To prepare a practical
computer program founded on Regge calculus, one has to supply the machine not
only with the hinge equations and initial conditions, but also with definite algorithms
to remove all the arbitrariness that resides in options (a) and (b).

Formulas from solid geometry and four-dimensional geometry, out of which to
determine the necessary hyperdihedral angles a and the deficit angles S in terms
of edge lengths and nothing but edge lengths, are summarized by Wheeler (1964a,
pp. 469, 470, and 490) and by C. Y. Wong (1971). Regge (1961) also gives a formula
for the Riemann curvature tensor itself in terms of deficit angles and number of
edges running in a given direction [see also Wheeler (l964a, p. 471)].

§42.7. PAST APPLICATIONS OF REGGE CALCULUS

Wong (1971) has applied Regge calculus to a problem where no time development
shows itself, where the geometry can therefore be treated as static, and where in
addition it is spherically symmetric. He determined the Schwarzschild and Reissner­
Nordstrom geometries by the method ofske1etonization. Consider successive spheres



surrounding the center of attraction. Wong approximates each as an icosahedron.
The condition

§42.8. THE FUTURE OF REGGE CALCULUS 1179

(3)R = 16'17 (energy density)
on the 3-space

(§2l.5) gives a recursion relation that determines the dimension of each icosahedron
in terms of the two preceding icosahedra. Errors in the skeleton representation of
the exact geometry range from roughly 10 percent to less than 1 percent, depending
on the method of analysis, the quantity under analysis, and the fineness of the
subdivision.

Skeletonization of geometry is to be distinguished from mere rewriting of partial
differential equations as difference equations. One has by now three illustrations Partial skeletonization

that oIlf can capitalize on skeletonization without fragmenting spacetime all the way
to the level of individual simplexes. The first illustration is the first part of Wong's
work, where the time dimension never explicitly makes an appearance, so that the
building blocks are three-dimensional only. The second is an alternative treatment,
also given by Wong, that goes beyond the symmetry in t to take account of the
symmetry in () and cp. It divides space into spherical shells, in each of which the
geometry is "pseudo-flat" in much the same sense that the geometry of a paper cone
is flat. The third is the numerical solution for the gravitational collapse of a spherical
star by May and White (1966), in which there is symmetry in () and cp, but not in
r or t. This zoning takes place exclusively in the r, t-plane. Each zone is a spherical
shell. The difference as compared to Regge calculus (flat geometry within each
building block) is the adjustable "conicity" given to each shell. The examples show
that the decision about skeletonizing the geometry in a calculation is ordinarily not
"whether" but "how much."

§42.8. THE FUTURE OF REGGE CALCULUS

In summary, Regge's skeleton calculus puts within the reach of computation prob- Hopes for the future

lems that in practical terms are beyond the power of normal analytical methods.
It affords any desired level of accuracy by sufficiently fine subdivision of the space-
time region under consideration. By way of its numbered building blocks, it also
offers a practical way to display the results of such calculations. Finally, one can
hope that Regge's truly geometric way of formulating general relativity will someday
make the content of the Einstein field equations (Cartan's "moment of rotation";
see Chapter 15) stand out sharp and clear, and unveil the geometric significance
of the so-called "geometrodynamic field momentum" (analysis of the boundary-value
problem associated with th~yariatitmal probleITI of general relativity in Regge
~:see §21.l2):----'
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CHAPTER 4

ELECTROMAGNETISM AND
DIFFERENTIAL FORMS

The ether trembled at his agitations
In a manner so familiar that I only need to say,

In accordance with Clerk Maxwell's six equations
It tickled peoples' optics far away.

You can feel the way it's done,
You may trace them as they run-

dy by dy less df3 by dz is equal KdX/dt. ..

While the curl of (X, Y, Z) is the
minus d/dt of the vector (a, b, c):

From The Revolution of the Corpuscle,
written by A. A. Robb

(to the tune of The Interfering Parrott)
for a dinner of the research students

of the Cavendish Laboratory
in the days of the old mathematics.

"'" §4.1. EXTERIOR CALCULUS

This chapter is all Track 2. It is
needed as preparation for
§§ 14.5 and 14.6 (computation
of curvature using differential
forms) and for Chapter 15
(Bianchi identities and
boundary of a boundary), but is
not needed for the rest of the
book.

Stacks of surfaces, individually or intersecting to make "honeycombs," "egg crates,"
and other such structures ("differential forms"), give unique insight into the geometry
of electromagnetism and gravitation. However, such insight comes at some cost in
time. Therefore, most readers should skip this chapter and later material that depends
on it during a first reading of this book.

Analytically speaking, differential forms are completely antisymmetric tensors;
pictorially speaking, they are intersecting stacks of surfaces. The mathematical
formalism for manipulating differential forms with ease, called "exterior calculus,"
is summarized concisely in Box 4.1; its basic features are illustrated in the rest of
this chapter by rewriting electromagnetic theory in its language. An effective way
to tackle this chapter might be to (1) scan Box 4.1 to get the flavor of the formalism;
(2) read the rest of the chapter in detail; (3) restudy Box 4.1 carefully; (4) get practice
in manipulating the formalism by working the exercises.*

(continued on page 99)

• Exterior calculus is. treated in greater detail than here by: E. Cartan (1945); de Rham (1955);
Nickerson, Spencer, and Steenrod (1959); Hauser (1970); Israel (1979); especially Flanders (1963,
relatively easy, with many applications); Spivak (1965, sophomore or junior level, but fully in tune with
modem mathematics); H. Cartan (1970); and Choquet-Bruhat (l968a).
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Box 4.1 DIFFERENTIAL FORMS AND
EXTERIOR CALCULUS IN BRIEF

91

The fundamental definitions and formulas of exterior calculus are summarized here
for ready reference. Each item consists of a general statement (at left of page) plus
a leading application (at right of page). This formalism is applicable not only to
spacetime, but also to more general geometrical systems (see heading ofeach section).
No attempt is made here to demonstrate the internal consistency of the formalism,
nor to derive it from any set of definitions and axioms. For a systematic treatment
that does so, see, e.g., Spivak (1965), or Misner and Wheeler (1957).

A. Algebra I (applicable to any vector space)

1. Basis 1jorms.
a. Coordinate basis wi = dx i

(j tells which I-form, not which component).
b. General basis wi = Lik , dx k'.

An application
Simple basis I-forms for analyzing Schwarzschild ge­
ometry around static spherically symmetric center of
attraction:

WO = (1 - 2m/r)I/2 dt;

WI = (1 - 2m/r)-l/2 dr;

w 2 = rdB;

w 3 = rsinO dq,.

2. General pjorm (or p-vector) is a completely anti­
symmetric tensor of rank (~) [or (8)]. It can be
expanded in terms of wedge products (see §3.5 and
exercise 4.12):

I ., .
a = - a·· . w" /\ W'2 /\ ... /\ w'pp! "'2...'p

a l.. . ,wit /\ W i2 /\ ••• /\ w iP •
1.t1.2 •••1.p I

(Note: Vertical bars around the indices mean sum­
mation extends only over i1 < i2 < .,. < ip ')

Two applications
Energy-momentum I-form is of type a = aiwi or

p = -E dt + P;r dx + Py dy + pz d::.

Faraday is a 2-form of type P = f3 1J.L
PI

WJ.L /\ w P or in
flat spacetime

F=-~~/\~-~~/\~-~~/\~

+ B;r dy /\ d:: + By d:: /\ dx + Bz dx /\ dy
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Box 4.1 (continued)

4. ELECTROMAGNETISM AND DIFFERENTIAL FORMS

3. Wedge product.
All familiar rules of addition and multiplication
hold, such as

(aa + bP) /\ y = aa /\ y + bP /\ y,
(a /\ P) /\ Y = a /\ (P /\ y) a /\ p /\ y,

except for a modified commutation law between
a p-form a and a q-form p:

a /\ Il = (-l)pqll /\ a.
p q q p

Applications to 1 forms a, p:

a /\P = -p /\a, a /\a =0;

a /\ p = (ajw j) /\ (f3kWk) = a;f3kw ; /\ w k

I . k= "2 (ajf3k - f3,oO.k)W' /\ w .

4. Contraction of pform on p-vector.

(a,A)
p p

= a l · . IAI;1''';'!(wi1 /\ '" /\ Wi. e. /\ '" /\ e. )1.1 •••11' , 11 Jp
\ ,

[ 6~,.,,!, (see exercises 3.13 and 4.12)]
It·..'.

- a Ait ...i •- lit ...i.1 .

Four applications

a. Contraction of a particle's energy-momentum I-form
p = Pawa with 4-velocity u = uae a of observer (a
I-vector):

-(p, u) = -Paua = energy of particle.

b. Contraction of Faraday 2-form F with bivector
My /\ Jq> [where 6q> = (d&' j dA1),JA

l
and Jq> =

(d&' jdA2)JA2 are two infinitesimal vectors in a 2-sur­
face q>(Al , A2), and the bivector represents the surface
element they span] is the magnetic flux <P = (F, 6q>
/\ Jq» through that surface element.

c. More generally, a p-dimensional parallelepiped with
vectors a v a2, ••• , ap for legs has an oriented volume
described by the "simple" p-vector a

l
/\ a

2
/\ .,. a

p
(oriented because interchange of two legs changes its
sign). An egg-crate type of structure with walls made
from the hyperplanes of p different I-forms 0'1,
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q2, ... ,qP is described by the "simple" p-form q1

/\ q2 /\ '" /\ qP. The number of cells of q1 /\

q2 /\ '" /\ qP sliced through by the infinitesimal
p-volume a 1 /\ a 2 /\ •.• /\ ap is

(q1 /\ q2 /\ ... /\ qP, a 1 /\ a 2 /\ ... /\ ap)'

d. The Jacobian determinant of a set of p functions
fk(xl, ... ,xn ) with respect to p of their arguments
is

(dp /\ dj2 /\ ... /\ djP, a'!J /\ a'!J /\ ... /\ a'!J)
ax1 ax2 axp

_ d II( afk )11 = a(jl,j2, .. ,fP)- et . - 1 2 •
ax' . a(x , x , ... , xP)

5. Simple forms.
a. A simple p-form is one that can be written as

a wedge product of pI-forms:

q = a /\ p /\ '" /\ y.
P , ,

p factors.

b. A simple p-form a /\ p /\ '" /\ Y is repre­
sented by the intersecting families of surfaces
of a, p, ... ,y (egg-crate structure) plus a sense
of circulation (orientation).

Applications:
a. In four dimensions (e.g., spacetime) all O-forms, 1­

forms, 3-forms, and 4-forms are simple. A 2-form F
is generally a sum of two simple forms, e.g., F =
- e dt /\ dx + h dy /\ dz; it is simple if and only if
F /\ F = O.

b. A set of I-forms a, p, . .. , y is linearly dependent
(one a linear combination of the others) if and
only if

a/\p/\···/\y=O (egg crate collapsed).

B. Exterior Derivative (applicable to any "differentiable manifold,"
with or without metric)

1. d produces a (p + 1)-form dq from a p-form q.

2. Effect of d is defined by induction using the



94

Box 4.1 (continued)

4. ELECTROMAGNETISM AND DIFFERENTIAL FORMS

(Chapter 2) definition of df, and f a function (0­
form), plus

d(a /\ f!) = da /\ p + (-I)Pa /\ dp,
P q

d 2 = dd =O.

Two applications

d(a /\ dP) = da /\ dp.

For the p-form cp, with

cp = <l>li,...i.1 dxit /\ ... /\ dxi .,

one has (alternative and equivalent definition of dcp)

C. Integration (applicable to any "differentiable manifold," with or
without metric)

I. Pictorial interpretation.
Text and pictures of Chapter 4 interpret fa (inte­
gral of specified I-form a along specified curve
from specified starting point to specified end point)
as "number of a-surfaces pierced on that route";
similarly, they interpret fcp (integral of specified
2-form cp over specified bit of surface on which
there is an assigned sense of circulation or "orien­
tation") as "number of cells of the honeycomb-like
structure cp cut through by that surface"; similarly
for the egg-crate-like structures that represent 3­
forms; etc.

2. Computational rules for integration.
To evaluate fa, the integral of a p-form

a = (Xlit ...i.l(xl, ... , x n ) dxit /\ ... /\ dxi
.,

over a p-dimensional surface, proceed in two steps.
a. Substitute a parameterization of the surface,

X k(Al, . .. , AP)

into a, and collect terms in the form

a = alAi) dA1 /\ '" /\ dAP

(this is a viewed as a p-form in the p-dimen­
sional surface);
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b. Integrate

f a =f a(AJ) clA l clA2... clAP

using elementary definition of integration.

Example: See equations (4.12) to (4.14).
3. The differential geometry of integration.

Calculate fa for a p-form a as follows.
a. Choose the p-dimensional surface S over which

to integrate.
b. Represent S by a parametrization giving the

generic point of the surface as a function of the
parameters, &'(;\1, ;\2, ... ;\P). This fixes the ori­
entation. The same function with ;\1 ~ ;\2,

&,(;\2,;\ 1, ... ,;\P), describes a different (i.e., op­
positely oriented) surface, - S.

c. The infinitesimal parallelepiped

is tangent to the surface. The number of cells
of a it slices is

/a o'!P /\ ... /\ o&') A~ 1 A~ P
\. '0;\ 1 0;\ P 411~ •• • "-11\ •

This number changes sign if two of the vectors
o&'10;\ k are interchanged, as for an oppositely
oriented surface.

d. The above provides an interpretation motivat­
ing the definition

f a=ff ... f (a.2J!.../\ o&' /\ ... /\ o&')
- , 0;\1 0;\2 o;\P

d;\1 d;\2 ... clAp.

This definition is identified with the computa­
tional rule of the preceding section (C.2) in
exercise 4.9.
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An application
Integrate a gradient df along a curve, '!P(;\) from 91(0)
to '!P(1):

1 If df =f <df, d:l'I clA) d;\ =f (dfld;\) d;\
o (I

=f[~P(1)] - f['!P(O)].

e. Three different uses for symbol "d": First, light­
face d in explicit derivative expressions such as
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dlda, or dflda, or d9Ida; neither numerator nor
denominator alone has any meaning, but only
the full string of symbols. Second, lightface d
inside an integral sign; e.g., Ifda. This is an
instruction to perform integration, and has no
meaning whatsoever without an integral sign;
"I ... d . .." lives as an indivisible unit. Third,
sans-serif d; e.g., d alone, or df, or da. This is
an exterior derivative, which converts a p-form
into a (p + I)-form. Sometimes lightface d is
used for the same purpose. Hence, d alone, or
df, or dx, is always an exterior derivative unless
coupled to an I sign (second use), or coupled
to a I sign (first use).

4. The generalized Stokes theorem (see Box 4.6).
a. Let a'Y be the closed p-dimensional boundary

of a (p + I)-dimensional surface 'Y. Let q be
a p-form defined throughout 'Y.

Then

[integral ofp-form q over boundary a'Y equals
integral of (p + I)-form dq over interior 'Y].

b. For the sign to come out right, orientations of
'Y and a'Y must agree in this sense: choose
coordinates yO, yl, ... ,yP on a portion of 'Y,
with yO specialized so yO ::; 0 in 'Y, and yO = 0
at the boundary a'Y; then the orientation

a'!J /\ a'!J /\ ... /\ a'!J
ayo ayl ayp

for 'Y demands the orientation

for a'Y.
c. Note: For a nonorientable surface, such as a

Mobius strip, where a consistent and continuous
choice of orientation is impossible, more intri­
cate mathematics is required to give a definition
of "a" for which the Stokes theorem holds.

Applications: Includes as special cases all integral theo­
rems for surfaces of arbitrary dimension in spaces of
arbitrary dimension, with or without metric, generaliz-
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ing all versions of theorems of Stokes and Gauss. Exam­
ples:
a. 'V a curve, o'V its endpoints, C1 =f a O-form (func­

tion):

1f df= f (df/d"A)dA =f f=f(l) -f(O).
'V 0 3'V

b. 'Va 2-surface in 3-space, o'V its closed-curve bound­
ary, val-form; translated into Euclidean vector
notation, the two integrals are

f dv =f (V X v)· dS; f v = f v· dl.
'V 'V cl'V 3'V

c. Other applications in §§5.8, 20.2, 20.3, 20.5, and
exercises 4.10, 4.11, 5.2, and below.

D. Algebra II (applicable to any vector space with metric)

1. Norm of a pjorm.

lIall 2 = 0:. . o:it ...i p•
- ['too.'p[

Two applications: Norm of a I-form equals its squared
length, lIall 2 = a • a. Norm of electromagnetic 2-form
or Faraday: IIFII2 = B2 _ £2.

2. Dual of a pjorm.
a. In an n-dimensional space, the dual of a p-form

a is the (n - p)-form *a, with components

( *0:) - o:litoo.ipl Ekt ...k n _ p - il ...i p kt ...kn-p·

b. Properties of duals:

**a = (-I)P-1a in spacetime;
a /\ *a = lIall 2e in general.

c. Note: the definition of e (exercise 3.13) entails
choosing an orientation of the space, i.e., decid­
ing which orthonormal bases (l) are "right­
handed" and thus (2) have e(e1, ... ,en) = + 1.

Applications
a. For f a O-form, *f= fe, and ffd(volume) = f*f
b. Dual of charge-current I-form J is charge-current

3-form *J. The total charge Q in a 3-dimensional
hypersurface region S is

Q(S) = f *J.
s
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Conservation of charge is stated locally by d*J = O.
Stokes' Theorem goes from this differential conserva­
tion law to the Integral conservation law,

o=f d*J::=f *J.
'V aT

This law is of most interest when a'Tf" = 52 - 51 con­
sists of the future 52 and past 51 boundaries of a
spacetime region, in which case it states Q(52) =
Q(5 1 ); see exercise 5.2.

c. Dual of electromagnetic field tensor F = Faraday is
*F = Maxwell. From the d*F = 417 *J Maxwell
equation, find 417Q =417fs *J = fs d*F = fas *F.

3. Simple forms revisited.
a. The dual of a simple form is simple.
b. Egg crate of *(1 is perpendicular to egg crate

of (1 = a /\ p /\ ... /\ P in this sense:
(1) pick any vector V lying in intersection of

surfaces of (1

«a, V) = (P, V) = ... = (P, V) =0);

(2) pick any vector W lying in intersection of
surfaces of *(1;

(3) then V and Ware necessarily perpendicu­
lar: V· W = O.

Example: (1 = 3 dt is a simple I-form in spacetime.
a. *(1 = -3 dx /\ dy /\ dz is a simple 3-form.
b. General vector in surfaces of (1 is

V = VZez + Vllell + VZez ·

c. General vector in intersection of surfaces of *(1 is

d. W· V=O.
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The electromagnetic field tensor, Faraday = F, is an antisymmetric second-rank
tensor (i.e., 2-form). Instead of expanding it in terms of the tensor products of basis
I-forms,

the exterior calculus prefers to expand in terms of antisymmetrized tensor products
("exterior products," exercise 4.1):

F = i Fa /3 dx a
/\ dx/3,

dx a /\ dx/3 =dx a ® dx/3 - dx/3 ® dx a •

(4.1)

(4.2)

Electromagnetic 2-form
expressed in terms of exterior
products

Any 2-form (antisymmetric, second-rank tensor) can be so expanded. The symbol
" /\" is variously called a "wedge," a "hat," or an "exterior product sign"; and
dx a /\ dx/3 are the "basis 2-forms" of a given Lorentz frame (see §3.5, exercise 3.12,
and Box 4.1).

There is no simpler way to illustrate this 2-form representation of the electromag­
netic field than to consider a magnetic field in the x-direction:

FyZ = -F"y = Bx'

F = Bx dy /\ dz.
(4.3)

The I-form dy =grad y is the set of surfaces (actually hypersurfaces) y = 18 (all
t, x, z),y = 19 (all t, x, z),y= 20 (all t, x, z), etc.; and surfaces uniformly interpolated
between them. Similarly for the I-form dz. The intersection between these two sets
of surfaces produces a honeycomb-like structure. That structure becomes a "2-form"
when it is supplemented by instructions (see arrows in Figure 4.1) that give a "sense
of circulation" to each tube of the honeycomb (order of factors in the "wedge
product" of equation 4.2; dy /\ dz = -dz /\ dy). The 2-form F in the example
differs from this "basis 2-form" dy /\ dz only in this respect, that where dy /\ dz
had one tube, the field 2-form has B x tubes.

When one considers a tubular structure that twists and turns on its way through
spacetime. one must have more components to describe it. The 2-form for the general
electromagnetic field can be written as

F=~~/\~+~~/\~+~~/\~+~~/\~

+ By dz /\ dx + Bz dx /\ dv (4.4)

(6 components. 6 basis 2-forms).
A I-form is a machine to produce a number out of a vector (bongs of a bell as

the vector pierces successive surfaces). A 2-form is a machine to produce a number
out of an oriented surface (surface with a sense of circulation indicated on it: Figure
4.1, lower right). The meaning is as clear here as it is in elementary magnetism:

A 2-form as a honeycomb of
tubes with a sense of
circulation

A 2-form as a machine to
produce a number out of an
oriented surface
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Figure 4.1.
Construction of the 2-form for the electromagnetic field F = Bz dy 1\ dz out of the I-forms dy and
dz by "wedge multiplication" (formation of honeycomb-like structure with sense of circulation indicated
by arrows). A 2-form is a "machine to construct a number out of an oriented surface" (illustrated by
sample surface enclosed by arrows at lower right; number of tubes intersected by this surface is

f F= 18;
(this surface)

Faraday's concept of "magnetic flux"). This idea of 2-form machinery can be connected to the "tensor­
as-machine" idea of Chapter 3 as follows. The shape of the oriented surface over which one integrates
F does not matter, for small surfaces. All that affects JF is the area of the surface, and its orientation.
Choose two vectors, u and v, that lie in the surface. They form two legs of a parallelogram, whose
orientation (u followed by v) and area are embodied in the exterior product u 1\ v. Adjust the lengths
of u and v so their parallelogram, u 1\ v, has the same area as the surface of integration. Then

f F =f F = F(u, v).
. surface u 1\ v I '---'

machinery idei1 t t-machinery idea
of. this chapter]-----J ~ of Chapter 3

Exercise: derive this result, for an infinitesimal surface u 1\ v and for general F, using the formalism
of Box 4.1.
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the number of Faraday tubes cu't by that surface. The electromagnetic 2-form F

or Faraday described by such a "tubular structure" (suitably abstracted; Box 4.2)
has a reality and a location in space that is independent of all coordinate systems
and all artificial distinctions between "electric" and "magnetic" fields. Moreover,
those tubes provide the most direct geometric representation that anyone has ever
been able to give for the machinery by which the electromagnetic field acts on a
charged particle. Take a particle of charge e and 4-velocity

(4.5)

Let this particle go through a region where the electromagnetic field is described
by the 2-form

of Figure 4.1. Then the force exerted on the particle (regarded as a I-form) is the
contraction of this 2-form with the 4-velocity (and the charge);

F = Bz dy /\ dz

p = dp/dT = eF(u) = e(F, u),

(4.6)

(4.7)

Lorentz force as contraction
of electromagnetic 2-form
with particle's 4-velocity

as one sees by direct evaluation, letting the two factors in the 2-form act in turn
on the tangent vector u:

p := eBz(dy /\ dz, u)
:= eBz{dy(dz,u) - dZ(dy,u)}
:= eBx{dy(dz,uZez ) - dZ(dy,uVev)}

or

(4.8)

Comparing coefficients of the separate basis I-forms on the two sides of this equa­
tion, one sees reproduced all the detail of the Lorentz force exerted by the magnetic
field Bz :

. dpv dz
Pv := dT := eBx dT '

(4.9)

By simple extension of this line of reasoning to the general electromagnetic field,
one concludes that the time-rate ofchange ofmomentum (ljorm) is equal to the charge
multiplied by the contraction of the Faraday with the 4.velocity. Figure 4.2 illustrates
pictorially how the 2-form, F, serves as a machine to produce the I-form, p, out
of the tangent vector, eu.

(continued on page 105)
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Box 4.2 ABSTRACTING A 2-FORM FROM THE CONCEPT OF "HONEYCOMB­

LIKE STRUCTURE," IN 3-SPACE AND IN SPACETIME

Open up a cardboard carton containing a dozen
bottles, and observe the honeycomb structure of
intersecting north-south and east-west cardboard
separators between the bottles. That honeycomb
structure of "tubes" ("channels for bottles") is a
fairly apt illustration of a 2-form in the context
of everyday 3-space. It yields a number (number
of tubes cut) for each choice of smooth element
of 2-surface slicing through the three-dimensional
structure. However, the intersecting cardboard
separators are rather too specific. All that a true
2-form can ever give is the number of tubes sliced
through, not the "shape" of the tubes. Slew the
carton around on the floor by 45 0

• Then half the
separators run NW-SE and the other half run
NE-SW, but through a given bit of 2-surface fixed
in 3-space the count of tubes is unchanged. There­
fore, one should be careful to make the concept
of tubes in the mind's eye abstract enough that
one envisages direction of tubes (vertical in the
example) and density of tubes, but not any specific
location or orientation for the tube walls. Thus all
the following representations give one and the
same 2-form, CT:

CT = B dx /\ dy;

CT = B(2 dx) /\ (~ dY)

(NS cardboards spaced twice as close as before:
EW cardboards spaced twice as wide as before);

CT = Bd(X0) /\ d(X;I)
(cardboards rotated through 45 0

);

a dx + f3 dy /\ Y dx + 0 dy
CT-B----=

- (ao - f3y)1/2 (ao - f3y)1/2

(both orientation and spacing of "cardboards"
changing from point to point, with all four

functions, 0:, /1, y, and 8, depending on
position).

What has physical reality, and constitutes the real
geometric object, is not anyone of the I-forms just
encountered individually, but only the 2-form CT
itself. This circumstance helps to explain why in
the physical literature one sometimes refers to
"tubes of force" and sometimes to "lines of force."
The two terms for the same structure have this in
common, that each yields a number when sliced
by a bit of surface. The line-of-force picture has
the advantage of not imposing on the mind any
specific structure of "sheets of cardboard"; that is,
any specific decomposition of the 2-form into the
product of I-forms. However, that very feature is
also a disadvantage, for in a calculation one often
finds it useful to have a well-defined representa­
tion of the 2-form as the wedge product of I-forms.
Moreover, the tube picture, abstract though it
must be if it is to be truthful, also has this advan­
tage, that the orientation of the elementary tubes
(sense of circulation as indicated by arrows in
Figures 4.1 and 4.5, for example) lends itself to
ready visualization. Let the "walls" of the tubes
therefore remain in all pictures drawn in this book
as a reminder that 2-forms can be built out of
I-forms; but let it be understood here and here­
after how manyfold are the options for the indi­
vidual I-forms!

Turn now from three dimensions to four, and
find that the concept of "honeycomb-like struc­
ture" must be made still more abstract. In three
dimensions the arbitrariness of the decomposition
of the 2-form into I-forms showed in the slant and
packing of the "cardboards," but had no effect on
the verticality ,of the "channels for the bottles"
("direction of Faraday lines of force or tubes of
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force"); not so in four dimensions, or at least not
in the generic case in four dimensions.

In special cases, the story is almost as simple
in four dimensions as in three. An example of a
special case is once again the 2-form C1 = B dx
/\ dy, with all the options for decomposition into
I-forms that have already been mentioned, but
with every option giving the same "direction" for
the tubes. If the word "direction" now rises in
status from "tube walls unpierced by motion in
the direction of increasing z" to "tube walls un­
pierced either by motion in the direction of in­
creasing z, or by motion in the direction of in­
creasing t, or by any linear combination of such
motions," that is a natural enough consequence of
adding the new dimension. Moreover, the same
simplicity prevails for an electromagnetic plane
wave. For example, let the wave be advancing in
the z-direction, and let the electric polarization
point in the x-direction; then for a monochromatic
wave, one has

and all components distinct from these equal zero.
Faraday is

F = FOl dt /\ dx + F31 dz /\ dx
=Eo cos w(z - t) d(z - t) /\ dx,

which is again representable as a single wedge
product of two I-forms.

Not so in general! The general 2-form in four
dimensions consists of six distinct wedge products,

F = FOl dt /\ dx + F02 dt /\ dy + '"
+ F23 dy /\ dz.

It is too much to hope that this expression will
reduce in the generic case to a single wedge prod­
uct of two I-forms ("simple"2-form). It is not even

true that it will. It is only remarkable that it can
be reduced from six exterior products to two (de­
tails in exercise 4.1); thus,

Each product n i /\ (i individually can be visual­
ized as a honeycomb-like structure like those de­
picted in Figures 4.1, 4.2, 4.4, and 4.5. Each such
structure individually can be pictured as built out
of intersecting sheets (I-forms), but with such de­
tails as the tilt and packing of these I-forms ab­
stracted away. Each such structure individually
gives a number when sliced by an element of
surface. What counts for the 2-form F, however,
is neither the number of tubes of n1 /\ (l cut by
the surface, nor the number of tubes of n2 /\ (2
cut by the surface, but only the sum of the two.
This sum is what is referred to in the text as the
"number of tubes of F" cut by the surface. The
contribution of either wedge product individua~y

is not well-defined, for a simple reason: the de­
composition of a six-wedge-product object into
two wedge products, miraculous though it seems,
is actually far from unique (details in exercise 4.2).

In keeping with the need to have two products
of I-forms to represent the general 2-form note
that the vanishing of dF ("no magnetic charges")
does not automatically imply that d(n1 /\ (1) or
d(n2 /\ (2) separately vanish. Note also that any
spacelike slice through the general 2-form F (re­
duction from four dimensions to three) can always
be represented in terms of a honeycomb-like
structure ("simple" 2-form in three dimensions;
Faraday's picture of magnetic tubes of force).

Despite the abstraction that has gone on in see­
ing in all generality what a 2-form is, there is no
bar to continuing to use the term "honeycomb-like
structure" in a broadened sense to describe this
object; and that is the practice here and hereafter.
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Figure 4.2.
The Faraday or 2-form F of the electromagnetic field is a machine to produce a I-form (the time-rate
of change of momentum p of a charged particle) out of a tangent vector (product of charge e of the
particle and its 4-velocity u). In spacetime the general 2-form is the "superposition" (see Box 4.2) of
two structures like that illustrated at the top of this diagram, the tubes of the first being tilted and packed
as indicated, the tubes of the second being tilted in another direction and having a different pack­
ing density.
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All electromagnetism allows itself to be summarized in the language of 2-forrns,
honeycomb-like "structures" (again in the abstract sense of "structure" of Box 4.2)
of tubes filling all spacetime, as well when spacetime is curved as when it is flat.
In brief, there are two such structures, one Faraday =F, the other Maxwell = *F,
each dual ("perpendicular," the only place where metric need enter the discussion)
to the other, each satisfying an elementary equation:

dF = 0

("no tubes of Faraday ever end") and

d*F = 417 *J

(4.10)

(4.11 )

("the number of tubes of Maxwell that end in an elementary volume is equal to
the amount of electric charge in that volume"). To see in more detail how this
machinery shows up in action, look in turn at: (1) the definition of a 2-forrn; (2)
the appearance of a given electromagnetic field as Faraday and as Maxwell; (3)
the Maxwell structure for a point-charge at rest; (4) the same for a point-charge
in motion; (5) the nature of the field of a charge that moves uniformly except during
a brief instant of acceleration; (6) the Faraday structure for the field of an oscillating
dipole; (7) the concept of exterior derivative; (8) Maxwell's equations in the language
offorms; and (9) the solution of Maxwell's equations in flat spacetime, using a I-form
A from which the Lienard-Wiechert 2-forrn F can be calculated via F = dA.

A 2-forrn, as illustrated in Figure 4.1, is a machine to construct a number ("net
number of tubes cut") out of any "oriented 2-surface" (2-surface with "sense of
circulation" marked on it):

Preview of key points in
electromagnetism

A 2-form as machine for
number of tubes cut

(

nUmber)
of tubes = f F
cut surface

For example, let the 2-forrn be the one illustrated in Figure 4.1

(4.12)

Number of tubes cut
calculated in one example

and let the surface of integration be the portion of the surface of the 2-sphere
x 2 + y2 + Z2 = a2, t = constant, bounded between () =70° and () = 110° and
between cp = 0° and cp = 90° ("Atlantic region of the tropics"). Write

y = a sin () sin cp,

z = a cos (),
dy = a (cos () sin cp cJ() + sin () cos cp dcp),
dz = -a sin () cJ(),

dy /\ dz = a2 sin2() cos cp cJ() /\ dcp. (4.13)
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Figure 4.3.
Spacelike slices through Faraday, the electromagnetic 2-form, a geometric object, a honeycomb of tubes
that pervades all spacetime ("honeycomb" in the abstract sense spelled out more precisely in Box 42).
The surfaces in the drawing do not look like a 2-form (honeycomb), because the second family of surfaces
making up the honeycomb extends in the spatial direction that is suppressed from the drawing. Diagram
A shows one spacelike slice through the 2-form (time increases upwards in the diagram). In diagram
B, a projection of the 2-form on this spacelike hypersurface gives the Faraday tubes of magnetic force

. in this three-dimensional geometry (if the suppressed dimension were restored, the tubes would be tubes,
not channels between lines). Diagram C shows another spacelike slice (hypersurface of simultaneity for
an observer in a different Lorentz frame). Diagram D shows the very different pattern of magnetic tubes
in this reference system. The demand that magnetic tubes of force shall not end (V. B = 0), repeated
over and over for every spacelike slice through Faraday, gives everywhere the result OB/Of = - V X E.
Thus (magnetostatics) + (covariance) -+ (magnetodynamics). Similarly-see Chapters 17 and 21­
(geometrostatics) + (covariance) -+ (geometrodynamics).

The structure d() /\ d() looks like a "collapsed egg-crate" (Figure 1.4, upper right)
and has zero content, a fact formally evident from the vanishing of a /\ p =
- P /\ a when a and p are identical. The result of the integration, assuming constant

Bz' is
110· 90·f F = a2Bz i sin2

() d() f COS cp dcp
surface 70· O·

(4.14)

It is not so easy to visualize a pure electric field by means of its 2-form F (Figure
4.4, left) as it is to visualize a pure magnetic field by means of its 2-form F (Figures
4.1,4.2,4.3). Is there not some way to treat the two fields on more nearly the same
footing? Yes, construct the 2-form *F (Figure 4.4, right) that is dual ("perpendicular";
Box 4.3; exercise 3.14) to F
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Figure 4.4.
The Faraday structure

I I I
F = 2" F~. dx~ 1\ dx' = 2" F OI dt 1\ dx + 2" FlO dx 1\ dt = Ez dx 1\ dt

associated with an electric field in the x-direction, and the dual ("perpendicular") Maxwell honeycomb­
like 2-form

I
*F = 2" * F~. dx~ 1\ dx' = *F23 dx2 1\ dx3 = FOI dx2 1\ dx3 = FlO dx2 1\ dx3 = Ez dy 1\ dz.

Represent in geometric form the field of a point-charge of strength e at rest at
the origin. Operate in flat space with spherical polar coordinates:

(4.15)

The electric field in the r-direction being Er = ejrZ, it follows that the 2-form F
or Faraday is

F =IF dxlJ. /\ dx' = -Erdt /\ dr = - ez dt /\ dr.2 IJ.V r
(4.16)

Its dual, according to the prescription in exercise 3.14, is Maxwell:

Maxwell = *F = e sin B dB /\ dfP,

Pattern of tubes in dual
structure Mexwel/ for

(4.17) point-charge at rest

as illustrated in Figure 4.5.
Take a tour in the positive sense around a region of the surface of the sphere

illustrated in Figure 4.5. The number of tubes of *F encompassed in the route will
be precisely

(
nUmber) (SOlid)
of tubes = e angle .

The whole number of tubes of *F emergent Over the entire sphere will be 47Te, in
conformity with Faraday's picture of tubes of force.
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Field of a point-charge in
motion

Box 4.3 DUALITY OF 2-FORMS IN SPACETIME

Given a general 2:.form (containing six exterior or wedge products)

F = Exdx /\ dt + E"dy /\ dt + ... + Bzdx /\ dy,

one gets to its dual ("perpendicular") by the prescription

*F = -Bxdx /\ dt - ... + E"dz /\ dx + Ezdx /\ dy.

Duality Rotations

Note that the dual of the dual is the negative of the original 2-form; thus

**F = -Exdx /\ dt - ... -Bzdx /\ dy = -F.

In this sense * has the same property as the imaginary number i: ** = ii = -1.
Thus one can write

e*'" = cos a + *sin a.

This operation, applied to F, carries attention from the generic 2-form in its simplest
representation (see exercise 4.1)

F = Exdx /\ dt + Bxdy /\ dz

to another "duality rotated electromagnetic field"

e*"'F = (Ex cos a - Bx sin a) dx /\ dt + (Bx cos a + Ex sin a) dy /\ dz.

If the original field satisfied Maxwell's empty-space field equations, so does the new
field. With suitable choice of the "complexion" a, one can annul one of the two
wedge products at any chosen point in spacetime and have for the other

How can one determine the structure of tubes associated with a charged particle
moving at a uniform velocity? First express *F in rectangular coordinates moving
with the particle (barred coordinates in this comoving "rocket" frame of reference;
unbarred coordinates will be used later for a laboratory frame of reference). The
relevant steps can be listed:

(a)

*F = e sin BdB /\ dip = -e(d cos B) /\ dip;
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(b)
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Figure 4.5.
The field of 2-fonns Maxwell = of = e sin (J dO 1\ d<P that
describes the electromagnetic field of a charge e at rest at the
origin. This picture is actually the intersection of of with a
3-surface of constant time t; i.e., the time direction is sup­
pressed from the picture.

(c)

fP = arctan ~ ;
x

_ xdy- Jdx
dfP= 22'

x +Y

- z
COS() =-;

r

(d) combine to find

-d(cosB) = -!!T +~ (xdx+ Jdy+ TdZ);
r r

*F = (e/r 3)(xdy /\ dT + Jeff /\ dx + Tdx /\ dy) (4.18)

(electromagnetic field of point charge in a comoving Cartesian system; spherically
symmetric). Now transform to laboratory coordinates:

velocity parameter a

velocity /3 = tanh a

1
---;::====:::;: = cosh a,VI - /32

/3 = sinh a
VI - /32

(a)

(b)

[
t = t cosh a - x sinh a,
~ = - t si~ a + x cosh a,
Y =y z = z;

r = [(x cosh a - t sinh a)2 + y2 + z2jl/2;

(c) *F = (e/r 3)[(x cosh a - t sinh a) dy /\ dz + Y dz /\
(cosh a dx - sinh a dt) + z(cosh a dx - sinh a dt) /\ ~vl; (4.19)
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(d) compare with the general dual 2-form,

~=~~A~+~~A~+~~A~

+ Bz dt A dx + Bv dt A dy + Bz dt Adz;

and get the desired individual field components

(e)

(

Er = (e/r3)(x cosh a - t sinh a),

Ev = (e/r 3)y cosh cr,
Ez = (e/r 3)z cosh a,

Br = 0,
By = -(e/r3 )z sinh cr,
Bz = (e/r3)y sinh 0:.

(420)

One can verify that the invariants

B2 _ E2 = 1 F px/3
2 a/3 '

1 .
E· B = -F *Fa/34 a/3

(4.21 )

(4.22)

How an acceleration causes
radiation

have the same value in the laboratory frame as in the rocket frame, as required.
Note that the honeycomb structure of the differential form is not changed when
one goes from the rocket frame to the laboratory frame. What changes is only the
mathematical formula that describes it.

§4.4. RADIATION FIELDS

The Maxwell structure of tubes associated with a charge in uniform motion is more
remarkable than it may seem at first sight, and not only because of the Lorentz
contraction of the tubes in the direction of motion. The tubes arbitrarily far away
move on in military step with the charge on which they center, despite the fact that
there is no time for information "emitted" from the charge "right now" to get to
the faraway tube "right now." The structure of the faraway tubes "right now" must
therefore derive from the charge at an earlier moment on its uniform-motion,
straight-line trajectory. This circumstance shows up nowhere more clearly than in
what happens to the field in consequence of a sudden change, in a short time ,,'h,
from one uniform velocity to another uniform velocity (Figure 4.6). The tubes have
the standard patterns for the two states of motion, one pattern within a sphere of
radius r, the other outside that sphere, where r is equal to the lapse of time ("cm
of light-travel time") since the acceleration took place. The necessity for the two
patterns to fit together in the intervening zone, of thickness ..dr = ..dr, forces the field
there to be multiplied up by a "stretching factor," proportional to r. This factor is
responsible for the well-known fact that radiative forces fall off inversely only as
the first power of the distance (Figure 4.6).

When the charge continuously changes its state of motion, the structure of the
electromagnetic field, though based on the same simple principles as those illustrated
in Figure 4.6, nevertheless looks more complex. The following is the Faraday 2-form
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Figure 4.6.
Mechanism ofradiation. J. J. Thomson's way to understand why the strength of an electromagnetic wave
falls only as the inverse first power of distance r and why the amplitude of the wave varies (for low
velocities) as sin (J (maximum in the plane perpendicular to the line of acceleration). The charge was
moving to the left at uniform velocity. Far away from it, the lines of force continue to move as if this
uniform velocity were going to continue forever (Coulomb field of point.charge in slow motion). However,
closer up the field is that of a point-change moving to the right with uniform velocity (1/r2 dependence
of strength upon distance). The change from the one field pattern to another is confined to a shell of
thickness .17 located at a distance r from the point of acceleration (amplification of field by "stretching
factor" r sin (J J/3/JT; see text). We thank C. Teitelboim for the construction of this diagram.

for the field of an electric dipole of magnitude PI oscillating up and down parallel Field of an oscillating dipole

to the z-axis:

F = Ex dx /\ dl + ... + Bx d)' /\ dz + ... = real part of {PIeiwr-iwt

(
1 iw ) . () ( 1 iw w

2
) cJ() /\ d[2 cos () -:-1 -? dr /\ dt + SIn -3 - ? - - r t

,.. r- r r- r
, ;' ,

gives E r

+ sin () (-~w _~) dr /\ r cJ()]}
r- r

gives B¢

gives E 9

(4.23)
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*F = -Bx dx /\ dt - ... + Ex dy /\ d= + ... = real part of {Pleiwr-iwt

[sin 0 ( - ~w - ~) dt /\ rsin 0 de>
r- r

gives B¢

+ 2 cos 0 C~ - ~~)r dO /\ r sin 0 dep
, I

gives E r

+ sin 0 (-1_ iw - ~)r sin 0 d<j> /\ dr]).
r3 r2 r

gives Eo

§4.5. MAXWELL'S EQUATIONS

(4.24)

The general 2-form F is written as a superposition of wedge products with a
factor ~,

F = 1- F dx/l /\ dx'
2 JlP '

(4.25)

because the typical term appears twice, once as Fz" dx /\ dy and the second time
as F"x dy /\ dx, with F"x = - Fz" and dy /\ dx = - dx /\ dy.

If differentiation ("taking the gradient"; the operator d) produced out of a scalar
a I-form, it is also true that differentiation (again the operator d, but now generally
known under Cartan's name of "exterior differentiation") produces a 2-form 'out
of the general I-form; and applied to a 2-form produces a 3-form; and applied to
a 3-form produces a 4-form, the form of the highest order that spacetime will
accommodate. Write the general.fform as

(4.26)

Taking exterior derivative

where the coefficient ep"I"Z"'''f' like the wedge product that follows it, is antisym­

metric under interchange of any two indices. Then the exterior derivative of t/J is

(4.27)

Take the exterior derivative of Faraday according to this rule and find that it
vanishes, not only for the special case of the dipole oscillator, but also for a general
electromagnetic field. Thus, in the coordinates appropriate for a local Lorentz frame,
one has
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dF = d(Ezdx /\ dt + ... + Bzdy /\ dz + ... )

(
aE aE aE aE)= __z dt + __z dx + __z dy + __z dz /\ dx /\ dt
at ax ay az

+ ... (5 more such sets of 4 terms each) ....
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(4.28)

Note that such a term as dy /\ dy /\ dz is automatically zero ("collapse of egg-crate
cell when stamped on"). Collect the terms that do not vanish and find

(
aB aB aB )dF = __z + __" + __z dx /\ dy /\ dz
ax ay az

(
aBz aEz aE,,)+ - + - - - dt /\ dy /\ dz
at ay az

(
aB" aEz aEz )+ - + - - - dt /\ dz /\ dx
at az ax

(
aB aE aE )+ __z + __" z dt /\ dx /\ dy.
at ax ay

Each term in this expression is familiar from Maxwell's equations

div B = V· B = 0

(4.29)

and
curlE = V xE=-B.

Each vanishes, and with their vanishing Faraday itself is seen to have zero exterior
derivative:

dF=O. (4.30)

In other words, "Faraday is a closed 2-form"; "the tubes of F nowhere come to Faraday structure: tubes
an end." nowhere end

A similar calculation gives for the exterior derivative of the dual2-form Maxwell
the result

d*F = d(-Bzdx /\ dt - '" + Ezdy /\ dz + ... )

(
aE aE aE)= __x + __" + __z dx /\ dy /\ dz
ax ay az

(
aEz aBz aB,,)+ - - - + - dt /\ dy /\ dz
at ay az

+ .. ,

= 417(p dx /\ dy /\ dz
- Jx dt /\ dy /\ dz
- J" dt /\ dz /\ dx
- Jz dt /\ dx /\ dy) = 4'ii *J;

d*F = 417 *J.

Maxwell structure: density
of tube endings given by

(4.31) charge-current 3-form
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Duality: the only place in
electromagnetism where
metric must enter

Closed 2-form contrasted
with general 2-form

In empty space this exterior derivative, too, vanishes; there Maxwell is a closed
2-form; the tubes of *F, like the tubes of F, nowhere come to an end.

In a region where charge is present, the situation changes. Tubes of Maxwell
take their origin in such a region. The density of endings is described by the 3-form
*J = charge, a "collection of eggcrate cells" collected along bundles of world lines.

The two equations

dF= 0

and

d*F=4'iT*J

summarize the entire content of Maxwell's equations in geometric language. The
forms F = Faraday, and *F = Maxwell, can be described in any coordinates one
pleases-or in a language (honeycomb and egg-crate structures) free of any reference
whatsoever to coordinates. Remarkably, neither equation makes any reference
whatsoever to metric. As Hermann Weyl was one of the most emphatic in stressing
(see also Chapters 8 and 9), the concepts of form and exterior derivative are metric­
free. Metric made an appearance only in one place, in the concept of duality
("perpendicularity") that carried attention from F to the dual structure *F

§4.6. EXTERIOR DERIVATIVE AND CLOSED FORMS

The words "honeycomb" and "egg crate" may have given some feeling for the
geometry that goes with electrodynamics. Now to spell out these concepts more
clearly and illustrate in geometric terms, with electrodynamics as subject matter,
what it means to speak of "exterior differentiation." Marching around a boundary,
yes; but how and why and with what consequences? It is helpful to return to functions
and I-forms, and see them and the 2-forms Faraday and Maxwell and the 3-form
charge as part of an ordered progression (see Box 4.4). Two-forms are seen in this
box to be of two kinds: (I) a special 2-form, known as a "closed" 2-form, which
has the property that as many tubes enter a closed 2-surface as emerge from it
(exterior derivative of2-form zero; no 3-form derivable from it other than the trivial
zero 3-form!); and (2) a general 2-form, which sends across a closed 2-surface a
non-zero net number of tubes, and therefore permits one to define a nontrivial3-form
("exterior derivative of the 2-form"), which has precisely as many egg-crate cells
in any closed 2-surface as the net number of tubes of the 2-form emerging from
that same closed 2-surface (generalization of Faraday's concept of tubes of force
to the world of spacetime, curved as well as flat).

(continued on page 120)
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Box 4.4 THE PROGRESSION OF FORMS AND EXTERIOR DERIVATIVES

O-Form or Scalar, f

An example in the context of 3-space and Newto­
nian physics is temperature, T(x,y, z), and in the
context of spacetime, a scalar potential, ep(t, x,y, z).

From Scalar to 1-Form

Take the gradient or "exterior derivative" of a
scalar fto obtain a special I-form, y = df Com­
ments: (a) Any additive constant included in f is
erased in the process of differentiation; the quan­
tity n in the diagram at the left is unknown and
irrelevant. (b) The I-form y is special in the sense
that surfaces in one region "mesh" with surfaces
in a neighboring region ("closed I-form"). (c) Line
integral f~ df is independent of path for any class
of paths equivalent to one another under continu­
ous deformation. (d) The I-form is a machine to
produce a number ("bongs of bell" as each succes­
sive integral surface is crossed) out of a displace­
ment (approximation to concept of a tangent
vector).

General 1-Form f3 = f3a dx a

This is a pattern of surfaces, as illustrated in the
diagram at the right; i.e., a machine to produce
a number ("bongs of bell"; <p, u» out of a vector.
A I-form has a reality and position in space inde­
pendent of all choice of coordinates. Surfaces do
not ordinarily mesh. Integral fp around indicated
closed loop does not give zero (""more bongs than
antibongs").

af3aFrom 1-Form to 2-Form ( = df3 = -- dx'" /\ dx a

ax'"
( is a pattern of honeycomb-like cells, with a di­
rection of circulation marked on each, so stationed

\ \
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Box 4.4 (continued)

4. ELECTROMAGNETISM AND DIFFERENTIAL FORMS

that the number of cells encompassed in the dotted
closed path is identical to the net contribution
(excess of bongs over antibongs) for the same path
in the diagram of P above. The "exterior deriva­
tive" is defined so this shall be so; the generalized
Stokes theorem codifies it. The word· "exterior"
comes from the fact that the path goes around the
periphery of the region under analysis. Thus the
2-form is a machine to get a number (number of
tubes, «, u /\ v» out of a bit of surface (u /\ v)
that has a sense of circulation indicated upon
it. The 2-form thus defined is special in this sense:
a rubber sheet "supported around its edges" by
the dotted curve or any other closed curve is
crossed by the same number of tubes when; (a)
it bulges up in the middle; (b) it is pushed down
in the middle; (c) it experiences any other continu­
ous deformation. The Faraday or 2-form F of
electromagnetism, always expressible as F = dA
(A = 4-potential, a I-form), also has always this
special property ("conservation of tubes").

O-Form to 1-Form to 2-Form? No!

Go from scalar f to I-form y = df The next step
to a 2-form a is vacuous. The net contribution of
the line integral fy around the dotted closed path
is automatically zero. To reproduce that zero result
requires a zero 2-form. Thus a = dy = ddf has
to be the zero 2-form. This result is a special in­
stance of the general result dd = O.

Again, this is a honeycomb-like structure, and
again a machine to get a number (number of
tubes, <U, u /\ v» out of a surface (u /\ v) that
has a sense of circulation indicated On it. It is
general in the sense that the honeycomb structures
in one region do not ordinarily mesh with those
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in a neighboring region. In consequence, a closed
2-surface, such as the box-like surface indicated
by dotted lines at the right, is ordinarily crossed
by a non-zero net number of tubes. The net num­
ber of tubes emerging from such a closed surface
is, however, exactly zero when the 2-forrn is the
exterior derivative of a I-form.
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From 2-Form to 3-Form JJ = dq = oO'la,81 dxY 1\ dx a 1\ dx,8,
oxY

where dxY 1\ dx a 1\ dx,8 =3! dx[Y ® dxa ® dx,8l

This egg-crate type of structure is a machine to
get a number (number of cells (p, U 1\ v 1\ w»
from a volume (volume U 1\ v 1\ w within which
one counts the cells). A more complete diagram
would provide each cell and the volume of inte­
gration itself with an indicator of orientation
(analogous to the arrow of circulation shown for
cells of the 2-form). The contribution of a given
cell to the count of cells is + I or -I, according
as the orientation indicators have same sense or
opposite sense. The number of egg-crate cells of
p = dq in any given volume (such as the volume
indicated by the dotted lines) is tailored to give
precisely the same number as the net number of
tubes of the 2-form q (diagram above) that emerge
from that volume (generalized Stokes theorem).
For electromagnetism, the exterior derivative of
Faraday or 2-form F gives a null 3-form, but the
exterior derivative of Maxwell or 2-form *F gives
4'1T times the 3-form *J of charge:

*J = p dx 1\ dy 1\ dz - Jz dt 1\ dy 1\ dz
- Jv dt 1\ dz 1\ dx - Jz dt 1\ dx 1\ dy.
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Box 4.4 (continued)
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From 1-Form to 2-Form to 3-Form? No!

Starting with a I-form (electromagnetic 4-potential), construct its exterior deriva­
tive. the 2-form F = dA (Faraday). The tubes in this honeycomb-like structure never
end. So the number of tube endings in any elementary volume, and with it the 3-form
dF = ddA, is automatically zero. This is another example of the general result that
dd =0.

From 2-Form to 3-Form to 4-Form? No!

Starting with 2-form *F (Maxwell), construct its exterior derivative, the 3-form
4'17 *J. The cells in this egg-crate type of structure extend in a fourth dimension
("hypertube"). The number of these hypertubes that end in any elementary 4-vol­
ume, and with it the 4-form

d(4'17 *J) = dd*F,

is automatically zero, still another example of the general result that dd = O. This
result says that

(
ap aJ aJ aJ )

d *J = - + _z + _/I + _z dt 1\ dx 1\ dy 1\ dz = 0
at ax ay az

("law of conservation of charge"). Note:

This implies dt 1\ dx 1\ dy 1\ dz = c.

From 3-Form to 4-Form T = dJJ = oV 1a,8YI dx~ /\ dx a /\ dx,8 /\ dxY
OX~

This four-dimensional "super-egg-crate" type structure is a machine to get a number
(number of cells, (7, n 1\ u 1\ v 1\ w» from a 4-volume n 1\ u 1\ v 1\ w.
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From 4-Form to 5-Form? No!
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Spacetime, being four-dimensional, cannot accommodate five-dimensional egg-crate
structures. At least two of the dxll's in

dx" 1\ dx/3 1\ dxY 1\ dx 8 1\ dx'

must be the same; so, by antisymmetry of" 1\," this "basis 5-form" must vanish.

Results of Exterior Differentiation, Summarized

O-form
I-form
2-form
3-form
4-form
5-form?

f
df

ddf=O

No!

A

F= dA

dF = ddA =0
*F

4'17 *J = d*F
d(4'17 *J) = dd*F =0 "

T = dtI

dT=O
P

dp =0

New Forms from Old by Taking Dual (see exercise 3.14)

Dual of scalar f is 4-form: *f = f dxo 1\ dx1 1\ dx2 1\ dx3 = fe.

Dual of I-form J is 3-form: *J = JO dx1 1\ dx2 1\ dx3 - jl dx2 1\ dx3 1\ dxo

+ j2 dx3 1\ dxo 1\ dx1 - J3 dxo 1\ dx 1 1\ dx2 .

Dual of 2-form F is 2-form: *F = FI"/3l f dx ll 1\ dxV where
"/3lllv l '

F"/3 = l)"Al)/3 8FA8 •

Dual of 3-form K is I-form: *K = K012 dx3 - K123 dxo + K230 dx 1 - K301 dx2,

where K,,/3Y = l)"~/3vl)YAKIlVA'

Dual of 4-form L is a scalar: L = L 0123 dxo 1\ dx1 1\ dx2 1\ dx3 ;

*L = L0123 = -L0123'

Note I: This concept of duality between one form and another is to be distinguished
from the concept of duality between the vector basis e" and the Ijorm basis w"
of a given frame. The two types of duality have nothing whatsoever to do with each
other!
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Box 4.4 (continued)
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Note 2: In spacetime, the operation of taking the dual, applied twice, leads back
to the original form for forms of odd order, and to the negative thereof for forms
of even order. In Euclidean 3-space the operation reproduces the original form,
regardless of its order.

Duality Plus Exterior Differentiation

Start with scalar cf;. Its gradient dcf; is a I-form. Take its dual, to get the 3-forrn *dcf;.
Take its exterior derivative, to get the 4-form d *dcf;. Take its dual, to get the scalar
Dcf; = -*d *dcf;. Verify by index manipulations that D as defined here is the
wave operator; i.e., in any Lorentz frame, Dcf; = cf;,<>'<> = -(a2cf;/at2) + V 2cf;.

Start with 110rm A. Get 2-form F = dA. Take its dual *F = *dA, also a 2-form.
Take its exterior derivative, obtaining the 3-form d*F (has value 4'17 *J in electro­
magnetism). Take its dual, obtaining the I-form *d*F = *d*dA = 4'17J ("Wave
equation for electromagnetic 4-potential"). Reduce in index notation to

F ,v =A ,v - A ,v = 4'17J .
JI." ",JI. JI.," JI.

[More in Flanders (1963) or Misner and Wheeler (1957); see also exercise 3.17.]

§4.7. DISTANT ACTION FROM LOCAL LAW

Differential forms are a powerful tool in electromagnetic theory, but full power
requires mastery of other tools as well. Action-at-a-distance techniques ("Green's
functions," "propagators") are of special importance. Moreover, the passage from
Maxwell field equations to electromagnetic action at a distance provides a preview
of how Einstein's local equations will reproduce (approximately) Newton's l/r2 law.

In flat spacetime and in a Lorentz coordinate system, express the coordinates of
particle A as a function of its proper time a, thus:

d2a ll
_ "Il( )da 2 - a a. (4.32)

Dirac found it helpful to express the distribution of charge and current for a particle
of charge e following such a motion as a superposition of charges that momentarily



flash into existence and then flash out of existence. Any such flash has a localization
in space and time that can be written as the product of four Dirac delta functions
[see, for example, Schwartz (1950-1951), Lighthill (1958)]:

84(X Il - all) = 8[xO - dl(a)] 8[x1 - a1(a)] 8[x2 - a2(a)] 8[x3 - a3(a)]. (4.33)
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World line of charge
regarded as succession of
flash-on, flash-off charges

(4.34)

Here any single Dirac function 8(x) ("symbolic function"; "distribution"; "limit of
a Gauss error function" as width is made indefinitely narrow and peak indefinitely
high, with integrated value always unity) both (1) vanishes for x f:. 0, and (2) has
the integral J:: 8(x) dx = 1. Described in these terms, the density-current vector
for the particle has the value ("superposition of flashes")

Jil = ef 84 [x" - a"(a)]all(a) da.

The density-current (4.34) drives the electromagnetic field, F. Write F = dA to
satisfy automatically half of Maxwell's equations (dF = ddA =0):

(4.35)

In flat space, the remainder of Maxwell's equations (d*F = 4'1T *J) become

or

(4.36)

Make use of the freedom that exists in the choice of 4-potentials A" to demand

aA"-=0
ax"

(Lorentz gauge condition; see exercise 3.17). Thus get

(4.37)

(4.38) The electromagnetic wave
equation

The density-current being the superposition of "flashes," the effect (A) of this
density-current can be expressed as the superposition of the effects E of elementary
flashes; thus

AIl(X) =f E[x - a(a)]all(a) da, (4.39) The solution of the wave
equation

where the "elementary effect" E ("kernel"; "Green's function") satisfies the equation

DE(x) = -4'1T 84(x).

One solution is the "half-advanced-plus-half-retarded potential,"

(4.40)

(4.41)
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It vanishes everywhere except on the backward and forward light cones, where it
has equal strength. Normally more useful is the retarded solution,

R(x) = {~E(X) if XO > 0,
if XO < 0,

(4.42)

EXERCISES

which is obtained by doubling (4.41) in the region of the forward light cone and

nullifying it in the region of the backward light cone. All electrodynamics (Coulomb
forces, Ampere's law, electromagnetic induction, radiation) follows from the simple

expression (4.39) for the vector potential [see, e.g., Wheeler and Feynman (1945)

and (1949), also Rohrlich (1965)].

Exercise 4.1. GENERIC LOCAL ELECTROMAGNETIC FIELD
EXPRESSED IN SIMPLEST FORM

In the laboratory Lorentz frame, the electric field is E, the magnetic field B. Special cases
are: (I) pure electric field (B = 0); (2) pure magnetic field (E = 0); and (3) "radiation field"
or "null field" (E and B equal in magnitude and perpendicular in direction). All cases other
than (I), (2), and (3) are "generic." In the generic case, calculate the Poynting density of
flow of energy E X B/4" and the density of energy (E2 + B2)/S". Define the direction of
a unit vector n and the magnitude of a velocity parameter a by the ratio of energy flow
to energy density:

2E X B
n tanh 2a = E2 + B2 .

View the same electromagnetic field in a rocket frame moving in the direction of n with
the velocity parameter a (not 2a; factor 2 comes in because energy flow and energy density
are components, not of a vector, but of a tensor). By employing the formulas for a Lorentz
transformation (equation 3.23), or otherwise, show that the energy flux vanishes in the rocket
frame, with the consequence that E and B are parallel. No one can prevent the z-axis from
being put in the direction common to E and B. Show that with this choice of direction,
Faraday becomes

(only two wedge products needed to represent the generic local field; "canonical representa­
tion"; valid in one frame, valid in any frame).

Exercise 4.2. FREEDOM OF CHOICE OF 1-FORMS IN CANONICAL
REPRESENTATION OF GENERIC LOCAL FIELD

Deal with a region so small that the variation of the field from place to place can be neglected.
Write Faraday in canonical representation in the form

where PA (A = I or II) and qA are scalar functions of position in spacetime. Define a
"canonical transformation" to new scalar functions of position PA and qA by way of the
"equation of transformation"
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v=df
("curl-free")

v= hdf
("rotation-free") (has rotation)

Figure 4.7.
Some simple types of I-forms compared and contrasted.

where the "generating function" S of the transformation is an arbitrary function of the qA
and the qA:

(a) Derive expressions for the two PA'S and the two p;r's in terms of S by equating
coefficients of dqI, dqIl, dqT. dqlT individually on the two sides of the equation of trans­
formation.

(b) Use these expressions for the PA's and pis to show that F = dPA /\ dqA and F=
dpA. /\ dqA, ostensibly different, are actually expressions for one and the same 2-form in
terms of alternative sets of I-forms.

Exercise 4.3. A CLOSED OR CURL-FREE 1-FORM IS A GRADIENT

Given a I-form u such that du = 0, show that u can be expressed in the form u = df,
wherefis some scalar. The I-form u is said to be "curl-free," a narrower category of I-form
than the "rotation-free" I-form of the next exercise (expressible as u = h df), and it in turn
is narrower (see Figure 4.7) than the category of "I-forms with rotation" (not expressible
in the form u = h df). When the I-form u is expressed in terms of basis I-forms dx a ,

multiplied by corresponding components Ga , show that "curl-free" implies G[a,13l = O.

Exercise 4.4. CANONICAL EXPRESSION FOR A ROTATION-FREE 1-FORM

In three dimensions a rigid body turning with angular velocity w about the z-axis has
components of velocity vy= wx, and vr = -wy. The quantity curl v = V X v has z-com­
ponent equal to 2w, and all other components equal to zero. Thus the scalar product of v
and curl I' vanishes:

The same concept generalizes to four dimensions,

and lends itself to expression in coordinate-free language, as the requirement that a certain
3-form must vanish:

dv /\ v = O.
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Any I-form v satisfying this condition is said to be "rotation-free." Show that a I-form is
rotation-free if and only if it can be written in the form

v = h df,

where hand f are scalar functions of position (the "Frobenius theorem").

Exercise 4.5. FORMS ENDOWED WITH POLAR SINGULARITIES

List the principal results on how such forms are representable, such as

and the conditions under which each applies [for the meaning and answer to this exercise,
see Lascoux (1968)].

Exercise 4.6. THE FIELD OF THE OSCILLATING DIPOLE

Verify that the expressions given for the electromagnetic field of an oscillating dipole in
equations (4.23) and (4.24) satisfy dF = 0 everywhere and d*F = 0 everywhere except at
the origin.

Exercise 4.7. THE 2-FORM MACHINERY TRANSLATED
INTO TENSOR MACHINERY

This exercise is stated at the end of the legend caption of Figure 4.1.

Exercise 4.8. PANCAKING THE COULOMB FIELD

Figure 4.5 shows a spacelike slice, t = const, through the Maxwell of a point-charge at rest.
By the following pictorial steps, verify that the electric-field lines get compressed into the
transverse direction when viewed from a moving Lorentz frame: (I) Draw a picture of an
equatorial slice (8 = ?T/2; t, r, cf> variable) through Maxwell = *F. (2) Draw various space­
like slices, corresponding to constant time in various Lorentz frames, through the result­
ant geometric structure. (3) Interpret the intersection of Maxwell = *F with each Lorentz
slice in the manner of Figure 4.3.

Exercise 4.9. COMPUTATION OF SURFACE INTEGRALS

In Box 4.1 the definition

fa = f···f (a, ;0 A ... A ;~) d'A1 ... d'AP

is given for the integral of a p-form a over a p-surface P('A 1, ••• ,'A P) in n-dimensional space.
From this show that the following computational rule (also given in Box 4.1) works: (I)
substitute the equation for the surface,

into a and collect terms in the form

(2) integrate

fa = f··.f a('A1, ... ,'AP)d'A1 ... d'A P

using the elementary definition of integration.



Exercise 4.10. WHITAKER'S CALUMOID, OR, THE LIFE OF A LOOP

Take a closed loop, bounding a 2-dimensional surface S. It entraps a certain flux of Faraday
tPF :::: IsF ("magnetic tubes") and a certain flux of Maxwell tPM :::: Is*F ("electric tubes").

(a) Show that the fluxes tPF and tPM depend only on the choice of loop, and not on the
choice of the surface S bounded by the loop, if and only if dF :::: d*F :::: 0 (no magnetic
charge; no electric charge). Hint: use generalized Stokes theorem, Boxes 4.1 and 4.6.

(b) Move the loop in space and time so that it continues to entrap the same two fluxes.
Move it forward a little more here, a little less there, so that it continues to do so. In this
way trace out a 2-dimensional surface ("calumoid"; see E. T. Whitaker 1904) '3' :::: '3'(a, b);
xIJ. :::: xIJ.(a, b). Show that the elementary bivector in this surface, E :::: 0'3'loa /\ 0'3'lob
satisfies (F, E) :::: 0 and (*F, E) :::: O.

(c) Show that these differential equations for xIJ.(a, b) can possess a solution, with given
initial condition xIJ. :::: xIJ.(a,O) for the initial location of the loop, if dF :::: 0 and d*F :::: 0
(no magnetic charge, no electric charge).

(d) Consider a static, uniform electric field F:::: -Ex dt /\ dx. Solve the equations,
(F, E) :::: 0 and (*F, E) :::: 0 to find the equation '3'(a, b) for the most general calumoid.
[Answer: y :::: y(a), z:::: z(a), x:::: x(b), t:::: t(b).] Exhibit two special cases: (i) a calumoid
that lies entirely in a hypersurface of constant time [loop moves at infinite velocity; analogous
to super-light velocity of point of crossing for two blades of a pair of scissors]; (ii) a calumoid
whose loop remains forever at rest in the t, x, y, z Lorentz frame.
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Exercise 4.11. DIFFERENTIAL FORMS AND HAMILTONIAN MECHANICS

Consider a dynamic system endowed with two degrees of freedom. For the definition of
this system as a Hamiltonian system (special case: here the Hamiltonian is independent of
time), one needs (I) a definition of canonical variables (see Box 4.5) and (2) a knowledge
of the Hamiltonian H as a function of the coordinates ql, q2 and the canonically conjugate
momenta Pl' P2' To derive the laws of mechanics, consider the five-dimensional space of
Pl, P2' ql, q2, and t, and a curve in this space leading from starting values of the five
coordinates (subscript A) to final values (subscript B), and the value

B B

1:::: f Pl dql + P2 d q 2 - H(p, q) dt :::: f W
A A

of the integral 1 taken along this path. The difference of the integral for two "neigh­
boring" paths enclosing a two-dimensional region S, according to the theorem of Stokes
(Boxes 4.1 and 4.6), is

81:::: ¢.w :::: f dw.
s

The principle of least action (principle of "extremal history") states that the representative
point of the system must travel along a route in the five-dimensional manifold (route with
tangent vector d'3' Idt) such that the variation vanishes for this path: i.e.,

dW(. .. ,d'3'Idt) :::: 0

(2-form dw with a single vector argument supplied, and other slot left unfilled, gives the
I-form in 5-space that must vanish). This fixes only the direction of d!i'ldt; its magnitude
can be normalized by requiring (dt, ti':Pjdt) :::: 1.

(a) Evaluate dw from the expression w :::: Pi dqi - H dt.
(b) Set ti'.i'/dt:::: qJ(o'3'loqi) + N0'3'loPi) + l(o':Plot), and expand dw(... ,d'3'ldt):::: 0 in

terms of the basis {dpi' dqk, dt}.
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Box 4.5 METRIC STRUCTURE AND HAMILTONIAN OR "SYMPLECTIC STRUCTURE"
COMPARED AND CONTRASTED

I. Physical application

Metric structure

Geometry of spacetime

Symplectic
structure

Hamiltonian mechanics

2. Canonical structure (... ' ...) = '"ds2" = -dt ® dt e = dpl 1\ dql + dP2 1\ dq2
+dx®dx+dv®dl'
+ dz ® d: • .

3. Nature of "metric"

4. Name for given coordinate
system and any other set of
four coordinates in which
metric has same form

5. Field equation for this metric

6. The four-dimensional manifold

7. Coordinate-free description of
the structure of this manifold

8. Canonical coordinates
distinguished from other
coordinates (allowable but
less simple)

Symmetric

Lorentz coordinate system

R~,a{J = 0 (zero Riemann
curvature; flat spacetime)

Spacetime

Riemann = 0

Make metric take above form
(item 2)

Antisymmetric

System of "canonically" (or
"dynamically") conjugate
coordinates

de = 0 ('"closed 2-form";
condition automatically
satisfied by expression above).

Phase space

Make metric take above form
(item 2)

(c) Show that this five-dimensional equation can be written in the 4-dimensional phase
space of {qi,pd as

e(. .. , d'3' j dt) = dH,

where e is the 2-form defined in Box 4.5.
(d) Show that the components of'e( . .. , d'3' jdt) = dH in the {qi,Pk} coordinate system

are the familiar Hamilton equations. Note that this conclusion depends only on the form
assumed for e, so that one also obtains the standard Hamilton equations in any other
phase-space coordinates {iii, jid ("canonical variables") for which

Exercise 4.12. SYMMETRY OPERATIONS AS TENSORS

We define the meaning of square and round brackets enclosing a set of indices as follows:
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Box 4.6 BIRTH OF STOKES' THEOREM

127

Central to the mathematical formulation of electromagnetism are the theorems of
Gauss (taken up in Chapter 5) and Stokes. Both today appear together as one unity
when expressed in the language of forms. In earlier times the unity was not evident.
Everitt (1970) recalls the history of Stokes' theorem: "The Smith's Prize paper set
by [G. C.] Stokes [Lucasian Professor of Mathematics] and taken by Maxwell in
[February] 1854 ...

5. Given the centre and two points of an ellipse, and the length of the major axis,
find its direction by a geometrical construction.

6. Integrate the differential equation

(a2 _ x2) dy 2 + 2xydydx + (a2 _ y2) dx2 = O.

Has it a singular solution?
7. In a double system of curves of double curvature, a tangent is always drawn at

the variable point P; shew that, as P moves away from an arbitrary fixed point Q,
it must begin to move along a generating line of an elliptic cone having Q for vertex
in order that consecutive tangents may ultimately intersect, but that the conditions
of the problem may be impossible.

8. If X, Y, Z be functions of the rectangular co-ordinates x, y, z, dS an element
of any limited surface, I, m, n the cosines of the inclinations of the normal at dS to
the axes, dsan element of the bounding line, shew that

f.J{ /(dZ _ dY) + m(dX _ dZ) + n(dY _ dX)}dS
dy dz dz dx dx dy

f( dx dy dZ)= X ds + Y ds + Z ds ds,

the differential coefficients of X, Y, Z being partial, and the single integral being taken
all round the perimeter of the surface

marks the first appearance in print of the formula connecting line and surface
integrals now known as Stokes' theorem. This was of great importance to Maxwell's
development of electromagnetic theory. The earliest explicit proof of the theorem
appears to be that given in a letter from Thomson to Stokes dated July 2, 1850."
[Quoted in Campbell and Garnett (1882), pp. 186-187.]
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=

Here the sum is taken over all permutations 'IT of the numbers I, 2, ... , p, and (- I)"" is
+ I or - I depending on whether the permutation is even or odd. The quantity V may have
other indices, not shown here, besides the set of p indices aI' a 2, ... ,ap' but only this set
of indices is affected by the operations described here. The numbers "I' 'lT2, . •. , 'lTp are the
numbers 1,2, ... ,p rearranged according to the permutation ". (Casesp = 2,3 were treated
in exercise 3.12.) We therefore have machinery to convert any rank-p tensor with components
Va1 .•.a • into a new tensor with components

Since this machinery Alt is linear, it can be viewed as a tensor which, given suitable argu­
ments u, v, ... , w, a, {J, ... , y produces a number

(a) Show that the components of this tensor are

(Note: indices of {) are
almost never raised or
lowered, so this notation
leads to no confusion.)

where

1

+ I ~f (a l , ,ap) !s an even permuta~ion of ({31' , {3p),
-I If (a l , , ap) IS an odd perrnutatlOn of ({31> , {3p),

{)K·:.p~ = 0 if (i) any two of the a's are the same,
oif (ii) any two of the {3's are the same,
oif (iii) the a's and {3's are different sets of integers.

Note that the demonstration, and therefore these component values, are correct in any
frame.

(b) Show for any "alternating" (Le., "completely antisymmetric") tensor Aa,...a. = A[al...ap]
that

'" A {)a, ...a.p,...Pq

L..J Q't'··Q'p y1···-········· Yp+q
Q't<Q2<"'<O:p

= A {)a, a.p, Pq
- la, a.1 y, y.+q.

The final line here introduces the convention that a summation over indices enclosed between
vertical bars includes only terms with those indices iil increasing order. Show, consequently
or similarly, that .

(c) Define the exterior ("wedge") product of any two alternating tensors by

and similarly



Show that this implies equation (3.45b). Establish the associative law for this product rule
by showing that
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[(a /\ (J) /\ Y]I1,...l1o+o+'

- 8A, A"Jl,..·/LOV''''V-a f3 Y
- 11, 110+0+' IA,,,.A.I I/L,·.. /Lol Iv,,,.v,1

=[a /\ ({J /\ Y)]I1, ... l1o+q+,;
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and show that this reduces to the 3-form version of Equation (3.45c) when a, (J, and yare
all I-forms.

(d) Derive the following formula for the components of the exterior product of p vectors

(U1 /\ u 2 /\ ... /\ up)Q',,·Q, = 8~~.:;Q'(U1)/L (up)"

=p!U1[Q'U2
Q2 up

Q
• 1

= 8Q'Q2...Q, det [(u,y].
1 2 ". P ~
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Einstein's equation says that energy is the curvature of space. What does this mean? 
In terms of the above pictures, it can be expressed as: 
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for each unit timelike vector v. (And that's it!)  

How To Use This Paper 

I hope that both people new to and people familiar with general relativity will read this 
paper. The section on preliminaries is intended primarily for those new to general 
relativity; I hope that physical intuition will carry people most of the way through that 
section, but mathematicians may find it useful to know that the four-dimensional space-
time metric has signature -+++. The section on comparisons with other formulations and 
the appendices are intended primarily for those already familiar with general relativity; I 
hope that these people will appreciate the novelties of this approach.  



Preliminaries 

The background to this is that general relativity treats space-time as a four-dimensional 
manifold with a metric and an energy tensor. Since space-times are four-dimensional, 
space-time diagrams conventionally omit one dimension.  

It is the metric which makes the pictures and the right hand side of Einstein's equation 
meaningful. The metric determines (among other things) the possible paths of light rays, 
and these form a light cone. The vectors which point outside the light cone are called 
spacelike; the vectors on the light cone are called null. The vectors which point inside the 
light cone are called timelike; they represent the possible directions of inertial observers, 
and are often identified with observers. (This is treated in more detail in chapter 6 of 
Taylor and Wheeler's Spacetime Physics.)  

The metric also determines distances and lengths of curves. A geodesic is a locally 
straightest path, a path γ0 such that for any continuous variation of curves γu, the 
derivative (d/du)(length of γu) vanishes at u=0. Note that any vector can be followed into 
a geodesic path, as indicated in the third picture for Einstein's equation.  

With the notion of distance comes a notion of volume:  there is a unique volume function 
such that, for all sufficiently small r and all points p, (4/3)π(r3-r4) < V(B(p,r)) < 
(4/3)π(r3+r4), where B(p,r) is the ball of radius r around p. (This is proved in the 
appendix.)  In fact these volumes do not deviate from Euclidean volumes at the r4 level at 
all, and the r5 deviation from Euclidean volume (as on the right hand side of Einstein's 
equation) measures the curvature of the manifold at the point p. However, these r4 
inequalities are strict enough to give a procedure for estimating volumes to within an 
arbitrarily small factor of 1±ε: simply divide the region into countably many balls of 
radius at most ε and sum their Euclidean volumes.  

It is the energy tensor which makes the left-hand side of the equation meaningful. This 
concept of "energy density in the direction of v" or "local energy as measured by the 
observer v" is best illustrated by examples. In a vacuum, the energy in any direction is 
always 0. An electromagnetic field has total energy (E · E - B · B)/8π where E and B are 
the vectors for the electric and magnetic fields as measured by the observer v. A perfect 



fluid is observed by v to have energy (ρ + P)(u · v)2 - P, where ρ is the density of the 
fluid, P is its pressure, and u is its direction.  

Having this at hand makes it possible to go through an example of Einstein's equation in 
detail; this may in particular help clarify the dimensionality of the vector spaces and 
manifolds. Consider Minkowsi space (the space-time of special relativity), coordinatized 
as (x,y,z,t). Also consider an observer at the origin moving in the t-direction. For this 
observer, the spacelike vectors are all the vectors which have no t-component. The 
geodesics form the 3-d hypersurface t=0. The ball of radius r is all points (x,y,z,0) with x2 
+ y2 + z2 < r2, and it has volume exactly (4/3)πr3. Hence the curvature of the hypersurface 
is 0, as it should be since Minkowski space is a vacuum.  

Comparisons with the usual statement of Einstein’s equation 

The statement of Einstein's equation here makes precise "energy is the curvature of 
space", while the usual statement makes precise "energy-momentum is the curvature of 
space-time". The right hand side of the statement here gives the scalar curvature of the 
indicated hypersurface, and that hypersurface is the natural "space" associated to the 
given observer. 

It is possible to do calculations that are guided by these pictures rather than by the 
standard Christoffel symbols or differential forms. The key is to coordinatize several 
things and represent them as power series in the distance from the initial point: first the 
geodesics from that point, then the metric of the resulting hypersurface, then the volumes 
of the geodesic balls in it. The curvature is proportional to the r5 term in the power series 
for the volume. Even if the metric is only C3 and not analytic, there are enough 
meaningful terms in these power series to allow this calculation of the curvature. I have 
used these techniques to rederive the Schwarzschild and Robertson-Walker solutions in 
this format. Unfortunately, the calculations by this method require calculations much 
longer than the usual ones, even when all of them are automated in Mathematica. 

This statement of Einstein's equation is equivalent to the usual one. (Indeed, it is very 
close to the statement of Einstein's equation given by Misner, Thorne, and Wheeler on p. 
515.) Unfortunately, while the usual statement is clean, and these pictures are clean, 
proving the equivalence of the two is somewhat messy. The following is a sketch of a 
proof in three steps, using geometrized units c=G=1.  

• First, the usual statement 8πTab = Gab is equivalent to the claim that 8πTab va vb = 
Gab va vb for all unit timelike vectors v (where Tab va vb is what is referred to 
above as the energy density in the inertial frame of v). This equivalence is a 
matter of linear algebra, using the facts that T and G are symmetric tensors and 
that the unit timelike vectors from a spanning set for the space of all tangent 
vectors. 

• Second, Gab va vb is half the scalar curvature of the indicated hypersurface; this is 
a special case of the Gauss-Codazzi equations without the terms for extrinsic 
curvature, because the extrinsic curvature of the hypersurface vanishes at p. These 



equations are discussed in Wald, sec. 10.2, and the appendix proves the vanishing 
of the extrinsic curvature can also be proved using the machinery of that section. 

• Third, the scalar curvature of the hypersurface is given by the limit of (15/r2)(1- 
V(r)/VEuc(r)) as r goes to 0; for this, see Cartan, sec. 234.  

Conclusion 

Two advantages of this presentation of Einstein's equation may be obvious:  

• It is very pictorial. 
• It requires much less of the standard mathematical apparatus: no curvature tensors 

(almost no tensors at all), and no parallel transport / derivative operators / affine 
connections.  

Let me also call attention to a few advantages which may not be obvious.  

• It may be easier to appraise the standard presentation of Einstein's equation given 
another presentation as different as this one; the standard presentation may seem 
less geometrically compelling but computationally not so bad by comparison. 
(For another alternative presentation, see Baez.) 

• This presentation brings the geometry of general relativity closer to the ideal of a 
synthetic differential geometry set out by Herbert Busemann. (That was some of 
my inspiration for this project.) 

• Most optimistically, this presentation of Einstein's equation (or slight variants) 
may be meaningful in physical theories which do not treat space-time as a 4-
dimensional Lorentzian manifold. 

In any case, I will be happy if this helps people to understand Einstein's equation, or 
gives pleasure to those who already do.  
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Appendix on Riemannian volumes 

Let B(p,r) be the ball of radius r around p. Then the precise claim is:  

For any compact Riemannian manifold, the usual volume is the unique countably 
additive measure such that for all sufficiently small r and all points p, 
(4/3)π(r3-r4) < V(B(p,r)) < (4/3)π(r3-r4). 
  
Proof of existence: By the result of Cartan, the limit as r approaches 0 of 
(15/r2)(1 - V(B(p,r))/(4/3)πr3) is equal to the curvature of the manifold at p; 
in particular it exists and is finite. Hence f(p,r)=[V(B(p,r)) - (4/3)πr3] / [(4/3)πr4] is a 
continuous function of p and r which is 0 when r is 0. Since the manifold is compact, 
there is some δ such that for all r<δ, |f(p,r)|<1; this yields the claimed inequality.  

Proof of uniqueness: Say V and V' are both volume functions satisfying the above 
inequalities. Then, for any S and any ε, we can cover S by countably many balls of radius 
at most min(δ,ε) with non-overlapping interiors. The boundaries of these balls will be of 
measure 0 according to both V and V'. Hence V(S) is the sum of V of the balls, and 
likewise for V'. For each ball B, V(B) and V'(B) both differ from Euclidean volume by 
within a factor of 1±ε, so V(B) and V'(B) differ from each other by within a factor of 
(1±ε)2. Hence V(S) and V'(S) differ from each other by within a factor of (1±ε)2 for each 
ε, and so V(S)=V'(S). QED.  

Appendix on the curvature of the hypersurface 

This uses abstract index notation and several results from Wald.  Let v be the original 
timelike vector at P, and let H be the corresponding spacelike hypersurface. Let na be a 
vector field (including v) of unit normals to H, and extend it beyond H in such a way that 
its integral curves are unit geodesics; this is useful in defining the extrinsic curvature Kab. 
 
Wald defines Kab as∇a nb. At P, Kab=0 since its contraction with any bivector ya zb is 0. 
Proof:  na∇a nb=0  because the integral curves of na are geodesics; nb∇a nb =∇a(nbnb )/2  
= 0 because na is of unit length.  So it suffices to consider spatial vectors ya and zb.  For 
any vector wa orthogonal to na, there is a geodesic vector field including wa tangent to H; 
and for any two such vector fields, their Lie bracket is also tangent to H.  Hence 
[yb, zb] nb=0 ; using the orthogonality of yb and zb with nb, this may be rewritten as 
 y[a zb]∇a nb = 0.  So it suffices to consider symmetric bivectors y(a zb), which may in turn 
be reduced to those of the form wa wb.  For these also, wa wb∇a nb = wa∇a (wbnb) = 0, 
where the first equality is because wa is geodesic and the second because wbnb=0.  QED. 
 
Now hab=gab + na nb is the metric on H, and ha

b hbc = hac.  
At P, Wald 10.2.23 may be written without the terms for K as: 
(3)Rabcd = ha

 f hb 
g hc 

k hd 
 j Rf g k j.  Contracting both sides with hac hbd we get 

(3)R = h f k hg j Rf g k j, which Wald 10.2.29 shows equal to 2 Gac na nc. 
In other words we have (3)R/2 = Gac na nc, as claimed in the text of the paper. 
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This is a brief introduction to general relativity, designed for both students and teachers of the
subject. While there are many excellent expositions of general relativity, few adequately explain the
geometrical meaning of the basic equation of the theory: Einstein’s equation. Here we give a simple
formulation of this equation in terms of the motion of freely falling test particles. We also sketch
some of the consequences of this formulation and explain how it is equivalent to the usual one in
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I. INTRODUCTION

General relativity explains gravity as the curvature
space–time. It’s all about geometry. The basic equation
general relativity is called Einstein’s equation. In units whe
c58pG51, it says

Gab5Tab . ~1!

It looks simple, but what does it mean? Unfortunately,
beautiful geometrical meaning of this equation is a bit h
to find in most treatments of relativity. There are many n
popularizations that explain the philosophy behind relativ
and the idea of curved space–time, but most of them d
get around to explaining Einstein’s equation and show
how to work out its consequences. There are also more t
nical introductions which explain Einstein’s equation
detail—but here the geometry is often hidden under piles
tensor calculus.

This is a pity, because there is an easy way to express
whole content of Einstein’s equation in plain English. Afte
suitable prelude, one can summarize it in a single sente
One needs a lot of mathematics to derive all the con
quences of this sentence, but we can work outsomeof its
consequences quite easily.

In what follows, we start by outlining some difference
between special and general relativity. Next we give a ver
formulation of Einstein’s equation. Then we derive a few
its consequences concerning tidal forces, gravitatio
waves, gravitational collapse, and the big bang cosmolo
In an appendix we explain why our verbal formulation
equivalent to the usual one in terms of tensors. This articl
mainly aimed at those who teach relativity, but except for
appendix, we have tried to make it accessible to students
conclude with a bibliography of sources to help teach
subject.

II. PRELIMINARIES

Before stating Einstein’s equation, we need a little pre
ration. We assume the reader is somewhat familiar with s
cial relativity—otherwise general relativity will be too hard

a!Electronic mail: baez@math.ucr.edu
b!Electronic mail: ebunn@richmond.edu
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But there are some big differences between special and
eral relativity, which can cause immense confusion if n
glected.

In special relativity, we cannot talk aboutabsoluteveloci-
ties, but only relative velocities. For example, we canno
sensibly ask if a particle is at rest, only whether it is at r
relative to another particle. The reason is that in this theo
velocities are described as vectors in four-dimensio
space–time. Switching to a different inertial coordinate s
tem can change which way these vectors point relative to
coordinate axes, but not whether two of them point the sa
way.

In general relativity, we cannot even talk aboutrelative
velocities, except for two particles at the same point
space–time—that is, at the same place at the same ins
The reason is that in general relativity, we take very seriou
the notion that a vector is a little arrow sitting at a particu
point in space–time. To compare vectors at different poi
of space–time, we must carry one over to the other. T
process of carrying a vector along a path without turning
stretching it is called ‘‘parallel transport.’’ When space–tim
is curved, the result of parallel transport from one point
another depends on the path taken, which is a direct co
quence of a curved space–time. Thus it is ambiguous to
whether two particles have the same velocity vector unl
they are at the same point of space–time.

It is hard to imagine the curvature of four-dimension
space–time, but it is easy to see it on a two-dimensio
surface, like a sphere. The sphere fits nicely in thr
dimensional flat Euclidean space, so we can visualize vec
on the sphere as ‘‘tangent vectors.’’ If we parallel transpor
tangent vector from the north pole to the equator by go
straight down a meridian, we get a different result than if
go down another meridian and then along the equator
shown in Fig. 1.

Because of the analogy to vectors on the surface o
sphere, in general relativity vectors are usually called ‘‘ta
gent vectors.’’ However, it is important not to take this an
ogy too seriously. Our curved space–time need not be
bedded in some higher-dimensional flat space–time for u
understand its curvature, or the concept of a tangent ve
The mathematics of tensor calculus is designed to let
handle these concepts ‘‘intrinsically’’—i.e., working sole
644© 2005 American Association of Physics Teachers
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within the four-dimensional space–time in which we fin
ourselves. This is one reason tensor calculus is so impo
in general relativity.

In special relativity we can think of an inertial coordina
system, or ‘‘inertial frame,’’ as being defined by a field
clocks, all at rest relative to each other. In general relativ
this makes no sense, since we can only unambiguously
fine the relative velocity of two clocks if they are at the sam
location. Thus the concept of inertial frame, so important
special relativity, isbannedfrom general relativity!

If we are willing to put up with limited accuracy, we ca
still talk about the relative velocity of two particles in th
limit where they are very close, since curvature effects w
then be very small. In this approximate sense, we can
about a ‘‘local’’ inertial coordinate system. However, w
must remember that this notion makes perfect sense on
the limit where the region of space–time covered by
coordinate system goes to zero in size.

Einstein’s equation can be expressed as a statement a
the relative acceleration of very close test particles in f
fall. Let us clarify these terms a bit. A ‘‘test particle’’ is a
idealized point particle with energy and momentum so sm
that its effects on space–time curvature are negligible. A p
ticle is said to be in ‘‘free fall’’ when its motion is affected b
no forces except gravity. In general relativity, a test parti
in free fall will trace out a ‘‘geodesic.’’ This means that i
velocity vector is parallel transported along the curve
traces out in space–time. A geodesic is the closest thing t
is to a straight line in curved space–time.

This is easier to visualize in two-dimensional space rat
than four-dimensional space–time. A person walking on
sphere ‘‘following their nose’’ will trace out a geodesic—th
is, a great circle. Suppose two people stand side-by-side
the equator and start walking north, both following geod
sics. Though they start out walking parallel to each other,
distance between them will gradually start to shrink, un
finally they bump into each other at the north pole. If th
didn’t understand the curved geometry of the sphere, t
might think a ‘‘force’’ was pulling them together.

In general relativity gravity is not really a ‘‘force,’’ but jus
a manifestation of the curvature of space–time. Note it is
the curvature of space, but ofspace–time that is involved.

Fig. 1. Two ways to parallel transport a tangent vector from the north p
to a point on the equator of a sphere.
645 Am. J. Phys., Vol. 73, No. 7, July 2005
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The distinction is crucial. If you toss a ball, it follows
parabolic path. This is far from being a geodesic inspace.
Space is curved by the Earth’s gravitational field, but it
certainly not so curved as all that! The point is that while t
ball moves a short distance in space, it moves an enorm
distance intime, because one second equals about 300
km in units wherec51. Thus, a slight amount of space–tim
curvature can have a noticeable effect.

III. EINSTEIN’S EQUATION

To state Einstein’s equation in simple English, we need
consider a round ball of test particles that are all initially
rest relative to each other. As we have seen, this is a sen
notion only in the limit where the ball is very small. If w
start with such a ball of particles, it will, to second order
time, become an ellipsoid as time passes. This should no
too surprising, because any linear transformation applied
ball gives an ellipsoid, and any transformation can be
proximated by a linear one to first order. Here we get a
more: the relative velocity of the particles starts out be
zero, so to first order in time the ball does not change sh
at all: the change is a second-order effect.

Let V(t) be the volume of the ball after a proper timet has
elapsed, as measured by the particle at the center of the
Then Einstein’s equation says:

V̈

V
U

t50

52
1

2 S flow of t-momentum in t direction1
flow of x-momentum inx direction1
flow of y-momentum in y direction1
flow of z-momentum inz direction

D
~2!

where these flows are measured at the center of the ba
time zero, using local inertial coordinates. These flows
caused by all particles and fields. They form the diago
components of a 434 matrix T called the ‘‘stress-energy
tensor.’’ The componentsTab of this matrix say how much
momentum in thea direction is flowing in theb direction
through a given point of space–time, wherea,b5t,x,y,z.
The flow of t-momentum in thet-direction is just the energy
density, often denotedr. The flow of x-momentum in the
x-direction is the ‘‘pressure in thex direction’’ denotedPx ,
and similarly fory andz. It takes a while to figure out why
pressure is really the flow of momentum, but it is eminen
worth doing. Most texts explain this fact by considering t
example of an ideal gas.

In any event, we may summarize Einstein’s equation
follows:

V̈

V
U

t50

52
1

2
~r1Px1Py1Pz!. ~3!

This equation says that positive energy density and posi
pressure curve space–time in a way that makes a freely
ing ball of point particles tend to shrink. SinceE5mc2 and
we are working in units wherec51, ordinary mass density
counts as a form of energy density. Thus a massive ob
will make a swarm of freely falling particles at rest around
start to shrink. In short:gravity attracts.

We promised to state Einstein’s equation in plain Engli
but have not done so yet. Here it is:

Given a small ball of freely falling test particles initially a
rest with respect to each other, the rate at which it begin

le
645J. C. Baez and E. F. Bunn
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shrink is proportional to its volume times: the energy de
sity at the center of the ball, plus the pressure in thex
direction at that point, plus the pressure in they direction,
plus the pressure in thez direction.

One way to prove this is by using the Raychaudhuri eq
tion, discussions of which can be found in the textbooks
Wald17 and by Ciufolini and Wheeler25 cited in the bibliog-
raphy. But an elementary proof can also be given star
from first principles, as we show in the Appendix.

The reader who already knows some general relati
may be somewhat skeptical that all of Einstein’s equation
encapsulated in this formulation. After all, Einstein’s equ
tion in its usual tensorial form is really a bunch of equatio
the left and right sides of Eq.~1! are 434 matrices. It is hard
to believe that the single Eq.~3! captures all that informa
tion. It does, though, as long as we include one bit of fi
print: to get the full content of the Einstein equation from E
~3!, we must consider small balls withall possible initial
velocities—i.e., balls that begin at rest in all possible lo
inertial reference frames.

Before we begin, it is worth noting an even simpler fo
mulation of Einstein’s equation that applies when the pr
sure happens to be the same in every direction:

Given a small ball of freely falling test particles initially a
rest with respect to each other, the rate at which it begin
shrink is proportional to its volume times: the energy de
sity at the center of the ball plus three times the pressur
that point.

This version is only sufficient for ‘‘isotropic’’ situations: tha
is, those in which all directions look the same in some lo
inertial reference frame. But, since the simplest models
cosmology treat the universe as isotropic—at least appr
mately, on large enough distance scales—this is all we s
need to derive an equation describing the big bang!

IV. SOME CONSEQUENCES

The formulation of Einstein’s equation we have given
certainly not the best for most applications of general re
tivity. For example, in 1915 Einstein used general relativ
to correctly compute the anomalous precession of the orb
Mercury and also the deflection of starlight by the Su
gravitational field. Both these calculations would be ve
hard starting from Eq.~3!; they really call for the full appa-
ratus of tensor calculus. However, we can easily use
formulation of Einstein’s equation to get a qualitative—a
sometimes even quantitative—understanding ofsomeconse-
quences of general relativity. We have already seen th
explains how gravity attracts. We sketch a few other con
quences below.

A. Tidal forces, gravitational waves

Let V(t) be the volume of a small ball of test particles
free fall that are initially at rest relative to each other. In t
vacuum there is no energy density or pressure, soV̈u t50

50, but the curvature of space–time can still distort the b
For example, suppose you drop a small ball of instant co
when making coffee in the morning. The grains of coff
closer to the earth accelerate toward it a bit more, causing
ball to start stretching in the vertical direction. However,
the grains all accelerate toward the center of the earth,
ball also starts being squashed in the two horizontal dir
tions. Einstein’s equation says that if we treat the cof
646 Am. J. Phys., Vol. 73, No. 7, July 2005
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grains as test particles, these two effects cancel each o
when we calculate the second derivative of the ball’s v
ume, leaving us withV̈u t5050. It is a fun exercise to check
this using Newton’s theory of gravity!

This stretching/squashing of a ball of falling coffee grai
is an example of what people call ‘‘tidal forces.’’ As th
name suggests, another example is the tendency for
ocean to be stretched in one direction and squashed in
other two by the gravitational pull of the moon.

Gravitational waves are another example of how spa
time can be curved even in the vacuum. General relativ
predicts that when any heavy object wiggles, it sends
ripples of space–time curvature which propagate at the sp
of light. This is far from obvious starting from our formula
tion of Einstein’s equation! It also predicts that as one
these ripples of curvature passes by, our small ball of initia
test particles will be stretched in one transverse direct
while being squashed in the other transverse direction. F
what we have already said, these effects must precisely
cel when we computeV̈u t50 .

Hulse and Taylor won the Nobel prize in 1993 for care
observations of a binary neutron star which is slowly spir
ing down, just as general relativity predicts it should, as
loses energy by emitting gravitational radiation.27,28 Gravita-
tional waves have not beendirectly observed, but there are
number of projects under way to detect them.29–32 For ex-
ample, the LIGO project will bounce a laser between ha
ing mirrors in an L-shaped detector, to see how one leg of
detector is stretched while the other is squashed. Both
are 4 km long, and the detector is designed to be sensitiv
a 10218 m change in length of the arms.

B. Gravitational collapse

One remarkable feature of this equation is the press
term, which says that not only energy density but also pr
sure causes gravitational attraction. This may seem to vio
our intuition that pressure makes matter want to expa
Here, however, we are talking aboutgravitational effects of
pressure, which are undetectably small in everyday circu
stances. To see this, let’s restore the factors ofc andG. Also,
let’s remember that in ordinary circumstances most of
energy is in the form of rest energy, so we can write t
energy densityr as rmc2, whererm is the ordinary mass
density:

V̈

V
U

t50

52
4pG

c4 ~rmc21Px1Py1Pz!. ~4!

On the human scale all of the terms on the right are sm
sinceG is very small andc is very big. ~Gravity is a weak
force!! Furthermore, the pressure terms are much sma
than the mass density term, since the former has an extrac2.

There are a number of important situations in whichr
does not dominate overP. For example, in a neutron sta
which is held up by the degeneracy pressure of the neu
nium it consists of, pressure and energy density contrib
comparably to the right-hand side of Einstein’s equatio
Moreover, above a mass of about two solar masses a no
tating neutron star will inevitably collapse to form a blac
hole, thanks in part to the gravitational attraction caused
pressure.
646J. C. Baez and E. F. Bunn
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C. The big bang

Starting from our formulation of Einstein’s equation, w
can derive some basic facts about the big bang cosmol
Let us assume the universe is not only expanding but
homogeneous and isotropic. The expansion of the univer
vouched for by the redshifts of distant galaxies. The ot
assumptions also seem to be approximately correct, at
when we average over small-scale inhomogeneities suc
stars and galaxies. For simplicity, we will imagine the u
verse is homogeneous and isotropic even on small scale

An observer at any point in such a universe would see
objects receding from her. Suppose that, at some timet50,
she identifies a small ballB of test particles centered on he
Suppose this ball expands with the universe, remain
spherical as time passes because the universe is isotropic
R(t) stand for the radius of this ball as a function of tim
The Einstein equation will give us an equation of motion
R(t). In other words, it will say how the expansion rate
the universe changes with time.

It is tempting to apply Eq.~3! to the ballB, but we must
take care. This equation applies to a ball of particles that
initially at rest relative to one another—that is, one who
radius is not changing att50. However, the ballB is ex-
panding att50. Thus, to apply our formulation of Einstein
equation, we must introduce a second small ball of test
ticles that are at rest relative to each other att50.

Let us call this second ballB8, and call its radius as a
function of timer (t). Since the particles in this ball begin a
rest relative to one another, we have

ṙ ~0!50. ~5!

To keep things simple, let us also assume that att50 both
balls have the exact same size:

r ~0!5R~0!. ~6!

Equation~3! applies to the ballB8, since the particles in
this ball are initially at rest relative to each other. Since t
volume of this ball is proportional tor 3, and using Eq.~5!,
the left-hand side of Eq.~3! becomes simply

V̈

V
U

t50

5
3r̈

r U
t50

. ~7!

Since we are assuming the universe is isotropic, we kn
that the various components of pressure are equal:Px5Py

5Pz5P. Einstein’s equation, Eq.~3!, thus says that

3r̈

r U
t50

52
1

2
~r13P!. ~8!

We would much prefer to rewrite this expression in terms
R rather thanr . Fortunately, we can do this. Att50, the two
spheres have the same radius:r (0)5R(0). Furthermore, the

second derivatives are the same:r̈ (0)5R̈(0). This follows
from the equivalence principle, which says that, at any giv
location, particles in free fall do not accelerate with resp
to each other. At the momentt50, each test particle on th
surface of the ballB is right next to a corresponding te
particle inB8. Since they are not accelerating with respect
each other, the observer at the origin must see both part
accelerating in the same way, sor̈ (0)5R̈(0). It follows that
we can replacer with R in the above equation, obtaining
647 Am. J. Phys., Vol. 73, No. 7, July 2005
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3R̈

R
U

t50

52
1

2
~r13P!. ~9!

We derived this equation for a very small ball, but in fa
it applies to a ball of any size. This is because, in a hom
geneous expanding universe, the balls of all radii must
expanding at the same fractional rate. In other words,R̈/R is
independent of the radiusR, although it can depend on time
Also, there is nothing special in this equation about the m
ment t50, so the equation must apply at all times. In su
mary, therefore, the basic equation describing the big b
cosmology36–41 is

3R̈

R
52

1

2
~r13P!, ~10!

where the densityr and pressureP can depend on time bu
not on position. Here we can imagineR to be the separation
between any two ‘‘galaxies.’’

To go further, we must make more assumptions about
nature of the matter filling the universe. One simple mode
a universe filled with pressureless matter. Until recently, t
was thought to be an accurate model of our universe. Set
P50, we obtain

3R̈

R
52

r

2
. ~11!

If the energy density of the universe is mainly due to t
mass in galaxies, ‘‘conservation of galaxies’’ implies th
rR35k for some constantk. This gives

3R̈

R
52

k

2R3 ~12!

or

R̈52
k

6R2 . ~13!

Amusingly, this is the same as the equation of motion fo
particle in an attractive 1/R2 force field. In other words, the
equation governing this simplified cosmology is the same
the Newtonian equation for what happens when you thro
ball vertically upwards from the earth! This is a nice examp
of the unity of physics. Since ‘‘whatever goes up must co
down—unless it exceeds escape velocity,’’ the solutions
this equation look roughly like those shown in Fig. 2.

In other words, the universe started out with a big bang
will expand forever if its current rate of expansion is suf
ciently high compared to its current density, but it will reco
lapse in a ‘‘big crunch’’ otherwise.

D. The cosmological constant

The simplified big bang model just described is inaccur
for the very early history of the universe, when the press
of radiation was important. Moreover, recent observatio
seem to indicate that it is seriously inaccurate even in
present epoch. First of all, it seems that much of the ene
density is not accounted for by known forms of matter. S
more shocking, it seems that the expansion of the unive
may be accelerating rather than slowing down! One poss
ity is that the energy density and pressure are nonzero e
for the vacuum. For the vacuum to not pick out a preferr
647J. C. Baez and E. F. Bunn
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notion of ‘‘rest,’’ its stress-energy tensor must be prop
tional to the metric. In local inertial coordinates this mea
that the stress-energy tensor of the vacuum must be

T5S L 0 0 0

0 2L 0 0

0 0 2L 0

0 0 0 2L

D , ~14!

where L is called the ‘‘cosmological constant.’’ Thi
amounts to giving empty space an energy density equalL
and pressure equal to2L, so thatr13P for the vacuum is
22L. Here pressure effects dominate because there
more dimensions of space than of time! If we add this c
mological constant term to Eq.~10!, we get

3R̈

R
52

1

2
~r13P22L!, ~15!

wherer and P are the energy density and pressure due
matter. If we treat matter as we did before, this gives

3R̈

R
52

k

2R3 1L. ~16!

Thus, once the universe expands sufficiently, the cosmol
cal constant becomes more important than the energy de
of matter in determining the fate of the universe. IfL.0, a
roughly exponential expansion will then ensue. This see
to be happening in our universe now.35

E. Spatial curvature

We have emphasized that gravity is due not just to
curvature of space, but ofspace–time. In our verbal formu-
lation of Einstein’s equation, this shows up in the fact th
we consider particles moving forwards in time and stu
how their paths deviate in the space directions. Howe
Einstein’s equation also gives information about the cur
ture of space. To illustrate this, it is easiest to consider no
expanding universe but a static one.

When Einstein first tried to use general relativity to co
struct a model of the entire universe, he assumed that
universe must be static—although he is said to have l
described this as ‘‘his greatest blunder.’’ As we did in t
previous section, Einstein considered a universe contain
ordinary matter with densityr, no pressure, and a cosmolog
cal constantL. Such a universe can be static—the galax

Fig. 2. The size of the universe as a function of time in three scenarios:
~where it expands forever!, closed~where it recollapses!, and critical~where
it expands forever, but just barely!.
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can remain at rest with respect to each other—only if
right-hand side of Eq.~15! is zero. In such a universe, th
cosmological constant and the density must be caref
‘‘tuned’’ so that r52L. It is tempting to conclude tha
space–time in this model is just the good old flat Minkows
space–time of special relativity. In other words, one mig
guess that there are no gravitational effects at all. After
the right-hand side of Einstein’s equation was tuned to
zero. This would be a mistake, however. It is instructive
see why.

Remember that Eq.~3! contains all the information in Ein-
stein’s equation only if we consider all possible small ba
In all of the cosmological applications so far, we have a
plied the equation only to balls whose centers were at
with respect to the local matter. It turns out that only for su
balls is the right-hand side of Eq.~3! zero in the Einstein
static universe.

To see this, consider a small ball of test particles, initia
at rest relative to each other, that is moving with respec
the matter in the universe. In the local rest frame of suc
ball, the right-hand side of Eq.~3! is nonzero. For one thing
the pressure due to the matter no longer vanishes. Reme
that pressure is the flux of momentum. In the frame of o
moving sphere, matter is flowing by. Also, the energy dens
goes up, both because the matter has kinetic energy in
frame and because of Lorentz contraction. The end resul
the reader can verify, is that the right-hand side of Eq.~3! is
negative for such a moving sphere. In short, although a
tionary ball of test particles remains unchanged in the E
stein static universe, our moving ball shrinks!

This has a nice geometric interpretation: the geometry
this model has spatial curvature. As we noted in Sec. II, o
positively curved surface such as a sphere, initially para
lines converge toward one another. The same thing happ
in the three-dimensional space of the Einstein static unive
In fact, the geometry of space in this model is that of
three-sphere. Figure 3 illustrates what happens.

One dimension is suppressed in this figure, so the tw
dimensional spherical surface shown represents the th
dimensional universe. The small shaded circle on the sur
represents our tiny ball of test particles, which starts at
equator and moves north. The sides of the sphere appr
each other along the dashed geodesics, so the sphere sh
in the transverse direction, although its diameter in the dir
tion of motion does not change.

As an exercise, readers who want to test their understa
ing can fill in the mathematical details in this picture a
determine the radius of the Einstein static universe in te
of the density. Here are step-by-step instructions:

d Imagine an observer moving at speedv through a cloud of
stationary particles of densityr. Use special relativity to
determine the energy density and pressure in the observ
rest frame. Assume for simplicity that the observer is mo
ing fairly slowly, and thus keep only the lowest-order no
vanishing term in a power series inv.

d Apply Eq. ~3! to a sphere in this frame, including the co
tribution due to the cosmological constant~which is the
same in all reference frames!. You should find that the
volume of the sphere decreases withV̈/V}2rv2 to lead-
ing order inv.

d Suppose that space in this universe has the geometry
large three-sphere of radiusRU . Show that the radii in the
directions transverse to the motion start to shrink at a r

en
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given by (R̈/R)u t5052v2/RU
2 . ~If, like most people, you

are better at visualizing two-spheres than three-spheres
this step by considering a small circle moving on a tw
sphere, as shown above, rather than a small sphere mo
on a three-sphere. The result is the same.!

d Since our little sphere is shrinking in two dimensions,
volume changes at a rateV̈/V52R̈/R. Use Einstein’s
equation to relate the radiusRU of the universe to the
densityr.

The final answer isRU5A2/r, as you can find in standar
textbooks.

Spatial curvature like this shows up in the expanding c
mological models described earlier in this section as well
principle, the curvature radius can be found from our form
lation of Einstein’s equation by similar reasoning in the
expanding models. However, such a calculation is extrem
messy. Here the apparatus of tensor calculus comes to
rescue.16,17
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APPENDIX A: THE MATHEMATICAL DETAILS

To see why Eq.~3! is equivalent to the usual formulatio
of Einstein’s equation, we need a bit of tensor calculus.
particular, we need to understand the Riemann curvature
sor and the geodesic deviation equation. For a detailed
planation of these, the reader must turn to some of the t
in the bibliography.16,17,21–23Here we briefly sketch the mai
ideas.

When space–time is curved, the result of parallel transp
depends on the path taken. To quantify this notion, pick t
vectorsu and v at a point p in space–time. In the limit
where e→0, we can approximately speak of a ‘‘parallel
gram’’ with sideseu andev. Take another vectorw at p and
parallel transport it first alongev and then alongeu to the
opposite corner of this parallelogram. The result is some v
tor w1 . Alternatively, parallel transportw first alongeu and
then alongev. The result is a slightly different vector,w2 as
shown in Fig. 4. The limit

Fig. 3. The motion of a ball of test particles in a spherical universe.
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lim
e→0

w22w1

e2 5R~u,v !w ~A1!

is well-defined, and it measures the curvature of space–t
at the pointp. In local coordinates we can write it as

R~u,v !w5Rbgd
a ubvgwd, ~A2!

where as usual we sum over repeated indices. The qua
Rbgd

a is called the ‘‘Riemann curvature tensor.’’
We can use this tensor to compute the relative accelera

of nearby particles in free fall if they are initially at res
relative to one another. Consider two freely falling particl
at nearby pointsp andq. Let v be the velocity of the particle
at p, and leteu be the vector fromp to q. Since the two
particles start out at rest relative to one other, the velocity
the particle atq is obtained by parallel transportingv along
eu.

Now let us wait a short while. Both particles trace o
geodesics as time passes, and at timee they will be at new
points, sayp8 andq8. The pointp8 is displaced fromp by
an amountev, so we get a little parallelogram, exactly as
the definition of the Riemann curvature as shown in Fig.

Next let us compute the new relative velocity of the tw
particles. To compare vectors we must carry one to ano
using parallel transport. Letv1 be the vector we get by taking
the velocity vector of the particle atp8 and parallel transport-
ing it to q8 along the top edge of our parallelogram. Letv2

be the velocity of the particle atq8. The differencev22v1 is
the new relative velocity. Figure 6 shows a picture of t
whole situation. The vectorv is depicted as shorter thanev
for purely artistic reasons.

It follows that over this passage of time, the average re
tive acceleration of the two particles isa5(v22v1)/e. By
Eq. ~A1!,

lim
e→0

v22v1

e2 5R~u,v !v, ~A3!

Fig. 4. Parallel transporting a vectorw from one corner of a parallelogram
to the opposite corner in two ways: up and then across, givingw1 , or across
and then up, givingw2 .

Fig. 5. Freely falling particles atp andq trace out geodesics taking them t
p8 andq8.
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lim
e→0

a

e
5R~u,v !v. ~A4!

This is called the ‘‘geodesic deviation equation.’’ From t
definition of the Riemann curvature it is easy to see t
R(u,v)w52R(v,u)w, so we can also write this equation a

lim
e→0

aa

e
52Rbgd

a vbugvd. ~A5!

Using this equation we can work out the second time
rivative of the volumeV(t) of a small ball of test particles
that start out at rest relative to each other. As we mentio
earlier, to second order in time the ball changes to an e
soid. Furthermore, since the ball starts out at rest, the p
cipal axes of this ellipsoid don’t rotate initially. We ca
therefore adopt local inertial coordinates in which, to seco
order in t, the center of the ball is at rest and the thr
principal axes of the ellipsoid are aligned with the three s
tial coordinates. Letr j (t) represent the radius of thej th axis
of the ellipsoid as a function of time. If the ball’s initia
radius ise, then

r j~ t !5e1 1
2 aj t21O~ t3!,

or in other words,

lim
t→0

r̈ j

r j 5 lim
t→0

aj

e
.

Here the accelerationaj is given by Eq.~A5!, with u being a
vector of lengthe in the j th coordinate direction andv being
the velocity of the ball, which is a unit vector in the tim
direction. In other words,

lim
t→0

r̈ j~ t !

r j~ t !
52Rb j d

j vbvd52Rt jt
j .

No sum overj is implied in the above expression.
Because the volume of our ball is proportional to the pro

uct of the radii,V̈/V→( j r̈
j /r j as t→0,

lim
V→0

V̈

V
U

t50

52Rtat
a , ~A6!

where now a sum overa is implied. The sum overa can
range over all four coordinates, not just the three spa
ones, since the symmetries of the Riemann tensor dem
that Rttt

t 50.
The right-hand side is minus the time-time component

the ‘‘Ricci tensor’’

Fig. 6. Parallel transporting the velocity vector of the particle atp8 to the
point q8 gives the vectorv1 . The velocity vector of the particle atq8 is v2 .
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Rbd5Rbad
a . ~A7!

That is,

lim
V→0

V̈

V
U

t50

52Rtt ~A8!

in local inertial coordinates where the ball starts out at re
In short, the Ricci tensor says how our ball of freely fa

ing test particles starts changing in volume. The Ricci ten
only captures some of the information in the Riemann c
vature tensor. The rest is captured by something called
‘‘Weyl tensor,’’ which says how any such ball starts changi
in shape. The Weyl tensor describes tidal forces, gravitatio
waves and the like.

Now, Einstein’s equation in its usual form says

Gab5Tab . ~A9!

Here the right side is the stress-energy tensor, while the
side, the ‘‘Einstein tensor,’’ is just an abbreviation for a qua
tity constructed from the Ricci tensor:

Gab5Rab2 1
2 gabRg

g . ~A10!

Thus Einstein’s equation really says

Rab2 1
2 gabRg

g5Tab . ~A11!

This implies

Ra
a2 1

2 ga
aRg

g5Ta
a , ~A12!

but ga
a54, so

2Ra
a5Ta

a . ~A13!

Plugging this into Eq.~A11!, we get

Rab5Tab2 1
2 gabTg

g . ~A14!

This is an equivalent version of Einstein’s equation, but w
the roles ofR and T switched! The good thing about thi
version is that it gives a formula for the Ricci tensor, whi
has a simple geometrical meaning.

Equation~A14! will be true if any one component holds i
all local inertial coordinate systems. This is a bit like th
observation that all of Maxwell’s equations are contained
Gauss’s law and¹•B50. Of course, this is only true if we
know how the fields transform under change of coordina
Here we assume that the transformation laws are kno
Given this, Einstein’s equation is equivalent to the fact th

Rtt5Ttt2
1
2 gttTg

g ~A15!

in every local inertial coordinate system about every po
In such coordinates we have

g5S 21 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D ~A16!

so gtt521 and

Tg
g52Ttt1Txx1Tyy1Tzz. ~A17!

Equation~A15! thus says that

Rtt5
1
2 ~Ttt1Txx1Tyy1Tzz!. ~A18!
650J. C. Baez and E. F. Bunn



u

la

le

/

u
r

ela

h
ea

is
ok
o

,

a
a

tiv
s

ust

,

f

he

nd

C.

a
ern
e
ad

s a
e of

ther
By Eq. ~A8!, this is equivalent to

lim
V→0

V̈

V
U

t50

52
1

2
~Ttt1Txx1Tyy1Tzz!. ~A19!

As promised, this is the simple, tensor-calculus-free form
lation of Einstein’s equation.

APPENDIX B: REFERENCES

We provide an annotated bibliography of material on re
tivity that we have found particularly helpful for students.

1. WEBSITES

There is a lot of material on general relativity availab
online. Most of it can be found starting from here:

1. Relativity on the World Wide Web, C. Hillman, http://math.ucr.edu
home/baez/relativity.html
The beginner will especially enjoy the many gorgeo
websites aimed at helping one visualize relativity. The
are also books available for free online, such as this:

2. Lecture Notes on General Relativity, S. M. Carroll, http://
pancake.uchicago.edu/;carroll/notes/
The free online journalLiving Reviews in Relativityis an
excellent way to learn more about many aspects of r
tivity. One can access it at:

3. Living Reviews in Relativity, http://www.livingreviews.org
Part of learning relativity is working one’s way throug
certain classic confusions. The most common are d
with in the ‘‘Relativity and Cosmology’’ section of this
site:

4. Frequently Asked Questions in Physics, edited by D. Koks, http://
math.ucr.edu/home/baez/physics/

2. NONTECHNICAL BOOKS

Before diving into the details of general relativity, it
good to get oriented by reading some less technical bo
Here are four excellent ones written by leading experts
the subject:

5. General Relativity from A to B, R. Geroch~University of Chicago
Press, Chicago, 1981!.

6. Black Holes and Time Warps: Einstein’s Outrageous Legacy, K. S.
Thorne~Norton, New York, 1995!.

7. Gravity from the Ground Up: An Introductory Guide to Gravity
and General Relativity, B. F. Schutz~Cambridge U. P., Cambridge
2003!.

8. Space, Time, and Gravity: the Theory of the Big Bang and Black
Holes, R. M. Wald ~University of Chicago Press, Chicago, 1992!.

3. SPECIAL RELATIVITY

Before delving into general relativity in a more technic
way, one must get up to speed on special relativity. Here
two excellent texts for this:

9. Introduction to Special Relativity, W. Rindler ~Oxford U. P., Oxford,
1991!.

10. Space–time Physics: Introduction to Special Relativity, E. F. Taylor
and J. A. Wheeler~Freeman, New York, 1992!.

4. INTRODUCTORY TEXTS

When one is ready to tackle the details of general rela
ity, it is probably good to start with one of these textbook
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11. Introducing Einstein’s Relativity, R. A. D’Inverno~Oxford U. P., Ox-
ford, 1992!.

12. Gravity: An Introduction to Einstein’s General Relativity , J. B.
Hartle ~Addison-Wesley, New York, 2002!.

13. Introduction to General Relativity, L. Hughston and K. P. Tod~Cam-
bridge U. P., Cambridge, 1991!.

14. A First Course in General Relativity, B. F. Schutz~Cambridge U. P.,
Cambridge, 1985!.

15. General Relativity: An Introduction to the Theory of the Gravita-
tional Field, H. Stephani~Cambridge U. P., Cambridge, 1990!.

5. MORE COMPREHENSIVE TEXTS

To become an expert on general relativity, one really m
tackle these classic texts:

16. Gravitation, C. W. Misner, K. S. Thorne, and J. A. Wheeler~Freeman,
New York, 1973!.

17. General Relativity, R. M. Wald~University of Chicago Press, Chicago
1984!.
Along with these textbooks, you’ll want to do lots o
problems! This book is a useful supplement:

18. Problem Book in Relativity and Gravitation, A. Lightman and R. H.
Price ~Princeton U. P., Princeton, 1975!.

6. EXPERIMENTAL TESTS

The experimental support for general relativity up to t
early 1990s is summarized in:

19. Theory and Experiment in Gravitational Physics, Revised ed., C. M.
Will ~Cambridge U. P., Cambridge, 1993!.
A more up-to-date treatment of the subject can be fou
in:

20. ‘‘The Confrontation between General Relativity and Experiment,’’
M. Will, Living Reviews in Relativity 4 ~2001!. Available online at
http://www.livingreviews.org/lrr-2001-4

7. DIFFERENTIAL GEOMETRY

The serious student of general relativity will experience
constant need to learn more tensor calculus—or in mod
terminology, ‘‘differential geometry.’’ Some of this can b
found in the texts listed above, but it is also good to re
mathematics texts. Here are a few:

21. Gauge Fields, Knots and Gravity, J. C. Baez and J. P. Muniain~World
Scientific, Singapore, 1994!.

22. An Introduction to Differentiable Manifolds and Riemannian Ge-
ometry, W. M. Boothby~Academic, New York, 1986!.

23. Semi-Riemannian Geometry with Applications to Relativity, B.
O’Neill ~Academic, New York, 1983!.

8. SPECIFIC TOPICS

The references above are about general relativity a
whole. Here are some suggested starting points for som
the particular topics touched on in this article.

a. The meaning of Einstein’s equation

Feynman gives a quite different approach to this in:

24. The Feynman Lectures on Gravitation, R. P. Feynmanet al. ~West-
view, Boulder, CO, 2002!.
His approach focuses on the curvature of space ra
than the curvature of space–time.
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b. The Raychaudhuri equation

This equation, which is closely related to our formulati
of Einstein’s equation, is treated in some standard textbo
including the one by Wald mentioned above. A detailed d
cussion can be found in

25. Gravitation and Inertia , I. Ciufolini and J. A. Wheeler~Princeton U.
P., Princeton, 1995!.

c. Gravitational waves

Here are two nontechnical descriptions of the binary p
sar work for which Hulse and Taylor won the Nobel prize

27. ‘‘The Binary Pulsar: Gravity Waves Exist,’’ C. M. Will, Mercury,
Nov-Dec 1987, pp. 162–174.

28. ‘‘Gravitational Waves from an Orbiting Pulsar,’’ J. M. Weisberg, J.
H. Taylor, and L. A. Fowler, Sci. Am., Oct 1981, pp. 74–82.
Here is a review article on the ongoing efforts to directly detect
gravitational waves:

29. ‘‘Detection of Gravitational Waves,’’ J. Lu, D. G. Blair, and C. Zha
Rep. Prog. Phys.,63, 1317–1427~2000!.
Some present and future experiments to detect grav
tional radiation are described here:

30. LIGO Laboratory Home Page, http://www.ligo.caltech.edu/
31. The Virgo Project, http://www.virgo.infn.it/
32. Laser Interferometer Space Antenna, http://lisa.jpl.nasa.gov/

d. Black holes

Astrophysical evidence that black holes exist is summ
rized in:
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33. ‘‘Evidence for Black Holes,’’ M. C. Begelman, Science300, 1898–
1903 ~2003!.
A less technical discussion of the particular case of
supermassive black hole at the center of our Milky W
Galaxy can be found here:

34. The Black Hole at the Center of Our Galaxy, F. Melia ~Princeton U.
P., Princeton, 2003!.

e. Cosmology

There are lots of good popular books on cosmology. Si
the subject is changing rapidly, pick one that is up to date
the time of this writing, we recommend:

35. The Extravagant Universe: Exploding Stars, Dark Energy, and the
Accelerating Cosmos, R. P. Kirshner ~Princeton U. P., Princeton
2002!.
A good online source of cosmological information is:

36. Ned Wright’s Cosmology Tutorial, http://www.astro.ucla.edu/
;wright/cosmolog.htm
The following cosmology textbooks are arranged in
creasing order of technical difficulty:

37. Cosmology: The Science of the Universe, 2nd ed., E. Harrison~Cam-
bridge U. P., Cambridge, 2000!.

38. Cosmology: a First Course, M. Lachièze-Rey~Cambridge U. P., Cam-
bridge, 1995!.

39. Principles of Physical Cosmology, P. J. E. Peebles~Princeton U. P.,
Princeton, 1993!.

40. The Early Universe, E. W. Kolb and M. S. Turner~Addison–Wesley,
New York, 1990!.

41. The Large-Scale Structure of Space–time, S. W. Hawking and G. F.
R. Ellis ~Cambridge U. P., Cambridge, 1975!.
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