Matter tells space how to curve
Space tells matter how to move

The boundary of a boundary is zero

John Wheeler

“a gravitationally completely collapsed object”

A black hole has no hair, Mass without Mass,
Law without Law, Magic without Magic

No phenomenon is a physical phenomenon until
it is an observed phenomenon.



Time is defined so that motion looks simple.

We live on an island surrounded by a sea of ignorance. As our
island of knowledge grows, so does the shore of our ignorance.

If you haven't found something strange during the day, it hasn't
been much of a day.

“Time is what prevents everything from happening at once”
Behind it all is surely an idea so simple, so beautiful, that when
we grasp it - in a decade, a century, or a millennium - we will all
say to each other, how could it have been otherwise? How could

we have been so stupid?

In any field, find the strangest thing and then explore it.



What’s new?



In contrast to other “popular” books on gravitation which attempt no more than a broad panoramic survey,
Wheeler's A Journey into Gravity and Spacetime seeks depth. Wheeler’s goal is a thorough
explanation of how gravitation works, how “mass grips spacetime, telling it how to curve” and how
“spacetime grips mass, telling it how to move.” To provide such an explaation without the help of tensors
or differential forms is a daunting task, but Wheeler approaches this challenge with his characteristic zeal
and joyful enthusiasm. From his lectures at Princeton 25 years ago, | still remember the intensity and
passion that permeated his explanations, and | was gald to see that these explanations permeate this
book. For Wheeler, an explanation is a battle of ideas, to be won by a skillful, spirited attack on several
fronts, aided by a battery of clever, multicolored diagrams. He has the unique ability to breathe life and
excitement into even the dullest of topics---who else could lend excitement to the Bianchi identity, which
appears in the guise of “the boundary of a boundary is zero”? ...... At the heart of the book he presents
us with a remarkable statement linking the curvature of spacetime to the distribution of matter: For any
(small) cube, the sum of the moments of rotation of the geodesics forming the edges equals 8x times the
amount of “momenergy” enclosed in the cube. This marvelously simple and concise formulation of
Einstein’s equation is analogous to Gauss’ law for electricity. It is an adaptation of the mathematical
treatment of differential forms, given in chapter 15 of Misner, Thorne, and Wheeler’s Gravitation
textbook. | had read that chapter years ago, but it made little impression on me, because there the physics
is camoflaged by a thick layer of Cartan calculus. In A Journey into Gravity and Spacetime the
physics is laid bare, and the surprising simplicity of Einstein’s gravitational equation stands revealed.

--Hans C. Ohanian

Most difficult for a layman to understand is how spacetime acts on masive objects, but the author explains
it brilliantly in the next chapter, taught via the concept of "momenergy". This entity is a 4-vector, and the
author uses it to show how its creation in a spacetime region can be written as the sum of 8 terms,
reflecting the fact that the "boundary" of a four-dimensional block in spacetime consists of eight three-
dimensional cubes. That the contents of these cubes sum to zero is the famous "boundary of a boundary
is zero", which is discussed in the next chapter. This chapter is one of the best explanations ever given (at
this level) of the physics behind spacetime curvature and massive objects. The actual mathematical
quantification of curvature is detailed in chapters 8 and 9, using elementary mathematics. The author
discusses nicely the famous Scharwzschild geometry.

--Lee D. Carlson
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heat! Energy available in the form of the relative motion of the two
objects before they collide and stick goes into energy of internal excita-
tion—or heat—after the two combine. The amalgamated system has
more energy than the two objects would if they were tamely juxtaposed.
Therefore it has more mass. For the same reason, a hot object has to
weigh more than the same object does when cold.

Never yet, however, has anyone succeeded in weighing heat. In
1787, long before Einstein, Count Rumford made valiant attempts to
detect and measure the difference in weight between the same barrel of
water when hot and when cold; he was unsuccesstul. He concluded that
“all attempts to discover any effect of heat upon the apparent weight of
bodies will be fruitless.”” Since Einstein, we know that there must be
such a difference and can easily figure it. However, the increase in the
internal energy of agitation—and therefore in mass—is too small even
for today’s best instruments to detect. Yet detect it we someday can and
must! What a challenge to mankind’s ingenuity!

Congservation of Momenergy in Many Collisions

Never has the Pacific scen a man-initiated event that released a greater
energy than the Mike nuclear explosion of November 1952. The bomb
set off on the Eniwetok Atoll released an energy equivalent to ten million
tons of TNT, a thousandfold times the output of the atomic bomb
dropped on Hiroshima in August 1945. In the first 100 picoseconds, the
first 1077 second, after the uranium, deuterium, tritium, and lithium had
completed their reaction, the energy set free resided for the most part
right there. It took the form of heat, heat of two kinds. One was heat of
agitation—particles zigzagging wildly back and forth between encoun-
ters with other particles. The other carrier of heat energy was radiation—
particles of light, quanta of electromagnetic radiation, photons. Mike’s
interior at that instant, at twenty million degrees Celsius or so, was like a
barrel of star interior suddenly brought down to Earth.

In that hot mass, during that 1077 second, billions upon billions of
photons, electrons and nuclei traded momenergy, each of them billions
upon billions of times. Collisions unbelicvable in number! Could we
have followed one of them? Could we have compared the sum of the
momenergy of any two participants before colliding with the sum after
their collision? Perhaps. But could we have done that for all the collisions
of each participant, and for all the participants? That’s beyond the power
of any human, any machine, any instrument.

That impossible bookkeeping enterprise spacetime itself neverthe-
less accomplishes easily, quietly, successfully. It conserves momencrgy



as rigorously at the wholesale level during billions and billions of colli-
sions as it does at the retail level during one collision.

How can we picture most vividly this macroscopic conservation of
momenergy? Not on any one mass, not even on any colliding pair of
masses, do we any longer turn our attention, but on the totality of
momenergy carried by all the masses in some standard volume of space
(cubic centimeter, cubic meter, or cubic lightyear) and in like standard
volumes east, west, north, south, up, and down from it. We do not
segment space alone in our bookkeeping. Time, too, we partition into
standard segments whose dimensions we measure off by light-travel
time (centimeter, meter, or lightyear). Thus we end up with spacetime
itself partitioned into blocks. The exact dimensions don’t matter. For



definiteness, however, picture the block on which we fix our attention as
one unit “long,” or nearly so, in each space dimension and one unit
“high” in the time dimension.

A wild melee of collisions occupies this typical spacetime block.
Billions of battles go on, encounters in which one particle gains
momenergy, another loses it. But never, in this or any other spacetime
block, is any energy or momentum ever created or destroyed. From this
single simple never statement follows all that need be said, all that can be
said, about conservation of momenergy. Does “no creation or destruc-
tion of momenergy” in a given region during a given time mean that
there’s just as much momenergy in a specified region at the end of a
specified time interval as there was at its beginning? Not at all! Zillions of
particles and photons may flow—and typically do flow—in or out across
the boundaries of the region during the time in question. So “‘no creation
or destruction” means—and demands—a more imaginative formula-
tion. Has the bank created any money in my account during the month,
or destroyed any, or behaved as it should? To test this point I work out a
single simple number. I call it my measure of “creation,” although I
suspect Mrs. Mykietyn at the bank wouldn’t like the name! “Creation” is
the amount in the account at the end of the month, minus the amount in
it at the beginning, plus the checks paid out in those 30 days, minus the
deposits made. Thus formed out of these four numbers, my creation
index, were it positive, would indicate creation of money in my account;
were it negative, destruction. But always it comes out zero, as the bank
and I require. The grip of spacetime on momenergy likewise demands—
but also, as we will see in the next chapter, automatically brings about—a
zero value for an analogous index of creation of momenergy:

creation of momenergy
in a specified spacetime region

momenergy in specified
region of space at beginning
of specified time

momenergy in specified
= region of space at end
of specified time

flow of momenergy out of flow of momenergy out of

+ left-hand face of region + right-hand face of region
during specified time during specified time
+ front face of region + back space of region
during specified time during specified time
flow of momenergy out of flow of momenergy out of
+ bottom face of region + top face of region

(ﬂow of momenergy out of) (ﬂow of momenergy out of

during specified time during specified time



In brief, when any change in the content of momenergy in the region
under watch is added to the net outflow of momenergy, the result must
be zero.

If the change is positive, then outflow is negative. To say that the net
outflow is negative is a fancy but nevertheless useful way to state that the
net inflow is positive. That inflow is exactly what brings about the in-
crease of momenergy in the region under consideration. If the change is
negative and the momenergy has decreased, then the net outflow is posi-
tive. That outflow is what brings about the decrease in momenergy in
the specified spacetime block. No “creation” or “destruction’ actually
occurs. Momenergy is not created or destroyed, it is simply transferred.

An important principle teaches us something new every time we
learn to state it in a new way. So here. No creation or destruction of
momenergy in a four-dimensional spacetime volume, we now discover,
translates itself into information about the content of momenergy in eight
three-dimensional volumes, eight boundary “faces,” eight 3-cubes.

Just as a three-dimensional cube is defined and in a sense “‘sur-
rounded” by its six two-dimensional faces, so a four-dimensional block
of spacetime is defined and “‘surrounded” by eight three-dimensional
cubes. Each of these cubes corresponds to one of the eight terms in the
expression above. For example, let’s consider two of those cubes: cube 1
defined by the first term, that for the momenergy in the unit region of
space at the end of the specified time, and cube 4, defined by the fourth
term, that for the flow of momenergy out across the right-hand face of
the original 4-cube in the specified time. Cube 4 differs from cube 1 only
in the directions of its three dimensions. Cube 1 has three dimensions:
left-right, front-back, down-up. For cube 4, however, the dimensions
are front-back, down-up, and past-future. Timelike though one of those
dimensions is, the cube it helps to define is no less a cube. This cube, like
the first, has a content of mass-in-motion for inclusion in our count of
momenergy. The amount of momenergy in cube 1 is the amount in the
unit region of space at the end of the specified time, while cube 4 contains
all the momenergy that has flowed out through the right-hand face of the
original 4-cube in the specified time.

The grip of spacetime holds firmly onto the content of momenergy
in every one of the 3-cubes that surround a 4-cube. That grip demands a
zero sum for the contents of all those 3-blocks that bound that four-
dimensional spacetime region. In that way the grip of spacetime, there
and likewise anywhere, forever bars any creation—or destruction—of
momenergy anywhere in spacetime.



A grip on momenergy so vigilant! Does spacetime maintain it by
cagle-eyed vision, by clever machinery, by an all-reaching spy system?
No, behind all that apparent vigilance lies a linkup of momentum-and-
energy to spacetime so simple and so clever, so beautiful and so spare,
that it does not count as ‘“‘machinery” at alll The magic of that grip is
now about to show itself in the principle that “‘the boundary of a bound-
ary is zero!”



The Einstein field equations [edit]
Main article: Einstein field equations

In general relativity, the stress tensor is studied in the context of the Einstein field
equations which are often written as

1 871G
Ry, — §R9W A

where Rw is the Ricci tensor, R is the Ricci scalar (the tensor contraction of the
Ricci tensor), and G is the universal gravitational constant.
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2 A stress measures the
surfiace force per unit area.

» Elastic for small changes

% A normal stress acts normal
to a surface.

s Compressionior tension




& A shear stress acts parallel
to a surface.

« Also elastic for small
changes

% |deal fluids at rest have no
shear stress.

o Solids
o \/iscous fluids

A (goes into screen)




% Fluids exent a force in all
directions.
o Same force in alll directions

% T'he force compared toithe
area Is the pressure.

A (surface area)




The stress tensor includes
normal and shear stresses.

» Diagonalinermal
» Off-diagonal shear

Ani ideal fluid has only pressure.
» Normal stress
» |sotropic

A viscous fluidiincludes shear.
«  Symmetric
* 6 component tensor




Force Densiy

& T'he totallforce Is found by
Integration.

* (Closed volume with Gauss’
law

s Outward unit vectors

& A force density due to stress
can be defined from the
tEnsor.

o [Due to differences in stress
asi a function of pesition
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Maxwell stress tensor

From Physics wiki
< Classical electrodynamics

The tensor

— (BiBj = 35!-]-33).
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Sl units

In free space in Sl units, the electromagnetic stress-energy tensor is (in flat space-times)

1 1
oy o v i 3
Ho
where F*"V is the electromagnetic tensor. Note: The tensor ™isa symmetric tensor.
And in explicit matrix form:

"1 2 1 P2 7
5(50_5‘ + EB ) Si/c Sy/c S./c
Tpu — S:z/c —0Ozz _ozy =0z I,
Sy/c —Oyy —Oyy —Oy.
L S:/C =0O0:x —0:y —0::_
with
Poynting vector§ = —E X B
Ho
Electromagnetic field tensor F pw
-1 0 0 0
Minkowski metric t 0100 d
inkowski metric tensor = , an
=10 00100
0 0 0 1
1 1 , 1,
Maxwell stress tensor 0ij = EoEiEJ' -+ —B.,-Bj — = GOE - —B 5;‘}'-
Ho 2 Ho
2 1
Note that ¢~ = where cis light speed.
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Energy, Matter, and the Curvature of Spacetime

We've gotten a sneak preview of Einstein's equations before: G=8nT. The G on the left stands
for the different numbers in the Einstein tensor. But, the Einstein tensor represents the geometry
of spacetime, so this is what the left side really represents. We also know that the curvature of
spacetime is caused by matter, so the T on the right must represent matter.

Just like G, the symbol T stands for a set of numbers:
Tur ] T.r,' ] Tu ' Tx{ ] T'/,' ] Tyz ' T',f ] Tu ’ Tzf: and Trr .

These numbers measure different things about matter. Together, they make up the Stress-
Energy Tensor. Each component of this tensor has a slightly different physical interpretation:

Pieces of the Stress-Energy Tensor

7 Mea;ures how much mass there is at a point—how much
density

;: fyand Measures how fast the matter is moving—its momentum

;-.Z s Tyyand Measures the pressure in each of the three directions

;"'f iz and Measures the stresses in the matter

yz

As we see from the table, things like stress, pressure, and momentum come into Einstein's
equations. That is, stress, pressure, and momentum all have some effect on the warping of
spacetime. This is related to Einstein's most famous equation, E=mc?, which says that energy
has mass.

Warped spacetime affects how matter moves by changing its geodesics. On the other hand,
Einstein's equations show us how matter—and its movement and pressures—affect the shape of
spacetime. Thus, Einstein solved the fundamental problem in Physics—in principle. Of course,
solving something in principle is very different from solving in practice. Finding real solutions has
proven to be very difficult. Often, it is a job best left to computers.






Leave us now you mtwt—;

So you signal to us, Minerva;
But, bringer of wisdom,

Before you go,

Reveal, we beg,

The magic central idea of gravity.

We would venture forth

The Boundary of a Boundary:

On many an exploration of our own —
Where the Action 14! From the harmony of the planets
To the power of the black bole,
And from the clout of a gravity wave
To the dynamics of the cosmos —
But confidently so
Only with your talisman,
* Your magic key to it all,

In our hand.

At the boundaries of the box the mass inside grips spacetime outside. Spacetime in
turn grips the boundaries and drvags the box down upon the scales.






The one-dimensional boundary of the two-
dimensional boundary of a three-dimensional
space (here a cube) is zero.
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In desperation, we turn to Minerva, the goddess of wisdom, for the key
to the magic grip of gravity. Mysteriously she says, “The secret of the
grip lies in the boundary of the boundary,” and vanishes.

From her enigmatic smile, we know her words somehow divulge
the very heart of the mystery. But how can we translate her cryptic
message into anything loud and clear?

“The boundary of the boundary,” Minerva said. Then we’ll start by
remembering all that we know about a boundary.

A directed or “oriented” line—a one-dimensional manifold—has for
its boundary the starting point and the terminal point, both zero-dimen-
sional. Convention counts the end point as positive, as “‘payoft™; the
starting point as negative, as “‘debt incurred” to start that line. A two-
dimensional manifold, a bit of oriented surface cut out of a sheet of paper
by a single circuit of the scissors, has for its boundary the directed line
the one-dimensional manifold—traced out by the scissors. And that di-
rected line itself? What is its boundary? Zero! Zero because whatever the
point at which we consider that line to have started, that is also the point
at which the line terminates. The debt incurred at the starting point anni-
hilates, consumes, eats up the payoft at its end point. Otherwise stated,
the zero-dimensional boundary of the one-dimensional boundary of a
two-dimensional region is zero.

When we change the last sentence a bit, we get another true state-
ment: the one-dimensional boundary of the fiwvo-dimensional boundary of
a three-dimensional region is zero. Really true? Yes, as a friendly dia-

Chapter Seven



gram reminds us. The interior of a cube can be thought of as oriented.
That is, cach face of the cube inherits from the interior an orientation, a
swirl, a direction of circulation as indicated by the arrow that runs
around the periphery of that face. All six of the two-dimensional faces
together constitute the boundary of the cube.

The one-dimensional boundary of one face of the cube is the di-
rected line indicated by the arrow. Not its start—wherever that is—and
not its end, because the zero-dimensional start and end cancel. No, the
line itself is the boundary. Nothing zero about it, regarded in and by
itself. But pick out a segment of that line. Oops! Next to it, on the
adjacent face, runs a counter-directed line! Those two line segments
annul, kill, annihilate each other. And so it goes at every edge. Result?
Total washout of the one-dimensional boundary. The one-dimensional
boundary of the two dimensional boundary of a three-dimensional re-
gion totals to zero.

Automatic Condservation of Momenergy

Minerva’s words, ‘“the boundary of the boundary,” have a rhythmic
beat. They run through our minds, enchant us, lead us on. Can it be that
the two-dimensional boundary of the three-dimensional boundary of a
four-dimensional region is likewise self-canceling, self-annihilating, zero?

The phrase “four-dimensional region” sets up vibrations in our
memory. Suddenly we remember that in no four-dimensional region
anywhere does the grip of spacetime ever permit any change in
momenergy whatsoever. No creation or destruction of momenergy in
any block of four-dimensional spacetime. And this demand, we discov-
ered in Chapter 6, translates into a rule of regal reach: content of momenergy
totaled for all the 3-cubes that bound any spacetime region must sum to zero.

Amid the dark mystery of how the grip of gravity works, all at once
a flicker of light begins to gleam. Boundary! Our regal rule puts right
before our cyes a boundary—the 3-cubes. But where is the boundary of
the boundary that Minerva mentioned?

Let’s turn back, then, and visualize the three-dimensional boundary
of a four-dimensional region. It presents to view eight pieces, eight
3-cubes. In the mind’s eye one of those 3-cubes begins to gleam all over
its two-dimensional faces, gleam like a luminous box of Tiffany glass. Its
top glows gold; its front face,red; its right face, blue. Equally vivid col-
ors shine forth on the opposite three faces.

We muse on that many-colored cube, and as we do, our sixth sense
picks up the glint of an arriving idea. The glowing faces of the cube start

The Boundary of a Boundary: Where the Action 14!
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The 4-D block of spacetime depicted at the
center is bounded by eight 3-cubes, shown
here as exploded off that block. Each 3-cube
has six 2-faces. The content of momenergy—
of mass-in-motion—inside each 3-cube ex-
presses itself on its faces. Each face is en-
dowed with an “orientation” or sense of swirl
represented here—for a few sample faces—by
one-dimensional arrows around its perimeter.
Faces with matching colors butt up against
each other. Two faces that abut have opposite
orientations, opposite senses of swirl, and thus
make contributions equal in magnitude but
opposite in sign to the audit of momenergy
creation in the 4-D block during the stretch of
time from “‘start” (bottom of diagram) to
“end” (top of diagram).
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North

East

to pulse. We are getting hot on the trail. Does spacetime curvature on the
faces of the cube grip the content of momenergy inside the cube? In turn,
does the content of momenergy inside the cube grip the spacetime curva-
ture on the faces of the cube? As if in answer to this reciprocal query, the
cube of many colors flashes faster.

Suddenly the light of the great idea floods our consciousness. Before
we even fully grasp what it is, we know in our bones that the glittering
central mechanism of gravity at last lies here, exposed. Our eyes, blinded
by the brightness, bit by bit adapt. Outlines become visible before we
discern any details.

The two-dimensional boundary of the cube—that’s where the
action is! That is where the content of momenergy is revealed, and ulti-

Chapter Seven
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Hypercube elements F/,,, ,,
m 0 1 2 3 4 5 6 7 8 9 10

Names
n yn n-cube Schlaflisymbol Vertices Edges Faces Cells 4-faces 5-faces 6-faces 7-faces 8-faces 9-faces 10-faces
Coxeter-Dynkin

Point
0 yo O-cube 1

Line segment
1 y1 1-cube {} 2 1
®

Square
Tetragon
{4}

@&ze

2 y2 2-cube

Cube

Hexahedron
3 y3 3-cube (4,3} 8 12 6 1

®5._.

Tesseract

Octachoron
4 ya 4-cube (4,33} 16 32 24 8 1
®ao—o—o
Penteract
Decateron
{4,3,3,3}

@ao—o—o—o

5 ys 5-cube

Hexeract
Dodecapeton
6 ye 6-cube (433,33} 64 192 240 160 60 12 1
@EO—O—O—H
Hepteract
Tetradeca-7-tope
7 y7 7-cube (433,333 128 448 672 560 280 84 14 1
@ao—o—o—o—o—o
Octeract
Hexadeca-8-tope
8 ys 8-cube (4,333,333} 256 1024 1792 (1792 1120 448 112 16 1
@E.—H—.—Q—H
Enneract
Octadeca-9-tope
9 vyg 9-cube (4,3.3,3,3,3,3.3) 512 2304 4608 5376 4032 2016 672 144 18 1
@Eo—o—o—o—o—o—o—o
Dekeract
icosa-10-tope
10 y10 10-cube (4,3.3,3,3.3,3,3,3) 1024 5120 11520 15360 13440 8064 3360 960 180 20 1

@ao—o—o—o—o—o—o—o—o



The following table gives the names for polygons with , sides. The words for polygons with » = 5 sides (e.g., pentagon, hexagon, heptagon, etc.)
can refer to either regular or non-regular polygons, depending on context. It is therefore always best to specify "regular »-gon" explicitly. For some
polygons, several different terms are used interchangeably, e.g., nonagon and enneagon both refer to the polygon with » = 9 sides.

n polygon

2 digon

3 triangle (trigon)

4 quadrilateral (tetragon)

5 pentagon

6 hexagon

7 heptagon

8 octagon

9 nonagon (enneagon)

10 decagon

11 hendecagon (undecagon)

12 dodecagon

13 tridecagon (triskaidecagon)

14 tetradecagon (tetrakaidecagon)
15 pentadecagon (pentakaidecagon)
16 hexadecagon (hexakaidecagon)
17 heptadecagon (heptakaidecagon)
18 octadecagon (octakaidecagon)
19 enneadecagon (enneakaidecagon)
20 icosagon

30 triacontagon

40 tetracontagon

50 pentacontagon

60 hexacontagon

70 heptacontagon

80 octacontagon

90 enneacontagon
100 hectogon

10000 myriagon









Petrie polygon Orthographic projections
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faces of the cube grip the content of momenergy inside the cube? In turn,
does the content of momenergy inside the cube grip the spacetime curva-
ture on the faces of the cube? As if in answer to this reciprocal query, the
cube of many colors flashes faster.

Suddenly the light of the great idea floods our consciousness. Before
we even fully grasp what it is, we know in our bones that the glittering
central mechanism of gravity at last lies here, exposed. Our eyes, blinded
by the brightness, bit by bit adapt. Outlines become visible before we
discern any details.

The two-dimensional boundary of the cube—that’s where the
action is! That is where the content of momenergy is revealed, and ulti-
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mately where the grip of gravity grabs. But how can we be sure that the
action takes place at that boundary, not inside it? Suddenly a memory
springs to my mind. The little fishing town of South Bristol on the
Maine seacoast. Farrin’s Lobster Pound. A puzzled storekeeper with two
identical cardboard boxes before him. He had spent half an hour packing
them with styrofoam insulation and cold wet seaweed. As I turned to go,
he couldn’t remember which one had a single lobster in it, destined for an
unmarried friend of mine, and which contained two, as a gift for a young
married couple. We had been talking too much. Muttering to himself, he
started to unpack one box, thinking to check the contents. His wife
stopped him, “Don’t unpack, Frank; weigh them!”” So he did. He never
had to look inside to resolve his dilemma. Weight—a purely outside
property—instantly revealed the vital information about what was n-
side—one lobster or two.

Likewise, never does the grip of spacetime have to reach inside the
luminous Tiffany box to sense—and measure—that 3-cube’s total con-
tent of momenergy. Instead the content of momenergy inside a 3-cube
shows up accurately, simply, completely via ““scoreboard indicators™ on
the two-dimensional (2-D) faces of that 3-cube. The sum of those six
surface-located scoreboard readings gives the momenergy inside. Out-
side reveals inside. How, then, do we define and measure the “‘score-
board reading” for any one 2-face? Amazingly we don’t have to if we're
willing to postpone knowing how much momenergy lies within the
3-cube and concentrate on checking conservation of momenergy. Why?
Because any one face—say, the red face—butts up against and cancels
out the oppositely swirl-oriented red face of an adjacent 3-cube (see dia-
gram on page 112).

The swirl, the circulation, for each red face—or any 2-D face—is
indicated by the arrow that runs around the one-dimensional perimeter
of that face. Opposite swirl, opposite sense of circulation—or, in the
word of our friends from the world of mathematics—opposite orientation
means that these circumnavigating arrows run in opposite directions.
The two abutting red faces—one belonging to one 3-D cube and the
other to an adjacent 3-D cube with an oppositely directed perimeter—are
mutually canceling, are mathematical negatives, the one of the other.

The momenergy scoreboard reading that goes with the one red face
must be equal in magnitude but opposite in mathematical sign to the
momenergy scoreboard reading of the mated red face. Because the
momenergy scoreboard readings—whatever they may be—that belong
to abutting, or mating 2-D faces are opposites, their sum-—the
momenergy of the interface—is zero. The momenergy scoreboard read-
ings likewise cancel at every other 2-D interface. We feel in our bones
that we begin almost to understand how nature conserves momenergy in

The Boundary of a Boundary: Where the Action 14/

115



119

any four-dimensional block of spacetime. But we also know that no idea
is valuable until we can voice it sharp and clear: conservation of momenergy
is automatic because the forty-eight 2-D face-boundaries of the eight 3-D cube-
boundaries of any 4-D spacetime region self-annihilate.

Within a 4-D cube or block of spacetime—a region of space exam-
ined for an interval of time—momenergy is automatically conserved.
How does nature audit that block of spacetime to make sure that no
momenergy is created or destroyed in it? Is it enough for nature to audit
the momenergy—the measure of mass in motion—contained in just one
of the bounding 3-cubes? No! Instead nature must audit all eight 3-cubes
that bound that 4-cube—or, rather, the content of momenergy in all
eight of them. Those eight “contents of momenergy” must and do add
to zero. That’s nature’s way to guarantee that never anywhere, in any
region of space, studied for any stretch of time, is there ever any creation
or destruction of momenergy.

Eight cubes. Six faces for each. That’s 48 faces. Each of thesc two-
dimensional faces bears an indicator, a scoreboard, a momenergy register
of some yet-unfathomed kind. Not one of those 2-faces stands exposed
to any outside world. Everyone of those forty-eight 2-faces abuts an-
other one of them. Twenty-four mated pairs!

Whatever the scoreboard of momenergy carried by any one 2-face,
the scoreboard of momenergy carried by its mated face has to, and does,
read the exactly opposite number. And so it is for the six faces of the next
3-cube, and the next 3-cube, and the next, all the way around all eight
3-cubes that bound that 4-D region, that block of spacetime, that audited
domain, in which nature demands zero change of momenergy. This con-
servation condition fulfills itself automatically. How? By the principle
that the 2-boundary of the 3-boundary of a 4-region is zero. That is how
nature ensures and guarantees conservation of momenergy.

Action of Mass-in-Motion Inside on Spacetime Outside

Bravo! The content of momenergy inside a 3-cube, we conclude, must
somehow reveal itself—without any internal probing whatsoever—
through the sum of scoreboard readings on the six 2-D faces of that
3-cube. But reveal itself how? Make itself felt how? Suddenly we re-
member from our earlier discussions (Chapter 6) that the content, the
magnitude, the measure of momenergy is mass. ‘“Momenergy make it-
self felt how?” is the same as ““Mass make itself felt how?” The answer to
the second question and hence the first we discovered in Chapter 5:
Mass—most vividly, the mass of Earth itself—makes itself felt in the
curvature that it imposes on spacetime. Curvature manifested not in the

Chapter Seven



free-float motion of one mass, but in the relative motion of two
geodesics, two histories of free-float motion, two nearby and nearly par-
allel worldlines of two microscopic test masses whose directions of travel
slowly bend—or twist—or bend and twist—relative to each other. Two
such geodesics can also define for us two of the opposite edges of a 2-D
face, which though nearly parallel cannot be completely so, because of
the slight bending of the worldlines. This bending, this rotation of two
geodesic boundaries of that face relative to each other, does it not provide
at last our long-sought 2-face “scoreboard indicator” for momenergy?
Do we indeed get a true count of the momentum and energy contained
within a 3-D cube by adding the angles of bending associated with the six
2-D faces of that cube? What could be simpler? We have only to ask this
question to feel ourselves happily launched on the wonderful way to
understanding the grip of mass-in-motion on spacetime.

We can measure the bending, the angle, the rotation associated with
each 2-D face, or plaquette—a two-dimensional slice of spacetime—by
the method of parallel transport that we investigated in Chapter 5 (page
79). Geodesics, free-float worldlines, run along and define two nearly
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The rotation, or bending-plus-twist, associ-
ated with the 2-D face of a 3-D cube, one of
the eight blocks that bound a region of 4-D
spacetime. The sweeping green and blue lines
mark two of the edges of the face. For sim-
plicity we envisage both as free-float world-
lines that start parallel at the remote end of
the face—and think of Blue as carrying a
radar mounted on a gyroscope-stabilized plat-
form. To “start parallel” means that initially
Green shows up on Blue’s radar as having a
zero speed of approach and a zero rate of
change of direction. In consequence of the cur-
vature of the intervening spacetime, by the
end of the run Green shows up as not only
approaching but also changing direction. In
other words, spacetime curvature has rotated
Green’s spacetime velocity relative to Blue’s.
This rotation has been translated, in the inset
at the center of the 2-D face, to two arrows of
unit length and a parallelogram, which they
span and thereby define. The “orientation’ or
sense of swirl (gold arrows) has this in com-
mon with the parallelogram and the 2-D face,
that it runs concurrent with the edge or arrow
that belongs to Blue.
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parallel edges of each face; the other two nearly parallel edges cut those
two free-float worldlines. Thus they define the start and stop of the
stretch of line in which we are interested. Moreover, each edge of any
one face also is an edge for an adjacent face. Belonging to one face, that
edge is traversed in parallel transport in one direction. Belonging to the
other face, it is traversed a second time but in the opposite direction. The
first traverse contributes to the rotation associated with the one face. The
second traverse makes a contribution to the rotation of the other face
equal in magnitude but opposite in sign to the rotation associated with
the first face. Thus when we add all six rotations, we count the contribu-
tions of all the edges twice over—once with a plus sign and once with a
minus sign. The total? Zero! Zero for our intended measure of the
momenergy inside the 3-cube! Heavens! Something must be wrong in
our thinking.

We stumble but continue. Any minute now, we’re sure, we're going
to discover the answer to the central question: how does mass-in-motion
inside reveal itself in spacetime bending outside, at the surface? The many-
colored faces of the Tiffany cube flash encouragement.

In imagination we see a shack adrift upon the ice of a frozen sea. The
owner is making an urgent appeal: turn the building to face south but
don’t displace its center! Is this possible? Two men appear and start push-
ing on the shack with equal and opposite forces. No displacement of the
center occurs, but the lodge slowly starts to turn. Why? The separation
between the lines of action of those two forces, a perpendicularly mea-
sured distance between them, acts as a “lever arm.” The length of that
lever arm multiplied by the force gives what students of mechanics rec-
ognize as the turning moment, or torque responsible for that turning. Net
force? Zero. Net turning moment of those forces? Non-zero!

As in mechanics, so in geometrodynamics. In mechanics, the central
idea is force. In geometrodynamics it is bending or rotation—the rota-
tion of the direction of travel of one free-float world line, one geodesic,
relative to a nearby and nearly parallel free-float geodesic. Here we are
concerned with the rotation associated with one of the six 2-D faces that
enclose a little 3-D cube. In mechanics we move from a force to the
moment of that force in a single step by multiplying the force by the
distance from a fulcrum (i.e., axis of rotation) to the line of action of that
force. Here, too, in one leap, we move from a rotation to the moment of
that rotation by multiplying the rotation by the distance from the ful-
crum to the center of the 2-face associated with that rotation.

In figuring the grip of momenergy—of mass-in-motion—on space-
time, it does not matter where, in imagination, we place the fulcrum.
How come? As well ask why a new choice of fulcrum does not change
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the value of the total torque exerted by two equal forces upon the shack.
In the case of the shack, the sum of the forces—due allowance being made
for their counterdirectedness—is zero. Here, analogously, the sum of the
rotations associated with the six faces of a 3-D cube is zero.

The tempo of the flashing colored faces has risen. The long-sought
answer to the action of mass inside on spacetime outside, it signals, now
lies in ready reach. In the turning of the shack, the key quantity was not
the force—for the two countervailing forces added up to zero—but the
moment of that force. Likewise, in the action of mass on spacetime, the
vital quantity associated with a 2-D face is not the bending, not the angle,
not the rotation, but the moment of rotation. The rotations, summed up for
the six faces, add to zero. But the moments of rotation don’t! The sum of
the moments of surface-located rotation reveals and measures the amount of mass-
in-motion—the momenergy—inside the 3-cube:

sum of moments

. amount of
of rotation for o
= 87 X | momenergy within
the faces of a
that 3-cube

little 3-cube

The total turning moment is independent
of the location of the fulcrum. Two men
push on the opposite corners of the shack with
equal but opposite forces. Each exerts a torque
or turning moment about a fulcrum located in
imagination wherever the beholder chooses to
place it. The perpendicular distance from that
fulcrum to either force governs the moment
which the beholder attributes to that force.
However, the sum of the turning moments,
the total torque, which is what counts for
swinging the shack around, does not depend
on the placement of the fulcrum.
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This single simple expression—the Einstein-Cartan equation—
gives us the most vivid image that mankind has ever won of the living
heart of gravity. Here shines forth the influence of energy and mo-
mentum—whether of mass-in-motion, or of electromagnetic ficlds, or
of other fields, or of all of these—on spacetime curvature at the two-
dimensional boundary of any elementary 3-D region. Here glitters in a
simple geometric form Einstein’s 1915 battle-tested and still-standard law
of geometrodynamics, his famous field equation. This equation holds the
answers to every question about gravity that we know enough to ask.

A- CLOSER LOOK AT MOMENT OF ROTATION

The moments of rotation assoc1ated with the top and bottom faces of :
d 3-cube are represented as parallelepipeds, thrée-dimensional objects.
One edgé of each is the line from a fulcrum, or center of rotation,
inside or outside the 3-cube to thé center of the face in quesnon The
side of each parallelep1ped away from the fulcrum is a little parallelo-
gram. Spanmng the parallelograms are"two arrows'of unif length.
They symbolize the initial and the final orientation of a marker arrow
to be carried, in.imagination, in parallel transport'around the perime-
ter of the face in question to measure the rotation associated with that
face. The volume contained within the parallelépiped expresses itself,
then, not in cubic meters but in meters—that is, (meters) X
(dimension-free number) X (dlmensmn—free number). And the meter,

' t0o, is the measure of mass, and of momentum and energy. As far as
units. of measure go, we are evidently on'the nght track. But ~
momenergy has. the quality of an arrow, an arrow that points in a:
well-defined direction in spacetime:. Whoever heard of a 3-D parallele-
piped pointing anywhere? Our everyday.intuitions, however, uncon--:
sciously assume that ‘the objects we examine 'sit in 2 3D space. In
spacetime, there is a well-defined direction perpendicular to- the 3-D " .

, s 7 Ttop’ and bottom faces of a 3-cube, repre- -
parallelepiped: “That is the direction of that parallelepiped s contribu- _sented as parallelepipeds. The sum of the
tion to the arrow of momenergy' This feature of the grip of gmvu'y 18 - polumes of the parallelepipeds associated

- like the direction of a torque—a turning moment—such as the direc- ~ with all six faces tells us how much
tion in which a screw advances through the wood when we twist it to ~ momenergy there is ini the 3-cube. That

“the right! With direction now evident for each’face’s contribution to ~ ~ ¥ independent of the location of the

_fulcrum (black dot). The perpendicular—-
the momenergy, and its magnitude also evident, siX directed arrows in 4-D spacetime—to that totalized .
stand ‘forth and have only to be combined, as arrows combme €0 B-volume determines the direction ofthe
reveal the total momenergy contained in the 3-D cube. = i arrow of momenergy

Moments of rotatton assoczated with- the
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Geometrodynamic Field Equation

Einstein’s field equation can tell us the gravity—that is, the spacetime
curvature—in and around a star, a black hole, or any other spherically
symmetric center of mass. And it can confirm the strength and direc-
tional propertics for the tide-driving curvature outside that mass, which
experience already tells us are correct (page 89).

Can it tell us in a jiffy the story of the expansion of a closed model
universe, and of the slowing of this expansion, when the model is so
simple that in it the density of mass departs nowhere greatly—on the
average—from uniformity? Yes.

Can it tell us the workings of a gravity wave—how the collapse of a
distant star generates it, how it zings through space, how it makes the
Earth tremble bencath our feet? Yes.

All this and more follows from the geometrodynamic field equa-
tion. This marvelous statement tells how mass—how momentum and
encrgy—grip spacetime. It reveals how mass, there, bends spacetime
geometry, there—deforms it, warps it—as a jumper warps the trampo-
line beneath his feet. Cupping of the fabric there, however, demands and
enforces warping on the canvas in all the domain roundabout. Likewise
spacetime geometry there, bent in one way where mass sits or moves,
demands and enforces bending of another kind on all the surrounding
empty spacetime.

Bending spreads its influence from region to region. The Einstein
geometrodynamic influence equation describes and quantifies this spread
of influence from region to region. In any region of emptiness,
momenergy 1is zero. So is the moment of rotation—because zero
momenergy in any locale implies and demands that there the moment of
rotation also must be zero. But for the shack sitting on the ice, with two
men pushing on it at different places and in opposite directions, does a
zero total turning effect, a zero sum for the separate turning moments of
those forces, mean that those forces themselves are individually zero?
Not at all.

As in mechanics, so in geometrodynamics! In the emptiness outside
a center of mass do we find a zero disturbance, a zero measure of geomet-
ric influence, a zero departure of spacetime from ideal? First, the moment
of rotation. Yes, that’s zero. Second, rotation itself, relative bending of
nearby and nearly parallel free-float worldlines, change in their relative
motion. Like forces in mechanics, the rotation is not zero. Were it zero,
there’d be zero gravity outside the Earth, no planetary orbits, no gravity
waves! That rotation, that bending, that change in the relative speed of
nearby worldlines—that’s what gravity, examined locally, is!

The Boundary of a Boundary: Where the Action 14!

Elie Cartan

The French mathematician and geometer Elie
Cartan (1869—1951) used his calculus of
“exterior differential forms” to derive the sim-
ple Einstein-Cartan equation from Einstein’s
much more complicated geometrodynamic field
equation. Cartan’s boundary-of-a-boundary
geometric approach to Einstein’s theory pro-
vides a wonderful simplicity. In 1929, Cartan
sent Einstein some of his mathematical results
concerning general relativity. Einstein wrote
in reply: “I didn’t at all understand the ex-
planations you gave me . . . ; still less was it
clear to me how they might have been useful
for physical theory.” Einstein’s difficulties
may have stemmed from Cartan’s “‘extremely
elliptic style that . . . has baffled two genera-
tions of mathematicians,” according to Jean
Dieudonné.
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Einstein’s influence law thus displays not only the grip of mass
where it is on spacetime where it is. It also tells how bent spacetime here
grabs and bends adjacent spacetime.

Even beyond the grip of mass on spacetime, the moment-of-rota-
tion equation reveals and rules the grip of spacetime on mass. Grip on
mass? Yes, reaction to the grip of mass! That’s the other half of the story
of gravity. That grip on mass enforces the law of conservation of
momenergy. Enforces it automatically. Enforces this conservation in a
subtle, clever, hidden way. Enforces it via the principle that the 2-bound-
ary of a 3-boundary of a 4-D spacetime region is zero!

We have traveled an adventurous course in these last pages. Content
of momenergy within a 3-cube, we have found, is the sum of moments of
rotation—rotation, or relative bending of worldlines, or spacetime cur-
vature—as evidenced at the six 2-D faces of that 3-cube. Every single one
of these 2-D faces, however, is paired with a totally compensating face
when we consider not a single 3-D cube but all eight of the 3-D cubes
that surround an elementary 4-D block of spacetime. In consequence of
this pairing, this mutual annihilation of these faces, the sum of the
momenergy contained within all eight 3-cubes adds up to zero. Zero total
content of momentum and energy as summed up for the eight cubes that
constitute the 3-D boundary of that little spacetime region. And that’s our
sophisticated way to say that in that region there is total balance between
what goes in and what goes out! By extension to other times and other
places, this central boundary-of-a-boundary feature of geometro-
dynamics ensures that never at any time or any place is there ever any
creation or destruction of momenergy whatsoever!

1s Physics at Bottom “Law without Law”?

This great world around us—how is it put together? Out of gears and
pinions? By a corps of Swiss watchmakers? According to some multifac-
eted master plan embodying an all-embracing corpus of laws and regula-
tions? Or the direct opposite? Are we destined to find that every law of
physics, pushed to the extreme of experimental test, is statistical—as heat
is—not mathematically perfect and precise? Is physics in the end “law
without law,” the very epitome of austerity?

Nothing seems at first sight to conflict more violently with austerity
than all the beautiful structure of the three great field theories of our
age—electrodynamics, geometrodynamics, and string-theory dynamics.
They are the fruit of a century of labor, hundreds of experiments, scores
of gifted investigators. How can we possibly imagine all this ordered
richness originating in austerity? Only a principle of organization that is
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no organization at all would seem to meet any demand for total austerity.
In all of mathematics, nothing of this kind more obviously offers itself
than the principle that the boundary of a boundary is zero. Moreover,
this principle occupies a central place in all three of today’s great field
theories. To this extent almost all of physics founds itself on almost
nothing. ‘

Far-seeing Gottfried Wilhelm Leibniz advocated a still greater vision
of existence: ‘“‘For deriving everything out of nothing one principle suf-
fices.” Was he right? Underneath the workings of the world will some-
day a humble, thoughtful, gifted knot of searchers lay open to view the
great unifying principle? Noble work for man! Rich gift to mankind!

To confront issues so cosmic is to turn back with a fresh eye to how
gravity works—via the double grip of spacetime on mass and of mass on
spacetime. Nowhere better than by examining that grip can we see more
vividly, more instructively, and more impressively the reach and power
of that austerity-flavored principle, the boundary of a boundary is zero. And
nowhere will we find that principle operating more beautifully, more
simply, and with more direct ties to everyday experience than in the
warping of space—and of spacetime—around a spherically symmetric
center of attraction.

The Boundary of a Boundary: Where the Action 14!
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CHAPTER 1 5

BIANCHI! IDENTITIES AND
THE BOUNDARY OF A BOUNDARY

\

\

This chapter is entirely Track 2.

As preparation, one needs to
have covered (1) Chapter 4
{differential forms) and (2)
Chapter 14 {computation of
curvature}. "

In reading it, one will be
helped by Chapters 9-11
and 13.

It is not needed as
preparation for any later
chapter, but it will be helpful
in Chapter 17 (Einstein field
equations).

Identities and conservation of
the source: electromagnetism
and gravitation compared:

§15.1. BIANCHI IDENTITIES IN BRIEF

Geometry gives instructions to matter, but how does matter manage to give instruc-
tions to geometry? Geometry conveys its instructions to matter by a simple handle:
“pursue a world line of extremal lapse of proper time (geodesic).” What is the handle
by which matter can act back on geometry? How can one identify the right handle
when the metric geometry of Riemann and Einstein has scores of interesting features?
Physics tells one what to look for: a machinery of coupling between gravitation
(spacetime curvature) and source (matter; stress-energy tensor T) that will guarantee
the automatic conservation of the source (V + T = 0). Physics therefore ,akslcsAmathi
matics: “What tensor-like feature of the geometry is automatically conserved?”
Mathematics comes back with the answer: “The Einstein tensor.” Physics queries,
“How does this conservation come about?” Mathematics, in the person of Elie
Cartan, replies, “Through the principle that ‘the boundary of a boundary is zero’”
(Box 15.1).

Actually, two features of the curvature are automatically conserved; or, otherwise
stated, the curvature satisfies two Bianchi identities, the subject of this chapter. Both
features of the curvature, both “geometric objects,” lend themselves to representation
in diagrams, moreover, diagrams that show in action the principle that “the boundary
of a boundary is zero.” In this respect, the geometry of spacetime shows a striking
analogy to the field of Maxwell electrodynamics.

In electrodynamics there are four potentials that are united in the 1-form A =
A, dx*. Out of this quantity by differentiation follows the Faraday, F = dA. This
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field satisfies the identity dF = 0 (identity, yes; identity lending itself to the definition
of a conserved source, no).

In gravitation there are ten potentials (metric coefficients g,,) that are united in
the metric tensor g = g,, dx* @ dx”. Out of this quantity by two differentiations
follows the curvature operator

=6, Ae,R¥,dec A dsP.

This curvature operator satisfies the Bianchi identity d# = 0, where now “d” is a
generalization of Cartan’s exterior derivative, described more fully in Chapter 14
(again an identity, but again one that does not lend itself to the definition of a
conserved source).

In electromagnetism, one has to go to the dual, *F, to have any feature of the
field that offers a handle to the source, d*F = 47 *J. The conservation of the
source, d*J = 0, appears as a consequence of the identity dd*F = 0; or, by a

rewording of the reasoning (Box 15.1), as a consequence of the vanishing of the

boundary of a boundary.
24 24 (continued on page 370)

di =0

dd*F = 0 plus Maxwell
equations = d*J =0

—

Box 15.1 THE BOUNDARY OF A BOUNDARY IS ZERO

A. The Idea in Its 1-2-3-Dimensional Form

Begin with an oriented cube or approximation to
a cube (3-dimensional).

Its boundary is composed of six oriented faces,
each two-dimensional. Orientation of each face is
indicated by an arrow.

Boundary of any one oriented face consists of
four oriented edges or arrows, each one-dimen-

-~ sional. ’ !
Every edge unites one face with another. No
edge stands by itself in isolation. y

“Sum” over all these edges, with due regard to
sign. Find that any given edge is counted twice,
once going one way, once going the other.

Conclude that the one-dimensional boundary of
the two-dimensional boundary of the three-di-
mensional cube is identically zero.

-

~
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Box 15.1 (continued)

Begin with an oriented four-dimensional cube or
approximation thereto. The coordinates of the
typical corner of the four-cube may be taken to
be (f, =141, x,*=44x, y, =14y, z,+14z);
and, accordingly, a sample corner itself, in an
obvious abbreviation, is conveniently abbreviated
+ — — +. There are 16 of these corners. Less com-
plicated in appearance than the 4-cube itself are

g -+

B. The ldea in Its 2-3-4-Dimensional Form

t=1/2 At

15. BIANCHI IDENTITIES AND THE BOUNDARY OF A BOUNDARY

\

its three-dimensional faces, which are “exploded
off of it” into the surrounding area of the diagram,
where they can be inspected in detail.

The boundary of the 4-cube is composed of eight
oriented hyperfaces, each of them three-dimen-
sional (top hyperface with extension Ax A4y 4z,
for example; a “front” hyperface with extension
At Ay Az; etc)

=t

-+t

-t

-
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Boundary of any one hyperface (“cube™) consists of six oriented faces, each
two-dimensional.

Every face (for example, the hatched face 4x Ay in the lower lefthand corner)
unites one hypersurface with another (the “3-cube side face” 4¢ Ax Ay in the lower
lefthand corner with the “3-cube top face” Ax Ay 4z, in this example). No face stands
by itself in isolation. The three-dimensional boundary of the 4-cube exposes no
2-surface to the outside world. It is faceless.

“Sum” over all these faces, with due regard to orientation. Find any given face
is counted twice, once with one orientation, once with the opposite orientation.

Conclude that the two-dimensional boundary of the three-dimensional boundary
of the four-dimensional cube is identically zero.

C. The ldea in Its General Abstract Form

00 = 0 (the boundary of a boundary is zero).

D. lIdea Behind Application to Gravitation and Electromagnetism

- The one central point is a law of conservation (conservation of charge; conservation
of momentum-energy).

The other central point is “automatic fulfillment” of this conservation law.

“Automatic conservation” requires that source not be an agent free to vary
arbitrarily from place to place and instant to instant.

Source needs a tie to something that, while having degrees of freedom of its own,
will cut down the otherwise arbitrary degrees of freedom of the source sufficiently
to guarantee that the source automatically fulfills the conservation law. Give the
name “field” to this something.

Define this field and “wire it up” to the source in such a way that the conservation
of the source shall be an automatic consequence of the “zero boundary of a boundary.”
Or, more explicitly: Conservation demands no creation or destruction of source inside
the four-dimensional cube shown in the diagram. Equivalently, integral of “creation
events” (integral of d*J for electric charge; integral of d * T for energy-momentum)
over this four-dimensional region is required to be zero.

Integral of creation over this four-dimensional region translates into integral of
source density-current (*J or *T) over three-dimensional boundary of this region.
This boundary consists of eight hyperfaces, each taken with due regard to orientation.
Integral over upper hyperface (“4x 4y 4z)” gives amount of source present at later
moment; over lower hyperface gives amount of souce present at earlier moment;
over such hyperfaces as “A¢ Ax Ay” gives outflow of source over intervening period
of time. Conservation demands that sum of these eight three-dimensional integrals
shall be zero (details in Chapter 5).

U »
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Box 15.1 {(continued)

Vahishihg of this sum of three-dimensional integrals states the conservation
requirement, but does not provide the machinery for “automatically” (or, in mathe-
matical terms, “identically”) meeting this requirement. For that, tumn to principle
that “boundary of a boundary is zero.”

Demand that integral of source density-current over any oriented hyperface V'
(three-dimensional region; “cube”) shall equal integral of field over faces of this
“cube” (each face being taken with the appropriate orientation and the cube being
infinitesimal):

477f’*J:f *F; 87f *r=f

T 1" T v

(moment of )
rotation /'

Sum over the six faces of this cube and continue summing until the faces of all
eight cubes are covered. Find that any given face (as, for example, the hatched face
in the diagram) is counted twice, once with one orientation, once with the other
(“boundary of a boundary is zero”). Thus is guaranteed the conservation of source:
integral of source density-current over three-dimensional boundary of four-dimen-
sional region is automatically zero, making integral of creation over interior of that
four-dimensional region also identically zero.

Repeat calculation with boundary of that four-dimensional region slightly dis-
placed in one locality [the “bubble differentiation” of Tomonaga (1946) and Schwin-
ger (1948)}, and conclude that conservation is guaranteed, not_only in the four-di-
mensional region as a whole, but at every point within it, and, by extension,
everywhere in spacetime.

E. Relation of Source to Field

One view: Source is primary. Field may have other duties, but its prime duty is
to serve as “slave” of source. Conservation of source comes first; field has to adjust
itself accordingly.

Alternative view: Field is primary. Field takes the responsibility of seeing to it
that the source obeys the conservation law. Source would not know what to do in
absence of the field, and would not even exist. Source is “built” from field. Conser-
vation of source is consequence of this construction.

One model illustrating this view in an elementary context: Concept of “classical”
electric charge as nothing but “electric lines of force trapped in the topology of a
multiply connected space” [Weyl (1924b); Wheeler (1955); Misner and Wheeler
(1957)}.

On any view: Integral of source density-current over any three-dimensional region
(a “cube” in simplified analysis above) equals integral of field over boundary of
this region (the six faces of the cube above). No one has ever found any other way
to understand the correlation between field law and conservation law.

\— _/
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F. Electromagnetism as a Model: How to “Wire Up’’ Source to Field

to Give Automatic Conservation of Source Via “39 = 0” in Its
2-3-4-Dimensional Form

Conservation means zero creation of charge (zero creation in four-dimensional
region £2).

Conservation therefore demands zero value for integral of charge density-current
over three-dimensional boundary of this volume; thus,

oJ#
0= —_—di2 = e 3
j;}ax#d.(} j;ﬂJdZ’#

in the Track-1 language of Chapters 3 and 5. Equivalently, in the coordinate-free
abstract language of §§4.3-4.6, one has

Ozfgd*J:fag*J,

where

o= g dXT A dxEA dx® + *Jp dXO A dx2 A dx3
+ *Joa1 dXO A dx3 A dxt + *Jy, dx® A dxt A dx?

(“eggcrate-like structure” of the 3-form of charge-density and current-density).
Fulfill this conservation requirement automatically (“identically”) through the
principle that “the boundary of a boundary is zero” by writing 4z *J = d*F; thus,

47 | *J=| d*F = *F=0
";.Q ";0 Ji;i).(./’(zero!)
or, in Track-1 language, write 47/* = F#*, , and have
an [ s, = [ Fo,diz, = Fue d2s  =0.
oL an 00£2(zero")
In other words, half of Maxwell’s equations in their familiar flat-space form,

divVE=V-E=4ap, curlB=V X B=E + 4xJ,

“wire up” the source to the field in such a way that the law of conservation of source
follows directly from “602 = 0.”

G. Electromagnetism Also Employs “30 = 0” in its
1-2-3-Dimensional Form ('‘No Magnetic Charge'’)

Magnetic charge is linked with field via 4=J, . = dF (see point F above for transia-
tion of this compact Track-2 language into equivalent Track-1 terms). Absence of

— _/
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~

Box 15.1 (continued)

any magnetic charge says that integral of J,,, over any 3-volume 1" is necessarily
zero; or (“integration by parts,” generalized Stokes theorem)

total magnetic flux
j;, j;q, exiting through o7

In order to satisfy this requirement “automatically,” via principle that “the boundary
of a boundary is zero,” write F = dA (“expression of field in terms of 4-potential”),

and have
[F=] dA = | A=0.

oV v A0V (zero!)

H. Structure of Electrodynamics in Outline Form

A (potential)

|

F (field; Faraday) = dA — *F (dual field; Maxwell)

{

dF = 0 (identity based d*F = 4x*d
on 89 = 0)

d*J =0 (expressed as an
identity based
on dc = 0)

d*J =0o0rV:J=0
(“automatic” conservation of source)

In gravitation physics, one has to go to the “double dual” (two pairs of alternating
indices, two places to take the dual) € = *R* of Riemann to have a feature of
the field that offers a handle to the source:

G = Tt€ = Einstein = 8=T = 8« X (density of energy-momentum).

The conservation of the source T = e, T*,w” can be stated ¥ - T = 0. But better
suited for the present purpose is the form (see Chapter 14 and exercise 14.18)
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I. Structure of Geometrodynamics in Outline Form

g (metric)

V =d (parallel transport; covariant derivative;
generalized exterior derivative)

R = d? (curvature — & = *R* (double —*G = 8=*T
operator) dual) l

d*G = 0 (contracted
Bianchi identity
based on 39 = 0)

d? =0 (full Bianchi
identity;
based on
39 = 0)

d*T=0 or V:T=0

(“automatic
conservation of source)

*Tr&
= x(d? N\ R)

(Einstein)

_/

d*T =0,
where
‘T=e,Jl"(*w) =€, T*d*%,.
This conservation law arises as a consequence of the “contracted Bianchi identity”,

d*G =0, again interpretable in terms of the vanishing of the boundary of a
boundary.

d*G = 0 plus Einstein field
equation == d*T = 0




Bianchi identity, d% = 0,
interpreted in terms of
parallel transport around the
six faces of a cube.
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Figure 15.1.
Combine rotations associated with each of the six faces of the illus-
trated 3-volume and end up with zero net rotation (*full Bianchi
identity”). Reason: Contribution of any face is measured by change
in a test vector A carried in parallel transport around the perimeter
of that face. Combine contributions of all faces and end up with each
edge traversed twice, once in one direction, once in the other direction
[boundary (here one-dimensional) of boundary (two-dimensional) of
indicated three-dimensional figure is zero]. Detail: The vector A,
residing at the indicated site, is transported parallel to itself over to
the indicated face, then carried around the perimeter of that face by
parallel transport, experiencing in the process a rotation measured by
the spacetime curvature associated with that face, then transported
parallel to itself back to the original site. To the lowest relevant order
of small quantities one can write

(change in A) = —4y Az R(e, e,) A
in operator notation; or in coordinate language,

—84% = R%g, (atx + Ax)4F 4y Az.

§15.2. BIANCHI IDENTITY d2 = 0 AS A MANIFESTATION
OF “BOUNDARY OF BOUNDARY = 0"

Such is the story of the two Bianchi identities in outline form; it is now appropriate
to fill in the details. Figure 15.1 illustrates the full Bianchi identity, d# = 0 (see
exercise 14.17), saying in brief, “The sum of the curvature-induced rotations associ-
ated with the six faces of any elementary cube is zero.” The change in a vector A
associated with transport around the perimeter of the indicated face evaluated to
the lowest relevant order of small quantities is given by

—8A4% = R%,, (at x + Ax)AP Ay Az. (15.1)

Byz

The opposite face gives a similar contribution, except that now the sign is reversed
and the evaluation takes place at x rather than at x + Ax. The combination of the
contributions from the two faces gives

R«
%AB Ax Ay 4z, (152)
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when Riemann normal coordinates are in use. In such coordinates, the vanishing
of the total —84* contributed by all six faces implies

Raﬁv:;z + Raﬁzz;y + Raﬁ:y;z =0 (15.3)

Here semicolons (covariant derivatives) can be and have been inserted instead of
commas (ordinary derivatives), because the two are identical in the context of
Riemann normal coordinates; and the covariant version (15.3) generalizes itself to
arbitrary curvilinear coordinates. Turn from an xyz cube to a cube defined by any
set of coordinate axes, and write Bianchi’s identity in the form

RGB[)\”;V] = 0. (15.4)

(See exercise 14.17 for one reexpression of this identity in the abstract coordinate-
independent form, d% = 0, and §15.3 for another.) This identity occupies much the
same place in gravitation physics as that occupied by the identity dF = ddA =0
in electromagnetism:

. FE)\,;,V] = ‘FE)\”;II] =0. (155)

§15.3. MOMENT OF ROTATION: KEY TO CONTRACTED
BIANCHI IDENTITY

The contracted Bianchi identity, the identity that offers a “handle to couple to the
source,” was shown by Elie Cartan to deal with “moments of rotation” [Cartan
(1928); Wheeler (1964b); Misner and Wheeler (1972)]. Moments are familiar in
elementary mechanics. A rigid body will not remain at rest unless all the forces acting
on it sum to zero:

S F9 =0. (15.6)

i

Although necessary, this condition is not sufficient. The sum of the moments of these
forces about some point ¥ must also be zero:

> @D - P)A FD=0. (15.7)

1

Exactly what point these moments are taken about happily does not matter, and
this for a simple reason. The arbitrary point in the vector product (15.7) has for
coefficient the quantity 3, F®, which already has been required to vanish. The
situation is similar in the elementary cube of Figure 15.1. Here the rotation associated
with a given face is the analog of the force F* in mechanics. That the sum of these
rotations vanishes when extended over all six faces of the cube is the analog of the
vanishing of the sum of the forces F®.

What is the analog for curvature of the moment of the force that one encounters
in mechanics? It is the moment of the rotation associated with a given face of the




Net moment of rotation over
all six faces of a cube:

(1) described

(2) equated to integral of
source, [ *T, over interior of
cube

(3) conserved
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cube. The value of any individual moment depends on the reference point .
However, the sum of these moments taken over all six faces of the cube will have
a value independent of the reference point %, for the same reason as in mechanics.
Therefore & can be taken where one pleases, inside the elementary cube or outside
it. Moreover, the cube may be viewed as a bit of a hypersurface sliced through
spacetime. Therefore & can as well be off the slice as on it. It is only required that
all distances involved be short enough that one obtains the required precision by
calculating the moments and the sum of moments in a local Riemann-normal
coordinate system. One thus arrives at a #-independent totalized moment of rotation
(not necessarily zero; gravitation is not mechanics!) associated with the cube in
question.

Now comes the magic of “the boundary of the boundary is zero.” Identify this
net moment of rotation of the cube, evaluated by summing individual moments of
rotation associated with individual faces, with the integral of the source density-
current (energy-momentum tensor *T) over the interior of the 3-cube. Make this
identification not only for the one 3-cube, but for all eight 3-cubes (hyperfaces) that
bound the four-dimensional cube in Box 15.1. Sum the integrated source density-
current *T not only for the one hyperface of the 4-cube, but for all eight hyperfaces.
Thus have

source
t f source current-
creaton | = :
density, *T
4-cube \ *T 3-boundary

of this 4-cube

net moment of rotation

= 2 associated with speci-
these eight
bounding fied cube
3-cubes

moment of rotation
= > > associated with specified |. (15.8)

eight six faces 1
baiing  bouiare face of specified cube

3.cubes  given 3-cube
—_— e

(zero!)

Let the moments of rotation, not only for the six faces of one cube, but for all the
faces of all the cubes, be taken with respect to one and the same point #. Recall
(Box 15.1) that any given face joins two cubes or hyperfaces. It therefore appears
twice in the count of faces, once with one orientation (“sense of circumnavigation
in parallel transport to evaluate rotation™) and once with the opposite orientation.
Therefore the double sum vanishes identically (boundary of a boundary is zero!)
This identity establishes existence of 2 new geometric object, a feature of the curva-
ture, that is conserved, and therefore provides a handle to which to couple a source.
The desired result has been achieved. Now to translate it into standard mathematics!
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§15.4. CALCULATION OF THE MOMENT OF ROTATION

It remains to find the tensorial character and value of this conserved Cartan moment
of rotation that appertains to any elementary 3-volume. The rotation associated with
the front face Ay dze, A e, of the cube in Figure 15.1 will be represented by the
bivector

rotation associated )

. =e, ANe RM AyA 15.9
(wnh front Ay 4z face AR (1>2)
" Tlocated at #,,,, = (f — 3 At, x + Ax, y + } 4y, z + 3 Az). This equation uses Rie-
mann normal coordinates; indices enclosed by strokes, as in Ap|, are summed with
the restriction A < p. The moment of this rotation with respect to the point & will

be represented by the trivector

moment of rotation
associated with = Peenir — P) Ny N\ e, RM! Ay Az. (15.10)

of front

front Ay Az face face

Here neither ?,, .. ¢one NOT ¥ has any well-defined meaning whatsoever as a vec-
tor, but their difference is a vector in the limit of infinitesimal separation, 47 =
P center tront — P~ With the back face a similar moment of rotation is associated,
with the opposite sign, and with ... .. . replaced by @, .. pac- I the difference
between the two terms, the factor % is of no interest, because one is already assured
it will cancel out [Bianchi identity (15.4); analog of XF% = 0 in mechanics}. The

difference &, P center back Das the value Axe,. Summing over all six faces,
one has

center front —

net moment of
rotation associated | _
with cube or hyper-
face Ax Ay 4z

e. N e, Ae,RM™ Ax Ay Az (front and back)
—_ - = “+ e, A e, A e, RM, Ay Az Ax (sides)
+ e, A e, A e, RM, Az Ax Ay (top and bottom). (15.11)

This sum one recognizes as the value (on the volume element e, A e, A e, Ax
4y 4z) of the 3-form

e, Ne, Ne RM qdc Adx* A dxh,

Moreover this 3-form is defined, and precisely defined, at a point, whereas (15.11),
applying as it does to an extended region, does not lend itself to an analysis that
is at the same time brief and precise. Therefore forego (15.11) in favor of the 3-form.
Only remember, when it comes down to interpretation, that this 3-form is to be

(4) evaluated

INS)




(5) abstracted to give
d? N R

(6) abstracted to give
*(d? A R) = e,G°7d3%,
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evaluated for the “cube” e, A e, A e, Ax Ay Az. Now note that the “trivector-
valued moment-of-rotation 3-form” can also be written as

(moment of

— @ — o v 8
rotation ) =d? AR =e, Ney N e RM gdx" Adx* AdxP. (15.12)

Here
d? = e, dx? (15.13)

is Cartan’s (}) unit tensor. Also & is the curvature operator, treated as a bivector-
valued 2-form:

R =e, Ne,RM g dx* A dxP. (15.14)

Using the language of components as in (15.11), or the abstract language intro-
duced in (15.12), one finds oneself dealing with a trivector. A trivector can be left
a trivector, as, in quite another context, an element of 3-volume on a hypersurface
in 4-space can be left as a trivector. However, there it is more convenient to take
the dual representation, and speak of the element of volume as a vector. Denote
by * a duality operation that acts only on contravariant vectors, trivectors, etc. (but
not on forms). Then in a Lorentz frame one has *(e, A e, A e;) = e,; but
*(dx3) = dx3. More generally,

*x(e, Ne,Ne)=¢, e, (15.15)

In this notation, the “vector-valued moment-of-rotation 3-form” is

(moment ):*(dﬁ’/\@):eoe

. SRM o dx’ A dx® A dxf
of rotation japy dX" N\ dx *

27

€,(*R),% up dx" A dx* A dx¥,
or, in one more step,

(moment

=* = ,(*R*),”"d°Z. 15.16
of rotation) (d? A R) = e,(*R*),”" d°Z, ( )

Here 43X is a notation for basis 3-forms, as in Box 5.4; thus, - -

dx’ A dx® N dxP = P71 433 | (15.17)

(In a local Lorentz frame, dx! A dx* A dx? = d33.)

Nothing is more central to the analysis of curvature than the formula (15.16).
It starts with an element of 3-volume and ends up giving the moment of rotation
in that 3-volume. The tensor that connects the starting volume with the final moment,
the “contracted double-dual” of Riemann, is so important that it deserves and
receives a name of its own, G = Einstein; thus

(Einstein)’” = G°7 = 6,77 = (*R¥),%"". (15.18)

This tensor received attention in §§13.5 and 14.2, and also in the examples at the
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end of Chapter 14. In terms of Einstein, the connection between element of 3-vol-
ume and “vector-valued moment of rotation” is

(moment (15.19)

. ) =%x(d? A\ R) = e, G"d33 .
of rotation

The amount of “vector-valued moment of rotation” contained in the element of
3-volume @33 is identified by general relativity with the amount of energy-mo-
mentum contained in that 3-volume. However, defer this identification for now.
Concentrate instead on the conservation properties of this moment of rotation. See
them once in the formulation of integral calculus, as a consequence of the principle

“80 = 0.” See them then a second time, in differential formulation, as a consequence
of “dd =0.”

§15.5. CONSERVATION OF MOMENT OF ROTATION SEEN
FROM ‘“BOUNDARY OF A BOUNDARY IS ZERO"

The moment of rotation defines an automatically conserved quantity. In other words,
the value of the moment of rotation for an elementary 3-volume 4x 4y 4z after the
lapse of a time 4¢ is equal to the value of the moment of rotation for the same
3-volume at the beginning of that time, corrected by the inflow of moment of rotation
over the six faces of the 3-volume in that time interval (quantities proportional to
4y Az At, etc)) Now verify this conservation of moment of rotation in the language
of “the boundary of a boundary.” Follow the pattern of equation (15.8), but translate
the words into formulas, item by item. Evaluate the amount of moment of rotation
created in the elementary 4-cube 2, and find

““creation of moment of
“creation” = rotation” in the elementary

= f d*G;
T 4-cube of spacetime £ e

definition definition
moment of rotation
fd*G:f *G=f *(d? N\ R) = (d? N\ R) -
2 2 e t%le e:')ght 3-cube
that bound 2 associated with
specified 3-cube
step I step 2 step 3 step 4
moment of rotation
f @ N\R)
face
= 2 2 * | associated with =0. (15.20)

specified face of
specified cube

eight bounding six faces hounding
3-cubes specified 3.cube

4 step 5

Conservation of net moment
of rotation:

(1) derived from '8¢ = 0"




2

(2) derived from “‘dd = O™
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Here step 1 is the theorem of Stokes. Step 2 is the identification established by (15.19)
between the Einstein tensor and the moment of rotation. Step 3 breaks down the
integral over the entire boundary 3/ into integrals over the individual 3-cubes that
constitute this boundary. Moreover, in all these integrals, the star * is treated as
a constant and taken outside the sign of integration. The reason for such treatment
is simple: the duality operation % involves only the metric, and the metric is locally
constant throughout the infinitesimal 4-cube over the boundary of which the inte-
gration extends. Step 4 uses the formula

dP AR =d? AR +P ANdR =d? A R (15.21)

and the theorem of Stokes to express each 3-cube integral as an integral of # A
over the two-dimensional boundary of that cube. The culminating step is 5. It has
nothing to do with the integrand. It depends solely on the principle 30 =0.

In brief, the conservation of moment of rotation follows from two circumstances.
(1) The moment of rotation associated with any elementary 3-cube is by definition
a net value, obtained by adding the six moments of rotation associated with the
six faces of that cube. (2) When one sums these net values for all eight 3-cubes
in (15.20), which are the boundary of the elementary 4-cube {2, one counts the
contribution of a given 2-face twice, once with one sign and once with the opposite
sign. In virtue of the principle that “the boundary of a boundary is zero,” the
conservation of moment of rotation is thus an identity.

§15.6. CONSERVATION OF MOMENT OF ROTATION
EXPRESSED IN DIFFERENTIAL FORM

Every conservation law stated in integral form lends itself to restatement in differ-
ential form, and conservation of moment of rotation is no exception. The calculation
is brief. Evaluate the generalized exterior derivative of the moment of rotation in
three steps, and find that it vanishes; thus:

d*G = d[*(d? A %))

step 1
= x[d(d? A R)] Step )
= *%[d’P A & — dP A dR) tp3
-0 step

Step 1 uses the relation d* = *d. The star duality and the generalized exterior
derivative commute because when d is applied to a contravariant vector, it acts as
a covariant derivative, and when * is applied to a covariant vector or 1-form, it
is without effect. Step 2 applies the standard rule for the action of d on a product
of tensor-valued forms [see equation (14.13b)]. Step 3 deals with two terms. The
first term vanishes because the first factor in it vanishes; thus, %% = 0 [Cartan’s
equation of structure; expresses the “vanishing torsion” of the covariant derivative;
see equation (14.26)]. The second term also vanishes, in this case, because the second
factor in it vanishes; thus, d% = 0 (the full Bianchi identity). Thus briefly is conser-
vation of moment of rotation established.
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REPRESENTATIONS FOR THEM

Box 15.2 THE SOURCE OF GRAVITATION AND THE MOMENT OF ROTATION:
THE TWO KEY QUANTITIES AND THE MOST USEFUL MATHEMATICAL

Energy-momentum as source of Moment of rotation as automati-
gravitation (curvature of space- cally conserved feature of the
time) geometry
Representation as a vector-valued Machine to tell how much energy- Machine to tell how much net
3-form, a coordinate-independent momentum is contained in an moment of rotation—expressed
geometric object elementary 3-volume: as a vector—is obtained by add-
ing the six moments of rotation
*T =e,I°7dS ing th . .
‘ T associated with the six faces of
(“‘dual of stress-energy tensor”) the elementary 3-cube:

*(dP A R) = *G = e,G° BT,

(“"dual of Einstein™)

Representation as a (3)-tensor Stress-energy tensor itself: Einstein itself:
(also a coordinate independent

\

= aT, G = o7,
geometric object) T=elI"e; e.0*e;
Representation in language of
components (values depend on 177 G
choice of coordinate system)
Conservation law in language of Tr =0 G =0
components i T
Conservation in abstract lan- —
guage. for the (})-tensor ver=>0 V-6=0
Conservation in abstract lan-
guage, as translated into exterior d*'T =0 d*G=0or
derivative of the dual tensor (vec- - dx(d? A 4)=0
tor-valued 3-form)
*G=0or
. g
sarpe conservation law expressed sT—0 * f (d? A #)=0 or
in integral form for an element a2 -
of 4-volume £
* f (PAR)=0
3002

§15.7. FROM CONSERVATION OF MOMENT OF ROTATION TO
EINSTEIN'S GEOMETRODYNAMICS: A PREVIEW

Mass, or mass-energy, is the source of gravitation. Mass-energy is one component
of the energy-momentum 4-vector. Energy and momentum are conserved. The
amount of energy-momentum in the element of 3-volume 43X is

*T=e, T d3%, (1522)

(see Box 15.2). Conservation of energy-momentum for an elementary 4-cube £
expresses itself in the form

f *T=0. (15.23)

a2

Einstein field equation
“derived”’ from demand that
(conservation of net moment
of rotation) = (conservation
of source)

NS
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This conservation is not an accident. According to Einstein and Cartan, it is “auto-
matic”; and automatic, moreover, as a consequence of exact equality between
energy-momentum and an automatically conserved feature of the geometry. What
is this feature? It is the moment of rotation, which satisfies the law of automatic
conservation,

f *G =0, (15.24)
a2

In other words, the conservation of momentum-energy is to be made geometric in
character and automatic in action by the following prescription: Identify the stress-
energy tensor (up to a factor 8, or 87G/c*, or other factor that depends on choice

of units) with the moment of rotation; thus,

*(d? A R)=*G = 87 *T; (15.25)
or equivalently (still in the language of vector-valued 3-forms)

(moment of

) ) =%(d? A R) = e,G"d?3_ = 8ne,To7d3%,; (15.26)
rotation

or, in the language of tensors,
G=e,G¢e =8re,T7e_ = 8T, (15.27)
or, in the language of components,
G = 87T°" S (15.28)

(Einstein’s field equation; more detail, and more on the question of uniqueness, will
be found in Chapter 17; see also Box 15.3). Thus simply is all of general relativity
tied to the principle that the boundary of a boundary is zero. No one has ever
discovered a more compelling foundation for the principle of conservation of mo-
mentum and energy. No one has ever seen more deeply into that action of matter
on space, and space on matter, which one calls gravitation.

In summary, the Einstein theory realizes the conservation of energy-momentum as
the identity, “the boundary of a boundary is zero.”

EXERCISES

Exercise 15.1. THE BOUNDARY OF THE BOUNDARY OF A 4-SIMPLEX

In the analysis of the development in time of a geometry lacking all symmetry, when one
is compelled to resort to a computer, one can, as one option, break up the 4-geometry into
simplexes [four-dimensional analog of two-dimensional triangle, three-dimensional tetrahe-
dron; vertices of “central simplex” conveniently considered to be at (t, x, y,2) = (0, 1, 1, 1),
©,1,-1,-1), (0,=-1,1, =1), (0, -1, -1,1), (5¥%0,0,0), for example], sufficiently nu-
merous, and each sufficiently small, that the geometry inside each can be idealized as flat
{Lorentzian), with all the curvature concentrated at the join between simplices (see discussion
of dynamics of geometry via Regge calculus in Chapter 42). Determine (“give a mathematical
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[

.

Box 15.3 OTHER IDENTITIES SATISFIED BY THE CURVATURE

(1) The source of gravitation is energy-momentum.
(2) Energy-momentum is expressed by stress-
energy tensor (or by its dual) as a vector-valued
3-form (“energy-momentum per unit 3-volume”).
(3) This source is conserved (no creation in an
elementary spacetime 4-cube).

These principles form the background for the
probe in this chapter of the Bianchi identities. That
is why two otherwise most interesting identities
[Allendoerfer and Weil (1943); Chern (1955, 1962)]
are dropped from attention. One deals with the
4-form

1

472

gaygﬁs%aﬁ A %ysa (1)

and the other with the 4-form

1
r= '_"’1/2 Rz N Ry + Ryz N\ Ry

8n%det g,
+ R N Ryg).
@

Both quantities are built from the tensorial “cur-
vature 2-forms”

I
ay = 7Rayﬁs dxB A dx3. 3)

R
The four-dimensional integral of either quantity
over a four-dimensional region £ has a value that
(1) is a scalar, (2) is not identically equal to zero,
(3) depends on the boundary of the region of
spacetime over which the integral is extended, but
(4) is independent of any changes made in the

spacetime geometry interior to that surface (pro-
vided that these changes neither abandon the con-
tinuity nor change the connectivity of the 4-geom-
etry in that region). Property (1) kills any
possibility of identifying the integral, a scalar, with
energy-momentum, a 4-vector. Property (2) kills
it for the purpose of a conservation law, because
it implies a non-zero creation in £2.

Also omitted here is the Bel-Robinson tensor
(see exercise 15.2), built bilinearly out of the cur-
vature tensor, and other tensors for which see, e.g.,
Synge (1962).

One or all of these quantities may be found
someday to have important physical content.

The integral of the 4-form I" of equation (2)
over the entire manifold gives a number, an inte-
ger, the so-called Euler-Poincaré characteristic of
the manifold, whenever the integral and the inte-
ger are well-defined. This result is the four-dimen-
sional generalization of the Gauss-Bonnet integral,
widely known in the context of two-dimensional
geometry: :

Riemannian scalar curvature
invariant (value 2/a®
for a sphere of radius a)

g¥%d%x.

This integral has the value 8« for any closed,
oriented, two-dimensional manifold with the to-
pology of a 2-sphere, no matter how badly dis-
torted; and the value 0O for any 2-torus, again no
matter how rippled and twisted; and other equally

specific values for other topologies.

_J

description of ") the boundary (three-dimensional) of such a simplex. Take one piece of this
boundary and determine its boundary (two-dimensional). For one piece of this two-dimen-
sional boundary. verify that there is at exactly one other place, and no more, in the book-
keeping on the boundary of a boundary, another two-dimensional piece that cancels it
(“facelessness” of the 3-boundary of the simplex).
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Exercise 15.2. THE BEL-ROBINSON TENSOR [Bel (1958, 1959, 1962},
Robinson (1959h), Sejnowski (1973); see also Pirani (1957)
and Lichnerowicz (1962})].

Define the Bel-Robinson tensor by

T,

aBys = RapyoRﬁpao + .RQDYU.Rﬁpao' (15.29)

Show that in empty spacetime this tensor can be rewritten as

1
Togvs = Rapyo Rg%s° + Rapsa Ry — ggapgyaRw,‘ﬂR"""“. (15.30a)

Show also that in empty spacetime

Tysa = O, (15.30b)

T, pys is symmetric and traceless on all pairs of indices. (15.30¢)

a

Discussion: It turns out that Einstein’s “canonical energy-momentum pseudotensor” (§20.3)
for the gravitational field in empty spacetime has a second derivative which, in a Riemann-
normal coordinate system, is

4 1
tannvs = = 5 Tosvs = 5 Sapws ) (15.31a)

Here T, is the completely symmetric Bel-Robinson tensor, and S5, is defined by
— 1 v
Sopys = Ruspo Roy™ + Roype Rps™ + 7 Zap8vs R, e R#P7. (15.31b)

S,pys appears in the empty-space covariant wave equation

ARopys = —Rapysu® + RappoRys® + 2Ropya RpPs” — RapsoRe?y?) = 0, (15310)

where 4 is a variant of the Lichnerowicz-de Rham wave operator [Lichnerowicz (1964)],
when one rewrites this wave equation as

DRaBY«s = Raﬁya:#;n = 2S[awma]_ (15.31d)
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Wherein the reader is seduced into marriage with the most elegant
temptress of all—Geometrodynamics—and learns from her
the magic potions and incantations that control the universe.
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REGGE CALCULUS
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This chapter is entirely Track 2.
As preparation for it, Chapter
21 (variational principle and
initial-value formalism) is
needed. It is not needed as
preparation for any later
chapter, though it will be
helpful in Chapter 43
{dynamics of geometry),

\_ _

The need for Regge calculus
as a computational tool

Approximation of smooth
geometries by skeleton
structures

§42.1. WHY THE REGGE CALCULUS?

Gravitation theory is entering an era when situations of greater and greater com-
plexity must be analyzed. Before about 1965 the problems of central interest could
mostly be handled by idealizations of special symmetry or special simplicity or both.
The Schwarzschild geometry and its generalizations, the Friedmann cosmology and
its generalizations, the joining together of the Schwarzschild geometry and the
Friedmann geometry to describe the collapse of a bounded collection of matter, the
vibrations of relativistic stars, weak gravitational waves propagating in an otherwise
flat space: all these problems and others were solved by elementary means.

But today one is pressed to understand situations devoid of symmetry and not
amenable to perturbation theory: How do two black holes alter in shape, and how
much gravitational radiation do they emit when they collide and coalesce? What
are the structures and properties of the singularities at the endpoint of gravitational
collapse, predicted by the theorems of Penrose, Hawking, and Geroch? Can a
Universe that begins completely chaotic smooth itself out quickly by processes such
as inhomogeneous mixmaster oscillations?

To solve such problems, one needs new kinds of mathematical tools—and in
response to this need, new tools are being developed. The “global methods” of

Chapter 34 provide one set of tools. The Regge Calculus provides another [Regge -

(1961); see also pp. 467-500 of Wheeler (1964a)].

§42.2. REGGE CALCULUS IN BRIEF

Consider the geodesic dome that covers a great auditorium, made of a multitude
of flat triangles joined edge to edge and vertex to vertex. Similarly envisage space-
time, in the Regge calculus, as made of flat-space “simplexes” (four-dimensional
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item in this progression: two dimensions, triangle; three dimensions, tetrahedron;
four dimensions, simplex) joined face to face, edge to edge, and vertex to vertex.
To specify the lengths of the edges is to give the engineer all he needs in order to
know the shape of the roof, and the scientist all he needs in order to know the
geometry of the spacetime under consideration. A smooth auditorium roof can be
approximated arbitrarily closely by a geodesic dome constructed of sufficiently small

triangles. A smooth spacetime manifold can be approximated arbitrarily closely by -

a locked-together assembly of sufficiently small simplexes. Thus the Regge calculus,
reaching beyond ordinary algebraic expressions for the metric, provides a way to
analyze physical situations deprived, as so many situations are, of spherical symme-
try, and systems even altogether lacking in symmetry.

If the designer can give the roof any shape he pleases, he has more freedom than
the ana.lyst who is charting out the geometry of spacetime. Given the geometry of
spacenme up to some spacelike slice that, for want of a better name, one may call

“now,” one has no freedom at all in the geometry from that instant on. Einstein’s
geometrodynamic law is fully deterministic. Translated into the language of the
Regge calculus, it provides a means to calculate the edge lengths of new simplexes
from the dimensions of the simplexes that have gone before. Though the geometry
is deterministically specified, how it will be approximated is not. The original
spacelike hypersurface (“now”) is approximated as a collection of tetrahedrons joined
together face to face; but how many tetrahedrons there will be and where their
vertices will be placed is the option of the analyst. He can endow the skeleton more
densely with bones in a region of high curvature than in a region of low curvature
to get the most “accuracy profit” from a specified number of points. Some of this
freedom of choice for the lengths of the bones remains as one applies the geometro-
dynamic law in the form given by Regge (1961) to calculate the future from the
past. This freedom would be disastrous to any computer program that one tried
to write, unless the programmer removed all indefiniteness by adding supplementary
conditions of his own choice, either tailored to give good “accuracy profit,” or
otherwise fixed.

Having determined the lengths of all the bones in the portion of skeletonized
spacetime of interest, one can examine any chosen local cluster of bones in and
by themselves. In this way one can find out all there is to be learned about the
geometry in that region. Of course, the accuracy of one’s findings will depend on
the fineness with which the skeletonization has been carried out. But in principle
that is no limit to the fineness, or therefore to the accuracy, so long as one is working
in the context of classical physics. Thus one ends up with a catalog of all the bones,
showing the lengths of each. Then one can examine the geometry of whatever
spacelike surface one pleases, and look into many other questions besides. For this
purpose one has only to pick out the relevant bones and see how they fit together.

§42.3. SIMPLEXES AND DEFICIT ANGLES

Figure 42.1 recalls how a smoothly curved surface can be approximated by flat
triangles. All the curvature is concentrated at the vertices. No curvature resides at

Role of Einstein field
equation in fixing the
skeleton structure




Deficit angle as a
skeletonized measure of
curvature:

(1) in two dimensions

(2) in n (or four) dimensions
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Deficit angle, 8

Figure 42.1.

A2-geometry with continuously varying curvature can be approximated arbitrarily closely by 2 polyhedron
built of triangles, provided only that the number of triangles is made sufficiently great and the size of
each sufficiently small. The geometry in each triangle is Euclidean. The curvature of the surface shows
up in the amount of deficit angle at each vertex (portion ABCD of polyhedron laid out above on a
flat surface).

the edge between one triangle and the next, despite one’s first impression. A vector
carried by parallel transport from A through B and C to D, and then carried back
by another route through C and B to A returns to its starting point unchanged in
direction, as one sees most easily by laying out this complex of triangles on a flat
surface. Only if the route is allowed to encircle the vertex common to 4, B, C, and
D does the vector experience a net rotation. The magnitude of the rotation is equal
to the indicated deficit angle, §, at the vertex. The sum of the deficit angles over
all the vertices has the same value, 47, as does the half-integral of the continuously
distributed scalar curvature (PR = 2/a® for a sphere of radius @) taken over the
entirety of the original smooth figure,

1
4 =3 @R d(surface) = 4. 421
skelzeton ' 2 facmalsmooth (surfa ) T ( )
geometry geometry

Generalizing from the example of a 2-geometry, Regge calculus approximates a
smoothly curved n-dimensional Riemannian manifold as a collection of n-dimen-
sional blocks, each free of any curvature at all, joined by (n — 2)-dimensional yegions
in which all the curvature is concentrated (Box 42.1). For the four-dimensional
spacetime of general relativity, the “hinge” at which the curvature is concentrated
has the shape of a triangle, as indicated schematically in the bottom row of Figure
42.2.In the example illustrated there, ten tetrahedrons have that triangle in common.
Between one of these tetrahedrons and the next fits a four-dimensional simplex.
Every feature of this simplex is determined by the lengths of its ten edges. One
of the features is the angle « between one of the indicated tetrahedrons or “faces”
of the simplex and the next. Thus « represents the angle subtended by this simplex
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region

Continuum limit of this quantity
expressed as an integral over
the same small region:
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Box 42.1 THE HINGES WHERE THE -CURVATURE IS CONCENTRATED IN THE
““ANGLE OF RATTLE’" BETWEEN BUILDING BLOCKS IN A SKELETON MANIFOLD
Dimensionality of manifold 2 3 4

Elementary flat-space

building block: triangle tetrahedron simplex
Edge lengths to define it: 3 4 5
Hinge where cycle of such

blocks meet with a deficit

angle or “angle of rattle” §: vertex edge triangle
Dimensionality of hinge: 0 1 2
¢
“Content” of such a hinge: 1 length / area 4
Contribution from all hinges

within a given small region

to curvature of manifold: > e 0 > e D g Ai s

1
_2_f(4)R(_(4)g)1/2 dtx

J

at the hinge. Summing the angles a for all the simplexes that meet on the given
hinge 224, and subtracting from 27, one gets the deficit angle associated with that
hinge. And by then summing the deficit angles in a given small n-volume with
appropriate weighting (Box 42.1), one obtains a number equal to the volume integral
of the scalar curvature of the original smooth n-geometry. See Box 42.2.

§42.4. SKELETON FORM OF FIELD EQUATIONS

Rather than translate Einstein’s field equations directly into the language of the
skeleton calculus, Regge turns to a standard variational principle from which Ein-
stein’s law lets itself be derived. It says (see §§21.2 and 43.3) adjust the 4-geometry
throughout an extended region of spacetime, subject to certain specified conditions
on the boundary, so that the dimensionless integral (action in units of A!),

I = (c3/167hG) [ R(—g)/2 d*, (42.2)

is an extremum. This statement applies when space is free of matter and electromag-

Einstein-Hilbert variational
principle reduced to skeleton
form

NS
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Figure 42.2,

Cycle of building blocks associated with a single hinge. Top row, two dimensions: left, schematic
association of vertices S, 7, %, ¥, ¥ with “hinge” at the vertex ¢; right, same, but with elementary
triangles indicated in full. Middle row, three dimensions: left, schematic; right, perspective representation
of the six tetrahedrons that meet on the “hinge” #<. Bottom row, four dimensions; shown only
schematically. The five vertices P24 @ belong to one simplex, a four-dimensional region throughout
the interior of which space is flat. The five vertices #29P& belong to the next simplex; and so on around
the cycle of simplexes. The two simplexes just named interface at the tetrahedron #2449, inside which
the geometry is also flat. Between that tetrahedron and the next, P24 &, there is a certain hyperdihedral
angle a subtended at the “hinge” ?2%. The value of this angle is completely fixed by the ten edge
lengths of the intervening simplex #2#<)&. This dihedral angle, plus the corresponding dihedral angles
subtended at the hinge 924 by the other simplexes of the cycle, do not in general add up to 27. The
deficit, the “angle of rattle” or deficit angle §, gives the amount of curvature concentrated at the hinge
924 . There is no actual rattle or looseness of fit, unless one tries to imbed the cycle into an over-all
flat four-dimensional space (analog of “stamping on” the collection of triangles, and seeing them open
out by the amount of the deficit angle, as indicated in inset in Figure 42.1).

netic fields; a simplification that will be made in the subsequent discussion to keep

it from becoming too extended. When in addition all lengths are expressed in units
$

of the Planck length

L* = (hG/c3)/2 = 1.6 X 1033 cm, 42.3)

and the curvature integral is approximated by its expression in terms of deficit angles,
Regge shows that the statement 8/ = 0 (condition for an extremum!) becomes

H
(1/87)8 D) 4,8, =0. 42.4)

hinges
h=1
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Box 42.2 FLOW DIAGRAMS FOR REGGE CALCULUS

A skeleton 4-geometry is completely determined by all its edge lengths. From the
edge lengths one gets the integrated curvature by pursuing, for each hinge in the

4-geometry, the following flow diagram:

hinge

}

cycle of blocks

{ swinging on this hinge

)

one of these blocks

}

the two tetrahedral *“faces” that set this block off from
the blocks before and after it in the cycle of blocks

}

angle a between these two faces fixed by
the block’s n(n — 1)/2 edge lengths

!

deficit angle at the given hinge is

=27 — 2 ., a
blecks swinging

on that hinge

l

contribution to integrated curvature
(Box 42.1) is & times area of hinge

\

One finds it natural to apply this analysis in either of two ways. First, one can probe

a given 4-geometry (given set of edge lengths!) in the sense

edge lengths

S }

curvature




Box 42.2 (continued)
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Second—and this is the rationale of Regge calculus—one can use the skeleton

calculus to deduce a previously unknown 4-geometry from Einstein’s geometrody-
namic law, proceeding in the direction

initial conditions Einstein’s equations
translated into expressed as con-
information about ditions on the
some of the edge lengths curvature (deficit
angle of each hinge)

fix remainder of the
edge lengths (apart
from natural options
in fineness of zoning)

J

In the changes contemplated in this variational principle, certain edge lengths are
thought of as being fixed. They have to do with the conditions specified at the
boundaries of the region of spacetime under study. It is not necessary here to enter
into the precise formulation of these boundary conditions, fortunately, since some
questions of principle still remain to be clarified about the precise formulation of
boundary conditions in general relativity (see §21.12). Rather, what is important
is the effect of changes in the lengths of the edges of the blocks in the interior of
the region being analyzed, as they augment or decrease the deficit angles at the
various hinges. In his basic paper on the subject, Regge (1961) notes that the typical
deficit angle 8, depends in a complicated trigonometric way on the values of numer-
ous edge lengths £, However, he proves (Appendix of his paper) that “quite re-
markably, we can carry out the variation as if the §, were constants,” thus reducing

the variational principle to the form 3

H
(1/87) >, 8,84, =0. (42.5)
Ty

Here the change in area of the A-th triangle-shaped hinge, according to elementary
trigonometry, is

1
84, =5 > 4, 84, cotan . 426)
P
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In this equation §,, is the angle opposite to the p-th edge in the triangle. Conse-
quently, Einstein’s equations in empty space reduce in skeleton geometry to the form

>, S,cotand, =0, (p=1.2,..), @2.7)
hinges that -
havethe
given edge
pincommon

one equation for each edge length in the interior of the region of spacetime being
analyzed.

§42.5. THE CHOICE OF LATTICE STRUCTURE

Two questions arise in the actual application of Regge calculus, and it is not clear
that either has yet received the resolution which is most convenient for practical
applications of this skeleton analysis: What kind of lattice to use? How best to
capitalize on the freedom that exists in the choice of edge lengths? The first question
is discussed in this section, the second in the next section.

It might seem most natural to use a lattice made of small, nearly rectangular
blocks, the departure of each from rectangularity being conditioned by the amount
and directionality of the local curvature. However, such building blocks are “floppy.”
One could give them rigidity by specifying certain angles as well as the edge lengths.
But then one would lose the cleanness of Regge’s prescription: give edge lengths,
and give only edge lengths, and give each edge length freely and independently,
in order to define a geometry. In addition one would have to rederive.the Regge
equations, including new equations for the determination of the new angles. There-
fore one discards the quasirectangle in favor of the simplex withits 5 - 4/2 = 10 edge
lengths. This decided, one also concludes that even in flat spacetime the simplexes
cannot all have identical edge lengths. Two-dimensional flat space can be filled with
identical equilateral triangles, but already at three dimensions it ceases to be possible
to fill out the manifold with identical equilateral tetrahedrons. One knows that a
given carbon atom in diamond is joined to its nearest neighbors with tetrahedral
bonds, but a little reflection shows that the cell assignable to the given atom is far
from having the shape of an equilateral tetrahedron.

Synthesis would appear to be a natural way to put together the building blocks:
first make one-dimensional structures; assemble these into two-dimensional struc-
tures; these, into three-dimensional ones; and these, into the final four-dimensional
structure. The one-dimensional structure is made of points, 1, 2, 3, ..., alternating
with line segments, 12, 23, 34, .... To start building a two-dimensional structure,
pick up a second one-dimensional structure. It might seem natural to label its points
', 27,3, ..., etc. However, that labeling would imply a cross-connection between
I and 1’, between 2 and 2’, etc., after the fashion of a ladder. Then the elementary
cells would be quasirectangles. They would have the “floppiness” that is to be
excluded. Therefore relabel the points of the second one-dimensional structure as
1%, 2%, 3%, etc. The implication is that one cross-connects 23’ with points 2 and 3
of the original one-dimensional structure, etc. One ends up with something like the

Einstein field equation
reduced to skeleton form

The choice of lattice structure:
(1) avoiding floppiness

(2) necessity for unequal
edge lengths

(3) construction of two-
dimensional structures




TN

(4) 3-D structures built from
2-D structures by
““method of blocks*

(5) 3-D structures from 2-D
by “method of spheres”
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girder structure of a bridge, fully rigid in the context of two dimensions, as desired.
The same construction, extended, fills out the plane with triangles. One now has
a simple, standard two-dimensional structure. One might mistakenly conclude that
one is ready to go ahead to build up a three-dimensional structure: the mistake
lies in the tacit assumption that the flat-space topology is necessarily correct.

Let it be the problem, for example, to determine the development in time of a
3-geometry that has the topology of a 3-sphere. This 3-sphere is perhaps strongly
deformed from ideality by long-wavelength gravitational waves. A right arrangement
of the points is the immediate desideratum. Therefore put aside for the present any
consideration of the deformation of the geometry by the waves (alteration of edge
lengths from ideality). Ask how to divide a perfect 3-sphere into two-dimensional
sheets. Here each sheet is understood to be separated from the next by a certain
distance. At this point two alternative approaches suggest themselves that one can
call for brevity “blocks” and “spheres.”

(1) Blocks. Note that a 3-sphere lets itself be decomposed into 5 identical, tetra-
hedron-like solid blocks (5 vertices; 5 ways to leave out any one of these vertices!)
Fix on one of these “tetrahedrons.” Select one vertex as summit and the face through
the other three vertices as base. Give that base the two-dimensional lattice structure
already described. Introduce a multitude of additional sheets piled above it as evenly
spaced layers reaching to the summit. Each layer has fewer points than the layer
before. The decomposition of the 3-geometry inside one “tetrahedron” is thereby
accomplished. However, an unresolved question remains; not merely how to join
on this layered structure in a regular way to the corresponding structure in the
adjacent “tetrahedrons”; but even whether such a regular joinup is at all possible.
The same question can be asked about the other two ways to break up the 3-sphere
into identical “tetrahedrons” [Coxeter (1948), esp. pp. 292-293: 16 tetrahedrons
defined by a total of 8 vertices or 600 tetrahedrons defined by a total of 120 vertices).
One can eliminate the question of joinup of structure in a simple way, but at the
price of putting a ceiling on the accuracy attainable: take the stated number of
vertices (5 or 8 or 120) as the total number of points that will be employed in the
skeletonization of the 3-geometry (no further subdivision required or admitted).
Considering the boundedness of the memory capacity of any computer, it is hardly
ridiculous to contemplate a limitation to 120 tracer points in exploratory calculations!

(2) Spheres. An alternative approach to the “atomization” of the 3-sphere begins
by introducing on the 3-sphere a North Pole and a South Pole and the hyperspherical
angle x (x = O at the first pole, x = = at the second, x = /2 at the equator; see
Box 27.2). Let each two-dimensional layer lie on a surface of constant x (3( equal
to some integer times some interval Ax). The structure of this 2-sphere is already
to be regarded as skeletonized into elementary triangles (“fully complete Buckminster
Fuller geodesic dome”). Therefore the number of “faces” or triangles F, the number
of edge lengths E, and the number of vertices ¥ must be connected by the relation
of Euler:

F—E+V=(

@ topology-dependent ) _ 2 for2sphere (a2

number or “Euler character” 0 for 2-torus.

It follows from this relation that it is impossible for each vertex to sit at the center
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of a hexagon (each vertex the point of convergence of 6 triangles). This being the
case, one is not astonished that a close inspection of the pattern of a geodesic dome
shows several vertices where only 5 triangles meet. It is enough to have 12 such
5-triangle vertices among what are otherwise all 6-triangle vertices in order to meet
the requirements of the Euler relation:

n  5-triangle vertices
V —n 6-triangle vertices
F = (V- n)6/3) + n(5/3) triangles
E = (V- n)6/2) + n(5/2) edges 42.9)
V = (V — n)(6/6) + n vertices
2=F—-—E+ V=n/6 Euler characteristic
n=12

Among all figures with triangular faces, the icosahedron is the one with the smallest
number of faces that meets this condition (5-triangle vertices exclusively!)

If each 2-surface has the pattern of vertices of a geodesic dome, how is one dome
to be joined to the next to make a rigid skeleton 3-geometry? Were the domes
imbedded in a flat 3-geometry, rigidity would be no issue. Each dome would already
be rigid in and by itself. However, the 3-geometry is not given to be flat. Only by
a completely deterministic skeletonization of the space between the two 2-spheres
will they be given rigidity in the context of curved space geometry. (1) Not by running
a single connector from each vertex in one surface to the corresponding vertex in
the next (“floppy structure”!) (2) Not by displacing one surface so each of its vertices
comes above, or nearly above, the center of a triangle in the surface “below.” First,
the numbers of vertices and triangles ordinarily will not agree. Second, even when
they do, it will not give the structure the necessary rigidity to connect the vertex
of the surface above to the three vertices of the triangle below. The space between
will contain some tetrahedrons, but it will not be throughout decomposed into
tetrahedrons. (3) A natural and workable approach to the skeletonization of the
3-geometry is to run a connector from each vertex in the one surface to the corre-
sponding vertex in the next, but to flesh out this connection with additional structure
that will give rigidity to the 3-geometry: intervening vertices and connectors as
illustrated in Box 42.3. _

In working up from the skeletonization of a 3-geometry to the skeletonization
of a 4-geometry, it is natural to proceed similarly. (1) Use identical patterns of points
in the two 3-geometries. (2) Tie corresponding points together by single connectors.
(3) Halfway, or approximately half way between the two 3-geometries insert a whole
additional pattern of vertices. Each of these supplementary vertices is “dual” to and
lies nearly “below” the center of a tetrahedron in the 3-geometry immediately above.
(4) Connect each supplementary vertex to the vertices of the tetrahedron immediately
above, to the vertices of the tetrahedron immediately below, and to those other
supplementary vertices that are its immediate neighbors. (5) In this way get the edge
lengths needed to divide the 4-geometry into simplexes, each of rigidly defined

dimensions.

(6) 4-D structures built from
3-D structures
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Box 42.3 SYNTHESIS OF HIGHER-DIMENSIONAL SKELETON GEOMETRIES OUT OF
LOWER-DIMENSIONAL SKELETON GEOMETRIES

H

,/0\’__./0/

(2)

(1) One-dimensional structure as alternation of
points and line segments. (2) Two-dimensional
structure (a) “floppy” (unacceptable) and (b) rigid-
ified (angles of triangles fully determined by edge
lengths). When this structure is extended, as at
right, the “normal” vertex has six triangles hinging
on it. However, at least twelve 5-triangle vertices
of the type indicated at & are to be interpolated
if the 2-geometry is to be able to close up into
a 2-sphere. (3) Skeleton 3-geometry obtained by
filling in between the skeleton 2-geometry...
B ... 59C ... &9 ...and the similar structure
LA FPC . &9 .. . as follows. (a) In-
sert direct connectors such as %9’ between
corresponding points in the two 2-geometries. (b)
Insert an intermediate layer of “supplementary
vertices” such as STAVUX.... Each of these
supplementary vertices lies roughly halfway be-
tween the center of the triangle “above” it and the
center of the corresponding triangle “below” it. (c)

—

Connect each such “supplementary vertex” with
its immediate neighbors above, below, and in the
same plane. (d) Give all edge lengths. (¢) Then
the skeleton 3-geometry between the two 2-ge-
ometries is rigidly specified. It is made up of five
types of tetrahedrons, as follows. (1) “Right-
through blocks,” such as #9895 (six of these
hinge on #9’ when & is a normal vertex; five,
when it is a 5-fold vertex, such as indicated by &
at the upper right). (2) “Lower-facing blocks,” such
as #BPT. (3) “Lower-packing blocks,” such as
4989 . (4, 5) Corresponding “upper-facing blocks”
and “upper-packing blocks” (not shown). The
number of blocks of each kind is appropriatély
listed here for the two extreme cases of a 2-geom-
etry that consists (a) of a normal hexagonal lattice
extending indefinitely in a plane and (b) of a lat-
tice consisting of the minimum number of 5-fold
vertices (“type & vertices”) that will permit close-
up into a 2-sphere.

_J

~
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2-geometry of upper Hexagonal pattern Icosahedron
(or lower) face of triangles made of triangles
Its topology Infinite 2-plane 2-sphere
Vertices on upper face Vv 12
Nature of these vertices 6-fold 5-fold
Edge lengths on upper facg v 3V =130
Triangles on upper face 2V 20
Number of “supplementary vertices” 2V 20
Outer facing blocks 2V 20
Quter packing blocks v 30
Right through blocks (14 60
Inner packing blocks k14 30
Inner facing blocks rid 20
¢

\_ Y,

§42.6. THE CHOICE OF EDGE LENGTHS

So much for the lattice structure of the 4-geometry; now for the other issue, the
freedom that exists in the choice of edge lengths. Why not make the simplest choice
and let all edges be light rays? Because the 4-geometry would not then be fully
determined. The geometry g,5(x*) differs from the geometry A(x*) g,g(x*), even
though the same points that are connected by light rays in the one geometry are
also connected by light rays-in the other geometry.

If none of the edges is null, it is nevertheless natural to take some of the edge
lengths to be spacelike and some to be timelike. In consequence the area A4 of the
triangle in some cases will be real, in other cases imaginary. In 3-space the parallelo-
gram (double triangle) spanned by two vectors B and C is described by a vector

24=BxC
perpendicular to the two vectors. One obtains the magnitude of 4 from the formula
442 = B*C? — (B- C)2

In 4-space, let B and € be two edges of the triangle. Then, as in three dimensions,
2A is dual to the bivector built from B and C. In other words, if B goes in the ¢
direction and € in the z direction, then A is a bivector lying in the (x, y) plane.
Consequently its magnitude 4 is to be thought of as a real quantity. Therefore the
appropriate formula for the area 4 is (Tullio Regge)

442 = (B C)2 — B2C2. (42.10)

The quantity A4 is real when the deficit angle § is real. Thus the geometrically
important product 48 is also real.

The choice of edge lengths:

(1) choose some timelike,
others spacelike

™




(2) choose timelike lengths
comparable to spacelike
lengths

(3) why some lengths must
be chosen arbitrarily

Deficit angles in terms of
edge lengths

Past applications of Regge
calculus
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When the hinge lies in the (x, y) plane, on the other hand, the quantity A4 is purely
imaginary. In that instance a test vector taken around the cycle of simplexes that
swing on this hinge has undergone change only in its z and ¢ components; that is,
it has experienced a Lorentz boost; that is, the deficit angle 8 is also purely imaginary.
So again the product 48 is a purely real quantity.

Turn now from character of edge lengths to magnitude of edge lengths. 1t is
desirable that the elementary building blocks sample the curvatures of space in
different directions on a roughly equal basis. In other words, it is desirable not to
have long needle-shaped building blocks nor pancake-shaped tetrahedrons and
simplexes. This natural requirement means that the step forward in time should be
comparable to the steps “sidewise” in space. The very fact that one should have
to state such a requirement brings out one circumstance that should have been
obvious before: the “hinge equations”

> §,cotanf,, =0 (p=1,2,..), @7
hinges & that
paveedgep
in common

though they are as numerous as the edges, cannot be regarded as adequate to
determine all edge lengths. There are necessarily relations between these equations
that keep them from being independent. The equations cannot determine all the
details of the necessarily largely arbitrary skeletonization process. They cannot do
so any more than the field equations of general relativity can determine the coordi-
nate system. With a given pattern of vertices (four-dimensional generalization of
drawings in Box 42.3), one still has (a) the option how close together one will take
successive layers of the structure and (b) how one will distribute a given number
of points in space on a given layer to achieve the maximum payoff in accuracy
(greater density of points in regions of greater curvature). To prepare a practical
computer program founded on Regge calculus, one has to supply the machine not
only with the hinge equations and initial conditions, but also with definite algorithms
to remove all the arbitrariness that resides in options (a) and (b).

Formulas from solid geometry and four-dimensional geometry, out of which to
determine the necessary hyperdihedral angles a and the deficit angles § in terms
of edge lengths and nothing but edge lengths, are summarized by Wheeler (1964a,
pp. 469, 470, and 490) and by C. Y. Wong (1971). Regge (1961) also gives a formula
for the Riemann curvature tensor itself in terms of deficit angles and number of
edges running in a given direction [see also Wheeler (1964a, p. 471)].

§42.7. PAST APPLICATIONS OF REGGE CALCULUS

Wong (1971) has applied Regge calculus to a problem where no time development
shows itself, where the geometry can therefore be treated as static, and where in
addition it is spherically symmetric. He determined the Schwarzschild and Reissner-
Nordstrem geometries by the method of skeletonization. Consider successive spheres
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surrounding the center of attraction. Wong approximates each as an icosahedron.
The condition

OR = 167 (energy density)
on the 3-space

(§21.5) gives a recursion relation that determines the dimension of each icosahedron
in terms of the two preceding icosahedra. Errors in the skeleton representation of
the exact geometry range from roughly 10 percent to less than 1 percent, depending
on the method of analysis, the quantity under analysis, and the fineness of the
subdivision.

Skeletonization of geometry is to be distinguished from mere rewriting of partial
differential equations as difference equations. One has by now three illustrations
that ong can capitalize on skeletonization without fragmenting spacetime all the way
to the level of individual simplexes. The first illustration is the first part of Wong’s
work, where the time dimension never explicitly makes an appearance, so that the
building blocks are three-dimensional only. The second is an alternative treatment,
also given by Wong, that goes beyond the symmetry in ¢ to take account of the
symmetry in 6 and ¢. It divides space into spherical shells, in each of which the
geometry is “pseudo-flat” in much the same sense that the geometry of a paper cone
is flat. The third is the numerical solution for the gravitational collapse of a spherical
star by May and White (1966), in which there is symmetry in  and ¢, but not in
ror t. This zoning takes place exclusively in the r, -plane. Each zone is a spherical
shell. The difference as compared to Regge calculus (flat geometry within each
building block) is the adjustable “conicity” given to each shell. The examples show
that the decision about skeletonizing the geometry in a calculation is ordinarily not
“whether” but “how much.”

§42.8. THE FUTURE OF REGGE CALCULUS

In summary, Regge’s skeleton calculus puts within the reach of computation prob-
lems that in practical terms are beyond the power of normal analytical methods.
It affords any desired level of accuracy by sufficiently fine subdivision of the space-
time region under consideration. By way of its numbered building blocks, it also
offers a practical way to display the results of such calculations. Finally, one can
hope that Regge’s truly geometric way of formulating general relativity will someday
make the content of the Einstein field equations (Cartan’s “moment of rotation”;
see Chapter 15) stand out sharp and clear, and unveil the geometric significance
of the so-called “geometrodynamic field momentum” (analysis of the boundary-value
problem associated with the variational problem of general relativity in Regge

_calenlusy see §21.12)7

Partial skeletonization

Hopes for the future




CHAPTER 4

ELECTROMAGNETISM AND
DIFFERENTIAL FORMS

The ether trembled at his agitations
In @ manner so familiar that | only need to say,
In accordance with Clerk Maxwell's six equations
It tickled peoples’ optics far away.

You can feel the way it's done,

You may trace them as they run—
dy by dy fess df3 by dz is equal KdX/dt'. . .

While the curl of (X, Y, Z) is the
minus d/dt of the vector (a, b, ¢);

From The Revolution of the Corpuscle,
written by A. A. Robb

(to the tune of The /nterfering Parrott)
for a dinner of the research students
of the Cavendish Laboratory

in the days of the old mathematics.

Y\ §4.1. EXTERIOR CALCULUS

This chapter is all Track 2. It is

needed as preparation for Stacks of surfaces, individually or intersecting to make “honeycombs,” “egg crates,”
§§14.5 and 14.6 (computation and other such structures (“differential forms”), give unique insight into the geometry
of curvature using differential i o o1 .
forms) and for Chapter 15 of electromagnetism and gravitation. However, such insight comes at some cost in
(Bianchi identities and | time. Therefore, most readers should skip this chapter and later material that depends
boundary of a boundary), but is . . . .

not needed for the rest of the on it during a first reading of this book.

book. Analytically speaking, differential forms are completely antisymmetric tensors;

J pictorially speaking, they are intersecting stacks of surfaces. The mathematical

formalism for manipulating differential forms with ease, called “exterior calculus,”
is summarized concisely in Box 4.1; its basic features are illustrated in the rest of
this chapter by rewriting electromagnetic theory in its language. An effective way
to tackle this chapter might be to (1) scan Box 4.1 to get the flavor of the formalism;
(2) read the rest of the chapter in detail; (3) restudy Box 4.1 carefully; (4) get practice
in manipulating the formalism by working the exercises.*
B — (continued on page 99)

*Exterior calculus is. treated in greater detail than here by: E. Cartan (1945); de Rham (1955);
Nickerson, Spencer, and Steenrod (1959); Hauser (1970); Israel (1970); especially Flanders (1963,

relatively easy, with many applications); Spivak (1965, sophomore or junior level, but fully in tune with
modern mathematics); H. Cartan (1970); and Choquet-Bruhat (1968a).
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Box 4.1 DIFFERENTIAL FORMS AND
EXTERIOR CALCULUS IN BRIEF

The fundamental definitions and formulas of exterior calculus are summarized here
for ready reference. Each item consists of a general statement (at left of page) plus
a leading application (at right of page). This formalism is applicable not only to
spacetime, but also to more general geometrical systems (see heading of each section).
No attempt is made here to demonstrate the internal consistency of the formalism,
nor to derive it from any set of definitions and axioms. For a systematic treatment
that does so, see, e.g., Spivak (1965), or Misner and Wheeler (1957).

A. Algebra | (applicable to any vector space)

1. Basis I-forms.
a. Coordinate basis w’/ = dx/

(j tells which 1-form, not which component).
b. General basis w’ = L/, dx*.

An application
Simple basis 1-forms for analyzing Schwarzschild ge-

ometry around static spherically symmetric center of
attraction:
W = (1 =2m/H\V2dr;
wl = (1 =2m/r V2 dr,
w? =r i,
w3 = rsinf do.
2. General p-form (or p-vector) is a completely anti-
symmetric tensor of rank (9) [or (§)]. It can be

expanded in terms of wedge products (see §3.5 and
exercise 4.12):

1 i i i
a=—a, ;W ANWIA - At

= i1 2 A ... ¢
= iy, @ A WA N w'r.

(Note: Vertical bars around the indices mean sum-
mation extends only over iy < i, < ... < i)

Two applications
Energy-momentum 1-form is of type @ = a;w' or
p=—Edi +p.dx+p,dy+p,d-

Faraday is a 2-form of type 8 = f,, w* N\ w’ or in
flat spacetime

F=—-E diNdx—EdiNdy—E, di N\d:
+ B,dy N d: + B,d- ANdx 4+ B, dx N\ dy

_/
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Box 4.1 (continued)

3. Wedge product.

. Contraction of p-form on p-vector.
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All familiar rules of addition and multiplication
hold, such as

(@aa + bBYNy =aa ANy + b8 Ny,
@ABANy=aN(BANy)=aAAB ANy,

except for a modified commutation law between
a p-form a and a g-form 8-

grg=(IrgAg

Applications o 1-forms a, B:
aANB=—-8Aa, aa=0;
a A B = (gw) A (Bw*) = ;B .wi A wh

1 )
= 5(“;31; - B )wi A\ Wk,

(a.4)

L 51

= ain.,,&,;*"‘”"'“'(“’“ Ao Awte e, A ... A e

[= 8ir-s (see exercises 3.13 and 4.12)]
= alil...ip]Ailmip‘

Four applications

a. Contraction of a particle’s energy-momentum 1-form
P = p,w* with 4-velocity u = u%e , of observer (a
l-vector):

—{p,u) = —p,u™ = energy of particle.

b. Contraction of Faraday 2-form F with bivector
6P N\ AP [where 8P = (d?/dX)AN, and 49 =
(d? /dA,)AN, are two infinitesimal vectors in a 2-sur-
face P(A;, A,), and the bivector represents the surface
element they span] is the magnetic flux & = (F, 69
A A%) through that surface element.

¢. More generally, a p-dimensional parallelepiped with
VECtors @y, a,, . . ., a, for legs has an oriented volume
described by the “simple” p-vector a, A a, A .- - a,
(oriented because interchange of two legs changes its
sign). An egg-crate type of structure with walls made
from the hyperplanes of p different l-forms o?,

_/
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0?,...,0" is described by the “simple” p-form o!
A 0% A ... A o?. The number of cells of o A
0% A\ ... A o sliced through by the infinitesimal
p-volume a; A a, A --- Aa,is

(G'ANGZNA - Nar,a, Na, A\ --- A ay).

d. The Jacobian determinant of a set of p functions
S¥(xt, ..., x™) with respect to p of their arguments
is

(dfl/\de/\ .../\dfp,g_g;/\ﬁ/\.../\ﬁ>
x

dx2 oxP
_ aa(L)| 2 2L
- oxi Il T a(x, x2, ..., xP)’

5. Simple forms.
a. A simple p-form is one that can be written as
a wedge product of p 1-forms:

g=aABA- Ay

p factors_

b. A simple p-form a A B A -.- Ay is repre-
sented by the intersecting families of surfaces
ofa, B,...,y (egg-crate structure) plus a sense
of circulation (orientation).

Applications:

a. In four dimensions (e.g, spacetime) all O-forms, 1-
forms, 3-forms, and 4-forms are simple. A 2-form F
1s generally a sum of two simple forms, e.g., F =
—edt N\ dx + hdy A dz; it is simple if and only if
FAF=0.

b. A set of l-forms a, B,...,y is linearly dependent
(one a linear combination of the others) if and
only if

aNBA-..Ay=0 (egg crate collapsed).

B. Exterior Derivative (applicable to any ‘‘differentiable manifold,”’
with or without metric)

1. d produces a (p + 1)-form do from a p-form o.
2. Effect of d is defined by induction using the

\_ -
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Box 4.1 (continued)

(Chapter 2) definition of df, and f a function (0-
form), plus

d(%/\g)= da A B + (—1)Pa A dB,
d?>=dd =0.

Two applications
d(a A dB) = da A dg.
For the p-form ¢, with
@ =y, dxt A o A dx,

one has (alternative and equivalent definition of de)

d¢ = d¢|il--»ipi /\ dxil /\ ... /\ dxi".

C. Integration (applicable to any ‘‘differentiable manifold,”” with or
without metric)

1. Pictorial interpretation.
Text and pictures of Chapter 4 interpret {a (inte-
gral of specified 1-form a along specified curve B
from specified starting point to specified end point)
as “number of a-surfaces pierced on that route”;
similarly, they interpret (@ (integral of specified
2-form @ over specified bit of surface on which
there is an assigned sense of circulation or “orien-
tation”) as “number of cells of the honeycomb-like
structure @ cut through by that surface”; similarly
for the egg-crate-like structures that represent 3-
forms; etc.

2. Computational rules for integration.
To evaluate fa, the integral of a p-form

a=ay o (xh o xm) et A - A dx,

over a p-dimensional surface, proceed in two steps.
a. Substitute a parameterization of the surface,

xEQ\L, . AP)
into a, and collect terms in the form
a =aM)d\t A ... A dNP

(this is a viewed as a p-form in the p-dimen-
sional surface);

\— | _/
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b. Integrate
fa =fa(>\f)d}\1d>\2...d>\"
using elementary definition of integration.

Example: See equations (4.12) to (4.14).
3. The differential geometry of integration.

Calculate fa for a p-form a as follows.

a. Choose the p-dimensional surface S over which
to integrate.

b. Represent S by a parametrization giving the
generic point of the surface as a function of the
parameters, P(Al, A%, ... AP). This fixes the ori-
entation. The same function with Al o A2
P(A%,AL, ..., AP), describes a different (i.e., op-
positely oriented) surface, — 8.

¢. The infinitesimal parallelepiped

KL 1) (@2 2) (@2 p)
(Z ) A (Z o)A A 27

is tangent to the surface. The number of cells
of a it slices is

27 ag>>
YN ALY s,
<a’a>\1 onr) A A

This number changes sign if two of the vectors
0% /0A* are interchanged, as for an oppositely
oriented surface.

d. The above provides an interpretation motivat-
ing the definition

fe=ff [ @GnGan 8
dAY dN? .. d)e.

This definition is identified with the computa-

tional rule of the preceding section (C.2) in

exercise 4.9.
An application
Integrate a gradient df along a curve, ?(X) from #(0)
to P(1):

1 1
[dr=[ (dfdr/anyan = [ pranyan
0 O
= fI¥(D)] — fIPO)]-

e. Three different uses for symbol “d™ First, light-
face 4 in explicit derivative expressions such as




96 4. ELECTROMAGNETISM AND DIFFERENTIAL FORMS

- B

Box 4.1 (continued)

d/da, or df/da, or d?/da; neither numerator nor
denominator alone has any meaning, but only
the full string of symbols. Second, lightface d
inside an integral sign; e.g., (fda. This is an
instruction to perform integration, and has no
meaning whatsoever without an integral sign;
“f...d...” lives as an indivisible unit. Third,
sans-serif d; e.g., d alone, or df, or da. This is
an exterior derivative, which converts a p-form
into a (p + l)-form. Sometimes lightface 4 is
used for the same purpose. Hence, d alone, or
df, or dx, is always an exterior derivative unless
coupled to an { sign (second use), or coupled
to a / sign (first use).
4. The generalized Stokes theorem (see Box 4.6).

a. Let 7 be the closed p-dimensional boundary
of a (p + I)-dimensional surface V. Let o be
a p-form defined throughout .

Then
f do =f o

¥ v

[integral of p-form o over boundary 97" equals
integral of (p + l)-form do over interior 7].

b. For the sign to come out right, orientations of
¥ and 37 must agree in this sense: choose
coordinates y°, y1,...,y? on a portion of ¥,
with y© specialized so y° < 0 in ¥, and y° =0
at the boundary 87"; then the orientation

9P N3P N AP
ay® oyt oy*?
for 7V demands the orientation

LN
oyt ay?P
for oV
¢. Note: For a nonorientable surface, such as a
Mobius strip, where a consistent and continuous
choice of orientation is impossible, more intri-
cate mathematics is required to give a definition
of “0” for which the Stokes theorem holds.
Applications: Includes as special cases all integral theo-
rems for surfaces of arbitrary dimension in spaces of
arbitrary dimension, with or without metric, generaliz-

\_ _
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D. Algebra Il (applicable to any vector space with metric)

1. Norm of a p-form.

2 — i1..0p
llall S TWAL .

2. Dual of a p-form.
a. In an n-dimensional space, the dual of a p-form
a is the (n — p)-form *a, with components

(*a)kl...kn-,, - alil...iplei
b. Properties of duals:

**a = (—1)?"1a in spacetime;
a A *a = llall®¢ in general.

¢. Note: the definition of £ (exercise 3.13) entails
choosing an orientation of the space, i.e., decid-
ing which orthonormal bases (1) are “right-
handed” and thus (2) have (e, ..., e,) = +1.

97
ing all versions of theorems of Stokes and Gauss. Exam-
ples:

a. V a curve, 37 its endpoints, 0 = f a 0-form (func-
tion):

) df=f01(df/d>\)d>\=fwf=f(1)—f(0).

b. ¥ a 2-surface in 3-space, 97 its closed-curve bound-
ary, v a l-form; translated into Euclidean vector
notation, the two integrals are

Ldv:f‘v v Xv)-dS;fa‘Vv=va~dl.

¢. Other applications in §§5.8, 20.2, 20.3, 20.5, and
exercises 4.10, 4.11, 5.2, and below.

Two applications: Norm of a 1-form equals its squared
length, llall? = a - a. Norm of electromagnetic 2-form
or Faraday: ||IF||? = B? — E2,

ladpkiladn-p°

Applications

a. For f a 0O-form, *f= fe, and ffd(volume) = f*f.

b. Dual of charge-current 1-form J is charge-current
3-form *J. The total charge Q in a 3-dimensional
hypersurface region 3§ is

o) = [ .

S

s _/
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Conservation of charge is stated locally by d*J = 0.
Stokes’ Theorem goes from this differential conserva-
tion law to the integral conservation law,

O=fd"‘J::f .
v

[

This law is of most interest when 8% = S, — S, con-
sists of the future S, and past S, boundaries of a
spacetime region, in which case it states Q(S,) =
0Q(8,); see exercise 5.2.

¢. Dual of electromagnetic field tensor F = Faraday is
*F = Maxwell. From the d*F = 47 *J Maxwell
equation, find 47Q =47 f; *J = S d*F = [, *F.

3. Simple forms revisited.
a. The dual of a simple form is simple.
b. Egg crate of *o is perpendicular to egg crate
of o =a A B A --- A yin this sense:
(1) pick any vector V lying in intersection of
surfaces of o

((a,V>=<B,V>= ct e =<”’V>=O);

(2) pick any vector W lying in intersection of
surfaces of *o;

(3) then V and W are necessarily perpendicu-
lar: V- W = 0.

Example: o = 3 dt is a simple 1-form in spacetime.
a. *o = =3dx A dy A dzis a simple 3-form.
b. General vector in surfaces of o is

V = Ve, + Vie, + VZe,.
¢. General vector in intersection of surfaces of *o is
W = We,.
d w-v =0.
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§4.2. ELECTROMAGNETIC 2-FORM AND LORENTZ FORCE

The electromagnetic field tensor, Faraday = F, is an antisymmetric second-rank

tensor (i.e., 2-form). Instead of expanding it in terms of the tensor products of basis
1-forms,

F = FaB dx® @ dxB,

the exterior calculus prefers to expand in terms of antisymmetrized tensor products
(“exterior products,” exercise 4.1):

1

F =7Foqﬂ dx® A\ dx?8, 4.1
dx* N dxf =dx*® dxf — dxf @ dx*. 42)

Any 2-form (antisymmetric, second-rank tensor) can be so expanded. The symbol
“A” is variously called a “wedge,” a “hat,” or an “exterior product sign”; and
dx® A dx?# are the “basis 2-forms” of a given Lorentz frame (see §3.5, exercise 3.12,
and Box 4.1).
There is no simpler way to illustrate this 2-form representation of the electromag-
netic field than to consider a magnetic field in the x-direction:
F,= —F,=B8,

yz

43)
F =B_dy A d:.

The 1-form dy = grad y is the set of surfaces (actually hypersurfaces) y = 18 (all
t,x,2),y = 19 (all4, x, z), y = 20 (all ¢, x, 2), etc.; and surfaces uniformly interpolated
between them. Similarly for the 1-form dz. The intersection between these two sets
of surfaces produces a honeycomb-like structure. That structure becomes a “2-form”
when it is supplemented by instructions (see arrows in Figure 4.1) that give a “sense
of circulation” to each tube of the honeycomb (order of factors in the “wedge
product” of equation 4.2; dy A dz = —dz A dy). The 2-form F in the example
differs from this “basis 2-form” dy A d: only in this respect, that where dy A d:
had one tube, the field 2-form has B, tubes.

When one considers a tubular structure that twists and turns on its way through
spacetime. one must have more components to describe it. The 2-form for the general
electromagnetic field can be written as

F=EdcANd +E,dy \Ndi + E,d:N\dt + B, dyA d:
+ B,d: A dx + B,dx A dvy (44)

(6 components, 6 basis 2-forms).

A l-form is a machine to produce a number out of a vector (bongs of a bell as
the vector pierces successive surfaces). A 2-form is a machine to produce a number
out of an oriented surface (surface with a sense of circulation indicated on it: Figure
4.1, lower right). The meaning is as clear here as it is in elementary magnetism:

Electromagnetic 2-form
expressed in terms of exterior
products

A 2-form as a honeycomb of
tubes with a sense of
circulation

A 2-form as a machine to
produce a number out of an
oriented surface
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X/ dy \ d:

Figure 4.1.

Construction of the 2-form for the electromagnetic field F = B, dy A dz out of the 1-forms dy and
dz by “wedge multiplication” (formation of honeycomb-like structure with sense of circulation indicated
by arrows). A 2-form is a “machine to construct a number out of an oriented surface” (illustrated by
sample surface enclosed by arrows at lower right; number of tubes intersected by this surface is

B.dy N\ dz

F = 18; -
(this surface}
Faraday’s concept of “magnetic flux”). This idea of 2-form machinery can be connected to the “tensor-
as-machine” idea of Chapter 3 as follows. The shape of the oriented surface over which one integrates
F does not matter, for small surfaces. All that affects {F is the area of the surface, and its orientation.
Choose two vectors, ¢ and v, that lie in the surface. They form two legs of a parallelogram, whose
orientation (v followed by v) and area are embodied in the exterior product u A v. Adjust the lengths
of u and v so their parallelogram, u A v, has the same area as the surface of integration. Then

F=f F = F(u, v).

surface uAv
N——— irr——t——

machinery idea‘ l machinery idea
of this chapter. of Chapter 3

Exercise: derive this result, for an infinitesimal surface v A v and for general F, using the formalism
of Box 4.1.
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the number of Faraday tubes cut by that surface. The electromagnetic 2-form F
or Faraday described by such a “tubular structure” (suitably abstracted; Box 4.2)
has a reality and a location in space that is independent of all coordinate systems
and all artificial distinctions between “electric” and “magnetic” fields. Moreover,
those tubes provide the most direct geometric representation that anyone has ever
been able to give for the machinery by which the electromagnetic field acts on a
charged particle. Take a particle of charge e and 4-velocity

_

u dr

e,. 4.5)
Let this particle go through a region where the electromagnetic field is described
by the 2-form '

F=B,dy N\ d: 4.6)
of Figure 4.1. Then the force exerted on the particle (regarded as a 1-form) is the
contraction of this 2-form with the 4-velocity (and the charge);

p = dp/dr = eF(u) = e(F, u), 4.7)

as one sees by direct evaluation, letting the two factors in the 2-form act in turn
on the tangent vector u:

P = eB,(dy N\ dz,u)
= eB {dy(dz,u)y — dz{dy,u)}
= eB {dy(dz, u*e,) — dz(dy,u'e,)}

or

Podx®* = eBu* dy — eBu? dz. 4.8)

Comparing coefficients of the separate basis 1-forms on the two sides of this equa-
tion, one sees reproduced all the detail of the Lorentz force exerted by the magnetic
field B,:

_ dp, _ dz
Py =g =By
. _dp, _ dy

By simple extension of this line of reasoning to the general electromagnetic field,
one concludes that the time-rate of change of momentum (1-form) is equal to the charge
multiplied by the contraction of the Faraday with the 4-velocity. Figure 4.2 illustrates
pictorially how the 2-form, F, serves as a machine to produce the 1-form, p, out
of the tangent vector, eu.

(continued on page 105)

Lorentz force as contraction
of electromagnetic 2-form
with particle’s 4-velocity
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Box 4.2 ABSTRACTING A 2-FORM FROM THE CONCEPT OF “HONEYCOMB-

Open up a cardboard carton containing a dozen
bottles, and observe the honeycomb structure of
intersecting north-south and east-west cardboard
separators between the bottles. That honeycomb
structure of “tubes” (“channels for bottles”) is a
fairly apt illustration of a 2-form in the context
of everyday 3-space. It yields a number (number
of tubes cut) for each choice of smooth element
of 2-surface slicing through the three-dimensional
structure. However, the intersecting cardboard
separators are rather too specific. All that a true
2-form can ever give is the number of tubes sliced
through, not the “shape” of the tubes. Slew the
carton around on the floor by 45°. Then half the
separators Tun NW-SE and the other half run
NE-SW, but through a given bit of 2-surface fixed
in 3-space the count of tubes is unchanged. There-
fore, one should be careful to make the concept
of tubes in the mind’s eye abstract enough that
one envisages direction of tubes (vertical in the
example) and density of tubes, but not any specific
location or orientation for the tube walls. Thus all
the following representations give one and the
same 2-form, o

o = Bdx A dy;

o = BQ dx) A (% dy)

(NS cardboards spaced twice as close as before:
EW cardboards spaced twice as wide as before);

o =Bd(x\;2,y)/\ d(xJiy)

(cardboards rotated through 45°);

adx + Bdy ydx + ddy
((XS _ B.Y)l/Z ((XS —_ 37)1/2

(both orientation and spacing of “cardboards”
changing from point to point, with all four

LIKE STRUCTURE,” IN 3-SPACE AND IN SPACETIME

functions, a, 8, v, and §, depending on
position). :

What has physical reality, and constitutes the real
geometric object, is not any one of the 1-forms just
encountered individually, but only the 2-form o
itself. This circumstance helps to explain why in
the physical literature one sometimes refers to
“tubes of force” and sometimes to “lines of force.”
The two terms for the same structure have this in
common, that each yields a number when sliced
by a bit of surface. The line-of-force picture has
the advantage of not imposing on the mind any
specific structure of “sheets of cardboard”; that is,
any specific decomposition of the 2-form into the
product of 1-forms. However, that very feature is
also a disadvantage, for in a calculation one often
finds it useful to have a well-defined representa-
tion of the 2-form as the wedge product of 1-forms.
Moreover, the tube picture, abstract though it
must be if it is to be truthful, also has this advan-
tage, that the orientation of the elementary tubes
(sense of circulation as indicated by arrows in
Figures 4.1 and 4.5, for example) lends itself to
ready visualization. Let the “walls” of the tubes
therefore remain in all pictures drawn in this book
as a reminder that 2-forms can be built out of
I-forms; but let it be understood here and here-
after how manyfold are the options for the indi-
vidual 1-forms!

Turn now from three dimensions to four, and
find that the concept of “honeycomb-like struc-
ture” must be made still more abstract. In three
dimensions the arbitrariness of the decomposition
of the 2-form into 1-forms showed in the slant and
packing of the “cardboards,” but had no effect on
the verticality of the “channels for the bottles”
(“direction of Faraday lines of force or tubes of
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force™); not so in four dimensions, or at least not
in the generic case in four dimensions.

In special cases, the story is almost as simple
in four dimensions as in three. An example of a
special case is once again the 2-form o = B dx
A dy, with all the options for decomposition into
l1-forms that have already been mentioned, but
with every option giving the same “direction” for
the tubes. If the word “direction” now rises in
status from “tube walls unpierced by motion in
the direction of increasing z” to “tube walls un-
pierced either by motion in the direction of in-
creasing z, or by motion in the direction of in-
creasing 1, or by any linear combination of such
motions,” that is a natural enough consequence of
adding the new dimension. Moreover, the same
simplicity prevails for an electromagnetic plane
wave. For example, let the wave be advancing in
the z-direction, and let the electric polarization
point in the x-direction; then for a monochromatic
wave, one has

E,=B,=Ecosw(z—=1)= —fy = I3,

and all components distinct from these equal zero.
Faraday is

F=F,dtN\dx + F;;dz \ dx
= Eycosw(z — t)d(z — ) N\ dx,

which is again representable as a single wedge
product of two 1-forms.

Not so in general! The general 2-form in four
dimensions consists of six distinct wedge products,

F=F,diNdx + Fodt ANdy + ---
+ Fyady A d:.

It is too much to hope that this expression will
reduce in the generic case to a single wedge prod-
uct of two 1-forms (“simple”2-form). It is not even

true that it will. It is only remarkable that it can
be reduced from six exterior products to two (de-
tails in exercise 4.1); thus,

F=m A& 4+ n A &2

Each product 7t A &' individually can be visual-
ized as a honeycomb-like structure like those de-
picted in Figures 4.1, 4.2, 4.4, and 4.5. Each such
structure individually can be pictured as built out
of intersecting sheets (1-forms), but with such de-
tails as the tilt and packing of these 1-forms ab-
stracted away. Each such structure individually
gives a number when sliced by an element of
surface. What counts for the 2-form F, however,
is neither the number of tubes of 7 A &1 cut by
the surface, nor the number of tubes of 72 A &2
cut by the surface, but only the sum of the two.
This sum is what is referred to in the text as the
“number of tubes of F” cut by the surface. The
contribution of either wedge product individually
is not well-defined, for a simple reason: the de-
composition of a six-wedge-product object into
two wedge products, miraculous though it seems,
is actually far from unique (details in exercise 4.2).
In keeping with the need to have two products
of 1-forms to represent the general 2-form note
that the vanishing of dF (“no magnetic charges”)
does not automatically imply that d(m* A &) or
d(m? N\ &?) separately vanish. Note also that any
spacelike slice through the general 2-form F (re-
duction from four dimensions to three) can always
be represented in terms of a honeycomb-like
structure (“simple” 2-form in three dimensions;
Faraday’s picture of magnetic tubes of force).
Despite the abstraction that has gone on in see-
ing in all generality what a 2-form is, there is no
bar to continuing to use the term “honeycomb-like
structure” in a broadened sense to describe this
object; and that is the practice here and hereafter.




Contract eu

with L

e @ﬁﬁﬁ%

Figure 4.2.

The Faraday or 2-form F of the electromagnetic fleld is a machine to produce a 1-form (the time-rate
of change of momentum p of a charged particle) out of a tangent vector (product of charge e of the
particle and its 4-velocity u). In spacetime the general 2-form is the “superposition” (see Box 4.2) of
two structures like that illustrated at the top of this diagram, the tubes of the first being tilted and packed
as indicated, the tubes of the second being tilted in another direction and having a different pack-
ing density. :
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§4.3. FORMS ILLUMINATE ELECTROMAGNETISM, AND
ELECTROMAGNETISM ILLUMINATES FORMS

All electromagnetism allows itself to be summarized in the language of 2-forms,
honeycomb-like “structures” (again in the abstract sense of “structure” of Box 4.2)
of tubes filling all spacetime, as well when spacetime is curved as when it is flat.
In brief, there are two such structures, one Faraday = F, the other Maxwell = *F,
each dual (“perpendicular,” the only place where metric need enter the discussion)
to the other, each satisfying an elementary equation:

dF =0 (4.10)
(“no tubes of Faraday ever end”) and
d*F = 47 *J (4.11)

(“the number of tubes of Maxwell that end in an elementary volume is equal to
the amount of electric charge in that volume”). To see in more detail how this
machinery shows up in action, look in turn at: (1) the definition of a 2-form; (2)
the appearance of a given electromagnetic field as Faraday and as Maxwell; (3)
the Maxwell structure for a point-charge at rest; (4) the same for a point-charge
in motion; (5) the nature of the field of a charge that moves uniformly except during
a brief instant of acceleration; (6) the Faraday structure for the field of an oscillating
dipole; (7) the concept of exterior derivative; (8) Maxwell’s equations in the language
of forms; and (9) the solution of Maxwell’s equations in flat spacetime, using a 1-form
A from which the Liénard-Wiechert 2-form F can be calculated via F = dA.

A 2-form, as illustrated in Figure 4.1, is a machine to construct a number (“net
number of tubes cut”) out of any “oriented 2-surface” (2-surface with “sense of
circulation” marked on it):

number
of tubes | = f F. (4 12)
cut surface ’

For example, let the 2-form be the one illustrated in Figure 4.1
F=B,dy A\ dz,

and let the surface of integration be the portion of the surface of the 2-sphere
x2 + y? + 22 = a%, t = constant, bounded between 6 = 70° and 6 = 110° and
between ¢ = 0° and ¢ = 90° (“Atlantic region of the tropics”). Write

y = asin @ sin g,
z=acosd,
dy = a(cos 0 sin ¢ df + sin 6 cos ¢ do),
dz = —asinf db,
dy A dz = a*sin®f cosp dff N de. 4.13)

Preview of key points in
electromagnetism

A 2-form as machine for
number of tubes cut

Number of tubes cut
calculated in one example
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Figure 4.3.
Spacelike slices through Faraday, the electromagnetic 2-form, a geometric object, a honeycomb of tubes
that pervades all spacetime (“honeycomb” in the abstract sense spelled out more precisely in Box 4.2).
The surfaces in the drawing do not look like a 2-form (honeycomb), because the second family of surfaces
making up the honeycomb extends in the spatial direction that is suppressed from the drawing. Diagram
A shows one spacelike slice through the 2-form (time increases upwards in the diagram). In diagram
B, a projection of the 2-form on this spacelike hypersurface gives the Faraday tubes of magnetic force
- in this three-dimensional geometry (if the suppressed dimension were restored, the tubes would be tubes,
not channels between lines). Diagram C shows another spacelike slice (hypersurface of simultaneity for
an observer in a different Lorentz frame). Diagram D shows the very different pattern of magnetic tubes
in this reference system. The demand that magnetic tubes of force shall not end (V * B = 0), repeated
over and over for every spacelike slice through Faraday, gives everywhere the result 0B/0t = -V X E.
Thus (magnetostatics) + (covariance) —- (magnetodynamics). Similarly—see Chapters 17 and 21—
(geometrostatics) + (covariance) — (geometrodynamics).

The structure df A df looks like a “collapsed egg-crate” (Figure 1.4, upper right)
and has zero content, a fact formally evident from the vanishing of @ A 8 =
—B N awhen a and g are identical. The result of the integration, assuming constant

B, is
f Fe a2B_,,f110

x
. 90°
sin%6 df f cos o dp (4.14)
surface 70° 0°
It is not so easy to visualize a pure electric field by means of its 2-form F (Figure
4.4, left) as it is to visualize a pure magnetic field by means of its 2-form F (Figures
4.1, 4.2, 43). Is there not some way to treat the two fields on more nearly the same
footing? Yes, construct the 2-form *F (Figure 4.4, right) that is dual (“perpendicular”;
Box 4.3; exercise 3.14) to F.
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Figure 4.4.
The Faraday structure

F=51F,,,dx"/\ dx"=ElF01dt/\ dx+%Flodx/\ dt = E,dx A dt

associated with an electric field in the x-direction, and the dual (“perpendicular’) Maxwell honeycomb-
like 2-form

1
*F = E’ F,, dx* A dx* = *Fpzdx? A\ dx3 = FOldx® A dx3 = Fjydx? A dx? = E,dy A d:.

Represent in geometric form the field of a point-charge of strength e at rest at
the origin. Operate in flat space with spherical polar coordinates:

ds? = —dr? = 8y AXH dx?
= —df + dr? + r2df? + r?sin% do>. (4.15)

The electric field in the r-direction being E, = e/r?, it follows that the 2-form F
or Faraday is

Fz%Fu,dx“/\dx”= —E diAdr=—LdiA dr (4.16)
r

Its dual, according to the prescription in exercise 3.14, is Maxwell:
Maxwell = *F = esinf df A de, (4.17)

as illustrated in Figure 4.5.
Take a tour in the positive sense around a region of the surface of the sphere
illustrated in Figure 4.5. The number of tubes of *F encompassed in the route will

be precisely
(number) - ( solid )
of tubes/ ~ \angle/"

The whole number of tubes of *F emergent over the entire sphere will be 4we, in
conformity with Faraday’s picture of tubes of force.

Pattern of tubes in dual
structure Mexwell for
point-charge at rest
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Box 4.3 DUALITY OF 2-FORMS IN SPACETIME

Given a general 2-form (containing siX extérior or wedge products)
F=E,dxAd+E,dyAdt+--- + B, dx A dy,
one gets to its dual (“perpendicular”) by the prescription

*F=—B,dxAdi— - + E,dz A dx + E,dx A dy.
Duality Rotations

Note that the dual of the dual is the negative of the original 2-form; thus
**F= _E,dcxAdi—--- —B,dx A dy = —F.

In this sense * has the same property as the imaginary number i: ** = ii= —1.
Thus one can write

e*® = ¢cosa + *sina.

This operation, applied to F, carries attention from the generic 2-form in its simplest
representation (see exercise 4.1)

F=E,dx A di + B, dy A d:
to another “duality rotated electromagnetic field”
e*F = (E, cosa — B, sina)dx A dt + (B cosa + E,sina)dy A d:.

If the original field satisfied Maxwell’s empty-space field equations, so does the new
field. With suitable choice of the “complexion” a, one can annul one of the two
wedge products at any chosen point in spacetime and have for the other

(B2 + E»V2dy A d:.

\

J

Field of a point-charge in
motion

How can one determine the structure of tubes associated with a charged particle

moving at a uniform velocity? First express *F in rectangular coordinates moving
with the particle (barred coordinates in this comoving “rocket” frame of reference;
unbarred coordinates will be used later for a laboratory frame of reference). The
relevant steps can be listed:

(a)

*F=esinfdd A dp = —e(d cos ) A dg;
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Figure 4.5.

The field of 2-forms Maxwell = *F = esinf & A dp that
describes the electromagnetic field of a charge e at rest at the
origin, This picture is actually the intersection of *F with a
3-surface of constant time #; ie., the time direction is sup-
pressed from the picture.

()

<_p=arctanl_; d":ﬁg;{—:_x-

X247y

©

5 Z. ey S

cosf = —; —d(cos 8) = = +ﬁ(xdx+ydy+zdz),
r
(d) combine to find
*F = (e/F3(Xdy A dT + YdT A dX + Fd% A dy) (4.18)

(electromagnetic field of point charge in a comoving Cartesian system; spherically
symmetric). Now transform to laboratory coordinates:

velocity parameter «

velocity 8 = tanh «

1 B
————— = coshaq, ————— =sinha«a
VI — 2 VI = B2
t = tcosha — xsinha,
(a) X = —tsinha + x cosha,
F=y f=z
(b) 7= [(xcosha — rsinha)® + y? 4 22V%;

(€) *F = (e/T®[(xcosha — tsinha)dy A dz + ydz A
(cosh a dx — sinh a df) + z(cosh « dx — sinha df) A dv]; (4.19)




How an acceleration causes
radiation
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(d) compare with the general dual 2-form,

*F=E,dy Ad:+ E,dz A dx + E,dx A dy
+ B,dt A dx + B, dt A dy + B, dt A dz;

and get the desired individual field components

(e) E, = (e/T%)(x cosha — tsinh a), B, =0,

z

E, = (e/T3)y cosha, B, = —(e/T®:zsinha, (4.20)

v

E, = (e¢/7%:z cosha, B, = (¢/r3)y sinh a.

One can verify that the invariants

1
B? — E = 5 F,,F*, (421)

1 aB
E-B =ZEIB*F A (422)
have the same value in the laboratory frame as in the rocket frame, as required.
Note that the honeycomb structure of the differential form is not changed when
one goes from the rocket frame to the laboratory frame. What changes is only the
mathematical formula that describes it.

§4.4. RADIATION FIELDS

The Maxwell structure of tubes associated with a charge in uniform motion is more
remarkable than it may seem at first sight, and not only because of the Lorentz
contraction of the tubes in the direction of motion. The tubes arbitrarily far away
move on in military step with the charge on which they center, despite the fact that
there is no time for information “emitted” from the charge “right now” to get to
the faraway tube “right now.” The structure of the faraway tubes “right now” must
therefore derive from the charge at an earlier moment on its uniform-motion,
straight-line trajectory. This circumstance shows up nowhere more clearly than in
what happens to the field in consequence of a sudden change, in a short time A4r,
from one uniform velocity to another uniform velocity (Figure 4.6). The tubes have
the standard patterns for the two states of motion, one pattern within a sphere of
radius r, the other outside that sphere, where r is equal to the lapse of time (*cm
of light-travel time™) since the acceleration took place. The necessity for the two
patterns to fit together in the intervening zone, of thickness Ar = A4r, forces the field
there to be multiplied up by a “stretching factor,” proportional to r. This factor is
responsible for the well-known fact that radiative forces fall off inversely only as
the first power of the distance (Figure 4.6).

When the charge continuously changes its state of motion, the structure of the
electromagnetic field, though based on the same simple principles as those illustrated
in Figure 4.6, nevertheless looks more complex. The following is the Faraday 2-form



§4.4. RADIATION FIELDS 111
+B (
- ——— ——— —— *1—4—;—.::4—-’—3 -
Figure 4.6.

Mechanism of radiation. 3. J. Thomson’s way to understand why the strength of an electromagnetic wave
falls only as the inverse first power of distance r and why the amplitude of the wave varies (for low
velocities) as sinf (maximum in the plane perpendicular to the line of acceleration). The charge was
moving to the left at uniform velocity. Far away from it, the lines of force continue to move as if this
uniform velocity were going to continue forever (Coulomb field of point-charge in slow motion). However,
closer up the field is that of a point-change moving to the right with uniform velocity (1/r% dependence
of strength upon distance). The change from the one field pattern to another is confined to a shell of
thickness 4t located at a distance r from the point of acceleration (amplification of field by “stretching
factor” rsin @ 4B/4r; see text). We thank C. Teitelboim for the construction of this diagram.

for the field of an electric dipole of magnitude p, oscillating up and down parallel
to the z-axis: :

F=E,dcAd + - -+ B,dy A dz+ ... = real part of { p,eior—iut
[2 coso(rl3 - i—";)dr A di + sinﬁ(r—13 - ’rﬂ —w—:)rdﬁ A dr
gives E, gives E,
+ sin@ ( _r;w - w_:) dr A rdf)} (4.23)

gives B¢>

Field of an oscillating dipole
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and the dual 2-form Maxwell = *F is

*F=—-B,dxANdt — ... + E dy A d:z+ --- =real part of { p,elr—it
; 2

[sinﬁ(_r,_')"J - wT) dt N\ rsiné do

gives B,
+2 cosﬁ(l3 - j—‘ff)rdﬁ A rsinf do

r r-
gives E,
. 1w %)
+ sin @ (r—3 - T)r sinf do A dr]}. (4.24)
gives E,

§4.5. MAXWELL'S EQUATIONS

The general 2-form F is written as a superposition of wedge products with a
factor 3,

F=LXF du A dy, (4.25)

=5 FE,
because the typical term appears twice, once as F,, dx A dy and the second time
as F,dy A dx, with F,, = —F,, and dy A dx = —dx A dy.

If differentiation (“taking the gradient”; the operator d) produced out of a scalar
a l-form, it is also true that differentiation (again the operator d, but now generally
known under Cartan’s name of “exterior differentiation”) produces a 2-form out
of the general 1-form; and applied to a 2-form produces a 3-form; and applied to
a 3-form produces a 4-form, the form of the highest order that spacetime will
accommodate. Write the general f~form as

@ = - prage X A dX A o A dxy (4.26)

]

where the coefficient ¢, ,, o, like the wedge product that follows it, is antisym-

metric under interchange of any two indices. Then the exterior derivative of @ is

10
=7 4’;;&_____:;“&, dx® A dx® A dx? A .- A dx®, (427)

Take the exterior derivative of Faraday according to this rule and find that it
vanishes, not only for the special case of the dipole oscillator, but also for a general
electromagnetic field. Thus, in the coordinates appropriate for a local Lorentz frame,
one has
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dF = d(E,dx A di + --- + B,dy A dz + - -)

3E, . OE 3 3E
= dt £ Ld ’d) dt
(az oy A, g E)AdeA

+ -+ (5 more such sets of 4 terms each).... (4.28)

Note that such a term as dy A dy A dz is automatically zero (“collapse of egg-crate
cell when stamped on”). Collect the terms that do not vanish and find

oB oB oB
dF=( £ ”+a;)dx/\dy/\dz

8x+8y

3B, 3, E,,)
di AdyAd
(az TS T )Nk

0B oFE oF
( V4 F z)dt/\dz/\dx
at 0z ax

0B oE oE
z Y — —EZ)dt A dx A dy. 42
+( ot + dx ay ) A dx 4 (4.29)

Each term in this expression is familiar from Maxwell’s equations
divB=V-B=0

and .
curlE=V X E = —B.

Each vanishes, and with their vanishing Faraday itself is seen to have zero exterior
derivative: :
dF = 0. (4.30)

In other words, “Faraday is a closed 2-form”; “the tubes of F nowhere come to
an end.”

A similar calculation gives for the exterior derivative of the dual 2-form Maxwell
the result

d*F=d(—B,dx ANdt — - + E,dy Adz + ---)
9E, OE

=(aE’+——”+ z)dx/\dy/\dz
dx ay 0z

E 0B 0B
(8 ’———z+———”)dt/\ dy A\ dz
ot dy 0z

4 ..

=d4a(pdx A dy A d:
- Jydt AN dy A\ dz
—J,dt A dz A\ dx
—Jdt AN dx N\ dy) =4 *J;

d*F = 4r *J. @231)

Faraday structure: tubes
nowhere end

Maxwell structure: density
of tube endings given by
charge-current 3-form




Duality: the only place in
electromagnetism where
metric must enter

Closed 2-form contrasted
with general 2-form
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In empty space this exterior derivative, too, vanishes; there Maxwell is a closed
2-form; the tubes of *F, like the tubes of F, nowhere come to an end.

In a region where charge is present, the situation changes. Tubes of Maxwell
take their origin in such a region. The density of endings is described by the 3-form
*J = charge, a “collection of eggcrate cells” collected along bundles of world lines.

The two equations

dF =0

and
d*F =47 *J

summarize the entire content of Maxwell’s equations in geometric language. The
forms F = Faraday, and *F = Maxwell, can be described in any coordinates one
pleases—or in a language (honeycomb and egg-crate structures) free of any reference
whatsoever to coordinates. Remarkably, neither equation makes any reference
whatsoever to metric. As Hermann Weyl was one of the most emphatic in stressing
(see also Chapters 8 and 9), the concepts of form and exterior derivative are metric-
free. Metric made an appearance only in one place, in the concept of duality
(“perpendicularity”) that carried attention from F to the dual structure *F.

§4.6. EXTERIOR DERIVATIVE AND CLOSED FORMS

The words “honeycomb” and “egg crate” may have given some feeling for the
geometry that goes with electrodynamics. Now to spell out these concepts more
clearly and illustrate in geometric terms, with electrodynamics as subject matter,
what it means to speak of “exterior differentiation.” Marching around a boundary,
yes; but how and why and with what consequences? It is helpful to return to functions
and 1-forms, and see them and the 2-forms Faraday and Maxwell and the 3-form
charge as part of an ordered progression (see Box 4.4). Two-forms are seen in this
box to be of two kinds: (1) a special 2-form, known as a “closed” 2-form, which
has the property that as many tubes enter a closed 2-surface as emerge from it
(exterior derivative of 2-form zero; no 3-form derivable from it other than the trivial
zero 3-form!); and (2) a general 2-form, which sends across a closed 2-surface a
non-zero net number of tubes, and therefore permits one to define a nontrivial 3-form
(“exterior derivative of the 2-form™), which has precisely as many egg-crate cells
in any closed 2-surface as the net number of tubes of the 2-form emerging from
that same closed 2-surface (generalization of Faraday’s concept of tubes of force
to the world of spacetime, curved as well as flat).

(continued on page 120)
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Box 4.4 THE PROGRESSION OF FORMS AND EXTERIOR DERIVATIVES

O-Form or Scalar, f

An example in the context of 3-space and Newto-
nian physics is temperature, 7(x, y, z), and in the
context of spacetime, a scalar potential, ¢(¢, x, y, z).

From Scalar to 7-Form

Take the gradient or “exterior derivative” of a
scalar fto obtain a special 1-form, y = df. Com-
ments: (a) Any additive constant included in f is
erased in the process of differentiation; the quan-
tity » in the diagram at the left is unknown and
irrelevant. (b) The 1-form y is special in the sense
that surfaces in one region “mesh” with surfaces
in a neighboring region (“closed 1-form”). (¢) Line
integral (% dfis independent of path for any class
of paths equivalent to one another under continu-
ous deformation. (d) The l-form is a machine to
produce a number (“bongs of bell” as each succes-
sive integral surface is crossed) out of a displace-
ment (approximation to concept of a tangent
vector).

General 7-Form 8 = (3, dx*

This is a pattern of surfaces, as illustrated in the \ \ -
diagram at the right; i.e., a machine to produce \ N\ \ \ \ L

a number (“bongs of bell”; { B, u)) out of a vector. AN \ \ SARAR

A 1-form has a reality and position in space inde- N \\ Wil

pendent of all choice of coordinates. Surfaces do \ \

not ordinarily mesh. Integral {8 around indicated NN \\ A\ \‘ i

closed loop does not give zero (“more bongs than \\ \\\ \\\\ S ~~*\;;\‘\\\\\\\\\\\\\\r

antibongs”). N NN R Rt
a8,

From 7-Form to 2-Form §{ = dB = dx* N\ dx*

x#

£ is a pattern of honeycomb-like cells, with a di-
rection of circulation marked on each, so stationed
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Box 4.4 (continued)

that the number of cells encompassed in the dotted
closed path is identical to the net contribution
(excess of bongs over antibongs) for the same path
in the diagram of B above. The “exterior deriva-
tive” is defined so this shall be so; the generalized
Stokes theorem codifies it. The word “exterior”
comes from the fact that the path goes around the
periphery of the region under analysis. Thus the
2-form is a machine to get a number (number of
tubes, {§,u A v)) out of a bit of surface (u A v)
that has a sense of circulation indicated upon
it. The 2-form thus defined is special in this sense:
a rubber sheet “supported around its edges” by
the dotted curve or any other closed curve is
crossed by the same number of tubes when: (a)
it bulges up in the middle; (b) it is pushed down
in the middle; (c) it experiences any other continu-
ous deformation. The Faraday or 2-form F of
electromagnetism, always expressible as F = dA
(A = 4-potential, a 1-form), also has always this
special property (“conservation of tubes”),

0-Form to 7-Form to 2-Form? No!

Go from scalar fto 1-form y = df. The next step
to a 2-form a is vacuous. The net contribution of
the line integral {y around the dotted closed path
is automatically zero. To reproduce that zero result
requires a zero 2-form. Thus @ = dy = ddf has
to be the zero 2-form. This result is a special in-
stance of the general result dd = 0.

General 2-Form o = —21—0‘13 dx* A dxF, with g,, =

Again, this is a honeycomb-like structure, and
again a machine to get a number (number of
tubes, {o, u A v)) out of a surface (u A v) that
has a sense of circulation indicated on it. It is
general in the sense that the honeycomb structures
in one region do not ordinarily mesh with those

=
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in 2 neighboring region. In consequence, a closed
2-surface, such as the box-like surface indicated
by dotted lines at the right, is ordinarily crossed
by a non-zero net number of tubes. The net num-
ber of tubes emerging from such a closed surface
is, however, exactly zero when the 2-form is the
exterior derivative of a 1-form.

00,
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From 2-Form to 3-Form y = do = a—f'de A dx® A dxB,

X

where dx” A dx* A dx? =3l dx!Y ® dx* ® dx#!

This egg-crate type of structure is a machine to
get a number (number of cells (p,u A v A w))
from a volume (volume u A v A w within which
one counts the cells). A more complete diagram
would provide each cell and the volume of inte-
gration itself with an indicator of orientation
(analogous to the arrow of circulation shown for
cells of the 2-form). The contribution of a given
cell to the count of cells is +1 or —1, according
as the orientation indicators have same sense or
opposite sense. The number of egg-crate cells of
# = do in any given volume (such as the volume
indicated by the dotted lines) is tailored to give
precisely the same number as the net number of
tubes of the 2-form o (diagram above) that emerge
from that volume (generalized Stokes theorem).
For electromagnetism, the exterior derivative of
Faraday or 2-form F gives a null 3-form, but the
exterior derivative of Maxwell or 2-form *F gives
47 times the 3-form *J of charge:

*J=pdx ANdy ANdz—J,dt \dyA d:
—J,dt Ndz Adx — J, di A\ dx A dy.
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Box 4.4 (continued)

From 7-Form to 2-Form to 3-Form? No!

Starting with a 1-form (electromagnetic 4-potential), construct its exterior deriva-
tive. the 2-form F = dA (Faraday). The tubes in this honeycomb-like structure never
end. So the number of tube endings in any elementary volume, and with it the 3-form
dF = ddA, is automatically zero. This is another example of the general result that
dd = 0.

From 2-Form to 3-Form to 4-Form? No!

Starting with 2-form *F (Maxwell), construct its exterior derivative, the 3-form
47 *J. The cells in this egg-crate type of structure extend in a fourth dimension
(“hypertube”). The number of these hypertubes that end in any elementary 4-vol-
ume, and with it the 4-form

d(4m *J) = dd*F,

is automatically zero, still another example of the general result that dd = 0. This

result says that

op o, oJ, 9/
+ —=

kil v Y g Adx AdyAdz=0
ar * ox ay+az) AGyA e

d*J=(

(“law of conservation of charge”). Note:
dx* A dx? A dx" A dx® =41dx!* ® dx? ® dx’ ® dx?..

This implies dt A dx A dy A dz = ¢.

Wiagyl ;s
From 3-Form to 4-Formr = dv = ——ade A dx® A dxB A dxY
X

This four-dimensional “super-egg-crate™ type structure is 2 machine to get 2 number
(number of cells, (r,n A u A v A w)) from a 4-volumen A u A v A w.

—

~ ~

_/
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\

From 4-Form to 5-Form? No!

Spacetime, being four-dimensional, cannot accommodate five-dimensional egg-crate
structures. At least two of the dx*’s in

dx® A dxf A dx? A dx® A dx*

must be the same; so, by antisymmetry of “A,” this “basis 5-form” must vanish.

Results of Exterior Differentiation, Summarized

0-form f

1-form df A

2-form | ddf=0 F=dA *F

3-form dF = ddA =0 47 *J = d*F v

4-form ddr*J)=dd*F=0 T =dv u
5-form?| No! dr =0 dy =0

New Forms from Old by Taking Dual (see exercise 3.14)

Dual of scalar fis 4-form: *f = fdx® A dx! A dx® A dx® = fe.
Dual of 1-form J is 3-form: *J = J%dx! A dx® A dx? — Jtdx® A dx® A dx°
+ J2dx3 A dx® A dx' — J3dx® A dx! A dx.
Dual of 2-form F is 2-form: *F = F'*fle ;,  dx* A dx’, where
Fa,B = T)a)‘T)B'sFM-
Dual of 3-form K is 1-form: *K = K2 dx3 — K123 dx0 + K230 gxl — K301 gx2
where K*BY = nmfim K ..
Dual of 4-form L is a scalar: L = L5, dx° A dx! A dx? A dx?;

=y — 70123 _
L=1L - _L0123'

Note 1: This concept of duality between one form and another is to be distinguished
from the concept of duality between the vector basis e, and the I-form basis w*
of a given frame. The two types of duality have nothing whatsoever to do with each
other!

— _/
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Box 4.4 (continued)

Note 2: In spacetime, the operation of taking the dual, applied twice, leads back
to the original form for forms of odd order, and to the negative thereof for forms
of even order. In Euclidean 3-space the operation reproduces the original form,
regardless of its order.

Duality Plus Exterior Differentiation

Start with scalar ¢. Its gradient d¢ is a 1-form. Take its dual, to get the 3-form *d¢.
Take its exterior derivative, to get the 4-form d *d¢. Take its dual, to get the scalar
O¢ = —*d*d¢. Verify by index manipulations that O as defined here is the
wave operator; ie., in any Lorentz frame, O¢ = ¢ % = —(3%/3r%) + V2.

Start with 1-form A. Get 2-form F = dA. Take its dual *F = *dA, also a 2-form.
Take its exterior derivative, obtaining the 3-form d*F (has value 47 *J in electro-
magnetism). Take its dual, obtaining the 1-form *d*F = *d*dA = 47J (“Wave
equation for electromagnetic 4-potential”). Reduce in index notation to

E,* =4, —A,,” =4nl,

&,

[More in Flanders (1963) or Misner and Wheeler (1957); see also exercise 3.17.]

§4.7. DISTANT ACTION FROM LOCAL LAW

Differential forms are a powerful tool in electromagnetic theory, but full power
requires mastery of other tools as well. Action-at-a-distance techniques (“Green’s
functions,” “propagators”) are of special importance. Moreover, the passage from
Maxwell field equations to electromagnetic action at a distance provides a preview
of how Einstein’s local equations will reproduce (approximately) Newton’s 1/r2 law.

In flat spacetime and in a Lorentz coordinate system, express the coordinates of
particle 4 as a function of its proper time e, thus:

da*

at = aﬂ(a)’ _aa— = a'ﬂ(a)’

d%a*
do?

Dirac found it helpful to express the distribution of charge and current for a particle
of charge e following such a motion as a superposition of charges that momentarily
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flash into existence and then flash out of existence. Any such flash has a localization
in space and time that can be written as the product of four Dirac delta functions
[see, for example, Schwartz (1950-1951), Lighthill (1958)}:

OH(x# — a¥) = §[x° — a®(@)] §[x — al(a)] 8[x2 — a%(a)] 8[x® — a¥(a)l. (4.33)

Here any single Dirac function §(x) (“symbolic function”; “distribution”; “limit of
a Gauss error function” as width is made indefinitely narrow and peak indefinitely
high, with integrated value always unity) both (1) vanishes for x # 0, and (2) has
the integral (*3 8(x) dx = 1. Described in these terms, the density-current vector
for the particle has the value (“superposition of flashes”)

Je = ef‘o“‘[x" — @’(a)]a*(a) da. (4.34)
The density-current (4.34) drives the electromagnetic field, £. Write F = dA to
satisfy automatically half of Maxwell’s equations (dF = ddA = 0):

Y (4.35)

BT dx# Ox®

In flat space, the remainder of Maxwell’s equations (d*F = 47 *J) become

OF"
£y =47J
axv I
or
0 oA’ 024

—_— —p'e £ _—4x] . 3
Ox* 0x¥ K 0x” 0x* ™ (4.36)

Make use of the freedom that exists in the choice of 4-potentials 4” to demand

A _ 437)
ox"
(Lorentz gauge condition; see exercise 3.17). Thus get
04, = —4aJ,. (4.38)

The density-current being the superposition of “flashes,” the effect (A) of this
density-current can be expressed as the superposition of the effects E of elementary
flashes; thus

A4(x) = [ Elx — a(@)(@) da, (439)
where the “elementary effect” E (“kernel”; “Green’s function”) satisfies the equation
OE(x) = —47 6*(x). (4.40)

One solution is the “half-advanced-plus-half-retarded potential,”

E(x) = 8(n,px*x”). 441

World line of charge
regarded as succession of
flash-on, flash-off charges

The electromagnetic wave
equation

The solution of the wave
equation
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It vanishes everywhere except on the backward and forward light cones, where it
has equal strength. Normally more useful is the retarded solution,

2E(x) if x% >0,

442
0 if x* <0, (442)

R = |
which is obtained by doubling (4.41) in the region of the forward light cone and
nullifying it in the region of the backward light cone. All electrodynamics (Coulomb
forces, Ampére’s law, electromagnetic induction, radiation) follows from the simple
expression (4.39) for the vector potential [see, e.g., Wheeler and Feynman (1945)
and (1949), also Rohrlich (1965)].

EXERCISES

Exercise 4.1. GENERIC LOCAL ELECTROMAGNETIC FIELD
EXPRESSED IN SIMPLEST FORM

In the laboratory Lorentz frame, the electric field is E, the magnetic field B. Special cases
are: (1) pure electric field (B = 0); (2) pure magnetic field (E = 0); and (3) “radiation field”
or “null field” (E and B equal in magnitude and perpendicular in direction). All cases other
than (1), (2), and (3) are “generic.” In the generic case, calculate the Poynting density of
flow of energy E X B/4w and the density of energy (EZ + B?)/8x. Define the direction of
a unit vector n and the magnitude of a velocity parameter « by the ratio of energy flow
to energy density:

2EX B
ntanh2a = m

View the same electromagnetic field in a rocket frame moving in the direction of n with
the velocity parameter a (not 2a; factor 2 comes in because energy flow and energy density
are components, not of a vector, but of a tensor). By employing the formulas for a Lorentz
transformation (equation 3.23), or otherwise, show that the energy flux vanishes in the rocket
frame, with the consequence that E and B are parallel. No one can prevent the Z-axis from

being put in the direction common to E and B. Show that with this choice of direction,
Faraday becomes

F=EdiAdi+ B, di A\ df

(only two wedge products needed to represent the generic local field; “canonical representa-
tion”; valid in one frame, valid in any frame).

Exercise 4.2. FREEDOM OF CHOICE OF 1-FORMS IN CANONICAL
REPRESENTATION OF GENERIC LOCAL FIELD

Deal with a region so small that the variation of the field from place to place can be neglected.
Write Faraday in canonical representation in the form

F =dp, A dq" + dp; A dgl,
where p, (4 =1 or II) and ¢* are scalar functions of position in spacetime. Define a
“canonical transformation” to new scalar functions of position p; and g4 by way of the

“equation of transformation”

Padg* = dS + pydg?,
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v=hdf

=
= S |S

LA

\ (“curl free ") / k (“rotation-free™) / \ (has rotation) /

Figure 4.7.
Some simple types of 1-forms compared and contrasted.

where the “generating function” S of the transformation is an arbitrary function of the g4
and the ¢4

dS = (35/3¢%) dg* + (3S/9¢%) dg*.

(a) Derive expressions for the two p,’s and the two ps5’s in terms of S by equating
coefficients of dq’, dg”!, dg". dg" individually on the two sides of the equation of trans-
formation.

(b) Use these expressions for the p,’s and py’s to show that F = dp, A dg# and F =
dp; N dg*, ostensibly different, are actually expressions for one and the same 2-form in
terms of alternative sets of 1-forms.

Exercise 4.3. A CLOSED OR CURL-FREE 1-FORM IS A GRADIENT

Given a 1-form o such that do = 0, show that o can be expressed in the form o = df,
where f'is some scalar. The 1-form o is said to be “curl-free,” a narrower category of 1-form
than the “rotation-free” 1-form of the next exercise (expressible as ¢ = h df), and it in turn
is narrower (see Figure 4.7) than the category of “I-forms with rotation™ (not expressible
in the form o = hdf). When the l-form o is expressed in terms of basis 1-forms dx?,
multiplied by corresponding components a,, show that “curl-free” implies o, 5 = 0.

Exercise 4.4. CANONICAL EXPRESSION FOR A ROTATION-FREE 1-FORM

In three dimensions a rigid body turning with angular velocity w about the z-axis has
components of velocity v, = wx, and v, = —wy. The quantity curl v = V X v has z-com-
ponent €qual to 2w, and all other components equal to zero. Thus the scalar product of v
and curl v vanishes:

v v = 0.
The same concept generalizes to four dimensions,
Ui, gUy1 = 0.

and lends itself to expression in coordinate-free language, as the requirement that a certain
3-form must vanish:

dv Av=0
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Any l-form v satisfying this condition is said to be “rotation-free.” Show that a 1-form is
rotation-free if and only if it can be written in the form

v =hdf

where 4 and f are scalar functions of position (the “Frobenius theorem”),

Exercise 4.5. FORMS ENDOWED WITH POLAR SINGULARITIES
List the principal results on how such forms are representable, such as

01=dTS/\w1+91,

and the conditions under which each applies {for the meaning and answer to this exercise,
see Lascoux (1968)].

Exercise 4.6. THE FIELD OF THE OSCILLATING DIPOLE

Verify that the expressions given for the electromagnetic field of an oscillating dipole in
equations (4.23) and (4.24) satisfy dF = 0 everywhere and d*F = 0 everywhere except at
the origin.

Exercise 4.7. THE 2-FORM MACHINERY TRANSLATED
INTO TENSOR MACHINERY

This exercise is stated at the end of the legend caption of Figure 4.1.

Exercise 4.8. PANCAKING THE COULOMB FIELD

Figure 4.5 shows a spacelike slice, = const, through the Maxwell of a point-charge at rest.
By the following pictorial steps, verify that the electric-field lines get compressed into the
transverse direction when viewed from a moving Lorentz frame: (1) Draw a picture of an
equatorial slice (§ = #/2; ¢, r, ¢ variable) through Maxwell =-*F. (2) Draw various space-
like slices, corresponding to constant time in various Lorentz frames, through the result-
ant geometric structure. (3) Interpret the intersection of Maxwell = *F with each Lorentz
slice in the manner of Figure 4.3.

Exercise 4.9. COMPUTATION OF SURFACE INTEGRALS
In Box 4.1 the definition

fa:f...f(a,—g-%/\ A—%)d)\‘...d)\”

is given for the integral of a p-form a over a p-surface #(A},...,AP) in n-dimensional space.
From this show that the following computational rule (also given in Box 4.1) works: (1)
substitute the equation for the surface,

xE = x¥\l .., AP),
into a and collect terms in the form
a=aAl,. .., AP)dAL A ... A dAP;
(2) integrate .
fa={...far, .. aryanr...axe

using the elementary definition of integration.
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Exercise 4.10. WHITAKER’S CALUMOID. OR, THE LIFE OF A LOOP

Take a closed loop, bounding a 2-dimensional surface 8. It entraps a certain flux of Faraday
&, = [ F (“magnetic tubes”) and a certain flux of Maxwell @, = ;*F (“clectric tubes”).
(a) Show that the fluxes & and @, depend only on the choice of loop, and not on the
choice of the surface S bounded by the loop, if and only if dF = d*F = 0 (no magnetic
charge; no electric charge). Hint: use geﬁeralized Stokes theorem, Boxes 4.1 and 4.6.

(b) Move the loop in space and time so that it continues to entrap the same two fluxes.
Move it forward a little more here, a little less there, so that it continues to do so. In this
way trace out a 2-dimensional surface (“calumoid”; see E. T. Whitaker 1904) ? = P(a, b);
x* = x#(a, b). Show that the elementary bivector in this surface, £ = 99/da A 389 /0b
satisfies (F, Xy = 0 and (*F, X) = 0.

(c) Show that these differential equations for x#(a, b) can possess a solution, with given
initial condition x* = x*#(a, 0) for the initial location of the loop, if dF = 0 and d*F =0
(no magnetic charge, no electric charge).

(d) Consider a static, uniform electric field F = —E, dt A dx. Solve the equations,
{(F,ZY=0and {(*F, ) =0 to find the equation ¥ (a, b) for the most general calumoid.
[Answer: y = y(a), z = z(a), x = x(b), t = t(b).] Exhibit two special cases: (i) a calumoid
that lies entirely in a hypersurface of constant time {loop moves at infinite velocity; analogous
to super-light velocity of point of crossing for two blades of a pair of scissors]; (ii) a calumoid
whose loop remains forever at rest in the 4, x, y, z Lorentz frame.

Exercise 4.11. DIFFERENTIAL FORMS AND HAMILTONIAN MECHANICS

Consider a dynamic system endowed with two degrees of freedom. For the definition of
this system as a Hamiltonian system (special case: here the Hamiltonian is independent of
time), one needs (1) a definition of canonical variables (see Box 4.5) and (2) a knowledge
of the Hamiltonian H as a function of the coordinates ¢!, g2 and the canonically conjugate
momenta p;, p,. To derive the laws of mechanics, consider the five-dimensional space of
P1 P2 9% g% and 1, and a curve in this space leading from starting values of the five
coordinates (subscript A4) to final values (subscript B), and the value

B B
I={ pidg’ + pdg — Hp,q)di = [ w
A . 4

of the integral I taken along this path. The difference of the integral for two “neigh-
boring” paths enclosing a two-dimensional region 8, according to the theorem of Stokes
(Boxes 4.1 and 4.6), is

61=¢,w=fsdw. )

The principle of least action (principle of “extremal history”) states that the representative
point of the system must travel along a route in the five-dimensional manifold (route with
tangent vector d%/dr) such that the variation vanishes for this path; 1.e.,

dw(...,d?/d) =0

(2-form dw with a single vector argument supplied, and other slot left unfilled, gives the
I-form in 5-space that must vanish). This fixes only the direction of 47 /dr; its magnitude
can be normalized by requiring {dt, d7/dry = 1.

(a) Evaluate dw from the expression w = p, dg/ — Hd:.

(b) Set d?/dt = ¢i(39P/2q") + p(0P/3p;) + W09 /dt), and expand dw(...,d?/df) = 0 in
terms of the basis {dp, dg*, dt}.
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Box 4.5 METRIC STRUCTURE AND HAMILTONIAN OR ““SYMPLECTIC STRUCTURE”
COMPARED AND CONTRASTED

Metric structure

Symplectic
Structure

1. Physical application

2. Canonical structure

3. Nature of *“metric”

4. Name for given coordinate
system and any other set of
four coordinates in which
metric has same form

5. Field equation for this metric

6. The four-dimensional manifold

7. Coordinate-free description of
the structure of this manifold

8. Canonical coordinates
distinguished from other
coordinates (allowable but
less simple)

Geometry of spacetime

o) ="ds? = —dI @ dr
+ dx @ dx + dy ® dv
+ d- ® d-

Symmetric

Lorentz coordinate system

R,..p = 0 (zero Riemann

curvature; flat spacetime)

Spacetime

Riemann = 0

Make metric take above form
(item 2)

Hamiltonian mechanics

0 =dp, A dg' + dp, \ dg*

Antisymmetric

System of “canonically” (or
“dynamically”) conjugate
coordinates

dO = 0 (“closed 2-form™;
condition automatically

satisfied by expression above).

Phase space

do =0

Make metric take above form
(item 2)

\

J

(c) Show that this five-dimensional equation can be written in the 4-dimensional phase

space of {¢/, p;} as

O(...,d®/dr) = dH,

where O is the 2-form defined in Box 4.5.

(d) Show that the components of O(.. .,

d®/dr) = dH in the {¢/, p,} coordinate system

are the familiar Hamilton equations. Note that this conclusion depends only on the form
assumed for O, so that one also obtains the standard Hamilton equations in any other
phase-space coordinates {7/, ,} (“canonical variables”) for which

O =dp, A dit + dp, A d>

Exercise 4.12. SYMMETRY OPERATIONS AS TENSORS
We define the meaning of square and round brackets enclosing a set of indices as follows:

_ 1
V;al...ap) = F z Va

yll? [at..ap] =

Ly 1y
— (=1,
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Box 4.6 BIRTH OF STOKES’ THEOREM

Central to the mathematical formulation of electromagnetism are the theorems of
Gauss (taken up in Chapter 5) and Stokes. Both today appear together as one unity
when expressed in the language of forms. In earlier times the unity was not evident.
Everitt (1970) recalls the history of Stokes’ theorem: “The Smith’s Prize paper set
by [G. C.] Stokes [Lucasian Professor of Mathematics} and taken by Maxwell in
[February] 1854 ...

5. Given the centre and two points of an ellipse, and the length of the major axis,
find its direction by a geometrical construction.
6. Integrate the differential equation

(@® — x®) dy? + 2xydydx + (a® — y)dx2 = 0.
ly yay Y

Has it a singular solution?

7. In a double system of curves of double curvature, a tangent is always drawn at
the variable point P; shew that, as P moves away from an arbitrary fixed point Q,
it must begin to move along a generating line of an elliptic cone having Q for vertex
in order that consecutive tangents may ultimately intersect, but that the conditions
of the problem may be impossible.

8. If X, Y, Z be functions of the rectangular co-ordinates x, y, z, 4S an element
of any limited surface, /, m, n the cosines of the inclinations of the normal at 4S to
the axes, ds an element of the bounding line, shew that

W) enle - 2)or(2 - )

dx dy

f(x—+Y Zd)ds

the differential coefficients of X, Y, Z being partial, and the single integral being taken
all round the perimeter of the surface

marks the first appearance in print of the formula connecting line and surface
integrals now known as Stokes’ theorem. This was of great importance to Maxwell’s
development of electromagnetic theory. The earliest explicit proof of the theorem
appears to be that given in a letter from Thomson to Stokes dated July 2, 1850.”
[Quoted in Campbell and Garnett (1882), pp. 186-187.]
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Here the sum is taken over all permutations = of the numbers I, 2,...,p, and (= D)7 is
+1 or —1 depending on whether the permutation is even or odd. The quantity ' may have
other indices, not shown here, besides the set of p indices a;, a,, ..., a, but only this set
of indices is affected by the operations described here. The numbers =, 7,, ..., 7, are the
numbers 1, 2, ..., p rearranged according to the permutation 7. (Cases p = 2, 3 were treated
in exercise 3.12.) We therefore have machinery to convert any rank-p tensor with components

Vi..a, iNto @ new tensor with components
wlp

[Al(V))

1oty = V[;u...m:l'
Since this machinery A/t is linear, it can be viewed as a tensor which, given suitable argu-
ments u, v,...,w, a, B,...,y produces a number
A
utt’ o owha, B, vy

(a) Show that the components of this tensor are

(Alt)g, 5> = (pH)~1 8517, (Note: indices of § are
almost never raised or
lowered, so this notation
leads to no confusion.)

where
+1if (a3, . ..,a,) is an even permutation of (8,,..., By),
—lif (ay,...,ap) is an odd permutation of (B, ..., B,),
0319 =1 0if (i) any two of the &’s are the same,

0 if (ii) any two of the B’s are the same,
0 if (iii) the o’s and B’s are different sets of integers.

Note that the demonstration, and therefore these component values, are correct in any
frame.

(b) Show for any “alternating” (i.e., “completely antisymmetric”) tensor 4
that

at.ap A[al...apl

i A aal...apB,...Bq

1Tty Ty 1Y pYpr 1o Ypug

- 2 A aal...apﬁl...ﬁq
Apeay AT, YP-HI
@ <ag<..<a,

=A o Salm%ﬁl'"ﬁ"
-

. 29 (s SRS Yo+q

The final line here ingroduces the convention that a summation over indices enclosed between
vertical bars includes only terms with those indices in increasing order. Show, consequently
or similarly, that .

8“1---%/31---/3,, 8" iy = aal...apﬂ,...;;q
Yo Youg Oy = Oyl Yora

(¢) Define the exterior (“wedge”) product of any two alternating tensors by

e OH1lp vy .
(@ A p))\l---)\wa = A eApApetndpeg Flpranpl Blvl...v,,p

and similarly

(U A V))‘l"')‘vﬂa = 8)‘1"')‘1)‘“1“')‘»:1 Ulp,...y,l Vl"r--"ql,
[ SEN
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Show that this implies equation (3.45b). Establish the associative law for this product rule
by showing that

[@AB)YAY),,.
= S Aphgentigh o
=9 ‘___ﬁ:':ﬂ"‘"" P A Bty Yivymyd

=@ A B AL,

Opiqtr

prarr’
and show that this reduces to the 3-form version of Equation (3.45c) when a, 8, and y are
all 1-forms.
(d) Derive the following formula for the components of the exterior product of p vectors
(ul A u, A oo A up)‘“"'a” = 82_‘_:;“”(“1)”’ . (up)"
= pluf*tu,o2 |y 20

= aalwzz-:f; det [(u,)*].




Einstein's Equation in Pictures

Matthew Frank

March 15, 2002
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Start with a unit timelika
vactol v at a paint p.

Takz all the spacelike
vaotors orthogonal ta v

Extend thase spacalike
vertors inta geedesics.

Tulez

These geodesics form
a 3-d hypersurface,

Take small balls in this
hypersuface. the paints
within distance r af p.

Consider the wolume
Yir of thase balls as
a function af r.

Einstein's equation says that energy is the curvature of space. What does this mean?
In terms of the above pictures, it can be expressed as:

1677 (energy density as measured by v) = liml—f (1- V(r)3 )
r-0 p ?ﬂr

for each unit timelike vector v. (And that's it!)

How To Use This Paper

I hope that both people new to and people familiar with general relativity will read this
paper. The section on preliminaries is intended primarily for those new to general
relativity; I hope that physical intuition will carry people most of the way through that
section, but mathematicians may find it useful to know that the four-dimensional space-
time metric has signature -+++. The section on comparisons with other formulations and
the appendices are intended primarily for those already familiar with general relativity; I
hope that these people will appreciate the novelties of this approach.



Preliminaries

The background to this is that general relativity treats space-time as a four-dimensional
manifold with a metric and an energy tensor. Since space-times are four-dimensional,
space-time diagrams conventionally omit one dimension.

b el
Timealike vectors arethe ohes A geodesic is a path whose Yolumas can be estimatad
that go inside a light cone; l2ngth is insensitive to small by filling them with small,
spacelike vertars, cutsida. peturbations. hearly Euclidean spheres.

It is the metric which makes the pictures and the right hand side of Einstein's equation
meaningful. The metric determines (among other things) the possible paths of light rays,
and these form a light cone. The vectors which point outside the light cone are called
spacelike; the vectors on the light cone are called null. The vectors which point inside the
light cone are called timelike; they represent the possible directions of inertial observers,
and are often identified with observers. (This is treated in more detail in chapter 6 of
Taylor and Wheeler's Spacetime Physics.)

The metric also determines distances and lengths of curves. A geodesic is a locally
straightest path, a path vy, such that for any continuous variation of curves v, the
derivative (d/du)(length of y,) vanishes at u=0. Note that any vector can be followed into
a geodesic path, as indicated in the third picture for Einstein's equation.

With the notion of distance comes a notion of volume: there is a unique volume function
such that, for all sufficiently small r and all points p, (4/3)n(r’-r*) < V(B(p,r)) <
4/3)n(r*+r*), where B(p,r) is the ball of radius r around p. (This is proved in the
appendix.) In fact these volumes do not deviate from Euclidean volumes at the r* level at
all, and the r° deviation from Euclidean volume (as on the right hand side of Einstein's
equation) measures the curvature of the manifold at the point p. However, these r*
inequalities are strict enough to give a procedure for estimating volumes to within an
arbitrarily small factor of 1+e: simply divide the region into countably many balls of
radius at most € and sum their Euclidean volumes.

It is the energy tensor which makes the left-hand side of the equation meaningful. This
concept of "energy density in the direction of v" or "local energy as measured by the
observer v" is best illustrated by examples. In a vacuum, the energy in any direction is
always 0. An electromagnetic field has total energy (E - E - B - B)/8n where E and B are
the vectors for the electric and magnetic fields as measured by the observer v. A perfect



fluid is observed by v to have energy (p + P)(u - v)? - P, where p is the density of the
fluid, P is its pressure, and u is its direction.

Having this at hand makes it possible to go through an example of Einstein's equation in
detail; this may in particular help clarify the dimensionality of the vector spaces and
manifolds. Consider Minkowsi space (the space-time of special relativity), coordinatized
as (x,y,zt). Also consider an observer at the origin moving in the t-direction. For this
observer, the spacelike vectors are all the vectors which have no t-component. The
geodesics form the 3-d hypersurface t=0. The ball of radius r is all points (x,y,z,0) with x
+y? + 7> <r?, and it has volume exactly (4/3)nr’. Hence the curvature of the hypersurface
is 0, as it should be since Minkowski space is a vacuum.

Comparisons with the usual statement of Einstein’s equation

The statement of Einstein's equation here makes precise "energy is the curvature of
space", while the usual statement makes precise "energy-momentum is the curvature of
space-time". The right hand side of the statement here gives the scalar curvature of the
indicated hypersurface, and that hypersurface is the natural "space" associated to the
given observer.

It is possible to do calculations that are guided by these pictures rather than by the
standard Christoffel symbols or differential forms. The key is to coordinatize several
things and represent them as power series in the distance from the initial point: first the
geodesics from that point, then the metric of the resulting hypersurface, then the volumes
of the geodesic balls in it. The curvature is proportional to the r° term in the power series
for the volume. Even if the metric is only C* and not analytic, there are enough
meaningful terms in these power series to allow this calculation of the curvature. I have
used these techniques to rederive the Schwarzschild and Robertson-Walker solutions in
this format. Unfortunately, the calculations by this method require calculations much
longer than the usual ones, even when all of them are automated in Mathematica.

This statement of Einstein's equation is equivalent to the usual one. (Indeed, it is very
close to the statement of Einstein's equation given by Misner, Thorne, and Wheeler on p.
515.) Unfortunately, while the usual statement is clean, and these pictures are clean,
proving the equivalence of the two is somewhat messy. The following is a sketch of a
proof in three steps, using geometrized units c=G=1.

«  First, the usual statement 87 T,, = Gy is equivalent to the claim that 87T, v* Vo=
G, v v° for all unit timelike vectors v (where Ty v* v® is what is referred to
above as the energy density in the inertial frame of v). This equivalence is a
matter of linear algebra, using the facts that T and G are symmetric tensors and
that the unit timelike vectors from a spanning set for the space of all tangent
vectors.

« Second, Gy, v* v is half the scalar curvature of the indicated hypersurface; this is
a special case of the Gauss-Codazzi equations without the terms for extrinsic
curvature, because the extrinsic curvature of the hypersurface vanishes at p. These



equations are discussed in Wald, sec. 10.2, and the appendix proves the vanishing
of the extrinsic curvature can also be proved using the machinery of that section.

«  Third, the scalar curvature of the hypersurface is given by the limit of (15/r%)(1-
V(1)/VEu(r)) as r goes to 0; for this, see Cartan, sec. 234.

Conclusion
Two advantages of this presentation of Einstein's equation may be obvious:

It is very pictorial.

« It requires much less of the standard mathematical apparatus: no curvature tensors
(almost no tensors at all), and no parallel transport / derivative operators / affine
connections.

Let me also call attention to a few advantages which may not be obvious.

« It may be easier to appraise the standard presentation of Einstein's equation given
another presentation as different as this one; the standard presentation may seem
less geometrically compelling but computationally not so bad by comparison.
(For another alternative presentation, see Baez.)

« This presentation brings the geometry of general relativity closer to the ideal of a
synthetic differential geometry set out by Herbert Busemann. (That was some of
my inspiration for this project.)

« Most optimistically, this presentation of Einstein's equation (or slight variants)
may be meaningful in physical theories which do not treat space-time as a 4-
dimensional Lorentzian manifold.

In any case, I will be happy if this helps people to understand Einstein's equation, or
gives pleasure to those who already do.
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Appendix on Riemannian volumes
Let B(p,r) be the ball of radius r around p. Then the precise claim is:

For any compact Riemannian manifold, the usual volume is the unique countably
additive measure such that for all sufficiently small r and all points p,
A3)n(r*-r*) < V(B(p.r)) < (4/3)n(r*-r*).

Proof of existence: By the result of Cartan, the limit as r approaches 0 of

(15/r%)(1 - V(B(p,1))/(4/3)nr’) is equal to the curvature of the manifold at p;

in particular it exists and is finite. Hence f(p,r)=[V(B(p.r)) - @/3)nr’]/ [(4/3)nr*] is a
continuous function of p and r which is 0 when r is 0. Since the manifold is compact,
there is some 6 such that for all r<9o, [f(p,r)|<1; this yields the claimed inequality.

Proof of uniqueness: Say V and V' are both volume functions satisfying the above
inequalities. Then, for any S and any €, we can cover S by countably many balls of radius
at most min(d,g) with non-overlapping interiors. The boundaries of these balls will be of
measure 0 according to both V and V'. Hence V(S) is the sum of V of the balls, and
likewise for V'. For each ball B, V(B) and V'(B) both differ from Euclidean volume by
within a factor of 1+¢, so V(B) and V'(B) differ from each other by within a factor of
(12¢)*. Hence V(S) and V'(S) differ from each other by within a factor of (1+¢)* for each
g, and so V(S)=V'(S). QED.

Appendix on the curvature of the hypersurface

This uses abstract index notation and several results from Wald. Let v be the original
timelike vector at P, and let H be the corresponding spacelike hypersurface. Let n” be a
vector field (including v) of unit normals to H, and extend it beyond H in such a way that
its integral curves are unit geodesics; this is useful in defining the extrinsic curvature K.

Wald defines K, as V, ny. At P, K,,=0 since its contraction with any bivector y* 2is 0.
Proof: n“ V, n,=0 because the integral curves of n” are geodesics; n’ Vo, np = Va(nbnb )/2
= ( because 7 is of unit length. So it suffices to consider spatial vectors y* and z°. For
any vector w” orthogonal to n“, there is a geodesic vector field including w* tangent to H,
and for any two such vector fields, their Lie bracket is also tangent to H. Hence

[y’, 2] n»=0 ; using the orthogonality of y” and z” with n,, this may be rewritten as

V2" 7, ny=0. So it suffices to consider symmetric bivectors y“ z”, which may in turn
be reduced to those of the form w* w”. For these also, w* w’ V, ny = w* V, (wbnb) =0,

where the first equality is because w* is geodesic and the second because w’n;=0. QED.

NOW hup=gu» + 14 np is the metric on H, and 4% hbe = hee.

At P, Wald 10.2.23 may be written without the terms for K as:

ORuped = ha’ hp 8 h.* hy’ Rrgrj. Contracting both sides with 4 ' we get
PR = h'* K&/ Ryq 4, which Wald 10.2.29 shows equal to 2 G, n* n.

In other words we have YR/2 = G n“ n°, as claimed in the text of the paper.
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subject. While there are many excellent expositions of general relativity, few adequately explain the
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[. INTRODUCTION But there are some big differences between special and gen-
. ) . eral relativity, which can cause immense confusion if ne-
General relativity explains gravity as the curvature of 5jocted.
space—time. It's all about geometry. The basic equation of | ghecial relativity, we cannot talk aboabsoluteveloci-
general relativity is called Einstein’s equation. In units Whereties but onlyrelative velocities. For example, we cannot
c=8nG=1, it says sensibly ask if a particle is at rest, only whether it is at rest
Gap=Tup- (1)  relative to another particle. The reason is that in this theory,
It looks simple. but what d it 5 Unfortunatelv. th velocities are described as vectors in four-dimensional
O0KS Simple, but what does It mean: Lniortunately, the, pace—time. Switching to a different inertial coordinate sys-

beautiful geometrical meaning of this equation is a bit hardg ", change which way these vectors point relative to our
to find in most treatments of relativity. There are many nice

popularizations that explain the philosophy behind reIativitycoordmate axes, but not whether two of them point the same
and the idea of curved space—time, but most of them donf@ - .
get around to explaining Einstein’s equation and showin In 9?”9“3' relativity, we cannot even talk abcmtan\(e

how to work out its consequences. There are also more tech€10Cities, except for two particles at the same point of
nical introductions which explain Einstein’s equation in SPace—time—that is, at the same place at the same instant.

detail—but here the geometry is often hidden under piles of N€ reason is that in general relativity, we take very seriously
tensor calculus. the notion that a vector is a little arrow sitting at a particular
This is a pity, because there is an easy way to express tHiNt in space—time. To compare vectors at different points
whole content of Einstein’s equation in plain English. After aof space—time, we must carry one over to the other. The
suitable prelude, one can summarize it in a single sentenc@rocess of carrying a vector along a path without turning or
One needs a lot of mathematics to derive all the consestretching it is called “parallel transport.” When space—time
quences of this sentence, but we can work saeof its  is curved, the result of parallel transport from one point to
consequences quite easily. another depends on the path taken, which is a direct conse-
In what follows, we start by outlining some differences quence of a curved space—time. Thus it is ambiguous to ask
between special and general relativity. Next we give a verbalvhether two particles have the same velocity vector unless
formulation of Einstein’s equation. Then we derive a few ofthey are at the same point of space—time.
its consequences concerning tidal forces, gravitational It is hard to imagine the curvature of four-dimensional
waves, gravitational collapse, and the big bang cosmologypace—time, but it is easy to see it on a two-dimensional
In an appendix we explain why our verbal formulation is surface, like a sphere. The sphere fits nicely in three-
equivalent to the usual one in terms of tensors. This article igimensional flat Euclidean space, so we can visualize vectors
mainly aimed at those who teach relativity, but except for arn the sphere as “tangent vectors.” If we parallel transport a
appendix, we have tried to make it accessible to students. Wengent vector from the north pole to the equator by going
conclude with a bibliography of sources to help teach theaight down a meridian, we get a different result than if we
subject. go down another meridian and then along the equator as
shown in Fig. 1.
Il. PRELIMINARIES Becau_se of the anal_ogy to vectors on the surface of a
sphere, in general relativity vectors are usually called “tan-

Before stating Einstein’s equation, we need a little prepagent vectors.” However, it is important not to take this anal-
ration. We assume the reader is somewhat familiar with speagy too seriously. Our curved space—time need not be em-
cial relativity—otherwise general relativity will be too hard. bedded in some higher-dimensional flat space—time for us to

understand its curvature, or the concept of a tangent vector.
aE|ectronic mail: baez@math.ucr.edu The mathematics of tensor calculus is designed to let us
bElectronic mail: ebunn@richmond.edu handle these concepts “intrinsically”—i.e., working solely
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The distinction is crucial. If you toss a ball, it follows a
parabolic path. This is far from being a geodesicspace
Space is curved by the Earth’s gravitational field, but it is
certainly not so curved as all that! The point is that while the
ball moves a short distance in space, it moves an enormous
distance intime, because one second equals about 300 000
km in units wherec= 1. Thus, a slight amount of space—time
curvature can have a noticeable effect.

Ill. EINSTEIN'S EQUATION

To state Einstein’s equation in simple English, we need to
consider a round ball of test particles that are all initially at
rest relative to each other. As we have seen, this is a sensible
notion only in the limit where the ball is very small. If we
start with such a ball of particles, it will, to second order in
time, become an ellipsoid as time passes. This should not be
too surprising, because any linear transformation applied to a

Fig. 1. Two ways to parallel transport a tangent vector from the north polebaII _glves an eII|p_50|d, and a”Y transformation can be aP'

to a point on the equator of a sphere. proximated by a linear one to first order. Here we get a bit
more: the relative velocity of the particles starts out being
zero, so to first order in time the ball does not change shape

within the four-dimensional space—time in which we find at all: the change is a second-order effect.
ourselves. This is one reason tensor calculus is so importan LetV(t) be the volume of the ball after a proper tibas

in general relativity. e‘apsed, as measured by the particle at the center of the ball.

In special relativity we can think of an inertial coordinate Then Einstein’s equation says:
system, or “inertial frame,” as being defined by a field of flow of t-momentum int direction+
clocks, all at rest relative to each other. In general relativityy 1| flow of x-momentum inx direction-
t_h|s makes no sense, since we can c_)nIy unambiguously d§/= =72\ flow of y-momentum iny direction+
fine the relative velocity of two clocks if they are at the same ™ 't=0 . o
location. Thus the concept of inertial frame, so important in flow of z-momentum inz direction
special relativity, ishannedfrom general relativity! 2)

If we are willing to put up with limited accuracy, we can where these flows are measured at the center of the ball at
still talk about the relative velocity of two particles in the time zero, using local inertial coordinates. These flows are
limit where they are very close, since curvature effects willcaused by all particles and fields. They form the diagonal
then be very small. In this approximate sense, we can talsomponents of a A4 matrix T called the “stress-energy
about a “local” inertial coordinate system. However, we tensor.” The components,,; of this matrix say how much
must remember that this notion makes perfect sense only ijomentum in thex direction is flowing in theg direction
the limit where the region of space—time covered by theprough a given point of space—time, whered=t,x,y,z.

coordinate system goes to zero in size. The flow oft-momentum in the-direction is just the energy

Einstein’s equation can be expressed as a statement abodJénSit often denote@. The flow of x-momentum in the
the relative acceleration of very close test particles in free Y, )

fall. Let us clarify these terms a bit. A “test particle” is an x-dlreptlpn is the “pressure in the dlre_ctlon" _denotedPX,

idealized point particle with energy and momentum so smalfnd similarly fory andz. It takes a while to figure out why

that its effects on space—time curvature are negligible. A paPressure is really the flow of momentum, but it is eminently

ticle is said to be in “free fall”’ when its motion is affected by Worth doing. Most texts explain this fact by considering the

no forces except gravity. In general relativity, a test particleexamme of an ideal gas. _ _ N _

in free fall will trace out a “geodesic.” This means that its [N any event, we may summarize Einstein's equation as

velocity vector is parallel transported along the curve jtfollows:

traces out in space—time. A geodesic is the closest thing there Vi

is to a straight line in curved space—time. —
This is easier to visualize in two-dimensional space rather \ t=0

than four-dimensional space—time. A person walking on ap,q o0 ation says that positive energy density and positive
sphere “following their nose” will trace out a geodesic—that ressure curve space—time in a way that makes a freely fall-

is, a great circle. Suppose two people stand side-by-side . : . .
the equator and start walking north, both following geode—IIHg ball of point particles tend to shrink. Sinée=mc” and

sics. Though they start out walking parallel to each other, thé/€ € workin in ufnits where=1, ordirr:ary mass density
distance between them will gradually start to shrink, untilCOUNts as a form of energy density. Thus a massive object

finally they bump into each other at the north pole. If theyWi” make a swarm of freely falling particles at rest around it

didn’t understand the curved geometry of the sphere, theyt@'t t0 shrink. In shorgravity attracts .

might think a “force” was pulling them together. We promised to state Einstein's equation in plain English,
In general relativity gravity is not really a “force,” but just PUt have not done so yet. Here it is:

a manifestation of the curvature of space—time. Note it is not Given a small ball of freely falling test particles initially at

the curvature of space, but space-time that is involved. rest with respect to each other, the rate at which it begins to

1
== S(p+ PPy +P,). &)
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shrink is proportional to its volume times: the energy den-grains as test particles, these two effects cancel each other
sity at the center of the ball, plus the pressure in the when we calculate the second derivative of the ball’s vol-

direction at that point, plus the pressure in théirection,  ume, leaving us WitMt:o:O- It is a fun exercise to check
plus the pressure in thedirection. this using Newton's theory of gravity!

~ One way to prove this is by using the Raychaudhuri equa: This stretcrlnng/fsquhasthlng O{ a bah” ,f)tf(;aln'][‘g coff“eigr?r:ns
tlonald?|scu55|ons of which can be %%und in the textbooks byr?ararl\r; Z’LZEE;SO a\avofrl\efegxpa(ran&z isltf?e ?erﬁSZn cysforethe
Wald™" and by Ciufolini and Wheelér cited in the bibliog- ' . LN .
fraphyf._ But an .ellementary pLoof g:anh alzo be dg'iven startin%fhe;”wf,% %3 f}:’ée;crgii;gozglep?:lrleg;“?r?eamngoanua?’hed in the
rom first principles, as we show in the Appendix. Vo ! '

The rezgder \l/)vho already knows somep pgeneral relativity_Cravitational waves are another example of how space-—
may be _T,omg\{vhart] .skfepticall that e'lal\lfof EiITSté'm,s equation i plrr]:ji g?sntrt:gt (\iklllf]\é?ld an\;/errl]elr;l vt;le0 t\)/jzct::lfluvwég?eesn(eiials erﬁl(?stw(;tuyt
encapsulated in this formulation. After all, Einstein’s equa-P : _ ,
tion in its usual tensorial form is really a bunch of e.quati0ns:g]f’||ci’$"’hst O_I_ﬁigaigef; trlrfr;gmcu:t/)?/?gLesV!Pa{?t?n%r?r%?égﬁri‘gtrlﬁuslg?ed
beletans gt s o) et s s (Lt 0 L0 L S L T
tion. It does, though, as long as we include one bit of ﬁnethese ripples of curvature passes by, our small ball of initially

print: to get the full content of the Einstein equation from Eq. (€St Particles will be stretched in one transverse direction
(3), we must consider small balls withll possibleinitial while being squashed in the other transverse direction. From

velocities—i.e., balls that begin at rest in all possible IocalWhat we have alread¥ said, these effects must precisely can-
inertial reference frames. cel when we comput¥|;—.

Before we begin, it is worth noting an even simp|er for- Hulse and Taylor won the Nobel prize in 1993 for careful
mulation of Einstein’s equation that applies when the presobservations of a binary neutron star which is slowly spiral-
sure happens to be the same in every direction: ing down, just as general relativity predicts it should, as it

. . N loses energy by emitting gravitational radiatidrf® Gravita-

Given a small ball of freely falling test particles initially at tional waves have not beefirectly observed. but there are a
rest with respect to each other, the rate at which it begins t y :

shrink is proportional to its volume times: the energy den- umber of projects under way 10 detect thétre’? For ex-
Prop : 9y mple, the LIGO project will bounce a laser between hang-

frlgt?oti?s center of the ball plus three times the pressure %g mirrors in an L-shaped detector, to see how one leg of the
' detector is stretched while the other is squashed. Both legs

This version is only sufficient for “isotropic” situations: that are 4 km long, and the detector is designed to be sensitive to
is, those in which all directions look the same in some localy 10" *® m change in length of the arms.

inertial reference frame. But, since the simplest models of
cosmology treat the universe as isotropic—at least approxi-
mately, on large enough distance scales—this is all we shall
need to derive an equation describing the big bang! B. Gravitational collapse

IV. SOME CONSEQUENCES One remarkable feature of this equation is the pressure
term, which says that not only energy density but also pres-
The formulation of Einstein's equation we have given issure causes gravitational attraction. This may seem to violate
certainly not the best for most applications of general relaour intuition that pressure makes matter want to expand!
tivity. For example, in 1915 Einstein used general relativityHere, however, we are talking abagravitational effects of
to correctly compute the anomalous precession of the orbit gbressure, which are undetectably small in everyday circum-
Mercury and also the deflection of starlight by the Sun’sstances. To see this, let’s restore the factors afidG. Also,
gravitational field. Both these calculations would be verylet's remember that in ordinary circumstances most of the
hard starting from Eq(3); they really call for the full appa- energy is in the form of rest energy, so we can write the

ratus of_tensor _caICL_JIus. However, we can ea_lsily use OUgnergy densityp as p,,c2, wherep,, is the ordinary mass
formulation of Einstein’s equation to get a qualitative—anddensity:

sometimes even guantitative—understandingamheconse-

quences of general relativity. We have already seen that it V 47G 5

explains how gravity attracts. We sketch a few other conse- ;| =~ —ga (PnC +Px+Py+Py). (4)
qguences below. t=0

A. Tidal forces, gravitational waves On the human scale all of the terms on the right are small,

) ~ sinceG is very small anct is very big. (Gravity is a weak

Let V(t) be the volume of a small ball of test particles in forcel) Furthermore, the pressure terms are much smaller
free fall that are initially at rest relative to each other. In thetnan the mass density term, since the former has an ektra
vacuum there is no energy density or pressureV&a, There are a number of important situations in whijgh
=0, but the curvature of space—time can still distort the balldoes not dominate ove?. For example, in a neutron star,
For example, suppose you drop a small ball of instant coffeevhich is held up by the degeneracy pressure of the neutro-
when making coffee in the morning. The grains of coffeenium it consists of, pressure and energy density contribute
closer to the earth accelerate toward it a bit more, causing theomparably to the right-hand side of Einstein’s equation.
ball to start stretching in the vertical direction. However, asMoreover, above a mass of about two solar masses a nonro-
the grains all accelerate toward the center of the earth, theting neutron star will inevitably collapse to form a black
ball also starts being squashed in the two horizontal direchole, thanks in part to the gravitational attraction caused by
tions. Einstein’s equation says that if we treat the coffeepressure.
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C. The big bang 3R 1
=| =—5(p+3P). ©)

Starting from our formulation of Einstein’s equation, we R,

can derive some basic facts about the big bang cosmology. . _ . :
Let us assume the universe is not only expanding but alsp e derived this equation for a very small ball, but in fact
homogeneous and isotropic. The expansion of the universe |5 aPPlies to a ball of any size. This is because, in a homo-
vouched for by the redshifts of distant galaxies. The othef/€nN€OUS expanding universe, the balls of all radii must be
assumptions also seem to be approximately correct, at leagkpanding at the same fractional rate. In other woRIR is
when we average over small-scale inhomogeneities such asdependent of the radiuR, although it can depend on time.
stars and galaxies. For simplicity, we will imagine the uni- Also, there is nothing special in this equation about the mo-
verse is homogeneous and isotropic even on small scales.mentt=0, so the equation must apply at all times. In sum-

An observer at any point in such a universe would see alinary, therefore, the basic equation describing the big bang
objects receding from her. Suppose that, at some tim@, ~ cosmology®*'is
she identifies a small baB of test particles centered on her. ..
Suppose this ball expands with the universe, remaining E: _ 1( +3p

; > : o . p ), (10

spherical as time passes because the universe is isotropic. Let R 2
R(t) stand for the radius of this ball as a function of time.
The Einstein equation will give us an equation of motion for
R(t). In other words, it will say how the expansion rate of
the universe changes with time.

where the density and pressur® can depend on time but

not on position. Here we can imagifeto be the separation

between any two “galaxies.”

X . To go further, we must make more assumptions about the
Iit IS temptr']f.‘g to apply Eq(:ﬁ) to the ballllB]; but yvle m‘rj]St nature of the matter filling the universe. One simple model is

take care. This equation applies to a ball of particles that arg njverse filled with pressureless matter. Until recently, this

initially at rest relative to one another—that is, one whosg 55 thought to be an accurate model of our universe. Setting
radius is not changing at=0. However, the balB is ex-  p_g \we obtain

panding at=0. Thus, to apply our formulation of Einstein’s .
equation, we must introduce a second small ball of test par- 3R p
ticles that are at rest relative to each othet=a0. R 2 (12)

Let us call this second baB’, and call its radius as a
function of timer (t). Since the particles in this ball begin at

rest relative to one another, we have
r(0)=0. (5)

If the energy density of the universe is mainly due to the
mass in galaxies, “conservation of galaxies” implies that
pR3=k for some constark. This gives

3R k

To keep things simple, let us also assume that=ad both R- R (12
balls have the exact same size:

r(0)=R(0). 6

Equation(3) applies to the balB’, since the particles in R=— LZ (13)

this ball are initially at rest relative to each other. Since the 6R
volume of this ball is proportional to®, and using Eq(5),  Amusingly, this is the same as the equation of motion for a
the left-hand side of E¢(3) becomes simply particle in an attractive R? force field. In other words, the

Vi equation governing this simplified cosmology is the same as

3

7) the Newtonian equation for what happens when you throw a
r
t=0

t=0 ball vertically upwards from the earth! This is a nice example
v9f the unity of physics. Since “whatever goes up must come
down—unless it exceeds escape velocity,” the solutions of
this equation look roughly like those shown in Fig. 2.

In other words, the universe started out with a big bang! It

\Y

Since we are assuming the universe is isotropic, we kno
that the various components of pressure are edqigk P,
=P,=P. Einstein’s equation, Eq3), thus says that

3 1 will expand forever if its current rate of expansion is suffi-
s =— E(p+3P). 8 ciently high compared to its current density, but it will recol-
t=0 lapse in a “big crunch” otherwise.

We would much prefer to rewrite this expression in terms of
R rather tharr. Fortunately, we can do this. A& 0, the two
spheres have the same radiv®)=R(0). Furthermore, the
second derivatives are the sani¢0)=R(0). This follows The simplified big bang model ju_st described is inaccurate
from the equivalence principle, which says that, at any giver{O" the very early history of the universe, when the pressure
location, particles in free fall do not accelerate with respecf! radiation was important. Moreover, recent observations

to each other. At the moment=0, each test particle on the seem to indicate that it is seriously inaccurate even in the
surface of the balB is right next to a corresponding test present epoch. First of all, it seems that much of the energy

C . . . density is not accounted for by known forms of matter. Still
particle inB’. Since they are not accelerating with respect to y y

o . ~“more shocking, it seems that the expansion of the universe
each other, the observer at the origin must see both parucle;ﬁay be accelerating rather than slowing down! One possibil-

accelerating in the same way, 8(0)=R(0). It follows that ity is that the energy density and pressure are nonzero even
we can replace with R in the above equation, obtaining  for the vacuum. For the vacuum to not pick out a preferred

D. The cosmological constant
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open can remain at rest with respect to each other—only if the
right-hand side of Eq(15) is zero. In such a universe, the
cosmological constant and the density must be carefully
“tuned” so that p=2A. It is tempting to conclude that
space—time in this model is just the good old flat Minkowski
space—time of special relativity. In other words, one might
guess that there are no gravitational effects at all. After all,
the right-hand side of Einstein’s equation was tuned to be
zero. This would be a mistake, however. It is instructive to
see why.
P Remember that Eq3) contains all the information in Ein-

stein’s equation only if we consider all possible small balls.
Fig. 2. '!'he size of the universe asafun_ction of time inthreg _scenarios: opeth all of the cosmological applications so far, we have ap-
_(where it expands forev_}arclosed(where it recollapsesand critical(where plied the equation only to balls whose centers were at rest
it expands forever, but just barely .

with respect to the local matter. It turns out that only for such
balls is the right-hand side of E¢3) zero in the Einstein

: ; static universe.
notion of “rest,” its stress-energy tensor must be propor- . . . -
tional to the metric. In local inertial coordinates this means, Igsﬁzlgg\sléi%n;’fg gtﬁg;altlhg?l:SOfmtg\S/itnpa&t/'ifrl]erséSm'é'g"%’o
that the stress-energy tensor of the vacuum must be : . ’ 9 P
the matter in the universe. In the local rest frame of such a

critical

closed

A O 0 0 ball, the right-hand side of Eq3) is nonzero. For one thing,

0 —-A 0 0 the pressure d.ue to the matter no longer vanishes. Remember
T= ’ (14)  that pressure is the flux of momentum. In the frame of our

0 0 —-A O moving sphere, matter is flowing by. Also, the energy density

0 0 0 —A goes up, both because the matter has kinetic energy in this

) . _ frame and because of Lorentz contraction. The end result, as
where A is called the “cosmological constant.” This the reader can verify, is that the right-hand side of @jis
amounts to giving empty space an energy density equal to negative for such a moving sphere. In short, although a sta-
and pressure equal to A, so thatp+ 3P for the vacuum is  tionary ball of test particles remains unchanged in the Ein-
—2A. Here pressure effects dominate because there aggein static universe, our moving ball shrinks!
more dimensions of space than of time! If we add this cos- This has a nice geometric interpretation: the geometry in

mological constant term to Eq10), we get this model has spatial curvature. As we noted in Sec. Il, on a
3R 1 positively curved surface such as a sphere, initially parallel
S Z(p+3P—2A) (15) lines converge toward one another. The same thing happens

R 2 ' in the three-dimensional space of the Einstein static universe.

n fact, the geometry of space in this model is that of a
hree-sphere. Figure 3 illustrates what happens.

One dimension is suppressed in this figure, so the two-
3R Kk dimensional spherical surface shown represents the three-
R- 2R +A. (16) dimensional universe. The small shaded circle on the surface

represents our tiny ball of test particles, which starts at the
Thus, once the universe expands sulfficiently, the cosmologiequator and moves north. The sides of the sphere approach
cal constant becomes more important than the energy densigach other along the dashed geodesics, so the sphere shrinks
of matter in determining the fate of the universeAI&>0, a  in the transverse direction, although its diameter in the direc-
roughly exponential expansion will then ensue. This seem§on of motion does not change.
to be happening in our universe ndw. As an exercise, readers who want to test their understand-
ing can fill in the mathematical details in this picture and
determine the radius of the Einstein static universe in terms
of the density. Here are step-by-step instructions:

We have emphasized that gravity is due not just to the
curvature of space, but apace-time In our verbal formu-
lation of Einstein’s equation, this shows up in the fact that
we consider particles moving forwards in time and study
h(.)W the’lr paths_ deviate n the_ space _dlrectlons. However, ing fairly slowly, and thus keep only the lowest-order non-
Einstein’s equation also gives information about the curva-

. o2 X ; vanishing term in a power series in
ture of space. To illustrate this, it is easiest to consider not an Apply Eq. (3) to a sphere in this frame, including the con-
expanding universe but a static one. ppYy =4. b ! g

When Einstein first tried to use general relativity to con- tribution due to the cosmological constamthich is the

struct a model of the entire universe, he assumed that the 53M¢ N all reference frampesyou ?hOUId f'ng that the
universe must be static—although he is said to have later volume of the sphere decreases Wt —pv® to lead-
described this as “his greatest blunder.” As we did in the ing order inv.

previous section, Einstein considered a universe containing Suppose that space in this universe has the geometry of a
ordinary matter with density, no pressure, and a cosmologi- large three-sphere of radil, . Show that the radii in the

cal constantA. Such a universe can be static—the galaxies directions transverse to the motion start to shrink at a rate

wherep and P are the energy density and pressure due t4
matter. If we treat matter as we did before, this gives

E. Spatial curvature

Imagine an observer moving at spaethrough a cloud of
stationary particles of density. Use special relativity to
determine the energy density and pressure in the observer’s
rest frame. Assume for simplicity that the observer is mov-
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" "2

P' eu
Fig. 4. Parallel transporting a vectar from one corner of a parallelogram
to the opposite corner in two ways: up and then across, giwingor across
and then up, givingv, .

Fig. 3. The motion of a ball of test particles in a spherical universe. Wo—W
. 2 1
lim———=R(u,v)w (A1)
e—0 €

is well-defined, and it measures the curvature of space—time

iven by R/R)|,—o=—0v?R%. (If, like most people, you
d Y R/R)i-o v/Ry - ( beop'e. ¥ & the pointp. In local coordinates we can write it as

are better at visualizing two-spheres than three-spheres,

this step by considering a small circle moving on a two- R(u,v)W=R,’gy§u3u "wo, (A2)
sphere, as shown above, rather than a small sphere movmgn o )
on a three-sphere. The result is the same. where as usual we sum over repeated indices. The quantity

« Since our little sphere is shrinking in two dimensions, itsRj,s is called the “Riemann curvature tensor.” _
volume changes at a raté/V=2R/R. Use Einstein’s We can use this tensor to compute the relative acceleration
of nearby particles in free fall if they are initially at rest
relative to one another. Consider two freely falling particles
at nearby pointp andg. Letv be the velocity of the particle
The final answer iR, = 2/p, as you can find in standard &t P, and leteu be the vector fronp to g. Since the two
textbooks. particles start out at rest relative to one other, the velocity of
Spatial curvature like this shows up in the expanding costhe particle ag is obtained by parallel transportingalong
mological models described earlier in this section as well. In€U-
principle, the curvature radius can be found from our formu- Now let us wait a short while. Both particles trace out
lation of Einstein’s equation by similar reasoning in thesegeodesics as time passes, and at tinteey will be at new
expanding models. However, such a calculation is extremelypoints, sayp’ andq’. The pointp’ is displaced fronp by
messy. Here the apparatus of tensor calculus comes to oan amountuv, so we get a little parallelogram, exactly as in
rescuet®t’ the definition of the Riemann curvature as shown in Fig. 5.
Next let us compute the new relative velocity of the two
particles. To compare vectors we must carry one to another
ACKNOWLEDGMENT using parallel transport. Let; be the vector we get by taking

. . _ . the velocity vector of the particle at and parallel transport-
E.F.B. is supported by National Science Foundation Granltng it to q” along the top edge of our parallelogram. let

No. 0233969. be the velocity of the particle &' . The difference,— v is

the new relative velocity. Figure 6 shows a picture of the
APPENDIX A: THE MATHEMATICAL DETAILS whole situation. The vectar is depicted as shorter thaw

for purely artistic reasons.

To see why Eq(3) is equivalent to the usual formulation It follows that over this passage of time, the average rela-
of Einstein’s equation, we need a bit of tensor calculus. Irtive acceleration of the two particles &= (v,—v;)/e. By
particular, we need to understand the Riemann curvature tetzq. (Al),
sor and the geodesic deviation equation. For a detailed ex- _
planation of these, the reader must turn to some of the texts |im V2 201 =R(u,v)v (A3)
in the bibliography®1"-?1=2*Here we briefly sketch the main 0 € S
ideas.

When space—time is curved, the result of parallel transport
depends on the path taken. To quantify this notion, pick two

» —
vectorsu andv at a pointp in space—time. In the limit
where e—0, we can approximately speak of a “parallelo- o
gram” with sideseu andev. Take another vectar atp and
P =4 q

equation to relate the radiug, of the universe to the
densityp.

parallel transport it first alongv and then along:u to the
opposite corner of this parallelogram. The result is some vec-
tor wy . Alternatively, parallel transpow first alongeu and

then al(.)nge.v. The resglt_is a slightly different vecton, as  Fig. 5. Freely falling particles g1 andq trace out geodesics taking them to
shown in Fig. 4. The limit p’ andq’.
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g V " RB5: Rzaﬁ' (AY)

"' v That is,
£V . V
v V—0 t=0
=4 g in local inertial coordinates where the ball starts out at rest.
tu In short, the Ricci tensor says how our ball of freely fall-
Fig. 6. Parallel transporting the velocity vector of the particlgato the ing test particles starts chan_glng n \_/O|u_me' The_ Ricci tensor
pointq’ gives the vecton, . The velocity vector of the particle at isv,. only captures some of the information in the Riemann cur-

vature tensor. The rest is captured by something called the
“Weyl tensor,” which says how any such ball starts changing

so in shape. The Weyl tensor describes tidal forces, gravitational
waves and the like.

a . . . I
lim—=R(u,0)v. (Ad) Now, Einstein’s equation in its usual form says

e~>06 GHB:TCYB' (Ag)

This is called the “geodesic deviation equation.” From the Here the right side is the stress-energy tensor, while the left

definition of the Riemann curvature it is easy to see thakjde, the “Einstein tensor,” is just an abbreviation for a quan-
R(u,v)w=—R(v,u)w, so we can also write this equation as tity constructed from the Ricci tensor:

“« — 1
lim—=—R%_wPu”v’. (A5) Gup=Rap— 2945R] - (A10)

e—0

Thus Einstein’s equation really says

Using this equation we can work out the second time de- N )
rivative of the volumeV(t) of a small ball of test particles Rap™ 2948Ry=Tagp- (A11)
that start out at rest relative to each other. As we mentioneghjs implies
earlier, to second order in time the ball changes to an ellip-
soid. Furthermore, since the ball starts out at rest, the prin-  R;— 3g3R)=Ty, (A12)
cipal axes of this ellipsoid don't rotate initially. We can
therefore adopt local inertial coordinates in which, to second®Ut 3,=4, S0
order int, the center of the ball is at rest and the three = _ gpa_ o (A13)
principal axes of the ellipsoid are aligned with the three spa- « oo
tial coordinates. Let!(t) represent the radius of th¢h axis  Plugging this into Eq(A1l), we get
of the ellipsoid as a function of time. If the ball's initial
radius iSE,pthen Rap=Tap— %gaﬁTz- (Al14)
This is an equivalent version of Einstein’s equation, but with

i(t)= et L1qit2 3
FH)=et a7+ 0(), the roles ofR and T switched! The good thing about this

or in other words, version is that it gives a formula for the Ricci tensor, which
i al has a simple geometrical meaning.
lim— = lim—. Equation(A14) will be true if any one component holds in
t—ol" t-0€ all local inertial coordinate systems. This is a bit like the

o ) ) observation that all of Maxwell's equations are contained in
Here the acceleratioa is given by Eq(AS), withubeinga  4,55's Jaw and - B=0. Of course, this is only true if we

vector of lengthe in the jth coordinate direction anal being  know how the fields transform under change of coordinates.
the velocity of the ball, which is a unit vector in the time Here we assume that the transformation laws are known.

direction. In other words, Given this, Einstein’s equation is equivalent to the fact that
(1) . _
"mﬁ((T): —R'ngvﬂv‘s= — Rl Ri=Tu— 29uT) (A15)
t—0

in every local inertial coordinate system about every point.
No sum overj is implied in the above expression. In such coordinates we have
Because the volume of our ball is proportional to the prod-

- o -1 0 0 O
uct of the radii,V/V—Z2;tl/rl ast—0, o 1 0 0
\Y 9= (A16)
ims|  =—-Ri:, (AB) 0 0 1 0
v—0"Y l{=0 0O 0 0 1
where now a sum oved is implied. The sum over can 0gy=—1 and
range over all four coordinates, not just the three spatia? t

ones, since the symmetries of the Riemann tensor demand T7=—T+ T+ Ty +T,,. (Al17)

thatR!,,=0. .
The right-hand side is minus the time-time component Oquuatlon(A15) thus says that
the “Ricci tensor” Rit= 7 (Tee+ Tyt Tyy+ T30 (A18)
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By Eq. (A8), this is equivalent to

\%
lim—= (A19)

1
= — = (Tt Tt Tyy+ T2o).
VHOV o 2 XX yy z

As promised, this is the simple, tensor-calculus-free formu- ,

lation of Einstein’s equation.

APPENDIX B: REFERENCES

We provide an annotated bibliography of material on rela-

tivity that we have found particularly helpful for students.

1. WEBSITES

11. Introducing Einstein’s Relativity, R. A. D’Inverno (Oxford U. P., Ox-
ford, 1992.

12. Gravity: An Introduction to Einstein’s General Relativity , J. B.
Hartle (Addison-Wesley, New York, 2002

13. Introduction to General Relativity, L. Hughston and K. P. To@Cam-

bridge U. P., Cambridge, 1991

A First Course in General Relativity, B. F. SchutzZCambridge U. P.,

Cambridge, 1986

15. General Relativity: An Introduction to the Theory of the Gravita-
tional Field, H. StephaniCambridge U. P., Cambridge, 1990

5. MORE COMPREHENSIVE TEXTS

To become an expert on general relativity, one really must
tackle these classic texts:

There is a lot of material on general r6|at|V|ty available 16. Gravitation, C. W. Misner, K. S. Thorne, and J. A. Wheel&reeman,

online. Most of it can be found starting from here:

1. Relativity on the World Wide Web, C. Hillman, http://math.ucr.edu/
home/baez/relativity.html

The beginner will especially enjoy the many gorgeous
websites aimed at helping one visualize relativity. There;g

are also books available for free online, such as this:
2. Lecture Notes on General Relativity S. M. Carroll, http://

pancake.uchicago.edutarroll/notes/

The free online journaliving Reviews in Relativitis an

New York, 1973.
17. General Relativity, R. M. Wald (University of Chicago Press, Chicago,
1984).
Along with these textbooks, you'll want to do lots of
problems! This book is a useful supplement:
Problem Book in Relativity and Gravitation, A. Lightman and R. H.
Price (Princeton U. P., Princeton, 1975

6. EXPERIMENTAL TESTS

excellent way to learn more about many aspects of rela-

tivity. One can access it at:
3. Living Reviews in Relativity, http://www.livingreviews.org

Part of learning relativity is working one’s way through
certain classic confusions. The most common are dea

with in the “Relativity and Cosmology” section of this
site:

4. Frequently Asked Questions in Physicsedited by D. Koks, http://
math.ucr.edu/home/baez/physics/

2. NONTECHNICAL BOOKS

Before diving into the details of general relativity, it is
good to get oriented by reading some less technical book

The experimental support for general relativity up to the
early 1990s is summarized in:

gg, Theory and Experiment in Gravitational Physics Revised ed., C. M.
Will (Cambridge U. P., Cambridge, 1993
A more up-to-date treatment of the subject can be found
n:

20. “The Confrontation between General Relativity and Experiment,” C.
M. Will, Living Reviews in Relativity 4 (2001. Available online at
http://www.livingreviews.org/Irr-2001-4

J. DIFFERENTIAL GEOMETRY

Here are four excellent ones written by leading experts on e serious student of general relativity will experience a

the subject:

5. General Relativity from A to B, R. Geroch(University of Chicago
Press, Chicago, 1981

6. Black Holes and Time Warps: Einstein’s Outrageous LegacyK. S.
Thorne(Norton, New York, 1995

7. Gravity from the Ground Up: An Introductory Guide to Gravity
and General Relativity, B. F. Schutz(Cambridge U. P., Cambridge,
2003.

8. Space, Time, and Gravity: the Theory of the Big Bang and Black
Holes R. M. Wald (University of Chicago Press, Chicago, 1992

3. SPECIAL RELATIVITY

Before delving into general relativity in a more technical

constant need to learn more tensor calculus—or in modern
terminology, “differential geometry.” Some of this can be
found in the texts listed above, but it is also good to read
mathematics texts. Here are a few:

21. Gauge Fields, Knots and Gravity J. C. Baez and J. P. Munia{iVorld
Scientific, Singapore, 1994

22. An Introduction to Differentiable Manifolds and Riemannian Ge-
ometry, W. M. Boothby(Academic, New York, 1986

23. Semi-Riemannian Geometry with Applications to Relativity B.
O’Neill (Academic, New York, 1983

8. SPECIFIC TOPICS

way, one must get up to speed on special relativity. Here are The references above are about general relativity as a

two excellent texts for this:

9. Introduction to Special Relativity, W. Rindler (Oxford U. P., Oxford,
1991).
10. Spacetime Physics: Introduction to Special Relativity, E. F. Taylor
and J. A. WheelefFreeman, New York, 1992

4. INTRODUCTORY TEXTS

When one is ready to tackle the details of general relativ-
ity, it is probably good to start with one of these textbooks:
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whole. Here are some suggested starting points for some of
the particular topics touched on in this article.

a. The meaning of Einstein’s equation
Feynman gives a quite different approach to this in:

24. The Feynman Lectures on Gravitation R. P. Feynmaret al. (West-

view, Boulder, CO, 2002

His approach focuses on the curvature of space rather
than the curvature of space—time.
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. . 33. “Evidence for Black Holes,” M. C. Begelman, Scien®00, 1898—
b. The Raychaudhuri equation 1903(2003.

This equation, which is closely related to our formulation ~ A less technical discussion of the particular case of the
of Einstein’s equation, is treated in some standard textbooks, Supermassive black hole at the center of our Milky Way

including the one by Wald mentioned above. A detailed dis- G@laxy can be found here: o
cussion can be found in 34. The Black Hole at the Center of Our Galaxy F. Melia (Princeton U.

P., Princeton, 2003

25. Gravitation and Inertia, I. Ciufolini and J. A. Wheele(Princeton U.
P., Princeton, 1995

e. Cosmology

c. Gravitational waves There are lots of good popular books on cosmology. Since

Here are two nontechnical descriptions of the binary pulthe subject is changing rapidly, pick one that is up to date. At
sar work for which Hulse and Taylor won the Nobel prize: the time of this writing, we recommend:

27. “The Binary Pulsar: Gravity Waves Exist,” C. M. Will, Mercury,

Nov-Dec 1987, pp. 162174 35. Zhe :Extr?vaggnt Unlvel;se;DE?Io?]mg Sljtgrs, ItDarkLIlEnel;rgyl,Da}nd tthe
28. “Gravitational Waves from an Orbiting Pulsar,” J. M. Weisberg, J. ch)ggeralng osmos R. P. Kirshner(Princeton U. P., Princeton,

H. Taylor, and L. A. Fowler, Sci. Am., Oct 1981, pp. 74-82.
Here is a review article on the ongoing efforts to directly detect
gravitational waves:

A good online source of cosmological information is:
36. Ned Wright's Cosmology Tutorial, http://www.astro.ucla.edu/

29. “Detection of Gravitational Waves,” J. Lu, D. G. Blair, and C. Zhao, ~wright/cosmolog.htm o
Rep. Prog. Phys63, 131714272000, The following cosmology textbooks are arranged in in-
Some present and future experiments to detect gravita- Creasing order of technical difficulty: .
tional radiation are described here: 37. Cosmology: The Science of the Univers@nd ed., E. HarrisoCam-

bridge U. P., Cambridge, 2000
38. Cosmology: a First CourseM. Lachieze-Rey(Cambridge U. P., Cam-
bridge, 1995.
39. Principles of Physical CosmologyP. J. E. Peeble&Princeton U. P,,
Princeton, 1998
d. Black holes 40. The Early Universe E. W. Kolb and M. S. TurnefAddison—Wesley,
. . o New York, 1990.
Astrophysical evidence that black holes exist is summazi. The Large-Scale Structure of Spacetime, S. W. Hawking and G. F.
rized in: R. Ellis (Cambridge U. P., Cambridge, 1975

30. LIGO Laboratory Home Page, http://www.ligo.caltech.edu/
31. The Virgo Project, http://www.virgo.infn.it/
32. Laser Interferometer Space Antennahttp://lisa.jpl.nasa.gov/
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