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God used beautiful mathematics in creating the world.

This result is too beautiful to be false; it is more important to 
have beauty in one's equations than to have them fit experiment.

This balancing on the dizzying path between 
genius and madness is awful.  --Einstein

It is fun and productive to study Dirac's papers. 
They are like poems.  --Y. S. Kim

Dirac on poetry
Oppenheimer was working at Göttingen and the great mathematical physicist, Dirac, 
came to him one day and said: "Oppenheimer, they tell me you are writing poetry. I 
do not see how a man can work on the frontiers of physics and write a poetry at the 
same time. They are in opposition. In science you want to say something that 
nobody knew before, in words which everyone can understand. In poetry you are 
bound to say...something that everybody knows already in words that nobody can 
understand.
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Mathematics, rightly viewed, possesses not 
only truth, but supreme beauty---a beauty 
cold and austere, like that of sculpture.

~Bertrand Russell

Many people would sooner die than think; 
in fact, they do so.







22 Special relativity and extra dimensions!
between timelike-separated events define a timelike vector. Similarly, the coordinate dif-
ferences between spacelike-separated events define a spacelike vector, and the coordinate
differences between lightlike-separated events define a null vector.

Quick calculation 2.1 Verify that the invariant ds2 is indeed preserved under the Lorentz
transformations (2.36).

Quick calculation 2.2 Consider two Lorentz vectors aµ and bµ. Write the Lorentz trans-
formations aµ → a′µ and bµ → b′µ analogous to (2.36). Verify that aµbµ is invariant
under these transformations.

2.3 Light-cone coordinates

We now discuss a coordinate system that will be extremely useful in our study of string
theory, the light-cone coordinate system. The quantization of the relativistic string can
be worked out most directly using light-cone coordinates. There is a different approach
to the quantization of the relativistic string, in which no special coordinates are used. This
approach, called Lorentz covariant quantization, is discussed briefly in Chapter 24. Lorentz
quantization is very elegant, but a full discussion requires a great deal of background
material. We will use light-cone coordinates to quantize strings in this book.

We define the two light-cone coordinates x+ and x− as two independent linear combi-
nations of the time coordinate and a chosen spatial coordinate, conventionally taken to be
x1. This is done by writing

x+ ≡ 1√
2

(x0 + x1),

x− ≡ 1√
2

(x0 − x1). (2.50)

The coordinates x2 and x3 play no role in this definition. In the light-cone coordinate
system, (x0, x1) is traded for (x+, x−), but the other two coordinates x2, x3 are kept. Thus,
the complete set of light-cone coordinates is (x+, x−, x2, x3).

The new coordinates x+ and x− are called light-cone coordinates because the associated
coordinate axes are the world-lines of beams of light emitted from the origin along the x1

axis. For a beam of light moving in the positive x1 direction, we have x1 = ct = x0, and
thus x− = 0. The line x− = 0 is, by definition, the x+ axis (Figure 2.2). For a beam of light
moving in the negative x1 direction, we have x1 = −ct = −x0, and thus x+ = 0. This
corresponds to the x− axis. The x± axes are lines at 45◦ with respect to the x0, x1 axes.

Can we think of x+, or perhaps x−, as a new time coordinate? Yes. In fact, both have
equal right to be called a time coordinate, although neither one is a time coordinate in
the standard sense of the word. Light-cone time is not quite the same as ordinary time.
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45°45°!Fig. 2.2 A spacetime diagram with x1 and x0 represented as orthogonal axes. Shown are the
light-cone axes x± = 0. The curves with arrows are possible world-lines of physical particles.

Perhaps the most familiar property of time is that it goes forward for any physical motion
of a particle. Physical motion starting at the origin is represented in Figure 2.2 as curves that
remain within the light-cone and whose slopes never go below 45◦. For all these curves,
both x+ and x− increase as we follow the arrows. The only subtlety is that, for special
light rays, light-cone time will freeze! As we saw above, x+ remains constant for a light
ray in the negative x1 direction, while x− remains constant for a light ray in the positive
x1 direction.

For definiteness, we will take x+ to be the light-cone time coordinate. Accordingly,
we will think of x− as a spatial coordinate. Of course, these light-cone time and space
coordinates will be somewhat strange.

Taking differentials of (2.50), we readily find that

2 dx+dx− = (dx0 + dx1) (dx0 − dx1) = (dx0)2 − (dx1)2 . (2.51)

It follows that the invariant interval (2.13), expressed in terms of the light-cone coordinates
(2.50), takes the form

−ds2 = −2 dx+dx− + (dx2)2 + (dx3)2 . (2.52)

The symmetry in the definitions of x+ and x− is evident here. Notice that, if we are given
ds2, solving for dx− or for dx+ does not require us to take a square root. This is a very
important feature of light-cone coordinates, as we will see in Chapter 9.

How do we represent (2.52) with index notation? We still need indices that run over four
values, but this time the values will be called

+ ,− , 2 , 3. (2.53)
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Just as we did in (2.21), we write

− ds2 = η̂µνdxµdxν . (2.54)

Here we have introduced a light-cone metric η̂ which, like the Minkowski metric, is also
defined to be symmetric under the exchange of its indices. Expanding this equation, and
comparing with (2.52), we find

η̂+− = η̂−+ = −1 , η̂++ = η̂−− = 0 . (2.55)

In the (+,−) subspace, the diagonal elements of the light-cone metric vanish, but the off-
diagonal elements do not. We also find that η̂ does not couple the (+,−) subspace to the
(2, 3) subspace:

η̂+I = η̂−I = 0 , I = 2, 3 . (2.56)

The matrix representation of the light-cone metric is

η̂µν =





0 −1 0 0
−1 0 0 0

0 0 1 0
0 0 0 1



 . (2.57)

The light-cone components of any Lorentz vector aµ are defined in analogy with (2.50):

a+ ≡ 1√
2

(a0 + a1) ,

a− ≡ 1√
2

(a0 − a1) . (2.58)

The scalar product between vectors, shown in (2.29), can be written using light-cone
components. This time we have

a · b = −a−b+ − a+b− + a2b2 + a3b3 = η̂µν aµbν . (2.59)

The last equality follows immediately from summing over the repeated indices and using
(2.57). The first equality needs a small computation. In fact, it suffices to check that

− a−b+ − a+b− = −a0b0 + a1b1. (2.60)

This is quickly done using (2.3) and the analogous equations for b±. We can also introduce
lower light-cone indices. Consider the expression a · b = aµbµ, and expand the sum over
the index µ using the light-cone labels:

a · b = a+b+ + a−b− + a2b2 + a3b3. (2.61)

Comparing with (2.59), we find that

a+ = −a−, a− = −a+. (2.62)
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When we lower or raise the zeroth index in a Lorentz frame, we get an extra sign. In light-
cone coordinates, the indices of the first two coordinates switch and we get an extra sign.

Since physics described using light-cone coordinates looks unusual, we must develop an
intuition for it. To do this, we will look at an example where the calculations are simple
but the results are surprising.

Consider a particle moving along the x1 axis with speed parameter β = v/c. At time
t = 0, the positions x1, x2, and x3 are all zero. Motion is nicely represented when the
positions are expressed in terms of time:

x1(t) = vt = βx0, x2(t) = x3(t) = 0. (2.63)

How does this look in light-cone coordinates? Since x+ is time and x2 = x3 = 0, we must
simply express x− in terms of x+. Using (2.63), we find

x+ = x0 + x1
√

2
= 1 + β√

2
x0. (2.64)

As a result,

x− = x0 − x1
√

2
= (1 − β)√

2
x0 = 1 − β

1 + β
x+ . (2.65)

Since it relates light-cone position to light-cone time, we identify the ratio

dx−

dx+ = 1 − β

1 + β
(2.66)

as the light-cone velocity. How strange is this light-cone velocity? For light moving to the
right (β = 1) it equals zero. Indeed, light moving to the right has zero light-cone veloc-
ity because x− does not change at all. This is shown as line 1 in Figure 2.3. Suppose
you have a particle moving to the right with high conventional velocity, so that β ' 1
(line 2 in the figure). Its light-cone velocity is then very small. A long light-cone time
must pass for this particle to move a little in the x− direction. Perhaps more interestingly,
a static particle in standard coordinates (line 3) is moving quite fast in light-cone coordi-
nates. When β = 0 the particle has unit light-cone speed. This light-cone speed increases
as β grows negative: the numerator in (2.66) is larger than one and increasing, while the
denominator is smaller than one and decreasing. For β = −1 (line 5), the light-cone veloc-
ity is infinite! While this seems odd, there is no clash with relativity. Light-cone velocities
are just unusual. The light-cone is a frame in which kinematics has a nonrelativistic fla-
vor and infinite velocities are possible. Note that light-cone coordinates were introduced
as a change of coordinates, not as a Lorentz transformation. There is no Lorentz trans-
formation that takes the coordinates (x0, x1, x2, x3) into coordinates (x ′0, x ′1, x ′2, x ′3) =
(x+, x−, x2, x3).

Quick calculation 2.3 Convince yourself that the last statement above is correct.
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2.4 Relativistic energy and momentum

In special relativity there is a basic relationship between the rest mass m of a point particle,
its relativistic energy E , and its relativistic momentum (p. This relationship is given by

E2

c2 −(p · (p = m2c2. (2.67)

The relativistic energy and momentum are given in terms of the rest mass and velocity by
the following familiar relations:

E = γ mc2 , (p = γ m(v. (2.68)

Quick calculation 2.4 Verify that the above E and (p satisfy (2.67).

Energy and momentum can be used to define a momentum four-vector, as we will prove
shortly. This four-vector is

pµ = (p0, p1, p2, p3) ≡
( E

c
, px , py, pz

)
. (2.69)

Using the last two equations, we have

pµ =
( E

c
, (p

)
= mγ (c, (v). (2.70)

We use (2.28) to lower the index in pµ:

pµ = (p0, p1, p2, p3) = ηµν pν =
(
− E

c
, px , py, pz

)
. (2.71)

The above expressions for pµ and pµ give

pµ pµ = −(p0)2 + (p · (p = − E2

c2 + (p · (p , (2.72)
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and, making use of (2.67), we have

pµ pµ = −m2c2. (2.73)

Since pµ pµ has no free index it must be a Lorentz scalar. Indeed, all Lorentz observers
agree on the value of the rest mass of a particle. Using the relativistic scalar product
notation, condition (2.73) reads

p2 ≡ p · p = −m2c2. (2.74)

A central concept in special relativity is that of proper time. Proper time is a Lorentz
invariant measure of time. Consider a moving particle and two events along its trajectory.
Different Lorentz observers record different values for the time interval between the two
events. But now imagine that the moving particle is carrying a clock. The proper time
elapsed is the time elapsed between the two events on that clock. By definition, it is an
invariant: all observers of a particular clock must agree on the time elapsed on that clock!

Proper time enters naturally into the calculation of invariant intervals. Consider an
invariant interval for the motion of a particle along the x axis:

− ds2 = −c2dt2 + dx2 = −c2dt2 (1 − β2). (2.75)

Now evaluate the interval using a Lorentz frame attached to the particle. This is a frame in
which the particle does not move and time is recorded by the clock that is moving with the
particle. In this frame dx = 0 and dt = dtp is the proper time elapsed. As a result,

− ds2 = −c2 dtp
2. (2.76)

We cancel the minus signs and take the square root (using (2.20)) to find

ds = c dtp. (2.77)

This shows that, for timelike intervals, ds/c is the proper time interval. Similarly,
cancelling minus signs and taking the square root of (2.75) gives

ds = cdt
√

1 − β2 −→ dt
ds

= γ

c
. (2.78)

Being a Lorentz invariant, ds can be used to construct new Lorentz vectors from old
Lorentz vectors. For example, a velocity four-vector uµ is obtained by taking the ratio
of dxµ and ds. Since dxµ is a Lorentz vector and ds is a Lorentz scalar, the ratio is also a
Lorentz vector:

uµ = c
dxµ

ds
= c

(d(ct)
ds

,
dx
ds

,
dy
ds

,
dz
ds

)
. (2.79)

The factor of c is included to give uµ the units of velocity. The components of uµ can be
simplified using the chain rule and (2.78). For example,

dx
ds

= dx
dt

dt
ds

= vxγ

c
. (2.80)
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Back in (2.79), we find

uµ = γ (c, vx , vy, vz) = γ (c, (v). (2.81)

Comparing with (2.70), we see that the momentum four-vector is just mass times the
velocity four-vector:

pµ = muµ. (2.82)

This confirms our earlier assertion that the components of pµ form a four-vector. Since
any four-vector transforms under Lorentz transformations as the xµ do, we can use (2.36)
to find that under a boost in the x-direction the pµ transform as

E ′

c
= γ

( E
c

− β px

)
,

p′
x = γ

(
−β

E
c

+ px

)
. (2.83)

2.5 Light-cone energy and momentum

The light-cone components p+ and p− of the momentum Lorentz vector are obtained
using the rule (2.3):

p+ = 1√
2

(p0 + p1) = −p−,

p− = 1√
2

(p0 − p1) = −p+. (2.84)

Which component should be identified with light-cone energy? The naive answer would
be p+. In any Lorentz frame, both the time and energy are the zeroth components of their
respective four-vectors. Since light-cone time was chosen to be x+, we might conclude that
light-cone energy should be taken to be p+. This is not appropriate, however. Light-cone
coordinates do not transform as Lorentz ones do, so we should be careful and examine this
question in detail. Both p± are energy-like, since both are positive for physical particles.
Indeed, from (2.67), and with m )= 0, we have

p0 = E
c

=
√

(p · (p + m2c2 > | (p | ≥ |p1| . (2.85)

As a result, p0 ± p1 > 0, and thus p± > 0. While both are plausible candidates for energy,
the physically motivated choice turns out to be −p+, which happens to coincide with p−.

Before we explain this choice, let us first evaluate pµxµ. In standard coordinates,

p · x = p0x0 + p1x1 + p2x2 + p3x3. (2.86)

In light-cone coordinates, using (2.61),

p · x = p+x+ + p−x− + p2x2 + p3x3. (2.87)
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In standard coordinates, p0 = −E/c appears together with the time x0. In light-cone coor-
dinates, p+ appears together with the light-cone time x+. We would therefore expect p+
to be minus the light-cone energy.

Why is this pairing significant? Energy and time are conjugate variables. As you learned
in quantum mechanics, the Hamiltonian operator measures energy and generates time
evolution. The wavefunction of a point particle with energy E and momentum (p is given by

ψ(t, (x) = exp
(
− i

h̄
(Et − (p · (x)

)
. (2.88)

Indeed, this wavefunction satisfies the Schrödinger equation

i h̄
∂ψ

∂x0 = E
c

ψ. (2.89)

Similarly, light-cone time evolution and light-cone energy Elc should be related by

i h̄
∂ψ

∂x+ = Elc

c
ψ. (2.90)

To find the x+ dependence of the wavefunction, we recognize that

ψ(t, (x) = exp
( i

h̄
(p0x0 + (p · (x)

)
= exp

( i
h̄

p · x
)

, (2.91)

and, using (2.87), we have

ψ(x) = exp
( i

h̄
(p+x+ + p−x− + p2x2 + p3x3)

)
. (2.92)

We can now return to (2.90) and evaluate:

i h̄
∂ψ

∂x+ = −p+ψ −→ −p+ = Elc

c
. (2.93)

This confirms our identification of (−p+) with light-cone energy. Since, presently, −p+ =
p−, it is convenient to use p− as the light-cone energy in order to eliminate the sign in the
above equation:

p− = Elc

c
. (2.94)

Some physicists like to raise and lower + and − indices to simplify expressions involving
light-cone quantities. While this is sometimes convenient, it can easily lead to errors. If
you talk with a friend over the phone, and she says “. . . p-plus times . . .,” you will have to
ask, “plus up, or plus down?” In the rest of this book we will not lower the + or − indices.
They will always be up, and the energy will always be p−.

We can check that the identification of p− as light-cone energy fits together nicely with
the intuition that we have developed for light-cone velocity. To this end, we confirm that a
particle with small light-cone velocity also has small light-cone energy. Suppose we have
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a particle moving very fast in the +x1 direction. As discussed below (2.66), its light-cone
velocity is very small. Since p1 is very large, equation (2.67) gives

p0 =
√

(p1)2 + m2c2 = p1

√

1 + m2c2

(p1)2 ' p1 + m2c2

2p1 . (2.95)

The light-cone energy of the particle is therefore

p− = 1√
2

(p0 − p1) ' m2c2

2
√

2 p1
. (2.96)

As anticipated, both the light-cone velocity and the light-cone energy decrease as p1

increases.

2.6 Lorentz invariance with extra dimensions

If string theory is correct, we must entertain the possibility that spacetime has more than
four dimensions. The number of time dimensions must be kept equal to one – it seems
very difficult, if not altogether impossible, to construct a consistent theory with more than
one time dimension. The extra dimensions must therefore be spatial. Can we have Lorentz
invariance in worlds with more than three spatial dimensions? Yes. Lorentz invariance is a
concept that admits a very natural generalization to spacetimes with additional dimensions.

We first extend the definition of the invariant interval ds2 to incorporate the additional
space dimensions. In a world with five spatial dimensions, for example, we would write

− ds2 = −c2dt2 + (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2 + (dx5)2. (2.97)

Lorentz transformations are then defined as the linear changes of coordinates that leave
ds2 invariant. This ensures that every inertial observer in the six-dimensional spacetime
will agree on the value of the speed of light. With more dimensions, come more Lorentz
transformations. While in four-dimensional spacetime we have boosts in the x1, x2, and
x3 directions, in this new world we have boosts along each of the five spatial dimensions.
With three spatial coordinates, there are three basic spatial rotations: rotations that mix x1

and x2, those that mix x1 and x3, and finally those that mix x2 and x3. The equality of
the number of boosts and the number of rotations is a special feature of four-dimensional
spacetime. With five spatial coordinates, we have ten rotations, which is twice the number
of boosts.

The higher-dimensional Lorentz invariance includes the lower-dimensional one: if noth-
ing happens along the extra dimensions, then the restrictions of lower-dimensional Lorentz
invariance apply. This is clear from (2.97). For motion that does not involve the extra
dimensions, dx4 = dx5 = 0, and the expression for ds2 reduces to that used in four
dimensions.
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We note here that the transition from Eq.(18) to Eq.(19) is a squeeze trans-
formation. The wave function of Eq.(18) is distributed within a circular
region in the uv plane, and thus in the zt plane. On the other hand, the
wave function of Eq.(19) is distributed in an elliptic region. This is how the
wave function is Lorentz-boosted.

5 Feynman's Parton Picture

It is safe to believe that hadrons are quantum bound states of quarks having
localized probability distribution. As in all bound-state cases, this localiza-
tion condition is responsible for the existence of discrete mass spectra. The
most convincing evidence for this bound-state picture is the hadronic mass
spectra which are observed in high-energy laboratories [2, 15]. However, this
picture of bound states is applicable only to observers in the Lorentz frame
in which the hadron is at rest. How would the hadrons appear to observers
in other Lorentz frames?

In 1969, Feynman observed that a fast-moving hadron can be regarded as
a collection of many “partons” whose properties do not appear to be identical
to those of quarks [19]. For example, the number of quarks inside a static pro-
ton is three, while the number of partons in a rapidly moving proton appears
to be infinite. The question then is how the proton looking like a bound state
of quarks to one observer can appear different to an observer in a different
Lorentz frame? Feynman made the following systematic observations.

a). The picture is valid only for hadrons moving with velocity close to that
of light.

b). The interaction time between the quarks becomes dilated, and partons
behave as free independent particles.

c). The momentum distribution of partons becomes widespread as the
hadron moves very fast.

d). The number of partons seems to be infinite or much larger than that
of quarks.

Because the hadron is believed to be a bound state of two or three quarks,
each of the above phenomena appears as a paradox, particularly b) and c)
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together. We would like to resolve this paradox using the covariant harmonic
oscillator formalism.

For this purpose, we need a momentum-energy wave function. If the
quarks have the four-momenta pa and pb, we can construct two independent
four-momentum variables [15]

P = pa + pb, q =
p

2(pa − pb). (20)

The four-momentum P is the total four-momentum and is thus the hadronic
four-momentum. q measures the four-momentum separation between the
quarks.

We expect to get the momentum-energy wave function by taking the
Fourier transformation of Eq.(19):

φη(qz, q0) =
�

1

2π

�
�

ψη(z, t) exp f − i(qzz − q0t)gdxdt. (21)

Let us now define the momentum-energy variables in the light-cone coordi-
nate system as

qu = (q0 − qz)/
p

2, qv = (q0 + qz)/
p

2. (22)

In terms of these variables, the Fourier transformation of Eq.(21) can be
written as

φη(qz, q0) =
�

1

2π

�
�

ψη(z, t) exp f − i(quu + qvv)gdudv. (23)

The resulting momentum-energy wave function is

φη(qz, q0) =
�

1

π

�1/2

exp
�

−
1

2

�

e−2ηq2
u + e2ηq2

v

�

�

. (24)

Since we are using the harmonic oscillator, the mathematical form of the
above momentum-energy wave function is identical to that of the space-time
wave function. The Lorentz squeeze properties of these wave functions are
also the same, as are indicated in Fig. 1. These squeeze transformations
perfectly consistent with the algorithms of the Poincaré group [20].

When the hadron is at rest with η = 0, both wave functions behave like
those for the static bound state of quarks. As η increases, the wave functions
become continuously squeezed until they become concentrated along their
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respective positive light-cone axes. Let us look at the z-axis projection of
the space-time wave function. Indeed, the width of the quark distribution
increases as the hadronic speed approaches that of the speed of light. The
position of each quark appears widespread to the observer in the laboratory
frame, and the quarks appear like free particles.

Furthermore, interaction time of the quarks among themselves become
dilated. Because the wave function becomes wide-spread, the distance be-
tween one end of the harmonic oscillator well and the other end increases as
is indicated in Fig. 1. This effect, first noted by Feynman [19], is universally
observed in high-energy hadronic experiments. The period is oscillation is
increases like eη. On the other hand, the interaction time with the external
signal, since it is moving in the direction opposite to the direction of the
hadron, it travels along the negative light-cone axis. If the hadron contracts
along the negative light-cone axis, the interaction time decreases by e−η. The
ratio of the interaction time to the oscillator period becomes e−2η. The en-
ergy of each proton coming out of the Fermilab accelerator is 900GeV . This
leads the ratio to 10−6. This is indeed a small number. The external signal
is not able to sense the interaction of the quarks among themselves inside
the hadron. This is the reason why the partons appear to be incoherent to
external signals. Indeed, Feynman’s decoherence is an effect of the Lorentz
covariance.

Concluding Remarks

Due to Einstein, this world, at least the physics world, became Lorentz-
covariant. The lack of coherence in Feynman’s parton picture is the most
puzzling question in covariance. It is a pleasure to report that Wigner’s
formulation of the internal space-time symmetries of relativistic particles
provide a resolution to this problem.

In this report, we discussed Wigner’s 1939 paper on the representations
of the Poincaré group. Wigner wrote many other papers. They were also
discussed at this conference. We are grateful to Professors Joszef Janszky
and Peter Adam for organizing this historical conference. The author would
like to thank Jiri Kvita for pointing out an typographical error in the original
version.
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Figure 1: Lorentz-squeezed space-time and momentum-energy wave func-
tions. As the hadron’s speed approaches that of light, both wave functions
become concentrated along their respective positive light-cone axes. These
light-cone concentrations lead to Feynman’s parton picture.
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Stokes' Theorem
“The general theorem is due to Nicolas Bourbaki 

... and vice-versa !”

http://home.att.net/~numericana/answer/forms.htm

One of the primary motivations for the creation of Nicolas 
Bourbaki was to develop the mathematics required 

to prove the Generalized Stokes Theorem.
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648 Chapter 6. Forms and vector calculus

6.10 The generalized Stokes’s theorem

We worked hard to define the exterior derivative and to define orientation
of manifolds and of boundaries. Now we are going to reap some rewards for
our labor: we are going to see that there is a higher-dimensional analogue
of the fundamental theorem of calculus, Stokes’s theorem. It covers in one
statement the four integral theorems of vector calculus, which are explored
in section 6.11.

Figure 6.10.1.
Elie Cartan (1869–1951) for-

malized the theory of differential
forms in the early twentieth cen-
tury. Other names associated with
the generalized Stokes’s theorem
include Henri Poincaré, Vito Vol-
terra, and Luitzen Brouwer.

One of Cartan’s four children,
Henri, became a renowned mathe-
matician; another, a physicist, was
arrested by the Germans in 1942
and executed 15 months later.

Theorem 6.10.2 is probably the
best tool mathematicians have for
deducing global properties from
local properties. It is a wonderful
theorem.

It is often called the general-
ized Stokes’s theorem, to distin-
guish it from the special case (sur-
faces in R3) also known as Stokes’s
theorem. Special cases of the gen-
eralized Stokes’s theorem are dis-
cussed in section 6.11.

To lighten notation, in theo-

rem 6.10.2 we write ∂X. How-

ever, we are actually integrating

ϕ over ∂s
MX, the smooth part of

the boundary that sets off X ⊂ M

from M .

Recall the fundamental theorem of calculus:

inTheorem 6.10.1 (Fundamental theorem of calculus). If f is a C1

function on a neighborhood of [a, b], then
∫ b

a
f ′(t) dt = f(b) − f(a). 6.10.1

Restate this as
∫

[a,b]
df =

∫

∂[a,b]
f, 6.10.2

i.e., the integral of df over an oriented interval is equal to the integral of
f over the oriented boundary of the interval. In this form, the statement
generalizes to higher dimensions:

inTheorem 6.10.2 (Generalized Stokes’s theorem). Let X be a
compact piece-with-boundary of a (k +1)-dimensional oriented manifold
M ⊂ Rn. Give the boundary ∂X of X the boundary orientation, and let
ϕ be a k-form defined on an open set containing X. Then

∫

∂X
ϕ =

∫

X
dϕ. 6.10.3

This beautiful, short statement is the main result of the theory of forms.
Note that the dimensions in equation 6.10.3 make sense: if X is (k + 1)-
dimensional, ∂X is k-dimensional, and if ϕ is a k form, dϕ is a (k+1)-form,
so dϕ can be integrated over X, and ϕ can be integrated over ∂X.

Example 6.10.3 (Integrating over the boundary of a square). You
apply Stokes’s theorem every time you use antiderivatives to compute an
integral: to compute the integral of the 1-form f dx over the oriented line
segment [a, b], you begin by finding a function g such that dg = f dx, and
then say

∫ b

a
f dx =

∫

[a,b]
dg =

∫

∂[a,b]
g = g(b) − g(a). 6.10.4

This isn’t quite the way Stokes’s theorem is usually used in higher di-
mensions, where “looking for antiderivatives” has a different flavor.
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THE GRASSMANN ALGEBRA 3

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(H*)

(I)

(I*)

(J)

(K)

(L)

Fig. 1.1 The original set of equations (A)– (L) as labeled by Maxwell in his Treatise (1873),
with their interpretation in modern Gibbsian vector notation. The simplest equations were
also written in vector form.



VECTORS AND DUAL VECTORS 5

=
=

=

Fig. 1.2 The two Maxwell equations and the medium equation in differential-form formalism.
Symbols will be explained in Chapter 4.

Grassmann had hoped that the second edition of Ausdehnungslehre would raise
interest in his contemporaries. Fearing that this, too, would be of no avail, his final
sentences in the foreword were addressed to future generations [15, 75]:

... But I know and feel obliged to state (though I run the risk of seeming
arrogant) that even if this work should again remain unused for another
seventeen years or even longer, without entering into actual development
of science, still that time will come when it will be brought forth from the
dust of oblivion, and when ideas now dormant will bring forth fruit. I know
that if I also fail to gather around me in a position (which I have up to
now desired in vain) a circle of scholars, whom I could fructify with these
ideas, and whom I could stimulate to develop and enrich further these
ideas, nevertheless there will come a time when these ideas, perhaps
in a new form, will rise anew and will enter into living communication
with contemporary developments. For truth is eternal and divine, and
no phase in the development of the truth divine, and no phase in the
development of truth, however small may be region encompassed, can
pass on without leaving a trace; truth remains, even though the garments
in which poor mortals clothe it may fall to dust.
Stettin, 29 August 1861

1.2 VECTORS AND DUAL VECTORS

1.2.1 Basic definitions

Vectors are elements of an -dimensional vector space denoted by , and they
are in general denoted by boldface lowercase Latin letters ... Most of the
analysis is applicable to any dimension but special attention is given to three-
dimensional Euclidean (Eu3) and four-dimensional Minkowskian (Mi4) spaces (these
concepts will be explained in terms of metric dyadics in Section 2.5). A set of linearly
independent vectors ... forms a basis if any vector can be uniquely
expressed in terms of the basis vectors as

(1.1)

where the are scalar coefficients (real or complex numbers).
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TABLE I
DIFFERENTIAL FORMS OF EACH DEGREE

TABLE II
THE DIFFERENTIAL FORMS THAT REPRESENT FIELDS AND SOURCES

double integral over a surface, so its degree is two. A -form
is integrated by a triple integral over a volume. -forms are
functions, ‘‘integrated’’ by evaluation at a point. Table I gives
examples of forms of various degrees. The coefficients of the
forms can be functions of position, time, and other variables.

A. Representing the Electromagnetic Field
with Differential Forms
From Maxwell’s laws in integral form, we can readily

determine the degrees of the differential forms that will
represent the various field quantities. In vector notation,

where is a surface bounded by a path is a volume
bounded by a surface is volume charge density, and
the other quantities are defined as usual. The electric field
intensity is integrated over a path, so that it becomes a -
form. The magnetic field intensity is also integrated over a
path, and becomes a -form as well. The electric and magnetic
flux densities are integrated over surfaces, and so are -forms.
The sources are electric current density, which is a -form,
since it falls under a surface integral, and the volume charge
density, which is a -form, as it is integrated over a volume.
Table II summarizes these forms.

B. -Forms: Field Intensity
The usual physical motivation for electric field intensity

is the force experienced by a small test charge placed in
the field. This leads naturally to the vector representation of
the electric field, which might be called the “force picture.”
Another physical viewpoint for the electric field is the change
in potential experienced by a charge as it moves through the

(.a) (b)

(c)

Fig. 1. (a) The -form , with surfaces perpendicular to the -axis and
infinite in the and directions. (b) The -form , with surfaces
perpendicular to the -axis and spaced two per unit distance in the direction.
(c) A general -form, with curved surfaces and surfaces that end or meet each
other.

field. This leads naturally to the equipotential representation
of the field, or the “energy picture.” The energy picture shifts
emphasis from the local concept of force experienced by a
test charge to the global behavior of the field as manifested
by change in energy of a test charge as it moves along a
path.
Differential forms lead to the “energy picture” of field

intensity. A -form is represented graphically as surfaces
in space [1], [3]. For a conservative field, the surfaces of
the associated -form are equipotentials. The differential
produces surfaces perpendicular to the -axis, as shown in
Fig. 1(a). Likewise, has surfaces perpendicular to the -
axis and the surfaces of are perpendicular to the -axis.
A linear combination of these differentials has surfaces that
are skew to the coordinate axes. The coefficients of a -
form determine the spacing of the surfaces per unit length;
the greater the magnitude of the coefficients, the more closely
spaced are the surfaces. The -form , shown in Fig. 1(b),
has surfaces spaced twice as closely as those of in Fig. 1(a).
In general, the surfaces of a -form can curve, end, or

meet each other, depending on the behavior of the coefficients
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Fig. 2. A path piercing four surfaces of a 1-form. The integral of the 1-form
over the path is four.

of the form. If surfaces of a -form do not meet or end,
the field represented by the form is conservative. The field
corresponding to the -form in Fig. 1(a) is conservative; the
field in Fig. 1(c) is nonconservative.
Just as a line representing the magnitude of a vector has two

possible orientations, the surfaces of a -form are oriented
as well. This is done by specifying one of the two normal
directions to the surfaces of the form. The surfaces of
are oriented in the direction, and those of in the

direction. The orientation of a form is usually clear from
context and is omitted from figures.
Differential forms are by definition the quantities that can

be integrated, so it is natural that the surfaces of a -form are
a graphical representation of path integration. The integral of
a -form along a path is the number of surfaces pierced by
the path (Fig. 2), taking into account the relative orientations
of the surfaces and the path. This simple picture of path
integration will provide in the next section a means for
visualizing Ampere’s and Faraday’s laws.
The -form is said to be dual to the

vector field . The field intensity -forms
and are dual to the vectors and .
Following Deschamps, we take the units of the electric and

magnetic field intensity -forms to be volts and amperes, as
shown in Table II. The differentials are considered to have
units of length. Other field and source quantities are assigned
units according to this same convention. A disadvantage of
Deschamps’ system is that it implies in a sense that the
metric of space carries units. Alternative conventions are
available; Bamberg and Sternberg [5] and others take the
units of the electric and magnetic field intensity -forms to
be volts per meter and amperes per meter, the same as their
vector counterparts, so that the differentials carry no units
and the integration process itself is considered to provide
a factor of length. If this convention is chosen, the basis
differentials of curvilinear coordinate systems (see Section IV)
must also be taken to carry no units. This leads to confusion
for students, since these basis differentials can include factors
of distance. The advantages of this alternative convention are
that it is more consistent with the mathematical point of view,
in which basis vectors and forms are abstract objects not
associated with a particular system of units, and that a field
quantity has the same units whether represented by a vector
or a differential form. Furthermore, a general differential form
may include differentials of functions that do not represent

(a) (b)

Fig. 3. (a) The -form , with tubes in the direction. (b) Four tubes
of a -form pass through a surface, so that the integral of the -form over
the surface is four.

position and so cannot be assigned units of length. The
possibility of confusion when using curvilinear coordinates
seems to outweigh these considerations, and so we have chosen
Deschamps’ convention.
With this convention, the electric field intensity -form can

be taken to have units of energy per charge, or joules per
coulomb. This supports the “energy picture,” in which the
electric field represents the change in energy experienced by a
charge as it moves through the field. One might argue that
this motivation of field intensity is less intuitive than the
concept of force experienced by a test charge at a point. While
this may be true, the graphical representations of Ampere’s
and Faraday’s laws that will be outlined in Section III favor
the differential form point of view. Furthermore, the simple
correspondence between vectors and forms allows both to be
introduced with little additional effort, providing students a
more solid understanding of field intensity than they could
obtain from one representation alone.

C. -Forms: Flux Density and Current Density
Flux density or flow of current can be thought of as tubes

that connect sources of flux or current. This is the natural
graphical representation of a -form, which is drawn as sets
of surfaces that intersect to form tubes. The differential
is represented by the surfaces of and superimposed.
The surfaces of perpendicular to the -axis and those of

perpendicular to the -axis intersect to produce tubes in the
direction, as illustrated by Fig. 3(a). (To be precise, the tubes

of a -form have no definite shape: tubes of have the
same density those of .) The coefficients of a -
form give the spacing of the tubes. The greater the coefficients,
the more dense the tubes. An arbitrary -form has tubes that
may curve or converge at a point.
The direction of flow or flux along the tubes of a -form is

given by the right-hand rule applied to the orientations of the
surfaces making up the walls of a tube. The orientation of
is in the direction, and in the direction, so the flux
due to is in the direction.
As with -forms, the graphical representation of a -form is

fundamentally related to the integration process. The integral
of a -form over a surface is the number of tubes passing
through the surface, where each tube is weighted positively if
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Book Review

Bourbaki, A Secret Society of 
Mathematicians  
and 
The Artist and the 
Mathematician
Reviewed by Michael Atiyah

Bourbaki, A Secret Society of Mathematicians 
Maurice Mashaal 
AMS, June 2006 
US$29.00, 260 pages 
ISBN-13: 978-0821839676 
 
The Artist and the Mathematician: The Story 
of Nicolas Bourbaki, the Genius Mathematician 
Who Never Existed 
Amir D. Aczel 
Thunder’s Mouth Press, August 2006 
US$23.95, 272 pages 
ISBN-13: 978-1560259312

All mathematicians of my generation, and 
even those of subsequent decades, were aware of 
Nicolas Bourbaki, the Napoleonic general whose 
reincarnation as a radical group of young French 
mathematicians was to make such a mark on the 
mathematical world. His memory may now have 
faded, the books are old and yellowed, but his 
influence lives on. Many of us were enthusias-
tic disciples of Bourbaki, believing that he had 
reinvigorated the mathematics of the twentieth 
century and given it direction. But others believed 
that Bourbaki’s influence had been pernicious 
and narrow, confining mathematics behind walls 
of rigour, and cutting off its external sources of 
inspiration.

Now that we are in the twenty-first century it is 
perhaps the right time to look back and try to as-
sess the overall impact of Bourbaki, before all the 
principal players leave the scene. The basic histori-
cal facts are well known and are set out in both 
the books under review. France had lost a whole 
generation of intellectuals in the 1914–18 war, and 
the young mathematicians of Paris, in the inter-
war period of the 1920s and 1930s, were looking 
for new guidance and inspiration. Only Hadamard 
and Élie Cartan of the older generation still com-
manded respect. Talented youth, unconstrained by 
higher authority, is a powerful force and, whatever 
one’s views about Bourbaki, there is no doubt that 
the talent was quite exceptional. The list of the 
early members of Bourbaki is truly impressive: 
André Weil, Henri Cartan, Claude Chevalley, Jean 
Dieudonné, Laurent Schwartz… Later recruits were 
of similar calibre: Jean-Pierre Serre, Armand Borel, 
Alexandre Grothendieck… Harnessing the powers 
of such a formidable group was not an easy task. 
There were fierce debates, some serious quarrels, 
and much passion. The remarkable fact is that the 
group, by and large, stayed together and kept Bour-
baki alive and active over several decades. This was 
a tribute to the idealistic vision that they shared, 
that of remoulding the shape of mathematics in 
the twentieth century.

Much of the atmosphere of the early days is 
brought vividly to life by the many informal pho-
tographs in the Mashaal book. It is fascinating to 
see pictures of the young André Weil, relaxing 
in a deck chair, though Henri Cartan was always 

Sir Michael Atiyah is Honorary Professor of Mathemat-
ics at the University of Edinburgh. His email address is 
M.Atiyah@ed.ac.uk.
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impeccably dressed in jacket and tie, resisting 
trendy fashion.

I myself attended a Bourbaki conference in my 
youth and can attest to the lively experience of 
debating vigorously (and usually critically) the 
latest version of the next book. Summer sunshine 
in the south of France and the friendly and casual 
atmosphere did much to prevent arguments devel-
oping into armed conflict. To paraphrase Winston 
Churchill, “never in the course of human argument 
has so much been spoken by so many on so little.” 
It appeared a miracle that books, many of them, ac-
tually emerged from this process, a result undoubt-
edly due to the diligence and energy of Dieudonné. 
If Weil was the prime inspiration behind Bourbaki, 
it was Dieudonné who carried it to fruition.

So what were the basic aims of Bourbaki, and 
how much was achieved? Perhaps one can pick out 
two central objectives. One was that mathematics 
needed new and broad foundations, embodied 
in a series of books that would replace the old-
fashioned textbooks. The other was that the key 
idea of the new foundations lay in the notion of 
“structure”, illustrated by the now common word 
“isomorphism”.

There is no doubt that, with its clear emphasis 
on “structure”, Bourbaki produced the right idea 
at the right time and changed the way most of us 
thought. Of course it fitted in well with Hilbert’s 
approach to mathematics and the subsequent 
development of abstract algebra. But structure 
was not confined to algebra, and it was particu-
larly fruitful in topology and associated areas of 
geometry, all of which were to see spectacular 
developments in the period following World 
War II. Here the impact of Bourbaki was decisive, 
and, in the hands of Serre and Grothendieck, alge-
braic geometry rose to incredible heights.

Laying universal foundations is another mat-
ter. Each time it is tried it inevitably gets bogged 
down by the sheer scale and ambition of the opera-
tion. The “ne plus ultra” in this direction was the 
Éléments de Géométrie Algébrique of Grothendieck 
and Dieudonné, which expanded voluminously 
both forward and backward and was in danger of 
sinking under its own weight.

Laying ambitious foundations is not only a dan-
gerous delusion, it can also be a didactic disaster. 
Encyclopaedias are not textbooks, and much of 
the critique directed against Bourbaki is that it 
was used, or perhaps misused, to reform school 
education. This may be unfair, since many of the 
great mathematicians in Bourbaki were excellent 
lecturers and knew well the difference between 
formal exposition and the conveying of ideas. But, 
as so often happens, the disciples are more extreme 
and fanatical than their masters, and education in 
France and elsewhere suffered from a dogmatic 
and ill-informed attempt at reform. Jesus Christ 

is not responsible for the excesses 
perpetrated in the name of Chris-
tianity.

Bourbaki was to some extent 
the victim of its own success. 
The original aim had been the 
modest one of writing a mod-
ern replacement for Goursat’s 
Cours d’Analyse but, buoyed up 
by enthusiasm and the success 
of recruiting many of the leading 
mathematicians of the time, hori-
zons broadened. All of mathemat-
ics was to be included, analysis, al-
gebra, and geometry. For obvious 
reasons algebra lent itself best 
to the Bourbaki treatment. The 
volumes on commutative algebra and particularly 
on Lie groups were excellent and became standard 
references, due in large part to the personal contri-
bution of Serre, whose influence and taste guided 
this whole area.

The formal aspects of analysis, as exemplified 
in functional analysis, also had success, though 
Bourbaki’s treatment of probability came in for 
severe criticism from the experts who argued that 
important parts of the theory were excluded by the 
restriction to locally compact spaces. A concern for 
elegance had led to too great a price being paid.

But this little battle over probability was a mere 
sideshow in the Bourbaki approach to analysis, a 
subject too varied, complex, and untidy to be taken 
over by Bourbaki. Glimmerings of these problems 
already appear in differential geometry, a subject 
at the interface between analysis and geometry, 
where structure, though present, is a less dominat-
ing concept. Though Riemann surface theory, after 
a century of active development, could conceiv-
ably be given a coherent Bourbaki treatment, the 
same could hardly be said for the current work of 
Thurston-Perelman in three dimensions. Another 
severe limitation of Bourbaki, no doubt conscious, 
was the restriction to pure mathematics. Applied 
mathematics is too messy and disparate to be 
included, and theoretical physics hovers on an 
uncertain borderline. One distinguishing feature 
of Bourbaki was the emphasis on clear and unam-
biguous definitions and on rigorous proofs. This 
was, as in algebraic geometry, a reaction against 
some sloppy treatments of the past, and it served 
a purpose in creating a firm platform for the fu-
ture. Unfortunately, when taken to extremes, the 
requirement for total rigour excludes large areas 
of mathematics which are in their early creative 
stages. Had Euler worried too much about rigour, 
mathematics would have suffered.

Over the past thirty years, arguably in the declin-
ing years of Bourbaki, some of the most exciting 
developments in mathematics have arisen from the 
interface with physics and particularly quantum 
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field theory. New concepts and 
explicit results have emerged 
from this interaction, notably  
Donaldson’s work on four- 
manifolds, mirror symmetry in 
algebraic geometry, and quan-
tum cohomology. Much of this 
came directly from very heu-
ristic work by physicists such 
as Edward Witten. Most of it, 
though by no means all, has 
now been given a cloak of re-
spectability involving rigorous 
proofs.

Clarity and rigour have a vital 
place in mathematics but they 
must not be used as a barrier 

to new ideas from other fields. 
Free trade is a benefit to us all and should not 
be inhibited by excessive attachment to national 
sovereignty.

Although Bourbaki recruited most of the fa-
mous French mathematicians of the time (and sev-
eral from outside France), there were some notable 
exceptions, the most obvious being Jean Leray 
(who left very early) and René Thom. In retrospect 
it is clear that neither fitted the Bourbaki role. The 
fact that they were also two of the most original 
mathematicians of the time does perhaps suggest 
that such originality has difficulty flourishing in a 
constrained atmosphere. Both were also closer to 
applied mathematics than their colleagues.

Of the two books under review, the first by Mau-
rice Mashaal might be described as “authorized”. 
It has the sanction of the AMS and was first pub-
lished several years ago in French. It seems clear 
that the author knew many of the French math-
ematicians personally and derived his information 
and in particular the photographs from this source. 
It is reliable on the history, the personalities, and 
the mathematics. It is also highly readable and 
noncontroversial.

The other book by Amir Aczel is totally dif-
ferent. It has a more ambitious aim, which is to 
examine the Bourbaki influence on “structure” in 
the social sciences. It is also highly controversial in 
its extensive treatment of the Grothendieck story. 
I was not convinced of the total reliability of its 
sources, nor of its philosophical credentials.

Although written in English this book is perme-
ated by French intellectual ideas and will probably 
seem strange to those not part of that scene. A 
slightly tenuous link between André Weil and the 
sociologist Claude Levi-Strauss is used to claim 
that Bourbaki made a major impact on sociology 
and related fields such as psychology, anthropol-
ogy, and linguistics. This grand aim is clearly 
set out by the title, and I have no expertise in 
any of these fields. It may be that the author is a 
polymath, an intellectual colossus, who straddles 

the entire scene from mathematics to the social 
sciences. The only place where I can examine the 
evidence for this and make an informed comment, 
is in his treatment of mathematics and the people 
in it. Here I have profound misgivings, which relate 
mainly to Grothendieck, who occupies a central 
place in the author’s pantheon.

There is no doubt that Grothendieck was an 
exceptional figure in the mathematical world and 
that he deserves a scholarly full-length biography, 
preferably written by a mathematician who knew 
him personally. I believe such a book is in prepara-
tion, and I look forward to reading it. Aczel’s book 
does not measure up to the level of the subject, 
because of his uncritical acceptance of Grothen-
dieck as the great prophet, spurned eventually by 
his people (including Bourbaki).

I knew Grothendieck well when he was in his 
prime. I greatly admired his mathematics, his pro-
digious energy and drive, and his generosity with 
ideas, which attracted a horde of disciples. But his 
main characteristic, both in his mathematics and 
in social life, was his uncompromising nature. This 
was, at the same time, the cause both of his suc-
cess and of his downfall. No one but Grothendieck 
could have taken on algebraic geometry in the full 
generality he adopted and seen it through to suc-
cess. It required courage, even daring, total self- 
confidence and immense powers of concentration 
and hard work. Grothendieck was a phenomenon.

But he had his weaknesses. He could navigate 
like no one else in the stratosphere, but he was 
not sure of his ground on earth—examples did 
not appeal to him and had to be supplied by his 
colleagues.

Aczel is right when he identifies Grothendieck 
as someone who took the new Bourbaki philoso-
phy seriously and made a tremendous success 
of it. Where I part company with Aczel is in his 
assertion that Bourbaki made a fatal mistake in 
not taking Grothendieck’s advice and rewriting 
its foundations in the new language of category 
theory. Aczel believes that Bourbaki had turned 
its face away from the future in not following 
Grothendieck. I doubt whether history will come 
to this verdict. Grothendieck’s own EGA, as well 
as the general fate of over-confident universalists, 
might suggest otherwise. Moreover, given Grothen-
dieck’s uncompromising nature and supreme self- 
confidence, it is difficult to see how, with him at 
the helm, Bourbaki could have continued as a col-
legial enterprise.

Aczel’s total endorsement of Grothendieck 
leads him to make such fatuous statements as: 
“Weil was a somewhat jealous person who clearly 
saw that Grothendieck was a far better mathemati-
cian than he was.” Subtle balanced judgement is 
clearly not Aczel’s forte, and it hardly encourages 
the reader to take seriously his confident and 
sweeping assertions in the social sciences.



Bourbaki and Algebraic Topology

by John McCleary

The principal aim of the Bourbaki group (L’Association des Collaborateurs de Nicolas
Bourbaki) is to provide a solid foundation for the whole body of modern mathematics. The
method of exposition is axiomatic and abstract, logically coherent and rigorous, proceeding
normally from the general to the particular, a style found to be not altogether congenial
to many readers. The ongoing series of books began with Éléments de Mathématiques in
1939, and other books on algebra, set theory, topology, and other topics have followed.
Many books in the series have become standard references, though some mathematicians
are critical of their austerely abstract point of view.

from http://www.encyclopedia.com/html/B/BourbakiN1.asp, Dec. 3, 2004

It is now more than 70 years ago that the founders of Le Comité de rédaction du
traité d’analyse met in Paris at the Café A. Capoulade, 63 boulevard Saint-Michel, to
discuss the drafting of a textbook on analysis. This meeting included (recent centenarian)
Henri Cartan (1904– ), Claude Chevalley (1909–1984), Jean Delsarte (1903–
1968), Jean Dieudonné (1906–1992), René de Possel (1905–1974), and André Weil
(1906–1998). The fate of this project is the story of the Bourbaki, or should I say, the
story of the character Nicolas Bourbaki, author of Éléments de mathématique, a series
of influential expositions of the basic notions of modern mathematics.

This talk is based on a wild goose chase after a document. The project was supported
by the Gabriel Snyder Beck Fund at Vassar College that funds research on anything French.
In early 2000 I learned at a meeting in Oberwohlfach that an archive of papers and internal
documents of the Bourbaki was soon to be opened to scholars in Paris. The Beck fund
provided me the means to visit the archive. The managers of this archive, Liliane Beaulieu
and Christian Houzel, showed me great hospitality during my visit to Paris in July 2003,
and made it possible for me to rummage through the Bourbaki papers.

Historical research poses questions, to which various methods may be applied. My
interests include the history of algebraic topology, a subject whose development during
the twentieth century influenced a great deal of that century’s mathematics. The years
following the Second World War represent a high point in this story, and several important
members of Bourbaki contributed to this development. However, algebraic topology does
not appear among the topics treated in Éléments—admittedly many other important topics
were also omitted. The involvement of so many pioneering topologists makes this omission
stand out.

While a graduate student, I collected a rumor that there was a manuscript, 200 pages
long, prepared for Élements by Cartan, Koszul, Eilenberg, and Chevalley, treating algebraic
topology. Furthermore, this document was based on the use of differential forms, that
is, algebraic topology chez Élie Cartan (1869–1951) (le pere d’Henri). According to
the rumor, the manuscript was abandoned when the doctoral theses of Jean-Pierre
Serre (1926– ) and Armand Borel (1923–2003) were published. Serre’s and Borel’s
subsequent papers did change the focus of research in topology, away from differential
geometric methods to more algebraic methods, principally the spectral sequence and the
Steenrod algebra, making the manuscript obsolete. So what was in this manuscript? Could
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I get a look at it? The historian salivates at the chance to look at the state of affairs before
and after a key event.

Well, the manuscript wasn’t there, if, in fact, it exists at all. The archival work I was
able to do, however, offered many insights into the workings and spirit of Bourbaki and I
will relate some findings in this report. As my story unfurls, I want to consider the allure
of the axiomatic method before and after Bourbaki, one of the features of their exposition
that has received criticism.

Who is Bourbaki?

His name is Greek, his nationality is French and his history is curious. He is one of the
most influential mathematicians of the 20th century. The legends about him are many, and
they are growing every day. . . . The strangest fact about him, however, is that he doesn’t
exist.

Paul Halmos, 1957

André Weil was on the faculty at the University of Strasbourg in 1934, together with
Henri Cartan. They were responsible for the course on the differential and integral calculus,
one of three standard courses required for the license de mathématiques, along with general
physics and rational mechanics. The standard text was Cours d’Analyse mathématique by
Éduoard Goursat (1858–1936), written before the First World War. Cartan found it
wanting, incomplete where generalizations were known, and simply not the best way to
present these topics. An explicit example, one with a story of its own, is the formulation
of Stokes’s Theorem. It may be written

�

∂X
ω =

�

X
dω,

where ω is a differential form, dω its exterior derivative, X the domain of integration and
∂X the boundary of X. When everything in sight is smooth, the proof is clear, but the
importance of this formula in the case of more general domains of integration is the content
of the celebrated theorem of Georges De Rham (1903–1990), proved in 1931 to answer
a question of Elie Cartan relating invariant integrals on Lie groups to the topology of such
manifolds.

Persistent badgering by Cartan led Weil to suggest that they write a textbook that
they could be satisfied with. Weil writes that he told Cartan, “Why don’t we get together
and settle such matters once and for all, and you won’t plague me with your questions any
more?”

The first meeting on 10 December 1934 in Paris to plan the book occurred after a
meeting of le Seminaire Julia, another of Weil’s and Cartan’s efforts to fill the gap left in
French mathematics after World War I, which Weil called “hectatomb of 1914–1918 which
had slaughtered virtually an entire generation” of French mathematicians. The seminar,
organized by these young turcs in imitation of the seminars in Germany, needed a sponsor
in order to get a room at the Sorbonne. Gaston Julia (1893–1978) had been the youngest
of their teachers at the École Normale Supérieure and he stepped up to sponsor them. The
seminar treated a topic a year, beginning in 1933-34 with groups and algebras, going on to
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Hilbert spaces, then topology. The seminar continued until 1939 when it was superseded
by the Seminar Bourbaki.

The committee’s first plans were for a text in analysis, that would, according to
Weil, “fix the curriculum for 25 years for differential and integral calculus.” This text
should be aussi moderne que possible, un traité utile à tous, and finally, aussi robustes
et aussi universels que possible. Weil already knew a potential publisher in his friend
Enriques Freymann, a Mexican diplomat who married the daughter of the founder of
Maisson Hermann, a scientific publisher. Freymann became the chief editor and manager
of the publishing house.

Among the innovations of this text was the suggestion, insisted on by Delsarte, that
it be written collectively without expert leadership. The initial expectation was that the
text would run to 1000–1200 pages and be done in about six months. The initial group
of six was expanded to nine members in January 1935, with Paul Dubreil (1904–1994),
Jean Leray (1906–1998) and Szolem Mandelbrojt (1899-1983) added. Dubreil and
Leray were replaced by Jean Coulomb and Charles Ehresmann (1905–1979) before
the first summer workshop in July, 1935.

The first Bourbaki congress was held in Besse-en-Chandesse in the Vosges mountains.
At this workshop, the proposal was made to expand the project to add a paquet abstrait,
treating abstract (new and modern) notions that would support analysis. These included
abstract set theory, algebra, especially differential forms, and topology, with particular
emphasis on existence theorems (Leray).

The paquet eventually became the Fascicule de Résultats, a summary of useful results
presented in such a way that a competent mathematician could see where a desired result
might be found, and provide the result themselves if they needed it. In fact, the last
publication, Fascicule XXXVI, part two of Variétés différentielles et analytiques, is such a
summary. By the way, it is in Fascicule XXXVI that the statement of Stokes’s Theorem
found its place.

During the first conference, with a group of young, eager, and able mathematicians
in one place, a new result on measures on a topological space was proved. A note was
written up to submit to Comptes-Rendues. The name of Bourbaki for the group was
based on a story out of school: In 1923, Delsarte, Cartan, and Weil were members of
the newly matriculated class at École Normale Superieure, when they received a lecture
notice by a professor with a vaguely Scandinavian name, for which attendance was strongly
recommended. The speaker was a prankster, Raoul Husson, wearing a false beard and
speaking with an undefinable accent. Taking off from classical function theory, the talk
had its climax in Bourbaki’s Theorem leaving the audience “speechless with amazement.”
(This Bourbaki was the general who traveled with Napoleon.) Weil recalled this story
and the family name was adopted. But why Nicolas? For the submission of the paper,
the author needed a prenom. It was Weil’s wife Eveline who christened the new Bourbaki
Nicolas. The note was handled at the Académie des Sciences by Élie Cartan who stood
up for the unfortunate Poldevian mathematician. The note was accepted and published.

To produce the constituent parts of les Éléments, the method of editing adopted by
the Bourbaki emphasized communal involvement. A text was brought before a meeting
and presented, page by page, line by line, to the group who then expressed any and all
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criticism. A revision was handed over to another member of the group and the process
repeated when a new draft was available. After enough iterations to obtain unanimous
approval—either for the strength of the text or the fatigue of the group with the topic—the
text would be finalized (usually by Dieudonné) and sent to the publisher.

Digression: The Axiomatic Method

In spite of the high pedagogic value of the genetic method, the axiomatic method has the
advantage of providing a conclusive exposition and full logical confidence to the contents
of our knowledge.

David Hilbert, 1900

During his ‘apprenticeship’ (documented in [Weil]), Weil traveled extensively, spending
time in Germany while the rise of National Socialism to power took place. As he was
interested in number theory, he admired the mathematics of the German schools, especially
the axiomatic approach led by the work of David HIlbert (1862–1943) and the Göttingen
school. French mathematics through the nineteenth century and into the twentieth was
dominated by analysis. Even results of a number-theoretic nature were proved through
analytic means. The success of Hilbert’s ideas in many fields attracted mathematicians
everywhere and so, when looking for a model to shape their project, the members of
Bourbaki turned to the axiomatic method.

This phenomenon was not without precedent. When E.H. Moore (1862–1932) came
to lead the University of Chicago mathematics department around 1900, he consciously
adopted the style of Hilbert’s Grundlagen der Geometrie as modern, precise, and a model
to be imitated. His earliest students at Chicago included Oswald Veblen (1880–1960),
Frederick Owens, and R.L. Moore (1882–1974) whose PhD theses concerned the
foundations of geometry, axiom systems, and the economy of expression Hilbert achieved.
The goals of some of this work were to tighten the systems of axioms describing geometry,
to root out redundancy and present the least one needs to assume to achieve Euclid’s
bounty. These goals, however, though laudable, do not exhaust the depth of the axiomatic
method.

Roughly speaking, the axiomatic method is an approach to producing mathematics
that presents, after some analysis, a set of axioms from which a set of theorems is deduced.
The goal in presenting the right set of axioms is to avoid deception by intuition. Hilbert’s
experience with algebraic number theory (his Zahlbericht) and invariant theory led him to
tread a path leading to more abstract generalization.

When he turned to elementary geometry in his lectures of 1898–99, students in
Göttingen were surprised. Already in his early career, Hilbert had remarked of geometry,
“One must be able to say at all times—instead of points, straight lines, and planes—tables,
chairs, and beer mugs.” His stated goal in the Grundlagen was “ to attempt to choose
for geometry a simple and complete set of independent axioms and to deduce from these
the most important geometrical theorems in such a manner as to bring out as clearly as
possible the significance of the different groups of axioms and the scope of the conclusions
to be derived from the individual axioms.”

The Grundlagen was an immediate success, drawing the following reaction from Henri
Poincaré (1858–1912): “The logical point of view alone appears to interest Professor
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Hilbert. Being given a sequence of propositions, he finds that all follow logically from the
first. With the foundation of this first proposition, with its psychological origin, he does
not concern himself . . . . The axioms are postulated; we do not know from whence they
come; it is then as easy to postulate A as C . . . . His work is thus incomplete, but this is
not a criticism I make against him. Incomplete one must indeed resign oneself to be. It is
enough that he has made the philosophy of mathematics take a step forward . . . .”

The philosophical and foundational aspects of Hilbert’s efforts are clear. However, the
mathematical aspects are not the focus of most discussions of the Grundlagen. Among the
exercises in independence he has introduced new objects—in particular, non-Archimedean
geometries. By isolating the relations among axiom groups, one can discover how the failure
of one or more of the assumptions produces new results, the model of this activity being
non-Euclidean geometry. His experience in algebra and number theory also supported this
view, that the axiomatic method sharpened one’s tools with which to craft new arguments,
discover new phenomena, and retain the past in a tidy manner to boot.

Another Göttingen product of importance to Bourbaki is in the same spirit: Mod-
erne Algebra by B.L. van der Waerden (1903–1996) first appeared in 1930, giving an
organized account of algebra based on axioms that revealed the similarity in approaches
to certain results. The notion of isomorphism plays an important role in algebra and later
surfaces as a leitmotif for Bourbaki.

It is important to see that Hilbert and van der Waerden, though formal in presentation,
really sought mathematical goals that were not about the past, to recover a complete
description of a known theory, but were forward-looking, providing the mathematician
with a slim but firm scaffolding on which many new results could be built. The degree to
which this view became part of the manner in which modern mathematics was done can
be measured by the natural feel we have today for this sort of presentation. It was not
always so.

Algebraic Topology chez Bourbaki

A côté des structures algébriques (groupes, anneaux, corps, etc.) . . . dans toutes les parties
de l’Analyse, des structures d’une autre sorte : ce sont celles où l’on donne un sens
mathématique aux notions intuitives de limite, de continuité et de voisinage.

Bourbaki, Topologie 1965

The goal of producing a modern, robust, and universal text led to the most char-
acteristic quality of Bourbaki—a topic was discussed repeatedly in an effort to “digest
mathematics, to go to the essential points, and reformulate the math in a more compre-
hensive and conceptual way [Borel].” The sessions were animated to achieve this goal;
after the war, there is a record in La Tribu of the rebirth of what were considered classic
duels between Cartan and Dieudonné. With their work style and clear goal, “whatever was
accepted would be incorporated without any credit to the author. Altogether, a truly un-
selfish, anonymous, demanding work by people striving to give the best possible exposition
of basic mathematics, moved by their belief in its unity and ultimate simplicity [Borel].”

From the first 1935 summer meeting we have the earliest list of topics dates and those
responsible for a write-up:
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Abstract sets (HC)

Algebra (Delsarte)

Real numbers (Dieudonné)

Topology. Theorems of existence (AW, deP)

Integration

Real functions, series, infinite products

Inequalities: O and o
Calculus of differential forms

Geometry

Analytic functions: general part

The subject of topology appears in the list and there was a discussion in the spring
of 1935 of possible texts that would support their presentation. The classic books by
Kerekjarto, Seifert and Threlfall, and Kuratowski were mentioned (none in French). In
the first issues of the Journal de Bourbaki (later to become La Tribu), edited by Delsarte,
it was reported that Weil was reading the newly published Topologie I of Alexandroff and
Hopf, and this text was expected to help them avoid any errors in their presentations. The
team writing the topology section, Weil, de Possel, and Henri Cartan are reported in 1936
to be reading (Weil), sleeping (de Possel), or to have written nothing but still thinking
about it (Cartan).

The earliest references to ‘algebraic topology’ in the reports to Bourbaki use the term
to refer to duality in topological groups—a discussion later to become ‘topological alge-
bra.’ In the 1930’s the essential points of combinatorial topology was discussed among the
Bourbaki: already at the summer conference of 1935, an outline by Weil includes dimen-
sion, intersection, linking, degree of mappings, and the index of fixed points among the
combinatorial topics. The fundamental group (groupe de Poincaré) and covering surfaces
were also included. By 1938, Weil made a report on degree and combinatorial topology.

By 1937 there was a plan for the first volumes together with a target date—completion
of the first volume by 1.I.1938. The paquet abstrait had grown to include the topics of
set theory, algebra, set-theoretic topology and abstract integration. In fact, in keeping
with the goal of producing a toolbox for mathematicians, the first publication was not a
textbook but a list of results (un fascicule de résultats sans demonstations) on set theory.
Beginning the march toward analysis, it was agreed that set theory served as a basis for
future volumes.

Plans for the future volumes were discussed in the Journal de Bourbaki until 1940
when the Journal was replaced by La Tribu (Bullétin, apériodique et bourbachique). By
the time of La Tribu the use of the notion of structure dominated the formulation of the
publishing project. As described later in Bourbaki’s entry in Le Lionnais’s Les grands
courants de la pensée mathématique, there were ‘mother-structures,’ simplest and shared
by many mathematical activities; beyond this, one finds ‘multiple structures’ which blend
some number of the mother-structures, for example, topological groups blend the group
structure with continuity, while order structures together with algebraic structures give
rise to the study of ideals and to integration.

It is this organization by structures that is Bourbaki’s lasting legacy. The influence of
this notion was far-reaching, even including a psychological discussion of development by
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Jean Piaget that cites a correspondence between the mother-structures and a child’s first
forms of interaction with the world.

Based on the hierarchy of structures, the plan for the Élements de Mathématique
broke into parts. Part I dealt with the fundamental structures of analysis. In La Tribu of
3–15.IX.1940, Part II treated linear analysis, Part III algebraic analysis (to include elliptic
functions, the theory of numbers), and Part IV differential topology. We find algebraic
topology (that is, combinatorial topology) in this scheme in Part I.

Book 1. Set theory

Book 2. Algebra

Book 3. General topology

Book 4. Topological vector spaces

Book 5. Elementary techniques of infinitesimal calculus

Book 6. Integration

Book 7. Combinatorial topology

Book 8. Differentials

Book 9. Calculus of variation

Book 10. Analytic functions

A 25 page report on the shape of books 3 and 7 was titled Topologia Bourbachica in
which the main topics were I. general topology, 2. topological degree, 3. covering spaces and
the Poincaré group, and 4. combinatorial topology (surfaces, Betti groups, Euler-Poincaré
formula, indices of vector fields).

Weil was reported to be ‘meditating’ on the subject of Books 7 and 8, while Ehres-
mann was working on parts 3 and 4 of Book 7. In late 1941, these books were listed as
urgently in need of work, “la rédaction a le regret . . . que ces livres brillent toujours par
leur inexistence.”∗

The summer meeting of 1942 (in Clermont) presented a new organization of Part I:

1. Sets

2. Algebra

3. General Topology

4. Functions of a real variable (elementary theory)

5. Combinatorial topology

6. Topological vector spaces

7. Differential calculus and manifolds

8. Integral calculus and differential forms

9. Analytic functions

On this plan little progress on algebraic topology took place. In La Tribu no. 10 of
10–15.IV.1944, it is reported that “le récent Congrés Bourbaki que s’est tenu à Paris du 6

∗ “the editors regret . . . that these books are conspicuous by their nonexistence.”
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au 8 Avril 1944 n’on a pas moins réalisé au progrés important et depuis longtemps souhaité
par la rédaction: le demarrage de la Topologie algébrique.”∗

A description of the core of the subject at the time was given, however: a) there should
be no Menger theory of curves, no graphs, no Peano continua, no continua; b) a chapter on
knots; c) higher homotopy groups and fibre spaces, which they deemed interesting, having
a future, but at present in a state “trop larvaire.” The development of this topic took
place during the war with the work of Ehresmann, Feldbau, Cartan, and Leray in France,
Steenrod and Whitney in the US, and Hopf and Eckmann in Switzerland (see [McCleary]).

La Tribu of 11–15 July 1945 contains a picture of the dependencies among topics in
Part I, once again featuring algebraic topology near the foundations.

I.Sets

II. Algebra III. General Topology

V. Elementary Book

VI. TVS VII. Integration

IX. Analytic Functions VIII. Differentials

X. Fibre spaces, differential geometry, Lie groups

IV. Algebraic Topology

11-15.IV.1945 Congress in Paris, from La Tribu no. 8

The 1947 organization of the general plan changed again—the basics now broke up
into blocs:

General Plan

I. Sets, II. Algebra, III. General Topology

Linear bloc: IV. Functions of a real variable,

V. Topological vector spaces, VI. Integration, VII. Local differentials

Topologico-differential bloc: VIII. Algebraic topology, IX. Manifolds,

X. Lie groups

∗ “the recent Bourbaki Congress that was held in Paris from the 6th to the 8th of
April 1944 nevertheless realized important progress, long wished for by the editors: the
beginning of algebraic topology.”
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In 1946, with the end of World War II, and travel easier, Samuel Eilenberg (1913–
1998) was drafted as a member, explicitly to prepare a report on algebraic topology. By
1949 there was an 82-page document, Rapport SEAW sur la topologie préhomologique,
by Eilenberg and Weil, treating the important aspects of the topology of fibre spaces. This
densely written report developed the point-set properties of fibre spaces, including some
new ideas. For example, they defined the épiderme of a space (with the parenthetical
remark, pourquoi pas); this “skin” is a covering of the space with good properties of ex-
tension.

It is the 1950 Grand Plan that gives the familiar list of topics to be treated:
Part I.

1. Sets

2. Algebra

3. General topology

3
bis

. Geometric topology

4. Functions of a real variable

5. Topological vector spaces

6. Integration

7. Manifolds

8. Analytic functions

9. Lie groups

Part II treated Commutative Algebra, Part III Algebraic Topology and its applications,
and Part IV Functional Analysis.

The new topic, Geometric topology, was named by Serre to treat topics like coverings,
fibre spaces, homotopy, polyhedra, retracts, and the fundamental group. This term went
on in the literature, but it did not sit well with the Bourbaki who coined other terms to
mock it.

So What Happened?

Furthermore, in a time in which indiscriminate use of science and technology threatens
the future of the human race, or at least the future of what we now call civilization, it is
surely essential that a well integrated report about our mathematical endeavors be written
and kept for the use of a later day “Renaissance.”

Pierre Samuel, 1972

Another French enterprise was born about this time that affected the efforts to bring
a text on algebraic topology together. In 1948/49, the Séminaire Henri Cartan began in
Paris. Cartan had just come from Harvard in 1948, having spoken on topological notions,
especially what later became sheaves. From its inception the seminar treated topological
themes, beginning with basic notions in 48/49 and going on to treat fibre spaces, spectral
sequences, sheaves, homology of groups and Eilenberg-Mac Lane spaces, in later years. The
level of exposition of these lectures was consistent with the expectations of the Bourbaki,
and many of the lectures were given by then current members of Bourbaki.

The discussions of algebraic topology in the earliest plans for Élements de mathématique
and its appearance among the basic tools for the intended audience of Bourbaki make it
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clear what status the topic had for the group. However, the development of the subject
was so rapid in the post-war years that it could not be understood in the manner that the
Bourbaki set as a standard for their published work—that the essential concepts be iden-
tified, and the axiomatic basis presented in such a way that the main theorems would be
smoothly proven from first principles. The collateral development of homological algebra,
which would provide a tool for algebraic topology was finally taken up by Bourbaki, but
only in recent times (1980). It is significant that some of this development was carried out
by members of Bourbaki itself—Cartan, Eilenberg, Serre, Borel, and others. The press of
new discoveries caused Bourbaki to wait.

The published work of Bourbaki does not make for easy reading. The austere style
is associated with a monolithic view of the unity of mathematics that is precisely and
properly presented in their work. The philosophical cadre of “structure” as guidepost and
goal makes for a good explanation of the finished product. However, the record of the
archives tells a different story. The austerity is a result of group editing. The course of
a document was almost chaotic from first presentation to final publication, spiced by the
lively interchanges of mathematicians of the first order, committed to an extraordinary
standard.

From the point of view of an enterprise, Bourbaki’s Élements stands out as an effort
to rebuild a mathematical culture, based on a method (the axiomatic method) that was
seen to be fruitful, by a collective of gifted mathematicians whose anonymity in their work
was offset by the joie de vivre the process involved. We should all be so moved to do the
same. And I wonder what kind of report on algebraic topology we would produce today.
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“She shaves herself”

The Barber paradox is attributed to the British philosopher Bertrand Russell. It highlights a fundamental 

problem in mathematics, exposing an inconsistency in the basic principles on which mathematics is 

founded.

The barber paradox asks us to consider the following situation:

In a village, the barber shaves everyone who does not shave himself, but no one else.

The question that prompts the paradox is this:

Who shaves the barber?

No matter how we try to answer this question, we get into trouble.

If we say that the barber shaves himself, then we get into trouble. The barber shaves only those who do 

not shave themselves, so if he shaves himself then he doesn!t shave himself, which is self-contradictory.

If we say that the barber does not shave himself, then problems also arise. The barber shaves everyone 

who does not shave himself, so if he doesn!t shave himself then he shaves himself, which is again absurd.

Even if we try to get clever, saying that the barber is a woman, we do not evade the paradox. If the barber is 

a woman, then she either shaves herself (and so is one of the people not shaved by the barber), or does 

not shave herself (and so is one of the people shaved by the barber).

Both cases, then, are impossible; the barber can neither shave himself nor not shave himself. The 

question "Who shaves the barber?! is unanswerable.

Grothendieck: To ask the question is to 

commit a category error.

Bourbaki should be redone based on category theory--at least until 

something more fundamental is discovered



Barber paradox

From Wikipedia, the free encyclopedia

This article is about a paradox of self-reference. For an unrelated paradox in the theory of logical conditionals with a similar name, introduced by Lewis

Carroll, see the Barbershop paradox.

The Barber paradox is a puzzle derived from Russell's paradox. It was used by Bertrand Russell himself as an illustration of the paradox, though he attributes

it to an unnamed person who suggested it to him.
[1]

 It shows that an apparently plausible scenario is logically impossible.
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The paradox

Suppose there is a town with just one male barber; and that every man in the town keeps himself clean-shaven: some by shaving themselves, some by

attending the barber. It seems reasonable to imagine that the barber obeys the following rule: He shaves all and only those men in town who do not shave

themselves.

Under this scenario, we can ask the following question: Does the barber shave himself?

Asking this, however, we discover that the situation presented is in fact impossible:

If the barber does not shave himself, he must abide by the rule and shave himself.

If he does shave himself, according to the rule he will not shave himself.

History

This paradox is often attributed to Bertrand Russell (e.g., by Martin Gardner in Aha!). It was suggested to him as an alternate form of Russell's paradox,
[1]

which he had devised to show that set theory as it was used by Georg Cantor and Gottlob Frege contained contradictions. Of the Barber paradox, Russell said

the following:

That contradiction [Russell's paradox] is extremely interesting. You can modify its form; some forms of modification are valid and some are not. I once had
a form suggested to me which was not valid, namely the question whether the barber shaves himself or not. You can define the barber as "one who shaves
all those, and those only, who do not shave themselves." The question is, does the barber shave himself? In this form the contradiction is not very difficult to
solve. But in our previous form I think it is clear that you can only get around it by observing that the whole question whether a class is or is not a member
of itself is nonsense, i.e. that no class either is or is not a member of itself, and that it is not even true to say that, because the whole form of words is just
noise without meaning.

– Bertrand Russell, The Philosophy of Logical Atomism

This point is elaborated further under Applied versions of Russell's paradox.

In prolog

In Prolog, one aspect of the Barber paradox can be expressed by a self-referencing clause:

 shaves(barber, X) :- male(X), not shaves(X,X).
 male(barber).

where negation as failure is assumed. If we apply the stratification test known from Datalog, the predicate shaves is exposed as unstratifiable since it is defined
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recursively over its negation.

In first-order logic

This sentence is unsatisfiable (a contradiction) because of the universal quantifier. The universal quantifier y will include every single element in the domain,

including our infamous barber x. So when the value x is assigned to y, the sentence can be rewritten to , which

simplifies to , a contradiction.

In literature

In his book Alice in Puzzleland, the logician Raymond Smullyan had the character Humpty Dumpty explain the apparent paradox to Alice. Smullyan argues

that the paradox is akin to the statement "I know a man who is both five feet tall and six feet tall," in effect claiming that the "paradox" is merely a

contradiction, not a true paradox at all, as the two axioms above are mutually exclusive.

A paradox is supposed to arise from plausible and apparently consistent statements; Smullyan suggests that the "rule" the barber is supposed to be following is

too absurd to seem plausible.

Non-paradoxical variations

A modified version of the Barber paradox is frequently encountered in the form of a brainteaser puzzle or joke. The joke is phrased nearly identically to the

standard paradox, but omitting a detail that allows an answer to escape the paradox entirely. For example, the puzzle can be stated as occurring in a small town

whose barber claims: I shave all and only the men in our town who do not shave themselves. This version omits the gender of the barber, so a simple solution

is that the barber is a woman. The barber's claim applies to only "men in our town," so there is no paradox if the barber is a woman (or a gorilla, or a child, or

a man from some other town--or anything other than a "man in our town"). Such a variation is not considered to be a paradox at all: The true Barber paradox

requires the contradiction arising from the situation where the barber's claim applies to himself.

Notice that the paradox still occurs if we claim that the barber is a man in our town with a beard. In this case, the barber does not shave himself (because he has

a beard); but then according to his claim (that he shaves all men who do not shave themselves), he must shave himself.

In a similar way, the paradox still occurs if the barber is a man in our town who cannot grow a beard. (Perhaps he lost all facial hair follicles in a painful

accident). Once again, he does not shave himself (because he has no hair on his face), but that implies that he does shave himself.

In music

Chip Hop (rap) artist MC Plus+ refers to the Barber paradox in his song "Man Vs Machine" from the album Chip Hop. He uses it to defeat his own

fictional AI opponent, Max Flow, in a rap-battle.

Dub legend King Tubby claims that he himself shaves the Barber, in the tune "I Trim The Barber".

References

^ 
a
 
b
 The Philosophy of Logical Atomism, reprinted in The Collected Papers of Bertrand Russell, 1914-19, Vol 8., p. 2281.
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A category with objects X, Y, Z
and morphisms f and g

Category theory

From Wikipedia, the free encyclopedia

In mathematics, category theory deals in an abstract way with mathematical structures and relationships between them: it

abstracts from sets and functions to objects linked in diagrams by morphisms or arrows.

One of the simplest examples of a category (which is a very important concept in topology) is that of groupoid, defined as

a category whose arrows or morphisms are all invertible. Categories now appear in most branches of mathematics and also

in some areas of theoretical computer science where they correspond to types and mathematical physics where they can be

used to describe vector spaces. Category theory provides both with a unifying notion and terminology. Categories were

first introduced by Samuel Eilenberg and Saunders Mac Lane in 1942–45, in connection with algebraic topology.

Category theory has several faces known not just to specialists, but to other mathematicians. A term dating from the 1940s,

"general abstract nonsense", refers to its high level of abstraction, compared to more classical branches of mathematics.

Homological algebra is category theory in its aspect of organising and suggesting manipulations in abstract algebra.

Diagram chasing is a visual method of arguing with abstract "arrows" joined in diagrams. Note that arrows between

categories are called functors, subject to specific defining commutativity conditions; moreover, categorical diagrams and

sequences can be defined as functors (viz. Mitchell, 1965). An arrow between two functors is a natural transformation when it is subject to certain naturality or

commutativity conditions. Both functors and natural transformations are key concepts in category theory, or the " real engines" of category theory. To

paraphrase a famous sentence of the mathematicians who founded category theory: 'Categories were introduced to define functors, and functors were

introduced to define natural transformations'. Topos theory is a form of abstract sheaf theory, with geometric origins, and leads to ideas such as pointless

topology. A topos can also be considered as a specific type of category with two additional topos axioms.
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Background

The study of categories is an attempt to axiomatically capture what is commonly found in various classes of related mathematical structures by relating them

to the structure-preserving functions between them. A systematic study of category theory then allows us to prove general results about any of these types of

mathematical structures from the axioms of a category.

Consider the following example. The class Grp of groups consists of all objects having a "group structure". More precisely, Grp consists of all sets G

endowed with a binary operation satisfying a certain set of axioms. One can proceed to prove theorems about groups by making logical deductions from the set

of axioms. For example, it is immediately proved from the axioms that the identity element of a group is unique.

Instead of focusing merely on the individual objects (e.g., groups) possessing a given structure, category theory emphasizes the morphisms – the structure-

preserving mappings – between these objects; it turns out that by studying these morphisms, we are able to learn more about the structure of the objects. In the

case of groups, the morphisms are the group homomorphisms. A group homomorphism between two groups "preserves the group structure" in a precise sense

– it is a "process" taking one group to another, in a way that carries along information about the structure of the first group into the second group. The study of

group homomorphisms then provides a tool for studying general properties of groups and consequences of the group axioms.

A similar type of investigation occurs in many mathematical theories, such as the study of continuous maps (morphisms) between topological spaces in

topology (the associated category is called Top), and the study of smooth functions (morphisms) in manifold theory.

If one axiomatizes relations instead of functions, one obtains the theory of allegories.
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Functors

Abstracting again, a category is itself a type of mathematical structure, so we can look for "processes" which preserve this structure in some sense; such a

process is called a functor. A functor associates to every object of one category an object of another category, and to every morphism in the first category a

morphism in the second.

In fact, what we have done is define a category of categories and functors – the objects are categories, and the morphisms (between categories) are functors.

By studying categories and functors, we are not just studying a class of mathematical structures and the morphisms between them; we are studying the

relationships between various classes of mathematical structures. This is a fundamental idea, which first surfaced in algebraic topology. Difficult topological

questions can be translated into algebraic questions which are often easier to solve. Basic constructions, such as the fundamental group or fundamental

groupoid (http://planetphysics.org/encyclopedia/FundamentalGroupoidFunctor.html) of a topological space, can be expressed as fundamental functors

(http://planetphysics.org/encyclopedia/FundamentalGroupoidFunctor.html) to the category of groupoids in this way, and the concept is pervasive in algebra

and its applications.

Natural transformation

Abstracting yet again, constructions are often "naturally related" – a vague notion, at first sight. This leads to the clarifying concept of natural transformation, a

way to "map" one functor to another. Many important constructions in mathematics can be studied in this context. "Naturality" is a principle, like general

covariance in physics, that cuts deeper than is initially apparent.

Historical notes

In 1942–45, Samuel Eilenberg and Saunders Mac Lane were the first to introduce categories, functors, and natural transformations as part of their work in

topology, especially algebraic topology. Their work was an important part of the transition from intuitive and geometric homology to axiomatic homology

theory. Eilenberg and Mac Lane later wrote that their goal was to understand natural transformations; in order to do that, functors had to be defined, which

required categories.

Stanislaw Ulam, and some writing on his behalf, have claimed that related ideas were current in the late 1930s in Poland. Eilenberg was Polish, and studied

mathematics in Poland in the 1930s. Category theory is also, in some sense, a continuation of the work of Emmy Noether (one of Mac Lane's teachers) in

formalizing abstract processes; Noether realized that in order to understand a type of mathematical structure, one needs to understand the processes preserving

that structure. In order to achieve this understanding, Eilenberg and Mac Lane proposed an axiomatic formalization of the relation between structures and the

processes preserving them.

The subsequent development of category theory was powered first by the computational needs of homological algebra, and later by the axiomatic needs of

algebraic geometry, the field most resistant to being grounded in either axiomatic set theory or the Russell-Whitehead view of united foundations. General

category theory, an extension of universal algebra having many new features allowing for semantic flexibility and higher-order logic, came later; it is now

applied throughout mathematics.

Certain categories called topoi (singular topos) can even serve as an alternative to axiomatic set theory as a foundation of mathematics. These foundational

applications of category theory have been worked out in fair detail as a basis for, and justification of, constructive mathematics. More recent efforts to

introduce undergraduates to categories as a foundation for mathematics include Lawvere and Rosebrugh (2003) and Lawvere and Schanuel (1997).

Categorical logic is now a well-defined field based on type theory for intuitionistic logics, with applications in functional programming and domain theory,

where a cartesian closed category is taken as a non-syntactic description of a lambda calculus. At the very least, category theoretic language clarifies what

exactly these related areas have in common (in some abstract sense).

Categories, objects and morphisms

A category C consists of the following three mathematical entities:

A class ob(C), whose elements are called objects;

A class hom(C), whose elements are called morphisms or maps or arrows. Each morphism f has a unique source object a and target object b. We write f:

a ! b, and we say "f is a morphism from a to b". We write hom(a, b) (or Hom(a, b), or hom
C

(a, b), or Mor(a, b), or C(a, b)) to denote the hom-class of

all morphisms from a to b.

A binary operation , called composition of morphisms, such that for any three objects a, b, and c, we have hom(a, b) ! hom(b, c) ! hom(a, c). The

composition of f: a ! b and g: b ! c is written as  or gf (some authors write fg), governed by two axioms:

Associativity: If f : a ! b, g : b ! c and h : c ! d then , and

Identity: For every object x, there exists a morphism 1
x
 : x ! x called the identity morphism for x, such that for every morphism f : a ! b, we have

.

From these axioms, it can be proved that there is exactly one identity morphism for every object. Some authors deviate from the definition just given by

identifying each object with its identity morphism.

Relations among morphisms (such as fg = h) are often depicted using commutative diagrams, with "points" (corners) representing objects and "arrows"

representing morphisms.

Properties of morphisms
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Some morphisms have important properties. A morphism f : a ! b is:

a monomorphism (or monic) if fog
1
 = fog

2
 implies g

1
 = g

2
 for all morphisms g

1
, g

2
 : x ! a.

an epimorphism (or epic) if g
1
of = g

2
of implies g

1
 = g

2
 for all morphisms g

1
, g

2
 : b ! x.

an isomorphism if there exists a morphism g : b ! a with fog = 1
b
 and gof = 1

a
.
[1]

an endomorphism if a = b. end(a) denotes the class of endomorphisms of a.

an automorphism if f is both an endomorphism and an isomorphism. aut(a) denotes the class of automorphisms of a.

Functors

Functors are structure-preserving maps between categories. They can be thought of as morphisms in the category of all (small) categories.

A (covariant) functor F from a category C to a category D, written F:C ! D, consists of:

for each object x in C, an object F(x) in D; and

for each morphism f : x ! y in C, a morphism F(f) : F(x) ! F(y),

such that the following two properties hold:

For every object x in C, F(1
x
) = 1

F(x)
;

For all morphisms f : x ! y and g : y ! z, 

A contravariant functor F: C ! D, is like a covariant functor, except that it "turns morphisms around" ("reverses all the arrows"). More specifically, every

morphism f : x ! y in C must be assigned to a morphism F(f) : F(y) ! F(x) in D. In other words, a contravariant functor is a covariant functor from the

opposite category C
op

 to D.

Natural transformations and isomorphisms

A natural transformation is a relation between two functors. Functors often describe "natural constructions" and natural transformations then describe "natural

homomorphisms" between two such constructions. Sometimes two quite different constructions yield "the same" result; this is expressed by a natural

isomorphism between the two functors.

If F and G are (covariant) functors between the categories C and D, then a natural transformation from F to G associates to every object x in C a morphism "
x
 :

F(x) ! G(x) in D such that for every morphism f : x ! y in C, we have "
y
 o F(f) = G(f) o "

x
; this means that the following diagram is commutative:

The two functors F and G are called naturally isomorphic if there exists a natural transformation from F to G such that "
x
 is an isomorphism for every object x

in C.

Universal constructions, limits, and colimits

Using the language of category theory, many areas of mathematical study can be cast into appropriate categories, such as the categories of all sets, groups,

topologies, and so on. These categories surely have some objects that are "special" in a certain way, such as the empty set or the product of two topologies, yet

in the definition of a category, objects are considered to be atomic, i.e., we do not know whether an object A is a set, a topology, or any other abstract concept –

hence, the challenge is to define special objects without referring to the internal structure of those objects. But how can we define the empty set without

referring to elements, or the product topology without referring to open sets?

The solution is to characterize these objects in terms of their relations to other objects, as given by the morphisms of the respective categories. Thus, the task is

to find universal properties that uniquely determine the objects of interest. Indeed, it turns out that numerous important constructions can be described in a

purely categorical way. The central concept which is needed for this purpose is called categorical limit, and can be dualized to yield the notion of a colimit.

Equivalent categories

It is a natural question to ask: under which conditions can two categories be considered to be "essentially the same", in the sense that theorems about one

category can readily be transformed into theorems about the other category? The major tool one employs to describe such a situation is called equivalence of

categories, which is given by appropriate functors between two categories. Categorical equivalence has found numerous applications in mathematics.

Further concepts and results
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The definitions of categories and functors provide only the very basics of categorical algebra; additional important topics are listed below. Although there are

strong interrelations between all of these topics, the given order can be considered as a guideline for further reading.

The functor category D
C

 has as objects the functors from C to D and as morphisms the natural transformations of such functors. The Yoneda lemma is

one of the most famous basic results of category theory; it describes representable functors in functor categories.

Duality: Every statement, theorem, or definition in category theory has a dual which is essentially obtained by "reversing all the arrows". If one

statement is true in a category C then its dual will be true in the dual category C
op

. This duality, which is transparent at the level of category theory, is

often obscured in applications and can lead to surprising relationships.

Adjoint functors: A functor can be left (or right) adjoint to another functor that maps in the opposite direction. Such a pair of adjoint functors typically

arises from a construction defined by a universal property; this can be seen as a more abstract and powerful view on universal properties.

Higher-dimensional categories

Many of the above concepts, especially equivalence of categories, adjoint functor pairs, and functor categories, can be situated into the context of higher-

dimensional categories. Briefly, if we consider a morphism between two objects as a "process taking us from one object to another", then higher-dimensional

categories allow us to profitably generalize this by considering "higher-dimensional processes".

For example, a (strict) 2-category is a category together with "morphisms between morphisms", i.e., processes which allow us to transform one morphism into

another. We can then "compose" these "bimorphisms" both horizontally and vertically, and we require a 2-dimensional "exchange law" to hold, relating the two

composition laws. In this context, the standard example is Cat, the 2-category of all (small) categories, and in this example, bimorphisms of morphisms are

simply natural transformations of morphisms in the usual sense. Another basic example is to consider a 2-category with a single object; these are essentially

monoidal categories. Bicategories are a weaker notion of 2-dimensional categories in which the composition of morphisms is not strictly associative, but only

associative "up to" an isomorphism.

This process can be extended for all natural numbers n, and these are called n-categories. There is even a notion of !-category corresponding to the ordinal

number #.

Higher-dimensional categories are part of the broader mathematical field of higher-dimensional algebra,a concept introduced by Ronald Brown. For a

conversational introduction to these ideas, see John Baez, 'A Tale of n-categories' (1996). (http://math.ucr.edu/home/baez/week73.html)

See also

List of category theory topics

Important publications in category theory

Glossary of category theory

Domain theory

Enriched category theory

Higher category theory

Timeline of category theory and related mathematics

Higher-dimensional algebra

Notes

^ Note that a morphism that is both epic and monic is not necessarily an isomorphism! For example, in the category consisting of two objects A and B, the identity
morphisms, and a single morphism f from A to B, f is both epic and monic but is not an isomorphism.
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Down with Euclid!

Death to Triangles!





Crying `Death to Triangles!' a generation of mathematicians tried to eliminate geometry in favor of algebra. 
Were it not for Donald Coxeter, they might have succeeded.

FOR A LOT OF PEOPLE, talk of geometry induces flashbacks to high school math class anxieties-fumbling with compasses and protractors and memorizing 
triangle theorems. So the idea that geometry was once on the brink of extinction as an academic subject does not elicit much regret or nostalgia.

We owe a lot to geometry, however. Geometric algorithms generate the aerodynamic curves of Mercedes-Benz sedans and Boeing aircraft, make possible 
computer-animated films such as Pixar's ``The Incredibles," and power the data-mining technology used by Amazon.com to find patterns in massive amounts of 
raw information. Geometry governs in things small (the molecular structure of pharmaceuticals) and large (the shape of our universe).

Yet despite these modern applications, geometry was, for much of the 20th century, a discipline very much in jeopardy. It was deemed by a generation of 
mathematicians to be old-fashioned, a fine recreation for idling away a lazy afternoon, but in essence little more than a trivial tinkering with toys. Modern 
mathematics was all about prickly algebraic symbols and undulating equations-impenetrable hieroglyphs with no diagrams, no shapes.

The task of fending off these attacks fell to H.S.M. ``Donald" Coxeter, the greatest classical geometer of the last century. Through his lifelong work as geometry's 
apostle, Coxeter, who died in 2003 at 96 (prematurely by his measure-his lifelong vegetarianism guaranteed he should live to 100, he figured), became known by 
his followers around the world as ``the man who saved geometry" in a mathematical era characterized by all things algebraic, abstract, and austere.

Fifty years ago this summer, Coxeter was summoned by the Mathematical Association of America on a roving lecture tour through the United States. He traveled as 
far north as Fairbanks, Alaska, as far west as Stanford, Calif., and east to New York City, speaking with a missionary's zeal to schoolteachers and any other willing 
listeners.

Coxeter lectured about ``the beauteous properties of triangles," about circles and spheres, and about the Platonic solids: the tetrahedron, cube, octahedron, 
icosahedron, and dodecahedron. According to a recent cosmological hypothesis (and a similar theory put forth by Plato) the dodecahedron is a potential model for 
the shape of the universe-bound by 12 walls, each the shape of a pentagon.

Coxeter had a special affection for the Platonic solids. Educated at Cambridge, in his native England, he spent most of his professional life at the University of 
Toronto. But before coming to Toronto he did a two-year stint at Princeton. It was there that he launched his career, choosing as his specialty polytopes, an 
extension of the Platonic solids in higher dimensions.

But just as Coxeter set out upon his career, classical geometry-with its emphasis on shapes and diagrams-was being supplanted by modern mathematicians' 
penchant for algebra.

A secret society of the créme de la créme of French mathematicians epitomized the shift in the mathematical zeitgeist of the early 20th century. Writing under the 
pseudonym Nicolas Bourbakis, the collective set out in the 1930s to rewrite the history of mathematics in one grand mathematical treatise, and perhaps the most 
distinctive feature of their work was the absence of diagrams.

The Bourbakis espoused mathematical rationality and rigor. They believed the subjective and fallible visual sense was easily led astray, falling victim to 
impressionistic reasoning. In 1959, at a conference in France addressing the need to overhaul the French education system, Jean Dieudonné, a founding member 
of the Bourbakis and the group's scribe, infamously proclaimed: ``Down with Euclid! Death to Triangles!"

Eventually, the Bourbakis way of mathematics pervaded the Western world, reaching even into grade schools with the Sputnik-motivated New Math reforms of the 
1960s, which aimed to improve students' performance and to ensure America was not left in the scientific dust by the Soviet Union. Instead of shapes, children 
studied axioms and set theory.

As a consequence, mathematical and scientific investigation suffered from what Walter Whiteley, a great admirer of Coxeter and director of applied mathematics at 
York University in Toronto, calls the ``geometry gap." Whiteley's thesis holds that when the areas of the brain that process visual and geometric concepts fall into 
disuse, the realms of mathematics and science suffer as well.

So Coxeter set out to make the case for the visual geometric approach, using a number of tactics.

On a popular level, he proselytized for the classical geometric treasures he loved, praising their simple beauty and symmetry. The elegance of his talks and essays 
gained him an avid following around the world, a fan base of professional and amateur geometers alike who became just as passionate about classical geometry 
as he was.

Coxeter, for example, was muse to artist M.C. Escher, famous for works like ``Ascending and Descending," a seemingly precarious building of stairs winding in an 
infinite loop. Coxeter and Escher became friends in the 1950s, and the mathematician's work assisted the artist in his quest to convincingly capture the concept of 
infinity. (Escher was known to say, ``I'm Coxetering today!") It was a unique collaboration, since Escher, who had no mathematical background, drew entirely from 
Coxeter's geometric diagrams for inspiration, referring to the accompanying equations as Coxeter's ``hocus-pocus math."

But Coxeter did more than just popularize. He also managed to reinvigorate the discipline through his academic research. He injected a modern relevance, 
allowing classical geometry to transcend its old-fashioned origins and find far-reaching applications in both mathematics and the sciences.

Specifically, Coxeter classified the symmetries of polytopes, which allowed him to translate these geometric entities into algebra, thus building a powerful bridge 
between algebra and geometry.

Coxeter also invented mathematical tools-now called Coxeter groups, Coxeter numbers, and Coxeter diagrams-which shed new light on symmetry, broadening 
and deepening its study. His best-selling book, ``Regular Polytopes," became a classic. ``It's like the bible for me. I refer to it all the time," said John Ratcliffe from 
Vanderbilt University in Nashville, who has one copy at work and another in his study at home for late-night consultations.

Symmetry underpins all mathematics-an equation being an expression of perfect balance. And it's present throughout nature as well-everything from the smallest 
spec of a subatomic particle, to a sunflower, to the shape of the universe and the hypothetical parallel universes that mirror our own exhibits symmetry. Applications 
of Coxeter's work pop up in just about any niche of mathematics or science that explores patterns and symmetry. In fact, Coxeter groups are being used in 
conjunction with Einstein's equations in the search for supersymmetry, which holds promise to unravel the puzzle of string theory.

The visual and the algebraic perspectives are in constant flux in the mathematical and scientific disciplines. ``The battle between geometry and algebra is like the 
battle between the sexes," said Sir Michael Atiyah, honorary professor of mathematics at Edinburgh University. ``It's the kind of problem that never disappears. It'll 
never be dead, and it will never get solved. The question is, `What is the right balance?"'

``It goes back and forth, and not in an accidental way," said Peter Galison, professor of the history of science and physics at Harvard. ``Pushing hard on the visual 
methods ends up pushing toward the antivisual. Beliefs swing between an almost theological dogma that images are stepping stones to higher knowledge, or that 
they are deceptive idols that keep us from higher understanding."

Coxeter's legacy is the powerful push he gave the visual geometric method, and the resulting change in perspective that transformed the way mathematicians and 
scientists create and investigate. ``Coxeter's perspective and ideas are in the air we breathe," said Ravi Vakil, at Stanford. ``It's not that his ideas are used to solve 
problems, it's that the fundamental problems grow out of his ideas. He's the soil."



"King of Infinite Space can be enjoyed even without a specialized knowledge of geometry or math. (Ms. Roberts's own exposition is admirably clear 
and conscientiously footnoted.) And the book's narrative is heartening. Too often -- think of A Beautiful Mind or Proof -- mathematicians are portrayed 
these days as seriously disturbed or weirdly obsessed or burnt out at an early age. Here, by contrast, is the true story of an eminent mathematician, 
active, alert, acute and ever alive to new ideas over a period of 80 years."
—WALL STREET JOURNAL, by Robert Osserman, special projects director of the Mathematical Sciences Research Institute in Berkeley, Calif.

"Roberts takes readers on a wide-ranging tour of contexts in which Coxeter's beloved symmetries have made themselves known, from geodesic 
domes to the error-correcting codes that make digital recording possible. As always, what is beautiful has ended up being useful... King of Infinite 
Space is exhaustive and definitive. Roberts's painstaking research, documented by 73 pages of endnotes, turns up many gems. Especially notable is 
Roberts's access to Coxeter's diaries, which inject the book with anecdotes of rather startling candor.Invaluable... There is no substitute for Coxeter, 
and no substitute for this long-overdue treatment of his life."
—WASHINGTON POST, by Jordan Ellenberg, assistant professor of mathematics, University of Wisconsin

"Roberts' book really soars in its description of Coxeter's work and his ability to visualize space, to communicate the poetry of geometry and to inspire 
other mathematicians, physicists and artists...Through Coxeter, Roberts reminds the reader of the visceral and visual excitement that can be found in 
the universal alphabet of lines and shapes. Although [Amir] Aczel's book is called "The Artist and the Mathematician," it is Coxeter, and not Bourbaki, 
who emerges as a true creator of beauty, not just elegance."
—CHICAGO TRIBUNE, Nathan L. Harshman, assistant professor of physics, American University

"[King of Infinite Space] is part biography, part scientific history and part epic.[it] offers poignant looks into Coxeter's soul.Thanks to Roberts's 
passionate writing, Coxeter the legend lives on."
—GLOBE AND MAIL, Jeffrey Rosenthal, professor in the department of statistics at the University of Toronto

"H.M.S. (Donald) Coxeter (1907-2003) was widely recognized and honored by his peers as the greatest living geometer. He was a prolific writer, 
publishing 12 books and more than 200 papers while at Cambridge, Princeton, and - for 67 years - the University  of Toronto. He influenced prominent 
researchers, artists, and architects while pursuing theoretical and applied mathematical concepts of space, time, and shape. Canadian journalist 
Roberts, who won a National Magazine Award for her profile of Coxeter in Toronto Life, uses diaries, interviews, notes, personal vignettes, and stories 
to depict vividly Coxeter's passion for music, art, mathematics, life in general, and all things of beauty. In addition to successfully crafting a poignant 
biography, she accurately documents 20th-century mathematical research and scholarship. The author is to be congratulated on the book's simplicity; 
completeness; excellent use of diagrams, figures, and photographs; appendixes of mathematical notes; and reams of endnotes. A significant work for 
mathematicians at all levels; recommended for both academic and public libraries."
—STARRED REVIEW in LIBRARY JOURNAL, by Ian D. Gordon, Brock Univ. Lib., St. Catharines, Ont.

"The mathematics of shape and space, geometry was not professionally hip during the career of H. S. M. Coxeter (1907-2003). As Roberts elaborates 
in this warm but not uncritical portrait, the visual and intuitive aspects of geometry did not attract a field headed in more abstract directions. By the 
1950s, a group of French mathematicians mounted the barricades against geometry under the slogan "Death to triangles!" Coxeter took notice but no 
heed of the radicals, content with his fertile imagination that yielded new geometrical papers up to his nineties. Though keeping geometry vibrant was 
not Coxeter's intent, it was the effect as, over time, his discoveries came to be useful to architect Buckminster Fuller, string theorists, and Godel, Escher, 
Bach (1979) author Douglas Hofstadter, who contributes a preface. Roberts accessibly explains the cruxes of Coxeter's discoveries and his place in 
mathematics history, while her narrative of Coxeter's personal life depicts an aloof but amiable character a bit deficient in the parenting department. 
With Coxeter appraised by peers as a modern Euclid, Roberts' biography bears inclusion in the popular mathematics collection."
—BOOKLIST, by Gilbert Taylor

“Siobhan Roberts has achieved something extraordinary in this book, a paean to a geometer and all geometry. It tells a brave, compelling story. It 
comprehends a whole universe — our universe — of kaleidoscopes and crystals, groups and symmetry, bicycles and snowflakes, music and 
movement. It is lucid, beautiful, and exalting.”
—James Gleick, author of Isaac Newton, Faster, and Chaos

“A biography of Donald Coxeter has long been overdue. Now Siobhan Roberts has provided one, and a marvelous book it is. King of Infinite Space 
covers all of Coxeterʼs major achievements, and in words any reader can understand. Her beautifully written tribute is rich in details about Coxeterʼs 
long life, and his colorful interactions with the worldʼs top mathematicians. I found it impossible to stop reading.”
—Martin Gardner, longtime "Mathematical Games" columnist in Scientific American, and author of numerous books including The Ambidextrous Universe and most recently Are Universes Thicker 
Than Blackberries?

 “What emerges loud and clear in King of Infinite Space is that Siobhan Roberts understands Coxeterʼs spirit very deeply. She understands what drove 
him, and she knows just how to put into words the fire that always inhabits a great mathematicianʼs soul. I hope that King of Infinite Space will bring to 
many people not only a sense for the beauty of mathematics itself, but also a sense for how the very human love of hidden patterns and symmetries 
can result in a hundred years of exultant exploration.”
—Douglas Hofstadter, author of Gödel, Escher, Bach, from the Foreword of King of Infinite Space

“King of Infinite Space gives us a lively view of the history of mathematics while weaving the story of Donald Coxeter, a broad-minded genius who built 
an important bridge between two opposite extremes of mathematical creation—the pictorial world of classical geometry, and the ideal world of abstract 
algebra.”
—Freeman Dyson, Professor of Physics at the Institute for Advanced Study, Princeton University, and author of Disturbing the Universe

“Many mathematicians the world-over are enchanted with the beauty and elegance of Donald Coxeterʼs work. Although I never studied with Coxeter, in 
many ways I consider myself an honorary student of this great geometer. Why is it that Coxeter is affectionately remembered by so many 
mathematicians?  Siobhan Roberts makes the answer quite clear in King of Infinite Space, an elegant biography of an elegant man.”
—John Horton Conway, John von Neumann Professor of Mathematics, Princeton University, and discoverer of Surreal Numbers

“What a wonderful world Siobhan Roberts evokes through this scientific portrait of the inimitable geometer, Donald Coxeter.  Geometry: that subject we 
all learn early and too quickly forget, opens up again to us and what a universe Coxeter made of it.  Pure mathematics, of course, but also facets of a 
pineapple, maps of the early universe, shapes of immunoglobulin, structures of architecture, images within kaleidoscopes. Like the fine and thoughtful 
sketches of Jeremy Bernstein and James Gleick, Roberts succeeds beautifully in crossing mathematics with the quirky, imaginative, and productive life 
of one of our greatest modern mathematical thinkers.
—Peter Galison, Professor of History of Science, and of Physics, Harvard University, author of Einstein’s Clocks, Poincaré’s Maps

“From Siobhan Roberts' biography of Donald Coxeter we learn that we have been doing geometry all our lives, for geometry's patterns frame 
perception.  Donald Coxeter, astringent Anglo-Canadian mathematician, was a passionate proponent of geometry; it sustained him for the better part of 
a century spent 'Voyaging through strange seas of thought, alone' (as Wordsworth said of Newton). Siobhan Roberts must have known him well to 
write this intimate and engaging account of a life-long devotion to shape, as the key to all creation.”
— John Polanyi, Nobel Laureate



"Little icosahedrons and dodecahedrons often rolled across my dining room table during high school -- in games of dice -- but their complex beauty 
never really struck me.  Donald Coxeter's brilliant geometric vision shows why it should have. Siobhan Roberts has given us a meticulous life of a very 
special kind of thinker: one who will change the way you experience then world."
—Mark Kingwell, Professor of Philosophy, University of Toronto, author of The World We Want

“A mathematician once wrote Coxeter "I tried very hard not to spend time on your integrals, but the challenge of a definite integral is irresistible." I tried 
very hard not to spend time reading King of Infinite Space, because I had other work to do, but I found it irresistible. The book shows clearly the degree 
to which great mathematicians like Coxeter are artists, led by a sense of beauty beyond the fashionable topics of the day into the heart of the deepest 
and most elegant mysteries.”
—John Mighton, Fields Fellow, Ashoka Fellow, and author of The Myth of Ability

"Donald Coxeter was a remarkable character, and this book is a fine record of his achievements. The author deserves our admiration for having 
produced such a lively and accessible account of what might at first seem an arcane subject."
—Sir Martin Rees, President of the Royal Society, Master of Trinity College Cambridge, Astronomer Royal
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