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String Theory for

Pedestrians

– CERN, Jan 29-31, 2007 –

B. Zwiebach, MIT



This series of 3 lecture series will cover the

following topics

1. Introduction. The classical theory of

strings. Application: physics of cosmic

strings.

2. Quantum string theory. Applications:

i) Systematics of hadronic spectra

ii) Quark-antiquark potential (lattice

simulations)

iii) AdS/CFT: the quark-gluon plasma.

3. String models of particle physics. The

string theory landscape. Alternatives:

Loop quantum gravity?

Formulations of string theory.
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Introduction

For the last twenty years physicists have investigated
String Theory rather vigorously.

Despite much progress, the basic features of the
theory remain a mystery.

In the late 1960s, string theory attempted to describe
strongly interacting particles. Along came Quantum
Chromodynamics (QCD)– a theory of quarks and
gluons – and despite their early promise, strings faded
away.

This time string theory is a credible candidate for a
theory of all interactions – a unified theory of all
forces and matter. Additionally,

• Through the AdS/CFT correspondence, it is a
valuable tool for the study of theories like QCD.

• It has helped understand the origin of the
Bekenstein-Hawking entropy of black holes.

• Finally, it has inspired many of the scenarios for
physics Beyond the Standard Model of Particle
physics.
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Greatest problem of twentieth century physics: the
incompatibility of Einstein’s General Relativity and the
principles of Quantum Mechanics.

String theory appears to be the long-sought quantum
mechanical theory of gravity and other interactions.

It is almost certain that string theory is a consistent
theory.

It is less certain that it describes our real world.

Intense work has demonstrated that string theory
incorporates many features of the physical universe.
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Perhaps the most impressive feature of string theory is
the appearance of gravitons as one of the quantum
fluctuation modes of a closed string.

Considers a relativistic string, a string whose classical
mechanics is consistent with Einstein’s special theory
of relativity.

Its classical vibrations, however, cannot be identified
with physical particles.

Quantum theory comes to the rescue: the quantum
vibrational modes of the relativistic string can be
identified with elementary particles!

A particular quantum vibration mode of the closed
string describes a graviton, the quantum of the
gravitational field. A particular quantum vibration of
an open string describes a photon, the quantum of the
electromagnetic field.

In string theory all particles – matter particles and
force carriers – arise as quantum fluctuations of the
relativistic string.
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Relativistic Particles and Strings

How do we describe the physics of a free particle?

Well, we say that it moves with constant velocity ~v !

m •−→

~v

This is true for both non-relativistic and relativistic
particles, with an important caveat, |~v| ≤ c for the
relativistic particle

In more detail we describe the energy E and
momentum ~p of the particle in terms of the velocity.

Non-relativistic particle:

E =
1

2
mv2 , ~p = m~v . (1)

Relativistic particle:

E =
mc2√

1− v2/c2
, ~p =

m~v√
1− v2/c2

. (2)

E =
mc2√

1− v2/c2
= mc2 +

1

2
mv2︸ ︷︷ ︸

non−rel

+O(v4/c4) . (3)
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How do we describe the physics of a free relativistic
string ?

Not so easily!

The natural extension to relativity gives a string whose
fundamental parameter is its tension T0:

T0 has units of force

A small static piece of string of length ds has an energy

dE = T0 ds .

A moving string has energy

E =

∫
T0ds√
1− v2

⊥
c2
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Nonrelativistic strings are characterized by two
independent parameters:

– a string tension T0 ,

– a mass per unit length µ0.

Direction along a fixed static string: longitudinal
direction .

Transverse oscillations: the velocity of the string is
orthogonal to the longitudinal direction.

The velocity v of a transverse wave is

v =
√
T0/µ0 .

A nonrelativistic string may support a longitudinal
oscillation in which the velocity of any point on the
string remains along the string.

A longitudinal wave requires the existence of
“taggable” structure along the string. Otherwise,
longitudinal oscillation is undetectable since, as a
whole, the string does no move.
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(a)

(b)

In order to detect longitudinal motion we must be able
to tag the points along the string.
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Four unusual properties of relativistic strings

1. It is characterized by its tension T0 alone !

The velocity of transverse waves is c

The mass density µ0 is fixed once T0 is fixed:

c =
√
T0/µ0 → µ0 = T0/c

2 .

In the relativistic string energy/mass conversion
occurs classically.

Stretching a string out to length L:

Est = W = T0L , M =
T0L

c2
, µ0 =

M

L
=
T0

c2

Energy is converted into rest mass by stretching
the string!
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2. The relativistic string does not support
longitudinal oscillations.

the string has no substructure.

Moreover, when a string moves, we cannot really
tell which point went where.

People ask: what is the string made of?

No meaningful answer can be provided: the
classical relativistic string has no identifiable
constituents.



3. The endpoints of a free relativistic open string
move with the speed of light.

Simplest open string motion: A string of length `
rotating with angular velocity ω.

v = c

v = c

ω `/2 = c .

Unusual property: the angular momentum J of
this string is linearly proportional to the square of
the energy E of the string:

J = α′E2 , α′ = slope parameter

Good fit to hadronic resonances (more later)



J ∼ E2 is very unusual !

For a rigid non-relativistic bar

J = Iω, E =
1

2
Iω2 .

Since the moment of inertia I is a constant,

J ∼
√
E .

J ∼ E2 can be understood roughly as follows

J ∼ Iω ∼ (ML2)
1

L
∼ E2

since M ∼ L ∼ E.

More quantitatively: v(s) = c(s/(`/2)) = 2cs/`.

The energy E of the rotating string is:

E =

∫ `/2

−`/2

T0ds√
1− 4s2/`2

= (T0`)
π

2
.

This is 1.57 times the rest energy of a string of length `.

The angular momentum J of the rotating string is

J = 2

∫ `/2

0

s (T0ds/c2)v(s)√
1− 4s2/`2

=
4T0

`c

∫ `/2

0

s2ds√
1− 4s2/`2

J =
T0`2π

8c
=

1

2πT0 c
E2 →

J

~
=

1

2πT0 ~c
E2 = α′E2 .

Note that [α′] = M−2 = L2, so one can define a string length:

`s = ~c
√
α′



4. A relativistic string has an orientation which
determines the sign of the string charge.

For zero size particles there is no intrinsic
geometrical property represents charge.

This is different for strings! The orientation of a
string is an arrow that defines a preferred direction
along the string. Oppositely oriented strings have
opposite string charges.

A surprising effect: the string charge forces the
open string endpoints to acquire opposite electric
charges! String charge transmutes into electric
charge.

+

-

+

-

Since open strings carry electric charges, we may
identify charged particles with open strings.



Classical String Dynamics

Dynamical variables Xµ(τ, σ) (maps from (τ, σ) space to
spacetime) governed by the Nambu-Goto action:

S = −
T0

c

∫
dτ

∫
dσ
√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

Subtle action principle. Hard to analyze without gauge conditions.
Learning how to draw the lines of constant τ and σ on the
physical string surface.

Static gauge: X0(τ, σ) ≡ ct = cτ . This identifies ”strings”.

Xµ(τ, σ) = {ct, ~X(τ, σ)}

Orthonormality: Choose the lines of constant σ orthogonal to the
ones of constant τ(= t):

∂ ~X

∂σ
·
∂ ~X

∂t
= 0
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σ-parameterization: Choose sigma such that equal intervals carry
equal energy:

dσ =
dE

T0

With the 3 conditions above the dynamics reduces to:

Wave equations:

∂2 ~X

∂σ2
−

1

c2
∂2 ~X

∂t2
= ~0 .

and Virasoro constraints

∂ ~X

∂σ
·
∂ ~X

∂t
= 0

(
∂ ~X

∂σ

)2

+
1

c2

(
∂ ~X

∂t

)2

= 1 .

which can be summarized as(
∂ ~X

∂σ
±

1

c

∂ ~X

∂t

)2

= 1 .

The dynamics of relativistic strings is determined by the above
boxed equations and some boundary (and initial) conditions.
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Motion of a closed string:

Solution of the wave equation:

~X(t, σ) =
1

2

(
~F (ct+ σ) + ~G(ct− σ)

)
We introduce two independent parameters u and v”

u = ct+ σ , v = ct− σ

We then find:

∂ ~X

∂σ
=

1

2

(
~F ′(u)− ~G′(v)

)
1

c

∂ ~X

∂t
=

1

2

(
~F ′(u) + ~G′(v)

)
The Virasoro conditions become

|~F ′(u)| = | ~G′(v)| = 1

Periodicity condition: Parameterize the string with σ ∈ [0, σ1],
with σ1 = E/T0 and E the energy of the string. Then,
~X(t, σ+ σ1) = ~X(t, σ) leads to

~F (u+ σ1) + ~G(v − σ1) = ~F (u) + ~G(v)

Differentiating with respect to u and then with respect to v we get

~F ′(u+ σ1) = ~F ′(u) , ~G′(v+ σ1) = ~G′(v)
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Geometrical interpretation: Can view the tips of the vectors ~F ′(u)
and ~G′(v) as points of the unit sphere that trace closed curves
with periodicity σ1.

If the paths intersect at u = u0 and v = v0 we have

~F ′(u0) = ~G′(v0)

The values u0 and v0 determine a t0 and a σ0. Recall that

1

c

∂ ~X

∂t
=

1

2

(
~F ′(u) + ~G′(v)

)
,

∂ ~X

∂σ
=

1

2

(
~F ′(u)− ~G′(v)

)
.

The first equation gives∣∣∣1
c

∂ ~X

∂t
(t0, σ0)

∣∣∣ = 1

2

∣∣∣(~F ′(u0) + ~G′(v0)
)∣∣∣ = ∣∣~F ′(u0)

∣∣ = 1 .

The point σ0 moves with the speed of light at this t = t0.

This repeats every t0 + kσ1/c, with k integer.
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The second equation gives:

∂ ~X

∂σ
(t0, σ0) = 0

This implies that, in general,

~X(t0, σ) = (σ − σ0)
2 ~T + (σ − σ0)

3 ~R+ . . .

for some constant vectors ~T and ~R.

Align the y-axis with ~T and the x-axis such that ~R is on the
(x, y)-plane, say at an angle θ0.

We then get

y(σ) = (σ − σ0)
2|~T |+ (σ − σ0)

3 sin θ0|~R|+ . . .

x(σ) = (σ − σ0)
3 cos θ0|~R|+ . . .

which means

y ∼ x2/3 local cusp singularity
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The Energy Momentum tensor of a String

With spacetime signature (−,+ + . . .+) a fluid has

T00 = ρc2 , and Tij = pδij ,

with ρ the mass density and p > 0 the pressure.

Consider a string stretched along the x-axis.

The mass per unit length is T0/c2, so we get

T00 = c2ρ = c2
T0

c2
δ(y)δ(z) = T0 δ(y)δ(z)

The pressure is negative (stretches a cubic box, rather than
compressing it)

T11 = −T0δ(y)δ(z)

So, we have

Tµν = −T0δ(y)δ(z)

(−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

)
This is boost invariant along the x axis, as expected physically.

In the Newtonian limit the gravitational potential Φ is sourced by

∇2Φ = 4πG(T00 + T11 + T22 + T33)

For the string the right-hand side gives zero.

The string does not attract objects gravitationally!

15



The string creates a conical singularity with a deficit angle ∆

∆ =
8πGT0

c4
=

8πGµ

c2
' 5.2′′

(
Gµ

10−6

)
.

where µ is the mass per unit length of the string.

The string S creates a perfect lens with two identical images of
the quasar Q separated by an angle δϕ as seen by the observer O:

δϕ = α+ β

sinβ

`
=

sinβ′

d
,

sinα

`
=

sinα′

d
For small angles

β

`
=
β′

d
,

α

`
=
α′

d
We then have

∆ = α+ β + α′ + β′ =
(
1 +

d

`

)
(α+ β)

→ δϕ =
∆(

1 + d
`

) . δϕ→∆, if `→∞.
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The dimensionless number Gµ governs the behavior of strings.
With ~ = c = 1 units,

µ ∼ (Ms)
2 , Ms is the string mass .

G ∼ 1/(Mp)
2 , Mp is the Planck mass .

→ Gµ ∼
(
Ms

Mp

)2

If the string mass would arise from a GUT scale, then
Ms ∼ 10−3Mp and one find Gµ ∼ 10−6.

Cosmic strings were originally proposed as the main sources of
primordial density fluctuations

δρ

ρ
∼ Gµ ,

but this possibility (which requires Gµ ∼ 10−5.5) has been rejected.
It fails to reproduce the COBE results. Density fluctuations are
thought to arise as quantum fluctuations at an inflationary period.

From WMAP analysis [Jeong and Smoot, astro-ph/0406432]
searching for string contributions to density fluctuations:

Gµ . 10−7 .
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There are also some limits from gravitational wave radiation from
cosmic strings. Such a gravitational wave background would
affect the regularity of pulsars [astro-ph/0208572], suggesting
also that Gµ . 10−7 .

Damour and Vilenkin (Phys. Rev. D64 , 064008 (2001)) have
pointed out that cusps radiate efficiently and may be detected by
LIGO (Laser Interferometric Gravitation Observatory) and LISA
(Laser Interference Space Antenna) even for Gµ ∼ 10−13.

Most uncertainties arise in the analysis and simulation of networks
of strings, and their evolution as the universe expands and the
strings collide. This is still an active area of research (see,
Polchinski and Rocha, hep-ph/0606205).

The observation of a cosmic string would be a very
exciting event

A lot of work would follow to decide if this is a string
theory string, or a string arising from another, more
conventional field theory.
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