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In 1845, Faraday discovered

Diamagnetism
dia (δια, across) 
perpendicular to the pole faces
parallel to the field lines

Paramagnetism
para (παρα, beside)
parallel to the pole faces
perpendicular to the field lines

OED:   
M. Faraday 
Philosophical Transactions of the Royal Society 
Volume 146 page 159 (1856)
The one form of power possessed by 
paramagnets, diamagnets, and electric 
currents.

The phenomena exhibited by a class of bodies, which, when freely 
suspended and acted on by magnetism, take up a position transverse to 
that of the magnetic axis, i.e. lie (approximately) east and west; the force 
to which these phenomena are attributed; the quality of being diamagnetic.





unpaired spins

electron filling



THE PERIODIC TABLETHE PERIODIC TABLE
•• MagnetismMagnetism
A Paramagnetic atom is 

attracted to a magnetic field 
because it has one or more 
unpaired electrons.

A Diamagnetic atom is not 
attracted to (weakly repelled 
from) a magnetic field 
because all of the electrons 
are paired up. 

ParamagneticParamagnetic

          LiLi

________  2s

_________ 1s

DiamagneticDiamagnetic  

        HeHe

_________ 1s
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Torn from Today’s 
Headlines

Everybody is doing it!















Larry Sorensen
February 16, 2011

Larry Sorensen








Simple Magnetic Hysteresis
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  EM LAB  EM LAB   EM LAB  EM LAB

Magnetic Materials

 B-H curve

Theory and Principle

The magnetic moments change 
direction continuously for ferromagnetic material

B-H curve



B

H0



Two kinds of magnets:

Soft

Magnets

Hard

Magnets



Two kinds of plots:  
B versus H

M versus H



Soft Magnets:

Need small energy loss
transformers

electric motors
electric generators

electromagnets

Hard Magnets

Need remnance
magnetic recording

permanent magnets
motors and actuators

Different Applications:



Two Important Ideas: 

Coercivity and Remnance

Soft = Low 

Remnance

Soft = Low 

Coercivity

Hard= High 

Remnance and 

High Coercivity

Soft Loops Have Small Areas
Hard Loops Have Large Areas
Work ~ Area



Permanent Magnets





The Most Famous Paper?

Annalen der Physik Volume 322, 891 (1905)



But what is the paper
just before Einstein’s?

It is Erwin Madelung’s thesis on
macroscopic magnetic hysteresis!



Return-Point Memory (RPM)
   

Along the major hysteresis loops, 
the macroscopic magnetization 
is completely determined by the 
applied field.        Madelung 1905

But are the microscopic domains 
precisely the same every time or is 
only the ensemble average the same?
   

We find about half of the domains are 
the same every time and about half of 
the domains are different every time.



Complementary-Point Memory 
(CPM)
   

Major loops are inversion symmetric 
through the origin => the macroscopic 
magnetization is also inverted.

But are the microscopic domains 
precisely inverted every time or is 
only the ensemble average inverted?
   

We find about half of the domains are 
inverted every time and about half of 
the domains are different every time.



How Do Magnets 
Remember?

Same domain patterns every time?
Different domain patterns every time?

Some the same others different?



The Persistence of Memory



How Do Magnets 
Forget?

Same domain patterns every time?
Different domain patterns every time?

Some the same others different?



The Disintegration of Memory



The Persistence of Memory

The Influence of Disorder on Magnetic Memory

Michael S. Pierce
University of Washington 

Physics Department

Los Alamos National Laboratory
December 15th, 2005

The nation that controls magnetism
controls the universe.

-Dick Tracy (Chester Gould)



Colleagues & Friends

Experimentalists

Larry B. Sorensen     (my advisor!)
Conor Buechler  (UW)
Steve Kevan (UO)
Olav Hellwig (Hitachi)
Eric Fullerton (Hitachi)
Jeff Kortright (LBL)
Kai Lui (UCD)

Theorists

Eduardo A. Jagla (CAS)
Josh M. Deutsch (UCSC)
Trieu Mai (UCSC)
Onuttom Narayan (UCSC)
Gergely Zimanyi (UCD)
Helmut Katzberger (ETH)

We performed our experiments at
the Advanced Light Source at
Berkeley National Lab.

Our work is supported by the DoE.



Why study magnetic films?

15 GN and 30 GN (25.7 Gb/in2) and 48 GH (21.7 Gb/in2)

AFC MEDIA

(FIRST INDUSTRY PRODUCT)

GLASS MEDIA SUBSTRATE

RAMP LOAD/UNLOAD

ADVANCED GMR HEADS

15 GBytes/DISK

2 DISK DRIVE CAPACITY

30 Gbytes

25.7 Gbits/In2

Will this trend continue
without stopping?

What can be done?

As the density becomes    
higher, the thermal energy
in the media becomes      
a serious problem.

No!

Hitachi released the first perpendicular media disk drive this year!

Perpendicular Media!



What is the fundamental
microscopic physics for
magnetic memory?

Disorder => magnetic hardening
Speckle => to study this disorder

Rapid growth and miniaturization
of magnetic storage => nanoscale
disorder



Approaching the Physical Limits



Larry Sorensen
Moore's Law

Larry Sorensen


Larry Sorensen


Larry Sorensen










Perpendicular
Recording 

Longitudinal 
Recording 

Recording Technologies
M
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Transition
region

Distance

Ed Grochowski

P2
Shield 2

P1

Shield 1

Track Width

V read

Recording 
Medium

Monopole
Inductive Write Element

Read Element
GMR Sensor

Soft
Underlayer

Return Pole

“Ring”

N    S N    S N    S S    N S    N S    N 
Recording 
Medium

Magnetizations

P2Shield 2
P1

Inductive Write Element

V write

N    S S    N N    S 



Perpendicular 

Magnetic Media

http://gprime.net/flash.php/getperpendicular

http://gprime.net/flash.php/getperpendicular


MAGNETS



Our X-ray Scattering Experiment

 All under high vacuum

Table top science connected to a giant light-bulb.



Typical Speckle Pattern





Random Walk Applets
http://math.furman.edu/~dcs/java/rw.html

http://polymer.bu.edu/java/java/2drw/RandWalk2D.html

http://www.rbyter.com/java/randomWalkDescription.html

Ising Model Applets
http://physics.ucsc.edu/~peter/ising/ising.html

http://www.pha.jhu.edu/~javalab/ising/ising.html

http://www.ibiblio.org/e-notes/Perc/ising.htm

http://www-reynal.ensea.fr/applets/spin-models/en/afising.html

http://math.furman.edu/~dcs/java/rw.html
http://polymer.bu.edu/java/java/2drw/RandWalk2D.html
http://www.rbyter.com/java/randomWalkDescription.html
http://physics.ucsc.edu/~peter/ising/ising.html
http://www.pha.jhu.edu/~javalab/ising/ising.html
http://www.ibiblio.org/e-notes/Perc/ising.htm
http://www-reynal.ensea.fr/applets/spin-models/en/afising.html










Our Experiment

Undulator

Spatial
Filter

Magnetic
Multilayer
Sample

Speckle Pattern

| FT |2

=>



Cookie to Donut Transition

Magnetization





Effect of the Disorder in Real Space
MFM Images of the Magnetic Domains

33

77

88..55

1100

1122

2200



The Six Sisters

3mTorr      7mTorr      8.5mTorr    10mTorr    12mTorr     20mTorr

M
FM

 (
3µ

m
2 )

Each sample was grown with 50 repeats of 0.4nm Co & 0.7nm Pt.

As the sputtering pressure increases, the interfacial roughness
between layers also increases.  More roughness = more disorder!

AF
M

 (
1µ

m
2 )

Co:Pt multilayer magnetic films, grown at
different sputtering pressure.



Major Hysteresis Loops: 3, 7, 8.5, 10, 12, & 20mT

And is becoming bigger…  And bigger…  And bigger!!!



And write it in terms of auto and cross-correlation functions

r= 1 for perfect correlation and
ρ = 0 for no correlation

        a   

A closer look at comparing speckles

For quantitative comparison of two speckle
patterns take the standard correlation
coefficient:



Experimental Results

(1) Abrupt onset of memory
(2) Apparent saturation
(3) Max half of the domains remember
=> imperfect memory for T>0
(4) RPM slightly larger than CPM
=> partial RPM-CPM symmetry breaking

CPM

RPM



When we started there 

were no good theories

Now there are four!



Disorder-induced magnetic memory: Experiments and theories
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Beautiful theories of magnetic hysteresis based on random microscopic disorder have been developed over
the past ten years. Our goal was to directly compare these theories with precise experiments. To do so, we first
developed and then applied coherent x-ray speckle metrology to a series of thin multilayer perpendicular
magnetic materials. To directly observe the effects of disorder, we deliberately introduced increasing degrees of
disorder into our films. We used coherent x rays, produced at the Advanced Light Source at Lawrence Berkeley
National Laboratory, to generate highly speckled magnetic scattering patterns. The apparently “random” ar-
rangement of the speckles is due to the exact configuration of the magnetic domains in the sample. In effect,
each speckle pattern acts as a unique fingerprint for the magnetic domain configuration. Small changes in the
domain structure change the speckles, and comparison of the different speckle patterns provides a quantitative
determination of how much the domain structure has changed. Our experiments quickly answered one long-
standing question: How is the magnetic domain configuration at one point on the major hysteresis loop related
to the configurations at the same point on the loop during subsequent cycles? This is called microscopic
return-point memory �RPM�. We found that the RPM is partial and imperfect in the disordered samples, and
completely absent when the disorder is below a threshold level. We also introduced and answered a second
important question: How are the magnetic domains at one point on the major loop related to the domains at the
complementary point, the inversion symmetric point on the loop, during the same and during subsequent
cycles? This is called microscopic complementary-point memory �CPM�. We found that the CPM is also partial
and imperfect in the disordered samples and completely absent when the disorder is not present. In addition, we
found that the RPM is always a little larger than the CPM. We also studied the correlations between the
domains within a single ascending or descending loop. This is called microscopic half-loop memory and
enabled us to measure the degree of change in the domain structure due to changes in the applied field. No
existing theory was capable of reproducing our experimental results. So we developed theoretical models that
do fit our experiments. Our experimental and theoretical results set benchmarks for future work.

DOI: 10.1103/PhysRevB.75.144406 PACS number�s�: 75.60.Ej, 61.10.�i, 78.70.Dm, 07.85.Qe

I. INTRODUCTION

What causes magnetic hysteresis and how is it induced
and influenced by coexisting microscopic disorder? This is
the question that we address and provide answers to in this
paper. We are able to provide additional information about
this venerable old question because we have developed a
way to directly probe the effect of disorder on the spatial
structure of the microscopic magnetic domain configuration
as a function of the applied magnetic field history. When we
finished our experimental study, we discovered that our re-
sults could not be explained by any existing microscopic
theories of magnetic hysteresis. So we developed several vi-
able theoretical models. In this paper, we present our detailed
experimental results and the theoretical models that we
developed to explain them.

Magnetic hysteresis is fundamental to all magnetic stor-
age technologies and consequently is a cornerstone of the

present information age. The magnetic recording industry de-
liberately introduces carefully controlled disorder into its
materials to obtain the desired hysteretic behavior and mag-
netic properties. Over the past 40 years, such magnetic hard-
ening has developed into a high art form. However, despite
decades of intense study and significant recent advances, we
still do not have a completely satisfactory microscopic
understanding of magnetic hysteresis.

The exponential growth of computing power that fueled
the information age has been driven by two technological
revolutions: �1� The integrated circuit revolution and its ex-
ponential growth described by Moore’s law, and �2� the mag-
netic disk drive revolution and its exponential growth, which
for the past decade has surpassed Moore’s law. Both of these
mature technologies are rapidly approaching their fundamen-
tal physical limits. If the incredible growth rate of storage
capacity in magnetic media is to continue, new advances in

PHYSICAL REVIEW B 75, 144406 �2007�

1098-0121/2007/75�14�/144406�23� ©2007 The American Physical Society144406-1

http://dx.doi.org/10.1103/PhysRevB.75.144406


our fundamental understanding of magnetic hysteresis are
needed.

For the past 20 years, magnetic films with perpendicular
anisotropy have been extensively studied for their potential
to extend the limits of storage capacity. Early in 2005, the
first commercial disk drives using perpendicular magnetic
media became available. The system that we study here is a
model for these perpendicular magnetic media. In this paper,
we present our results on the effect of disorder on the corre-
lations between the domain configurations in these systems.

To study the detailed evolution of the magnetic domain
configuration correlations in our samples, we developed an
x-ray scattering technique, coherent x-ray speckle metrology
�CXSM�. We illuminate our samples with coherent x rays
tuned to excite virtual 2p to 3d resonant transitions in cobalt.
The resulting resonant excitation of the cobalt provides our
magnetic signal. The coherence of the x rays produces a
magnetic x-ray speckle pattern. The positions and intensity
of the speckles provide a detailed fingerprint of the micro-
scopic magnetic domain configuration. Changes in the mag-
netic domain configuration produce changes in the speckle
pattern. So by comparing these magnetic fingerprints versus
the magnetic field history—by cross-correlating speckle pat-
terns with different magnetic field histories—we obtain a
quantitative measure of the applied-field-history-induced
evolution of the magnetic domain configuration.

Here we report our results obtained by applying CXSM to
investigate the effects of controlled disorder on the magnetic
domain evolution in a series of Co/Pt multilayer samples
with perpendicular anisotropy. We introduced disorder into
the samples by systematically increasing the interfacial
roughness of the Co/Pt multilayers during the growth pro-
cess. We found that this disorder induces memory in the
microscopic magnetic domain configurations from one cycle
of the hysteresis loop to the next, despite taking the samples
through magnetic saturation. Our lowest-disorder samples
have no detectable cycle-to-cycle memory; their domain pat-
terns are unique each time the sample is cycled around the
major loop. As we increase the disorder, the cycle-to-cycle
memory develops and grows to a maximum value, but never
becomes perfect or complete at room temperature.

In this paper, we present our results for microscopic mag-
netic memory only along the major loop in the slow-field-
sweep limit. In this limit, the measured hysteresis loop is the
same over many decades of sweep rate. The hysteresis in this
limit is often called rate-independent hysteresis, or quasi-
static hysteresis. There are, of course, also interesting and
important hysteresis effects that occur at high sweep rates.
Our strategy was to study the simpler rate-independent hys-
teresis case before adding the additional physics, and com-
plications, associated with high sweep rates. As we explain
below, the disorder dependence of the rate-independent hys-
teresis in our system turned out to be remarkably rich and
interesting. We do not discuss our results for rate-
independent minor-loop memory in this paper, but we briefly
reported them recently.1

The best modern microscopic disorder-based theories of
magnetic hysteresis were built on the foundations of
Barkhausen noise measurements.2 Even in the rate-
independent limit, the magnetization of a disordered ferro-

magnet does not change smoothly as the applied field is
swept up and down. Instead, there are magnetic domain ava-
lanches that produce magnetization jumps. These avalanches
exhibit power-law size distributions indicating that many dif-
ferent size regions change their magnetization in jumps as
the field is swept around the major hysteresis loop.

A comprehensive, recent review of Barkhausen noise
studies—including a translation of Barkhausen’s 1919
paper—is given in Ref. 3. For some materials in the rate-
independent limit, the Barkhausen noise is independent of
the magnetic sweep rate; these avalanches occur at fixed val-
ues of the applied field, independent of the sweep rate.4

Barkhausen measurements provide exquisite information
about the time structure of the avalanches, but they usually
do not provide any spatial information about the location of
the avalanches. Because we directly measure the nanometer-
scale spatial structure of the magnetic domain configuration
changes, we obtain detailed information about the configura-
tion evolution that cannot be obtained directly from the best
classical Barkhausen noise studies or from their modern op-
tical implementations.5 Because there has been extensive
theoretical work on Barkhausen noise, the corresponding
field-history-dependent microscopic morphologies of the
magnetic domain configurations have been indirectly in-
ferred from the Barkhausen time signals via detailed com-
puter simulations. For example, Sethna and co-workers have
shown that the morphology for their random field Ising
model �RFIM� is fractal in space. They provide a compre-
hensive review of their work in Ref. 2.

Taken together, the detailed fractal-in-time structure mea-
sured via the Barkhausen noise, and the extensive computer
simulations by Sethna et al. imply that their magnetic do-
main configurations are fractal in space. Therefore, why not
simply measure the correlations between the magnetic do-
main configurations directly? That is precisely what we do in
this paper. There has been very little systematic, ensemble-
level experimental work on the spatial evolution of the mag-
netic domain configurations,5,6 but this information is readily
available from the existing simulations. However, up until
now almost all of the work has been done for pure RFIMs.
Our experimental system and the new generation of perpen-
dicular magnetic disk drive media have long-range dipole
interactions. This means that new theories that include the
dipolar interactions7 will be required to understand these
materials.

During our work, we unearthed three interesting aspects
of our magnetic domain wall evolution. The first, called
major-loop return-point memory �RPM�, describes the mag-
netization for each point on the major loop. If this magneti-
zation is precisely the same for each cycle around the major
loop, then we have macroscopic major loop RPM. If, in ad-
dition, the microscopic magnetic domain configuration is
also identical, then we have microscopic major-loop RPM.
Our experiments show that our samples have perfect macro-
scopic major-loop RPM, but imperfect microscopic major-
loop RPM at room temperature.

The second, called complementary-point memory �CPM�,
describes the inversion symmetry of the major loop through
the origin. If the magnetization at field H on the descending
branch is equal to minus the magnetization at field −H on the
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ascending branch, then we have perfect macroscopic major-
loop CPM. If, in addition, the magnetic domains are pre-
cisely reversed, then we have perfect microscopic major loop
CPM. Our experiments show that our samples have perfect
macroscopic major-loop CPM, but imperfect microscopic
major-loop CPM at room temperature. In addition, we find
that our measured values for the microscopic RPM are con-
sistnly a little larger that those for our microscopic CPM—
thus the RPM-CPM symmetry is slightly broken.

The third, called half-loop memory �HLM�, describes the
degree of change in the magnetic domain configurations
along a single branch of the major hysteresis loop. Our ex-
periments show that disorder has a direct effect on how the
domains evolve. The greater the disorder present in the
sample, then the greater the observed changes in the domain
configurations as the applied field is slowly adjusted to take
the system along the major hysteresis loop. Our measured
values for the HLM are consistently higher in the low-
disorder samples than those present in the disordered
samples.

We were inspired to do our experimental study by the
beautiful work on the RFIM by Sethna et al. 2 We were
therefore very surprised to discover that their model could
not describe our experimental results. Their pure zero-
temperature RFIM predicts perfect macroscopic and micro-
scopic major-loop RPMs, but it does not agree with our ex-
periments because it predicts essentially no microscopic
major-loop CPM. It seems reasonable that their T�0 RFIM
will predict perfect macroscopic RPM but imperfect micro-
scopic RPM like that observed in our experiments, but this
has not been tested. However, their model cannot predict our
observed microscopic CPM and therefore it also cannot pre-
dict the slightly broken microscopic RPM-CPM symmetry
that our experiments observe.

So, what physics is required to produce imperfect micro-
scopic RPM and CPM with the slightly broken symmetry?
There are two aspects to this question—the imperfection and
the RPM-CPM symmetry breaking. Almost all models have
perfect memory at T=0 and imperfect memory for T�0.
And it seems likely that the imperfect memory that we ob-
serve could be caused by temperature effects, but this has not
yet been established. On the other hand, no viable theoretical
model for the slight RPM-CPM symmetry breaking existed.
So we developed viable models. The key idea behind each of
our models was to combine physics with spin-reversal sym-
metry with physics without spin-reversal symmetry. Then the
spin-reversal-symmetric physics produces symmetric
memory RPM=CPM and the nonsymmetric physics pro-
duces symmetry-broken memory RPM�CPM.

Within the standard RXIM models—viz., RAIM, RBIM,
and RCIM, and RFIM where A denotes anisotropy, B de-
notes bond, C denotes coercivity, and F denotes field—the
first three have spin-reversal symmetry, but the fourth
�RFIM� does not. So one way to produce slightly symmetry-
broken memory is to combine the RFIM with one of the
symmetric models. Surprisingly, another way is to combine
one of the symmetric models with vector spin dynamics be-
cause vector dynamics breaks the spin-reversal symmetry.
We report our work on three viable models: Model 1 com-
bines a pure RFIM with a pure RCIM; model 2 combines a

pure RAIM with vector spin dynamics; model 3 combines a
pure RFIM with a pure spin-glass model.

We explored models 1 and 2 in the most detail. By tuning
the model parameters, we were able to semiquantitatively
match our experimentally observed disorder dependence and
magnetic-field dependence of �i� the domain configurations,
�ii� the shape of the major loops, �iii� the values of the RPM
and CPM, and �iv� the slight RPM-CPM symmetry breaking.

Note that, in order to properly describe our observed mag-
netic domain configurations, we had to include the long-
range dipolar interactions. In contrast to the Sethna et al.
RFIMs that predict spatially fractal magnetic domain
configurations,2 our samples exhibit labyrinthine domain
configurations due to their long-range dipolar interactions.

The remainder of this paper is organized as follows. Sec-
tion II describes the physics of return-point memory and
complementary-point memory. Section III describes our ex-
periments, sample fabrication, structural characterization,
magnetic characterization, and coherent x-ray speckle me-
trology characterization. Section IV describes our data analy-
sis methodology. Section V describes the results of our data
analysis. Section VI describes the theoretical models that we
developed to account for the observed behavior of our sys-
tem. Section VII presents our conclusions.

II. MACROSCOPIC AND MICROSCOPIC RETURN-POINT
MEMORY AND COMPLEMENTARY-POINT

MEMORY

In his 1903 dissertation at Göttingen entitled “On the
magnetization produced by fast currents and the operation of
Rutherford-Marconi magnetodetectors,” Madelung presented
his rules for magnetic hysteresis as illustrated in Fig. 1.

�1� Major-loop return-point memory. The magnetization
of the sample at every point on the major loop is completely
determined only by the applied field, and all first-order re-
versal curves starting from the major loop and going to satu-
ration are uniquely determined by their starting point. The
curve 1→ +S in Fig. 1 illustrates a first-order reversal curve.

�2� Minor-loop return-point memory. The magnetization
of the sample at every point on the major loop is completely
determined solely by the value of the applied field, even
when the point on the major loop is reached starting from a
point inside the major loop. This holds for every order rever-
sal curve. The curve 2→1 illustrates this property for a
second-order reversal curve.

�3� The memory deletion (wiping out) property. The mag-
netization of the sample at every point on a reversal curve is
precisely the same as that for its parent curve as soon the
reversal curve returns to its parent. In this way, all memory
of the previous field history between the initial departure
from the parent and the return to the parent has been erased.
This holds for every order reversal curve. The curve 3→
+S illustrates this for a third-order reversal curve.

�4� The congruency property. All return curves that start
from reversal at the same value of the applied field have the
same shape thereafter, independent of the entire previous ap-
plied field history.

�5� The similarity property for initial magnetization
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curves. When any initial magnetization curve is reversed at
point a, the reversed return curve to saturation will pass
through the inversion symmetric point to a as it proceeds to
saturation. As discussed below, we call the analogous prop-
erty to the similarity property—for reversal curves that do
not start from a point on the initial magnetization curve—the
complementary-point memory property.

Madelung formulated his rules based on his careful ex-
perimental studies of different alloys of steel and published
them in 1905 and 1912.8 Because Madelung formulated his
rules before the existence of magnetic domains was known,
he considered only the macroscopic magnetization. Never-
theless, his rules still predict the macroscopic magnetization
of “any typical” sample versus its applied field history.
Madelung’s rules have truly been the foundation for all mod-
ern theories of hysteresis.

It is therefore surprising that Madelung’s rules are so
rarely cited. Apparently this is because essentially all of the
subsequent work has been focused on the Preisach model.9

The obscurity of Madelung’s magnetic hysteresis work is
particularly surprising because the Preisach model has been
well known to be unphysical for a very long time due to its
heavy reliance on phenomenology. There are however excep-
tions such as the recent work by Zirka and collaborators.10

Of course, Madelung’s rules do not apply to every mag-
netic system. For example, many systems exhibit accommo-
dation, reptation, and magnetic viscosity effects, and all sys-
tems exhibit dynamic hysteresis effects. However, on the

other hand, Madelung’s rules do apply to an incredible num-
ber of magnetic systems under a vast range of conditions.

Now that we know that the microscopic magnetic do-
mains are intimately involved in the production of magnetic
hysteresis, we immediately come to the first question at the
core of our investigation: How do the magnetic domains be-
have on the microscopic level. Do the domains remember—
viz., return precisely to—their initial states, or does just the
ensemble average remember? We show below that, at room
temperature, some of the domains in our samples return to
their original configurations and some do not, but neverthe-
less the macroscopic magnetization—set by the ensemble
average—does return to its original value.

In other words, we find that our samples have perfect
macroscopic RPM, but they have imperfect microscopic
RPM at room temperature. In fact, our measured RPM val-
ues for each sample demonstrate a rich, complex behavior
reflecting the fundamental physics of the magnetic domains.
We quantitatively measured the fraction of the domains that
remember and thereby demonstrated that the disorder has a
profound impact on the microscopic RPM. As we tune the
disorder, our samples develop microscopic RPM that starts
from zero in the low-disorder limit and jumps to a saturated
value in the high-disorder limit, but never becomes perfect at
room temperature. Consequently, our experimental system is
a finite-temperature realization of the “microscopic disorder-
induced phase transition between no memory and perfect
memory” predicted by Sethan and co-workers.2

The major loop for any typical magnetic system usually
has an additional symmetry—it is symmetric about inversion
through the origin. This inversion symmetry immediately
raises the second question at the core of our investigation:
How are the domains at the complementary points of the
major loop related? Do the magnetic domains at the oppos-
ing points on the major loop evolve in a similar, but perhaps
mirror correlated, fashion? We call this effect microscopic
major loop CPM. The geometry of complementary-point
memory is illustrated in Fig. 2.

Despite an incredible amount of effort since 1905, it has
proven impossible to develop a simple, yet adequate, phe-
nomenological model that can be used to treat all magnetic
materials. We still do not have a phenomenological model
for modern magnetic technology. In addition, although there
has also been tremendous effort expended and progress
achieved, it has similarly proven impossible to develop a
general purpose micromagnetics model. We now know,
based on recent theoretical work,2 that the detailed magnetic
hysteresis properties of real materials cannot be treated using
standard mean-field methods. This is because the hysteresis
depends on the interactions between each domain and a lim-
ited number of its neighbors, as well as between each domain
and its local disorder. Consequently, our approach has been
to determine to what extent the nanoscale domain-level
physics of our experimental system obeys Madelung’s rules,
and then to explore whether we can better understand the
observed behavior using traditional �overly� simplified Ising
models.

III. EXPERIMENTAL ASPECTS

To measure the field-history-induced changes in the mi-
croscopic magnetic domain configurations, we developed co-

FIG. 1. �Color online� The topology of Madelung’s rules. �a� If
the magnetization curves from point 1 to saturation are uniquely
determined by the applied field at their departure point 1 from the
major loop, then the system exhibits macroscopic major-loop
return-point memory. If, after returning to point 1 on the major
hysteresis loop, the system continues along the major loop, then the
system exhibits macroscopic major-loop memory deletion �wiping
out�. �b� If the first-order reversal curve from point 2 back to the
major loop arrives at its original departure point, then the system
exhibits first-order macroscopic minor-loop return-point memory.
�c� If the second-order reversal curve from point 3 back toward
saturation passes through point 2, then the system exhibits second-
order macroscopic minor-loop return-point memory. If thereafter it
continues along the original curve from 1 to saturation, then the
system exhibits macroscopic minor-loop memory deletion �wiping
out�.
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herent x-ray speckle metrology.1,11,12 Our CXSM experi-
ments were performed at the Advanced Light Source at
Lawrence Berkeley National Laboratory. A schematic dia-
gram of the experimental apparatus is shown in Fig. 3. We
used linearly polarized x rays from the third and higher
harmonics of the beamline 9 undulator. The raw undulator
beam was first reflected from a nickel-coated bremsstrahlung

safety mirror and then passed through a water-cooled Be
window to decrease unwanted light. The partially coherent
incident beam from the undulator was passed through a
35 �m diameter pinhole to select a transversely coherent
portion. The sample was located 40 cm downstream of the
coherence-selection pinhole. This provided transversely co-
herent illumination of about a 40 �m diameter area of the
sample. The transversely coherent x-ray beam was incident
perpendicular to the sample surface and was scattered in
transmission by the sample. The resonant magnetic scattering
was detected by a soft x-ray charge-coupled-device �CCD�
camera located 1.1 m downstream of the sample. Between
the sample and the CCD camera we used a small blocker to
prevent the direct beam from damaging the CCD.

The photon energy was set to the cobalt L3 resonance at
778 eV. These photons resonantly excited virtual 2p to 3d
transitions in the cobalt atoms and thereby provided our
magnetic sensitivity. The intensity of the raw undulator beam
was 2�1014 photons/s, the intensity of the coherent beam
was 2�1012 photons/s, and the intensity of the scattered
beam was 2�107 photons/s. We typically measured each
speckle pattern for 10–100 s, so the total number of photons
in each CCD image was 108–109.

The applied magnetic field was provided by an in-vacuum
water-cooled electromagnet allowing in situ adjustment of
the magnetic field during the experiment. The return path for
the electromagnet consists of an external soft Fe yoke that
feeds field to vanadium permandur pole pieces that are inte-
gral to the vacuum chamber. The pressure inside the chamber
during our experiments was typically 10−8 Torr. The in-
vacuum electromagnet provided magnetic fields up to
11 kOe.

A. Sample fabrication and structural characterization

Our thin-film samples were grown by magnetron sputter-
ing in the San Jose Hitachi Global Storage Technology Labo-
ratory on smooth, low-stress, 160-nm-thick silicon nitride
membranes. The samples had 20-nm-thick Pt buffer layers,
and 2.3-nm-thick Pt caps to prevent oxidation. Between the
buffer layer and the cap, the samples had 50 repeating units
of a 0.4-nm-thick Co layer and a 0.7-nm-thick Pt layer.
While the six samples had identical multilayer structure they
were grown at different argon sputtering pressures to tune the
disorder in the samples. During growth, we adjusted the
deposition times to keep the Co and Pt layer thicknesses
constant over the entire series. For low argon pressures, the
sputtered metal atoms arrive at the growth substrate with
considerable kinetic energy which locally heats and anneals
the growing film. This leads to smooth Co/Pt interfaces pro-
duced at a low sputtering pressure. For higher argon sputter-
ing pressures, the sputtered atoms arrive at the growth sub-
strate with minimal kinetic energy, thereby resulting in
rougher Co/Pt interfaces. The resulting roughness is cumu-
lative through the samples.13 The magnetocrystalline aniso-
tropy at the Co/Pt interface forces the magnetization to align
perpendicularly to the surface of the film. Our samples were
grown at six different sputtering pressures: 3, 7, 8.5, 10, 12,
and 20 mTorr. Due to the important and interesting magnetic

FIG. 2. �Color online� Geometry of complementary-point
memory �CPM�. �a� If the magnetization at point 1� is equal to that
at point 1, then the system exhibits macroscopic major-loop CPM.
If the domain configuration at point 1� is highly correlated with that
at point 1, then the system exhibits microscopic major-loop CPM.
�b� If the magnetization at point 2� is equal to that at point 2, then
the system exhibits first-order macroscopic minor-loop CPM. If the
domain configuration at point 2� is highly correlated with that at
point 2, then the system exhibits first-order microscopic minor-loop
CPM. �c� If the magnetization at point 3� is equal to that at point 3,
then the system exhibits macroscopic second-order minor-loop
CPM. If the domain configuration at point 3� is highly correlated
with that at point 3, then the system exhibits second-order micro-
scopic minor-loop CPM. In general, CPM can occur for any order
of reversal.

FIG. 3. �Color online� Schematic diagram of the experimental
apparatus. Soft x rays from the undulator passed through a pinhole
and were perpendicularly incident on the thin film samples. The x
rays were scattered in transmisson and were detected by a soft x-ray
CCD camera. Not shown in this diagram is the electromagnet used
to apply uniform magnetic fields perpendicular to the sample.
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properties, these samples and others very similar in form and
structure have been studied in different experiments.14,15

The rms roughness for the samples was measured in the
Almaden Hitachi Global Storage Technology Laboratory us-
ing two different methods. First, we measured the roughness
by scanning the sample surface with an atomic force micro-
scope �AFM� and calculating the rms roughness from the
AFM images �see Fig. 4�. Since our samples have conformal
roughness, the rms roughness of the surface is a reasonable
measure of the internal rms roughness. However, to directly
probe the internal rms roughness, we also did the x-ray re-
flectivity measurements shown in Fig. 5. The reflectivity data
were fitted using a Debye-Waller factor to determine the
roughness. Instead of the system possessing thermal fluctua-
tions, the displacements from the average height are ran-
domly distributed and fixed. The rms roughness values from
the x-ray measurements agreed with those from the AFM
measurements, confirming the conformal roughness of our
samples. The rms roughness values are shown in Fig. 4 and
are listed in Table I. We found that the rms roughness for the
3 mTorr sample is about 0.48 nm and that it increases to
1.44 nm for the 20 mTorr sample.

B. Magnetic characterization

We measured the major hysteresis loops for all of our
samples using both Kerr magnetometry at the San Jose Hi-
tachi Global Storage Technology Laboratory and alternating
gradient magnetometry �AGM� at the University of
California—Davis. The measured major loops shown in Fig.
6 exhibit clear changes that are related to the increasing
roughness. The two low-disorder films �3 and 7 mTorr� ex-
hibited classic Kooy-Enz16 soft loops with low remanence
and abrupt nucleation transitions. Between 7 and 8.5 mTorr,
there is an abrupt transition to loops that do not show a clear

nucleation region. Between 8.5 and 20 mTorr, the ascending
and descending slopes of the loop remain approximately the
same, but the loops gradually widen until the full magnetic
moment is left at remanence. The values of the nucleation,
coercive, and saturation fields each exhibit a roughly linear
dependence upon the sample roughness. This behavior is
shown in Fig. 7. In addition, we also found via magnetom-
etry that all of our films exhibit perfect macroscopic
major-loop and minor-loop RPM and CPM.

The AGM was used to measure the saturation magnetiza-
tion of the samples. The measured saturation magnetizations
are reported in Table I; they should be compared against the
value of Ms=1400 emu/cm3 for pure cobalt. It is interesting
to note that, with increasing interfacial roughness, the coer-
civity and saturation fields increase and the nucleation field

TABLE I. Measured magnetic characteristics of our six
samples.

Samplea �rms
b Ms

c Hn
d Hc

e Hs
f

3 mTorr 0.48 1360 1.58 0.16 3.7

7 mTorr 0.57 1392 0.64 0.68 5.0

8.5 mTorr 0.62 1136 1.68 1.42 5.5

10 mTorr 0.69 1069 1.45 1.87 6.5

12 mTorr 0.90 1101 1.23 2.74 9.5

20 mTorr 1.44 918 −1.81 5.89 14.2

aOur samples are labeled by their growth pressure in mTorr.
bThe measured rms interfacial roughness in nanometers.
cThe measured saturation magnetization of Co in emu/cm3.
dThe nucleation field measured from positive saturation.
eThe measured coercive field in kOe.
fThe measured saturation field in kOe.

FIG. 4. �Color online� The measured rms roughness from AFM
and x-ray reflectivity measurements plotted versus the argon sput-
tering pressures. The interfacial roughness increases as the sample
growth pressure increases. Below 8.5 mTorr, the roughness in-
creases slowly as indicated by the left �green� fit line. Above
8.5 mTorr the roughness increases much more rapidly as indicated
by the right �red� fit line. This behavior is very similar to that
observed by Ref. 13 in sputtered Nb/Si multilayers.

FIG. 5. �Color online� The measured MFM images, AFM im-
ages, and x-ray reflectivity curves for the six samples. The MFM
images evolve from clear labyrinthine patterns for the low-rms-
roughness samples to visually highly disordered patterns for the
high-rms-roughness samples. However, the persistence of the annu-
lar shape of the speckle patterns—even for the highest roughness
samples—reveals an underlying labyrinthine order. The MFM im-
ages show 3�3 �m2 areas. The AFM images show that the top
surface of the samples becomes rougher at higher pressures. The
AFM images show 1�1 �m2 areas. Both the x-ray reflectivity
curves and the AFM images were used to determine the rms
roughness for each sample.
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decreases linearly with the roughness; the measured satura-
tion magnetizations also decrease as the disorder increases.

C. Coherent x-ray speckle metrology

To measure the field-history-induced changes in the cor-
relations between the microscopic magnetic domain configu-
rations, we developed coherent x-ray speckle metrology. The
magnetic sensitivity of CXSM is provided by virtual 2p to
3d resonant magnetic scattering. We produce a transversely
coherent beam by passing the partially coherent beam from
the undulator through a 35 �m diameter circular pinhole to
select a highly transversely coherent portion. The beam se-
lected by the spatial filter is largely coherent over the entire
illuminated area. Due to this large uniform transverse coher-
ence, the resonant magnetic scattering produces the speckle
patterns that we use to track the field-history-induced evolu-
tion of the magnetic domains. We explain our analysis meth-
odology for the magnetic speckle patterns in the next section.

What information does x-ray speckle metrology provide
about the magnetic domains, and why do we not simply

study the magnetic domains in real space? This is the vener-
able old question about diffraction versus microscopy. The
conventional answer is that they are complementary: use
conventional beam diffraction to obtain information about
the ensemble average, and use microscopy to obtain infor-
mation about the individual defects. There are two limiting
cases of conventional diffraction studies. When the diffrac-
tion pattern consists of Bragg peaks, then the information
that conventional diffraction provides is the ensemble aver-
age of the long-range order. When the diffraction pattern
consists of diffuse scattering, then the information that con-
ventional diffraction provides is the ensemble average of the
short-range order. In our labyrinthine systems, there is no
long-range magnetic order, and consequently the diffraction
is diffuse. With an unfiltered beam we observe only a diffuse
annulus which contains information about the strength �am-
plitude� of the magnetic domains, the mean spacing of the
magnetic domains, and the correlation length of the magnetic
domains. We have performed such studies already and the
results will be presented elsewhere.

Fully coherent diffraction changes that paradigm because
the precise configuration of the speckles provides detailed
information about the defects, or in our case about the con-
figuration of the magnetic labyrinths. In the Bragg case, the
information is about the defects in the crystalline order. In
the diffuse case, the information is about the defects in the
short-range order. In fact, in two or three dimensions, if the
speckle pattern is sampled with sufficient wave-vector reso-
lution, then all of the real-space information is contained in
the speckle pattern and can be recovered using oversampling
speckle reconstruction.17 However, no successful oversam-
pling speckle reconstructions have yet been reported for
magnetic domains, though holography methods have re-
cently been demonstrated in similar systems.18 Consequently,
our objective was not to extract the complete real-space in-
formation, but instead to directly determine the changes be-
tween the correlations of the magnetic domain configurations
prepared via different applied-field histories—specifically,
without requiring the oversampling speckle reconstruction of
our speckle image magnetic fingerprints.

FIG. 6. �Color online� Measured magnetic hysteresis loops for
our samples. Note that the shape of the major hysteresis loops
change abruptly above the “critical roughness� value—which oc-
curs between the 7 and 8.5 mTorr samples—and that the areas in-
side the major loop increase as the disorder increases past the criti-
cal roughness value. The two low-rms-roughness samples exhibit
classic Kooy-Enz behavior characterized by a sharp nucleation re-
gion and low remanant magnetization, whereas the high-rms-
roughness samples exhibit an almost constant slope.

FIG. 7. �Color online� The measured magnetic characteristics
for our samples plotted versus their measured rms roughness. The
coercive, nucleation, and saturation fields are denoted by Hc, Hn,
and Hs, respectively. Note the apparently linear dependence of these
properties on the rms roughness.
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So what information does our magnetic speckle metrol-
ogy provide? We illuminate a 40 �m diameter circle on the
sample so our ensemble average is over that region. Conse-
quently, each speckle in our speckle pattern consists of an
Airy pattern with a characteristic size in reciprocal space of
2� /40 �m−1. The second important length scale in our prob-
lem is set by the width of the magnetic domains in the laby-
rinth state. This width is 200 nm, and consequently the cor-
responding characteristic size in reciprocal space is
2� /200 nm−1; this sets the mean radius of our annular
speckle patterns. In principle, our speckle patterns can pro-
vide spatial information down to � /2=0.8 nm, but in
practice—due to the strong disorder in our labyrinths—our
speckle patterns really only contain information set by the
region where the diffuse scattering is measurable, namely,
between the inside and outside radii of the annulus. For our
samples this was from about 110 to 260 nm in real space.

As argued above, all of the physical information that can
be obtained using our incident wavelength is contained
within the limited range that contains measurable scattering
intensity. Our incident wavelength is fixed by the magnetic
resonant scattering condition for cobalt so ��1.6 nm. For
this wavelength, diffraction provides information ranging
from 0.8 nm for backscattering with 2�=180° up to 40 �m
set by the illumination area. At our usual sample-to-camera
separation, the pixel size of our camera translates into a real-
space resolution of 13 �m and the total coverage of the cam-
era translates into a real-space resolution of 270 nm. The
angular size of our beamstop translates into 70 nm. Since
70	110 nm, 260	270 nm, and 27	40 �m, our camera
and our beamstop do not limit the spatial scales that we can
access. Instead, the limits are set only by the disorder levels
in our samples.

The intensity I�qr ,q�� of each speckle located at position
�qr ,q�� is proportional to the square modulus �aq�2 of the
scattering amplitude aq of the corresponding Fourier compo-
nent of the magnetic density 
mag�qr ,q��. So by taking the
square root of the intensity of our speckle pattern, we can
first calculate and then visualize the result as a map of the
magnetic density amplitudes for all of the most important
Fourier components. Each component located at q= �qr ,q��
tells us the amplitude of an infinite-spatial-extent complex-
valued exponential density component exp�iq ·r� multiplied
by our illumination function, which is roughly equal to one
inside the illumination circle and zero outside. Imagine a
large number of these complex-valued oscillating exponen-
tials, each one oriented along the direction � with amplitude
�I and wave vector qr.

So how many of these Fourier components do we mea-
sure? The area of our observed annulus in reciprocal space is
given by

Aq = �qmax
2 − �qmin

2

and the area of each one of our speckles in reciprocal space
is given by

Aspeckle = ��qspeckle
2

so the number of speckles inside the annulus is given by

Aannulus/Aspeckle � 30 000.

In other words, we directly measure this many Fourier com-
ponents of the magnetization density. Because the speckle
intensity outside the annulus is negligible, the corresponding
Fourier components outside the annulus are also negligible.
So we directly obtain information about all of the non-
negligible Fourier components of the magnetic density that
produce the magnetic scattering within the speckled annular
region that we measure.

On the other hand, modern computer control and com-
puter image analysis should enable modern magnetic x-ray
microscopy to obtain ensemble-averaged information about
the magnetic domains. This is certainly worth pursuing, and
we are just beginning such studies.

Speckle contrast, the normalized standard deviation of the
intensity, is generally used as a measure of the quality of the
produced speckle patterns. As the diffuse scattering envelope
is azimuthally symmetric about qr=0, it is correct to define
the speckle contrast �con

2 �qr� as

�con
2 �qr� =

1

�I�
��

k

N
�Ik − �I��2

N − 1

for small steps of qr where the sum is carried out over all N
�the number of data points included in each step�. Using this
calculation, the contrast present in our speckle patterns typi-
cally ranges from 0.6 to 0.4, with a small dip in values over
the peak scattering. This interesting variation of the speckle
contrast as it depends upon qr is quite reminiscent of the
speckle contrast studies by Retsch and McNulty19 across ab-
sorption edges and could provide useful information if prop-
erly understood.

IV. DATA AND DATA ANALYSIS

The typical evolution of the speckle patterns for one-half
cycle around the major hysteresis loop for the 3 mTorr
sample is schematically illustrated in Fig. 8 and the corre-
sponding measured speckle patterns are shown in Fig. 9.
Starting at positive saturation there is no magnetic contrast—
all the magnetic domains are aligned with the field—
consequently there is no magnetic scattering. As we descend
from positive saturation the magnetic domains nucleate and
produce a magnetic speckle pattern that is shaped like a
cookie �disk�. When we reach zero applied field, the mag-
netic domains have grown so much that they fill the entire
sample; in this limit they must interact, and their interaction
produces the donut-shaped �annular� speckle pattern. When
we reach the reversal region, the domain density is again
low, and so the associated speckle pattern is again cookie
shaped.

A. Correlation coefficients

To quantitatively compare the magnetic domain configu-
rations versus the applied magnetic field history, we calculate
the normalized correlation coefficients between pairs of our
measured images acquired for different applied field histo-
ries. To date, our work has been primarily based on the nor-
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malized cross correlation of these magnetic speckle
patterns—our magnetic speckle fingerprints. However, this
comparison can be done in reciprocal space—as we have
primarily been doing up until now—or in real space as we
are just beginning to do.

Some of our initial experimental work in real space is
illustrated Fig. 10 which shows the magnetic domains in our
8.5 mTorr sample measured using x-ray magnetic
microscopy.20 These images were recorded at the Co L3 edge
using XM-1 at the ALS and were taken on the descending
major loop; the left panel shows the domains at
H=−0.50 kOe and the right panel shows the domains at
H=−1.00 kOe. The correlation coefficients obtained from
our real-space normalized cross-correlation analysis of the
domain patterns agree with our correlation coefficients ob-
tained via our standard reciprocal-space normalized cross-
correlation analysis of the corresponding speckle patterns.
Therefore we believe that our real-space and reciprocal-
space methods will prove to be complementary.

Our normalized cross-correlation analysis procedure in re-
ciprocal space is illustrated in Figs. 11–13. Figure 11 shows
the speckle fingerprints measured in reciprocal space; again
the left panel shows the fingerprint at H=−0.5 and the right
panel shows the fingerprint at H=−1.0 kOe. Figure 12 shows
the calculated autocorrelation functions for these two speckle
fingerprints. Note that both of these consist of a broad
smooth “mountain” with a sharp “tree” on top of it.

The mountain corresponds to the diffuse scattering enve-
lope from the short-range magnetic ordering and the tree

corresponds to the coherent scattering from the entire illumi-
nated area. Figure 13 shows the calculated cross-correlation
function for the two speckle fingerprints shown in Fig. 12.
Again there is a diffuse mountain with a coherent tree on top
of it.

We want to use the coherent components of these auto-
and cross-correlation functions to compute the normalized
correlation coefficient. We extract the volume �V� of each
tree and then we calculate the ratio


�a,b� =
V�a � b�

	V�a � a�V�b � b�
1/2

FIG. 8. �Color online� Measured major hysteresis loop for the
3 mTorr sample. The measured magnetic speckle patterns collected
at different field values along the major loop are shown inside the
square insets and an artist’s rendition of the corresponding magnetic
domain configurations are shown inside the circular insets.

FIG. 9. �Color online� Measured CCD magnetic speckle images
for about the first half of the ascending major loop for the low-
disorder 3 mTorr sample. The dark region in the center is a blocker
inserted to eliminate the direct beam from the image. These mag-
netic speckle patterns were collected at fixed values of the applied
field as the field was monotonically increased in steps from negative
saturation. The speckle images associated with the applied magnetic
field values are shown—from left to right and from top to bottom—
for the following applied field values: −3.0, −2.5, −2.0, −1.75, −1.5,
−1.25, −1, −0.75, −0.5, −0.25, 0, 0.25, 0.5, 0.75, 1, and 1.25 kOe.

FIG. 10. Two representative magnetic x-ray microscopy images
for our 8.5 mTorr sample at H=−0.50 �Top� and −1.00 kOe
�Bottom�. These images show 2.2�2.2 �m2 areas.
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The resulting normalized correlation coefficient 
�a ,b�
measures the normalized degree of correlation between any
two speckle patterns. We use it to quantify the degree of
correlation between pairs of speckle patterns which in turn is
our measure of the degree of correlation between the corre-
sponding magnetic domain patterns. When 
�a ,b�=1 the two
magnetic domain patterns are identical, and when 
�a ,b�
=0 the two magnetic domain patterns are completely
different.

In general, the value of 
 specifies the degree of correla-
tion between the two speckle patterns which in turn are pro-
portional to the Fourier coefficients of the magnetization
density for the two magnetic domain configurations. Because
our correlations are based on the intensity, we are unable to
determine the sign of the correlations—we cannot distin-
guish correlation from anticorrelation. This is essentially
Babinet’s principle.

B. Data analysis

We now sketch the details of our correlation coefficient
calculations. To determine the correlation between two
speckle patterns, we generalized the standard correlation co-
efficient for two random variables a and b, which is given by


�a,b� = Cov�a,b� � �Var�a�Var�b��−1/2,

to the equivalent expression in terms of the background-
subtracted cross-correlation function �FCCF� and the
background-subtracted autocorrelation functions �FACF� of
the speckle pattern intensities Ia�qx ,qy� and Ib�qx ,qy�


�a,b� =
� FCCF�a,b�

�� FACF�a� � FACF�b��1/2

where the sums run only over the trees so that the
background-subtracted auto- and cross-correlation functions
contain only coherent scattering contributions.

We used the standard fast Fourier transform �FFT� to cal-
culate the auto- and cross-correlation functions, but we first
verified that the FFT produces precisely the same results as
slow, sliding cross correlation. Our speckle fingerprint im-
ages are 1024�1024 pixels, so they produce cross-
correlation images with 2049�2049 points. The coherent
speckle information, which is 2–3 pixels wide in the speckle
patterns, is transformed into a peak 5–7 pixels wide in the
correlation map. Figure 13 shows a typical cross-correlation
map calculated using the two entire speckle patterns. Note
that the shape of the mountain under the coherence tree is

FIG. 11. �Color online� Two magnetic speckle patterns for our
8.5 mTorr sample shown for H=−0.50 �Top� and −1.00 kOe
�Bottom�.

FIG. 12. �Color online� Two autocorrelation functions for the
two magnetic speckle patterns shown in Fig. 11. The coherent
speckle information is contained in the sharp peak that rides on the
top of the large diffuse scattering signal. The autocorrelation func-
tions are shown over the full 2049�2049 pixel area. The vertical
scale extends from 0 to 4�1012.

FIG. 13. �Color online� Cross-correlation
function between the two speckle patterns shown
in Fig. 11. The coherent speckle information is
contained in the sharp peak that rides on the top
of the large diffuse scattering signal. The cross-
correlation function is shown over the full 2049
�2049 pixel area. The vertical scale extends
from 0 to 4�1012.

PIERCE et al. PHYSICAL REVIEW B 75, 144406 �2007�

144406-10



shaped like a rounded cone. When the tree gets small—as the
two speckle patterns become almost uncorrelated—the
rounded shape makes it tricky to subtract the background
properly.

To provide information about the quality of our normal-
ized cross-correlation values, we divided the whole speckle
pattern into 8–15 square regions containing 100
�100 pixels within which the intensity was nearly constant.
In this way we removed the distortion produced by the
shadow of the blocker and its support arm, and by camera
defects and burns.

This piece-by-piece analysis made it much easier to sepa-
rate the tree from the mountain. Because the variation in the
average intensity over the small regions is much smaller than
that over the entire image, the mountain now decays linearly
away from the tree as shown in Fig. 14. Consequently, the
small regions could always be reliably fitted with simple
linear functions. This made it much easier and more reliable
to subtract the background.

It is also very useful to note that this type of speckle
analysis completely separates the coherent signal from the
diffuse, incoherent scattering present in an image. Indeed, so
long as the speckle signal is identifiable and separable, then
any incoherent signal is eliminated. This calculation is ca-
pable of introducing some error; however, it is usually not
sufficient to detract from the values obtained for the correla-
tion coefficients. Even when the cross correlation becomes
difficult to identify, the correlation coefficient 
�a ,b� is still
normalized by the autocorrelation of each image which
remains well defined and comparably large.

V. EXPERIMENTAL RESULTS

As explained in the previous section, we used normalized
correlation coefficients to extract information about the cor-
relations between the magnetic domain configurations versus
their applied-field history.

We addressed the following questions. Are the domains
precisely the same each time we go around the major hyster-
esis loop? How are the domains related at the complemen-

tary points on the major loop? How are the domains related
for different points within the same �ascending or descend-
ing� branch of the major loop? The first two questions are
about major-loop microscopic RPM and CPM, or interloop
correlations. The third question is about major-loop micro-
scopic half-loop memory values that probe the intrabranch
correlations. We present our answers to these questions in
turn below.

A. Major-loop microscopic return-point memory and
complementary-point memory

The first question that we addressed was whether our
samples exhibited major-loop microscopic RPM. To do so,
we compared pairs of speckle patterns collected at the same
point on the major loop, but separated by one or more full
excursions around the major loop. The second question that
we addressed was whether our samples exhibited major-loop
microscopic CPM. To do so, we compared pairs of speckle
patterns collected at one point on the major loop with the
speckle patterns collected at the inversion-symmetric
complementary point on subsequent cycles.

Our results for each sample are shown in Fig. 15, where
the measured magnetic field dependence of the RPM and
CPM correlation coefficients for each sample is shown. The
data shown are for many excursions around each major loop.
We did not observe any RPM or CPM for the 3 mTorr
sample. The 7 mTorr sample exhibited an extremely small
RPM and CPM—so small that we could not determine
whether there was any RPM-CPM symmetry breaking. For
all of our disordered samples, i.e., for 8.5 mTorr and above,
we measured nonzero RPM and CPM values that had their
RPM-CPM values slightly symmetry broken—our measured
CPM coefficients are consistently a little smaller than the
corresponding RPM coefficients. It is worth noting again that
we verified with magnetometry that our samples demon-
strated perfect macroscopic return-point memory.

In order to properly compare the memory of the different
samples, it is helpful to plot them using the same scale. By
dividing each actual measured magnetization value by the
saturation magnetization for each sample we obtain a relative
measure of the magnetization values. The value M /MS is
known as the reduced magnetization m. Figure 16 shows our
major-loop microscopic RPM and CPM correlation coeffi-
cients, measured at room temperature for three values of the
reduced magnetization m=−0.4,0, �the coercive point�, and
+0.4 for each sample. The RPM and CPM curves are plotted
versus the sample’s measured rms roughness. As noted
above, our smooth samples have essentially zero RPM and
CPM values. In contrast, all of our rough samples exhibit
RPM and CPM correlation coefficients that increase and
saturate as the roughness increases, but never grow to unity.
This increase starts precisely where the major loops change
from being nucleation dominated to being disorder
dominated.

In addition, our measurements establish the following
interesting trends about the RPM and the CPM.

�1� Neither correlation coefficient depends on the number
of intermediate loops between the correlated speckle pat-

FIG. 14. �Color online� The cross-correlation function calcu-
lated by comparing small regions in the respective speckle images.
The coherent speckle signal �the spike shown in yellow� is clearly
visible and is located at the peak of the large diffuse background
signal �the roof-shaped structure shown in blue�.
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terns. This indicates that the deterministic components of the
RPM and CPM are essentially stationary. This implies that
the deterministic component of the memory in our system is
largely reset by bringing the sample to saturation. It also
strongly suggests that the same disorder is largely producing
at least the deterministic component of both the RPM and the
CPM.

�2� The RPM correlation coefficients are consistently a
little larger than the CPM correlation coefficients. This dem-
onstrates that the system acts in nearly the same way under
positive and negative magnetic fields. So this implies that
much of the disorder must have spin-reversal symmetry. This
might be produced by random anisotropy, random bonds, or
random coercivity, but not by random fields. This also sug-
gests that the right physics might be captured by combining
a RFIM model �which has RPM but essentially no CPM�
with any of the other microscopic models �RAIM, RBIM,
and RCIM�, which all predict identical RPM and CPM.

�3� The correlation coefficients are largest near the initial
domain reversal region. This suggests that the subsequent
decorrelation is produced by the domain growth.

�4� The correlation coefficients decrease monotonically to
their minimum values near complete reversal. This suggests
that the decorrelation is produced by the domain reversal.

B. Half-loop memory: The domain configuration correlations
within a single branch of the major loop

We next studied the correlations between the magnetic
domain configurations within a single half loop—i.e., the

correlations within a single ascending, or a single descend-
ing, half loop. We looked for evidence that the evolution of
the magnetic domains depended upon the disorder present in
the sample. Does the level of the disorder influence how
quickly or slowly the domain pattern evolves?

To study this question, we computed the normalized
cross-correlation coefficient between the speckle patterns
taken along a single ascending or descending half loop. As
we cycled each sample from negative to positive saturation,
we stopped many times at fixed field values to record the
speckle patterns. By cross-correlating two speckle patterns
collected on the same trip along the major hysteresis loop,
we are able to determine how the domain configuration is
changing.

Denoting the ordered set of descending speckle patterns
by 1,2,3,4,…., we then calculated the correlation coefficients
between all of the pairs of these speckle patterns:


�1,1�,
�1,2�,
�1,3�,
�1,4�, . . . ;


�2,1�,
�2,2�,
�2,3�,
�2,4�, . . . ;


�3,1�,
�3,2�,
�3,3�,
�3,4�, . . . ; etc.

This allowed us to correlate each of the domain configura-
tions against all of the previous and subsequent measured
configurations within the same descending branch of the ma-
jor loop.

FIG. 15. �Color online� The measured RPM coefficients �red circles� and CPM coefficients �blue triangles� for all six of our samples
along their major loop. The 3 mTorr sample �top left� shows no evidence of any memory effects. The 7 mTorr sample �top center� shows the
possibility of an extremely small nonzero RPM and CPM. For each of the more disordered samples there is a sharp rise in the RPM and CPM
that correlates with the initial domain growth followed by growth to a maximum value and then by a slow decrease as the sample is taken
toward reversal.
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When the reference pattern was taken to be the image
with its reduced magnetization m=−0.4, the resulting half-
loop memory curves are shown versus the applied field in the
top panel of Fig. 17; the bottom panel shows the same HLM
curves plotted versus the reduced magnetization. Note the
nice data collapse that occurs for the plots versus m.

We found that the m=−0.4 HLM curves for our samples
exhibit a subtle, but interesting, dependence on their disor-
der. Although the HLM curves in the bottom panel of Fig. 17
look remarkably similar, the low-disorder curves are system-
atically above the high-disorder curves. This indicates that
the intraloop domain configurations in the low-disorder
samples are a little more persistent than those in the high-
disorder samples. This is consistent with the idea that the
domain widths in the low-disorder samples can expand and
contract as the applied field is changed, whereas the domains

in the high-disorder samples must break and reform.
Figure 18 shows the systematic evolution of our measured

HLM curves versus each reference image for the 3, 7, 8.5,
10, and 12 mTorr samples. Up until now, there have been no
analytic predictions or simulations for the shapes of, or the
evolution of, these measured HLM curves.

VI. OUR THEORETICAL MODELS

Our experimental results represent direct measurements of
the effects of controlled disorder on microscopic return-point
memory and complementary-point memory. How can we un-
derstand our experimental results in the light of the current
microscopic disorder theories, and, in particular, how does
nature produce the RPM-CPM symmetry breaking? For spin
models that are bilinear in spin �excluding the external field
term�, one might expect that the microscopic evolution of
spins from a completely saturated state would lead to the
same speckle patterns �or, with thermal noise or dynamical
instabilities, to the same distribution of speckle patterns�,

FIG. 16. �Color online� RPM �red circles� and CPM values �blue
triangles� measured for different sample magnetizations plotted ver-
sus the respective measured rms roughness. The top figure shows
the results obtained for the reduced magnetization m=−0.4. The
middle shows the results for m=0.0 which is the coercive point. The
bottom shows the results for m= +0.4. Note that the RPM and CPM
exhibit similar rapid growth followed by apparent saturation inde-
pendent of the value of m.

FIG. 17. �Color online� The half-loop memory �HLM� curves
for m=−0.4. The top panel shows the HLM curves for the samples
versus the applied field values. The bottom panel shows the HLM
curves versus the reduced magnetization values. For each sample, a
reference image is taken at m=−0.4 and then cross-correlated with
all previous and subsequent images collected on the same trip along
one-half of the major hysteresis loop. Thus, the degree of correla-
tion is determined between the speckle pattern from each image
with the speckle pattern obtained at m=−0.4 on the same trip along
the major hysteresis loop.
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whether one starts from a very large positive or a very large
negative applied field. As a consequence, the RPM and CPM
correlation coefficients would be the same. Our experimental
results show that this is not the case, and we have found that
this apparent experimental small RPM-CPM symmetry
breaking imposes strong constraints on any theory designed
to describe the experiments.

In many theoretical descriptions of the magnetization pro-
cess in systems with an easy anisotropy axis, the local mag-
netization is described as a scalar quantity, since it is as-
sumed that to a good approximation the magnetization must
point along this easy axis. Starting from this point, we can
obtain a number of different models according to the addi-
tional ingredients that we add. The well-known Ising model
is obtained by coupling neighboring spins ferromagnetically.

Many different microscopic disorder-induced memory
systems have been constructed by introducing different types
of disorder. The random anisotropy Ising model is produced
by varying the local deviations from normal of the easy
axis.21 The random bond Ising model is produced by varying
the strength of the ferromagnetic coupling between spins.22

The random coercitivity Ising model is produced by varying
the coercive field that is necessary to flip each spin.23 The
Edwards-Anderson spin-glass �EASG� model is produced by
randomly choosing the signs of the bonds. An additional in-
teresting and extensively studied possibility is to consider
disorder entering in the form of a random local field acting
on each spin. In this case, the model is called the random
field Ising model.2 For compactness, below we will refer to
the above models using the acronym RXIM.

There is an important distinction among the previous
models. The RAIM, RBIM, and RCIM are all spin-inversion
symmetric. So at zero temperature they show perfect RPM
and CPM. If temperature is included, then both the RPM and
CPM become less than 1, but they remain equal. The only
model that is not spin symmetric, and can thereby explain the
experimentally observed difference between RPM and CPM,
is the RFIM. The RFIM alone is too drastic because for all
but extremely high disorder it has essentially no CPM. This
suggests one possible approach to explain our results: a
theory that combines the RFIM with one of the other RXIMs
possessing full CPM could produce a system that possesses
slightly symmetry-broken RPM and CPM. Another possible
route to the broken RPM-CPM symmetry is via spin-glass
models. The standard spin-glass model has perfect RPM and
CPM at T=0, but when coupled to random fields it exhibits
imperfect CPM. Some of the relevant properties are summa-
rized in Table II.

We have explored the first two models, denoted models 1
and 2 below, in the most detail. Specifically we tuned the
model parameters to make the simulations behave as closely
as possible like our experimental results. Both models were
able to semiquantitatively match our experimentally mea-
sured behavior for �i� the domain configuration morphology,
�ii� the shape of the major loops, �iii� the values of the RPM
and CPM coefficients, and �iv� the small RPM-CPM symme-
try breaking, versus both the disorder level and the magnetic-
field history.

We also explored one more model that was designed to
produce the observed small RPM-CPM symmetry breaking

FIG. 18. �Color online� Our measured half-loop memory �HLM�
curves plotted versus the applied field values. The HLM curves for
each sample are shown for each possible reference speckle pattern
for that sample, i.e., the magnetic speckle pattern for every mea-
sured applied field value is used as the reference pattern for one of
the curves shown. The respective reference field values are easily
identified as the points on the HLM curves where the HLM value is
unity. From top to bottom, the panels show the 3, 7, 8.5, 10, and
12 mTorr sample HLM curves. In each case, the magnetization of
the sample was increased from negative to positive saturation.
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with the minimum physics: model 3 combines the RFIM
with a spin-glass model. However, for this model, we have
not yet tried to tune the model parameters to match the de-
tailed experimental behavior. So we present it here as a mini-
mal model that can produce a small RPM-CPM symmetry
breaking that is qualitatively similar to that observed in our
experiments.

Model 1 combines a pure RFIM with a pure RCIM.24,25

The essential idea was to produce a theory that combines the
pure RFIM—with perfect zero-temperature RPM but essen-
tially no CPM—with one of the other random Ising models
possessing full CPM to thereby produce a model that pos-
sesses the experimentally observed slightly symmetry-
broken RPM and CPM.

Model 2 explores the consequences of the type of dynam-
ics used by the simulations to change the orientation of a
spin.26 All of the typical RXIM simulations use selection and
update methods which are unchanged under a global spin
flip. The next level of sophistication beyond simple scalar
spin flips is to use the vector Landau-Lifschitz-Gilbert �LLG�
equation to describe the classical dynamics of the magnetic
spins. However, this equation of motion is not spin symmet-
ric. Consequently, the system will evolve differently than it
does for simple spin-flip dynamics. In fact, we found that the
major loop for model 2 does not exhibit perfect complemen-
tary symmetry.

Model 3 explores the consequences of mixing a RFIM
with a spin-glass model.27 Once again, because the RFIM
has RPM but essentially no CPM, and the spin-glass model
has both RPM and CPM, this model can be adjusted to ex-
hibit a small RPM-CPM symmetry breaking.

The underlying symmetries and the predicted zero- and
finite-temperature behavior of the RPM and CPM for the
standard RXIMs and for the EASG model are shown in Table
II. The entries in this table show the memories for the zero-
temperature models. For the corresponding finite-
temperature models, all of the “perfect” memories should be
replaced by “imperfect.” The label “small” for the CPM rep-
resents the fact that at very high disorder the RFIM will
show imperfect CPM. Our three models are presented and
discussed one by one in more detail below.

A. Model 1: RCIM plus RFIM

The first model that we explored simulates localized mag-
netic moments that lie in a plane and point perpendicular to

it. The local magnetization is taken to be a scalar variable �.
We include in model 1 the long-range dipolar interactions,
the short-range exchange interactions, and some sort of
quenched disorder to simulate the effect of the interfacial
roughness. In order to obtain more realistic results within a
reasonable computational time, we used a continuous vari-
able �, instead of an Ising-like discrete variable. The numeri-
cal advantages provided by a continuous variable have pre-
viously been discussed in detail in Ref. 24.

The total Hamiltonian for model 1 is

H = 

 dr�−
��r�2

2
+

��r�4

4
� − h
 dr ��r�

+ �
 dr
����r��2

2
+ �
 dr dr���r���r��G�r,r�� .

�1�

For more details see Ref. 24.
The first term gives the local energy of the magnetic di-

poles, favoring �but not forcing� the values �= ±1. The sec-
ond term includes the effect of an external magnetic field h,
and the third term provides the continuum version of a local
ferromagnetic interaction. The dipolar interaction kernel G is
defined on a discrete numerical lattice by G�r ,r��=1/ �r
−r��3 for r�r�, whereas G�r ,r��0. It has been shown that
this particular regularization adopted at short distances does
not play a crucial role in the results.25

Disorder is included through the random spatial variation
of 
, namely, 
�r�= 
̄	1+�0��r�
, where ��r� is a random
spatial variable uniformly distributed between +1 and −1.
Consequently, the constant �0 controls the overall strength of
the disorder. This way of introducing disorder corresponds to
that in the RCIM. Other forms of introducing disorder in the
system �particularly random anisotropy and random bond�
should also be explored.

As anticipated above, model 1 is spin symmetric, and
consequently it will always predict RPM values equal to its
CPM values. To explore the possibility that they could be-
come different due to the existence of some symmetry-
breaking field we introduced disorder in the field through

h�r�= h̄	1+�1��r�
. We always set �1��0, so that the
amount of disorder in the RFIM component was always
much smaller than that in the RCIM component. The time
evolution of the system is obtained through overdamped dy-
namics of the type

���r�
�t

= −
�H

���r�
+ �2kBT��t� �2�

where for convenience time has been rescaled and ��t� is an
uncorrelated white noise that simulates the effects of a tem-
perature T on the system.

Through a rescaling procedure, two of the coefficients in
the Hamiltonian can be forced to take fixed values. In fact,
we will assume that by appropriate time, space, and field
rescaling, the coefficients of the ferromagnetic and dipolar
interactions �namely, � and �� have been made equal to fixed
values. For convenience in the simulations, these values
were taken to be �=2 and �=0.19. The new parameters on

TABLE II. Symmetries and memories of our microscopic
disorder-based hysteresis models.

Disorder
model RPM CPM

Spin-inversion
symmetry

Time-reversal
symmetry

RAIM Perfect Perfect Yes Yes

RBIM Perfect Perfect Yes Yes

RCIM Perfect Perfect Yes Yes

RFIM Perfect Small No Yes

EASG Perfect Perfect Yes Yes
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which the model depends are now the rescaled values of 
,
h, and T. The results presented below correspond to simula-
tions with 
=1.8 and kBT=2�10−4 for different values of
the disorder set by �0 and �1, and as a function of the ex-
ternal field h.

We tuned the model parameters to reproduce the experi-
mental conditions. We started at magnetic saturation by ap-
plying a large external field h, so that all the local moments
point in the same direction. We then reduced the external
field in small steps and obtained the “equilibrium configura-
tion” by numerically solving the Hamiltonian equation until
stationarity was obtained. Of course, the resulting equilib-
rium configuration is actually metastable. An example of the
simulated magnetic domain configurations is shown in Fig.
19 for different applied fields.

By using our scalar model with a ratio between the ran-
dom field component and the random coercivity component
of �1 /�0=0.04, we obtained the disorder-dependent correla-
tion coefficients shown in Fig. 20. They were calculated us-
ing the domain configurations obtained from the simulation.

1. Effects of combined coercivity disorder and field disorder on
memory

Now that we have demonstrated that a combined RCIM
plus RFIM can be tuned to describe the resuts of our experi-
ment quite well, it is natural to ask about the generic behav-
ior of this combined model. In particular, how does its
memory depend on its two disorders—the disorder in the
coercivity and the disorder in the random field? We used a
simple discrete-spin simulation to explore this question for
both zero and finite temperature. Our simulations were per-
formed on a 64�64 grid of dipolar Ising spins. In dimen-
sionless units, where the near-neighbor interaction energies
are unity, J=1, our parameters were as follows: the random

field disorder was distributed normally with mean 0 and stan-
dard deviation x /3; the random coercivity disorder was dis-
tributed normally with mean 0 and standard deviation y.
Note that x and y are the horizontal and vertical scales in Fig.
21.

Our results for T=0 are shown in Fig. 21. Note that the
RPM is perfect for both the RFIM and the RCIM, and that it
is also perfect for any linear combination of the RFIM and
RCIM. The CPM is perfect for the pure RCIM for all values
of the random coercivity disorder, but the CPM is imperfect
for the pure RFIM for all nonzero values of the random field
disorder. The perfect CPM for both the pure Ising model and
pure RCIM have perfect negative CPM values, 
CPM=−1.
Consequently the magnetic domains at the complementary
point are perfectly anticorrelated with the magnetic domains
at the return point.

Our results for T=0.1 also are shown in Fig. 21. Note that
the RPM for the pure Ising model is near zero, and that the
RPM for the pure RFIM increases as the random field disor-
der is increased—it grows from zero with no random field
disorder to about 1.0 at the highest disorders we explored.
The RPM for the pure RCIM also increases as the random
coercivity disorder is increased—it grows from zero with no
random field disorder to 1.0 at the highest disorders we ex-
plored. The CPM for the pure Ising model is near zero. The
CPM for the pure RFIM increases as the random field disor-
der is increased—it grows from zero with no random field
disorder to about +0.4 at the highest disorders we explored.
The CPM for the pure RCIM increases as the random coer-
civity disorder is increased—it grows from zero with no ran-
dom field disorder to −1.0 at the highest disorders we ex-
plored. It is interesting to note that the magnitude of the
correlations and anticorrelations is larger for the RCIM than
the RFIM over the same range. The spin-inversion symmetry
of the RCIM pushes the system toward anticorrelation, fa-
voring the same microscopic spin evolution on both sides of
the major hysteresis loop. In contrast, because the RFIM

FIG. 19. �Color online� Simulated magnetic domain patterns for
model 1 showing four different values of �0 at the coercive point.
The simulation was started with a large applied field to saturate the
magnetization in the positive direction. Then the applied field was
slowly reversed in small steps to the coercive point, allowing the
domain configuration time to come to equilibrium after each step.

FIG. 20. �Color online� The calculated RPM �red circles� and
CPM �blue squares� values versus disorder for model 1 at finite
temperature. Note that the simulated evolution for model 1 is very
similar to that of the experimentally measured RPM and CPM val-
ues. See Fig. 16 for comparison with experimental results.
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does not possess spin-inversion symmetry, the random field
can only drive the system toward positive correlation. Both
of these compete to determine the sign and magnitude of the
correlation coefficients. In the range where the contributions
from the RCIM and RFIM are roughly equal, the CPM is
uncorrelated while the RPM increases with the magnitude of
each.

Although we have used a very simple discrete-spin simu-
lation done on a 64�64 grid of dipolar Ising spins, note that
we obtain very similar behavior to that produced by our
much more sophisticated and realistic model presented ear-
lier.

B. Model 2: RAIM plus LLG dynamics

There is another fundamental explanation for the ob-
served RPM-CPM asymmetry.26 Even when the Hamiltonian
is constructed to possess spin-inversion symmetry, the dy-
namics describing how the magnetization changes does not

have to be symmetric. In fact, the dynamics of the standard
Landau-Lifschitz-Gilbert equation breaks spin-inversion
symmetry:

ds

dt
= − s � �B − �s � B� . �3�

The first term describes the velocity with which a spin pre-
cesses about the magnetic field. The second term describes
the damping of the precessional motion produced as the spin
aligns along the magnetic field.

Under LLG dynamics, the spins undergo damped preces-
sional motion about their local magnetic fields. When both
the external field and all the spins are reversed, the orienta-
tion of each spin and its precesssion are reversed. The pre-
cessional motion of the spins �i.e., their motion perpendicular
to their local fields� is not reversed, whereas the relaxational
motion �parallel to the local fields� is reversed. As a conse-
quence, for a disordered system, the evolution of the mag-

FIG. 21. �Color online� Contour plots of the calculated RPM and CPM values for the simplified RCIM plus RFIM simulation. The RPM
values are shown on the left and the CPM values are shown on the right; the T=0 values are shown on the top and the T=0.1 values are
shown on the bottom. The random coercivity disorder is plotted vertically and the random field disorder is plotted horizontally.
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netic domains when starting from a large negative field is not
the mirror image of the evolution starting from a large posi-
tive field.

Therefore the spin-inversion symmetry of the Hamil-
tonian that completely determines the equilibrium static
properties does not control the nonequilibrium dynamics that
are relevant for magnetic hysteresis. We first observed this
effect for a vector spin model using the LLG equations to
describe a set of magnetic nanopillars.26 There we found that
the major hysteresis loop was not symmetric under inversion
of the applied field and the magnetization despite the fact
that the Hamiltonian displayed this symmetry.

Model 2 that we describe below attempts to capture the
physics of the magnetic domains in our experimental CoPt
layered system and it has many parallels with the scalar ap-
proach described for model 1 above. We will assume that �1�
the films are disordered on the scales relevant to pattern for-
mation, but are strongly anisotropic; �2� the easy axis has
small random deviations away from the direction perpen-
dicular to the film.

From electron micrographs of similar sputtered films, we
see that the layers become increasingly rough and nonplanar
as the disorder is increased.13 Consequently, even though the
physics of the perfect material dictates a strong anisotropy,
the local direction of the easy axis will no longer be precisely
perpendicular to the film. Because it varies randomly in
space, we write the anisotropic contribution to the Hamil-
tonian as

Hani = − 
�
i

�si · n̂i�2, �4�

where 
 is a model parameter. Higher-order corrections that
are even in si are also possible, but they are not necessary to
obtain qualitative agreement with our experiments.

Disorder is included through random variation in the easy
axis n̂i for each block of spins. To adjust the effects of the
disorder, a weighting factor wani was included that controls
the variation from the perpendicular axis. For small values of
wani the variation is small and there is little disorder. At larger
values, the disorder is heavily weighted and has a large in-
fluence.

We have also included the short-range ferromagnetic cou-
pling J. Because we are attempting to model this system as a
continuum, we take the usual approach of minimizing effects
of the grid by writing this ferromagnetic interaction in terms
of sk, the Fourier transform of the spins,

Hel = J�
k

k2sk
2 . �5�

As in the scalar case, it is also crucial to include the
long-range dipolar interaction

Hdip = − wdip �
i,j�i

3�si · eij��eij · s j� − si · s j

rij
3 , �6�

where rij is the displacement vector between spins i and j, eij
is the unit vector along this direction, and wdip represents the
strength of the dipolar coupling.

Although this is correct for point dipoles, we are model-
ing blocks of spins and must include this effect in this inter-
action. In particular, the short-range behavior is smoothed
out by integration in the vertical direction.28 We implement
this as a k-space cutoff by multiplying the dipolar interaction
in k space by a Gaussian exp�−k2d2 /2� where d is a param-
eter comparable to the thickness of the sample.

Finally, we include the usual interaction with the external
field

Hext = − Be�
i

si
z. �7�

All of the terms in the Hamiltonian are bilinear in the
spins and the external field but, as discussed above, the LLG
equations are not. Because of the symmetry breaking pro-
duced by the LLG dynamics, model 2 can be tuned to pro-
duce a small RPM-CPM symmetry breaking similar to that
measured by our experiments.

We have chosen the relaxation time to be of the order of
the precessional period near saturating fields, that is, �=1.
Although this quantity has not been measured for our CoPt
films, it has been measured for other similar materials. Ex-
periments on NiFe films show that it is very large, approxi-
mately 100.29 If it were so large in our CoPt system, it would
only accentuate the memory asymmetry further. Work on
CoCrPt systems30 has indicated that the precessional period
is comparable to the relaxation time and if this is also true
for our films, then our �=1 assumption is reasonable.

Summarizing model 2, we have coarse-grained vector
spins evolving via the LLG equations with thermal noise.
The Hamiltonian incorporates local ferromagnetic coupling,
long-range dipolar forces, disordered anisotropy modeled by
a random easy axis, and coupling to the external field. We
found a range of model parameters that produced compa-
rable behavior to that of our experimental samples.

First, we examine the evolution of the major hysteresis
loops versus the disorder. The evolution of the simulated
major loops is shown in Fig. 22. The disorder increases from

FIG. 22. �Color online� Simulated evolution of the major hys-
teresis loops versus the disorder for model 2. Note that this behavior
qualitatively agrees with that of the experimental samples shown in
Fig. 6.
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left to right and from top to bottom; the simulated loop shape
for the lowest disorder is shown in the upper left panel and
the simulated loop shape for the highest disorder is shown in
the lower right panel.

The simulated domain configurations for different
amounts of disorder at a finite temperature are shown in Fig.
23. Again the disorder increases from left to right and from
top to bottom. The evolution of our simulated domain con-
figurations versus disorder qualitatively agrees with that ob-
served in the experimental samples.

For low disorder when lowering the external field from
saturation, our simulations show that there is suddenly spon-
taneous growth of domain lines that fill up the system at a

critical value of the field; this happens at constant field. For
our simulations with low disorder the domain morphology
looks labyrinthine at remanence. The simulated morphology
and growth of the domains are very similar to those of our
experiments.

For low disorder, the simulated hysteresis loops look quite
similar to those for the 3 mTorr samples: corresponding to
the onset of domain growth in the simulation, there is a cliff
in the hysteresis loop because the magnetization decreases
substantially during this phase of growth. When the disorder
is high, it pins the domains by destroying translational in-
variance. This happens suddenly in our simulations in a simi-
lar fashion as that in the experiments, suggesting a critical
disorder.2 For this critical disorder and above, the spontane-
ous cliff-producing growth of the domains disappears, and
the domains at remanence no longer look labyrinthine, but
instead are much more disordered. After losing their clifflike
shape, the simulated hysteresis loops are smooth. The quali-
tative similarities between the experimental major loops and
the simulated major loops for model 2 can be seen by a
comparison of Figs. 22 and 6.

We explored the memory effects in model 2 by calculat-
ing the correlation between pairs of domain configurations.
Because we had direct access to the complete domain con-
figurations, we calculated the correlations in real space. The
simulated RPM and CPM values for model 2 at the coercive
point as a function of the disorder are shown in Fig. 24. The
RPM-CPM symmetry breaking is clearly visible. As the tem-
perature is increased, both curves lower in value but the
RPM curve still remains slightly above the CPM curve.
These curves clearly grow rapidly past the critical disorder
point where the simulated and experimental loops change
from clifflike to smooth.

The observed memory behavior in model 2 can be ex-
plained as follows. For low disorder, the spontaneous growth
of the domains is very susceptible to thermal fluctuations. If
we observe the growth of the domains for several cycles
around the major loop, we find that, although the initial
nucleation points are precisely the same, the evolution past
that point is different every time. For low disorder, it appears
that the thermal fluctuations produce different domain pat-

FIG. 23. Simulated evolution of the domain configurations ver-
sus the disorder for model 2. Note that this behavior qualitatively
agrees with that of the experimental samples as shown in Fig. 5.
The anisotropy disorder weighting parameters wani are 0.001, 0.091,
0.24, and 0.33, while the dipole strengths wdip are 0.15, 0.105, 0.08,
and 0.06, respectively.

FIG. 24. �Color online� RPM �red circles� and
CPM �blue squares� values predicted by model 2
plotted versus the disorder. Note the qualitative
agreement with the experimental measurements
shown in Fig. 16.
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terns during each cycle. However, for high disorder, the pin-
ning produced by the disorder appears to constrain the do-
main growth and leads to significant similarity from cycle to
cycle of the domain configurations at the coercive point.

In summary, model 2 simulated CoPt thin films using a
spin-symmetric Hamiltonian with LLG dynamics. Unlike in
our other scalar models, the LLG vector dynamics is the
mechanism for breaking the RPM and CPM symmetry. In
addition to this asymmetry, model 2 was also able to success-
fully simulate both the major hysteresis loops and the evolu-
tion of the domain configurations in qualitative agreement
with our experimental results.

C. Model 3: A spin-glass model plus the RFIM

Motivated by the above experimental and theoretical re-
sults, we attempted to determine the minimal model that
would capture the essential physics of the observed memory
effects. In this section, we explore the following four ques-
tions: �1� What is the minimal model that exhibits these
memory effects? �2� Do these memory effects persist at finite
temperatures? �3� How do these memory effects depend on
the disorder? and �4� Does the RPM-CPM symmetry break-
ing convincingly exceed the error bars? We assert that it is of
general interest to study the RPM and CPM for simple para-
digmatic models, such as the Edwards-Anderson Ising spin
glass and the RFIM.2,31

1. Ingredient 1: Edwards-Anderson spin glass

We start with the Hamiltonain for the
Edwards-Anderson32 spin glass given by

HEASG = − �
�i,j�

JijSiSj − H�
i

Si. �8�

The spins Si= ±1 lie on the vertices of a square lattice in
two dimensions �2D� of size N=L2 with periodic boundary
conditions. The interactions Jij are Gaussian distributed with
zero mean and standard deviation �J. Our simulations were
performed by first saturating the system by applying a large
external field H and then reducing H in small steps to reverse
the magnetization.

For finite temperatures, we performed a Monte Carlo
simulation and equilibrated until the average magnetization
was independent of time for each field step. For zero tem-
perature, we used Glauber dynamics33 where randomly cho-
sen unstable spins—pointing against their local field hi
=��j�JijSj +H—were flipped until all spins were stable for
each field step. These simulations converged rapidly and
showed essentially no size dependence past L=20.

We quantified the simulated RPM and CPM with 
r�H�,
the overlap in real space of the spin configuration at a field H
with the configuration at a field with the same magnitude �H�
after an n=1/2 cycle for CPM and n=1 cycle for RPM


r�H� =
�− 1�2n

N
�
i=1

N

Si�H�Si
�n��H� . �9�

Our results for the EASG show that this system exhibits
nearly complete RPM and CPM throughout the entire field

range for T=0. The strong CPM can be attributed to the
spin-inversion symmetry of the system: upon reversing all
spins Si and the magnetic field H, the Hamiltonian trans-
forms into itself. The observation of robust RPM and CPM
answers question 1 by establishing the EASG as a minimal
model displaying these memory effects. However, the simu-
lated memory effects were not perfect even at T=0. This was
probably due to the stochastic nature of the updating: during
each field sweep, the spins were selected randomly for up-
dating. Therefore, even at T=0, the spin configurations did
not evolve entirely along the same valleys of the energy
landscape. Our simulations at finite temperatures show that
the RPM and CPM decreased with increasing temperature
and remained finite, even though it would seem natural for
the thermal fluctuations to completely wash out the micro-
scopic memory, rendering it macroscopic only.

By varying the disorder strength �J in our EASG model
we showed that the RPM and CPM increase dramatically
with increasing disorder, in good agreement with the experi-
ments. The physical reason behind this result lies in the fact
that when the disorder is high the energy landscape develops
a few preferable valleys and the system evolves along these
optimal valleys. This is not the case for small disorder where
several comparable shallow valleys without a single optimal
path are present. Finally, in relation to question 4 it is noted
that in the EASG the differences between the RPM and CPM
are immeasurably small.

2. Ingredient 2: Pure random field Ising model

Next, we study the same memory effects in the 2D ran-
dom field Ising model

HRFIM = − J�
�i,j�

SiSj − �
i

	H + hi
Si; �10�

here the random fields hi were chosen from a Gaussian dis-
tribution with zero mean and standard deviation �h �J=1�.
The main differences between the RFIM and the EASG are
that the RFIM does not have frustration and does not have
spin-inversion symmetry. We find that this RFIM model also
shows memory effects that are again stable with respect to
thermal fluctuations.

Regarding question 4, the RFIM deviates from the EASG
results and correlates with the experiments: in the RFIM, the
RPM and CPM are different. The RPM is larger than the
CPM for all temperatures due to the lack of spin-inversion
symmetry in the Hamiltonian. For intermediate to large val-
ues of the disorder, the CPM is negligible and, in the prox-
imity of the coercive field, the CPM correlation is even nega-
tive. In contrast, the RPM is large in the RFIM. In particular,
for T=0 the RPM is perfect due to the “no-crossing prop-
erty” of the RFIM.34 Consequently, the RPM-CPM symme-
try breaking is large over much of the parameter space. Just
as for the EASG, the RFIM memory increases due to the
valleys in the energy landscape becoming more pronounced
with increasing disorder.

3. Combined spin-glass model plus the RFIM

Because of the way that our simulations for the pure
EASG model and for the pure RFIM do not agree with the
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experiments, the following question immediately arises: Can
a combined EASG and RFIM yield results comparable to the
experiments—increasing memory with increasing disorder,
together with the RPM-CPM symmetry breaking?

In order to test this, we introduced random fields into the
EASG that act only on a small fraction �5%� of the spins in
order to break the spin-inversion symmetry of the Hamil-
tonian 	Eq. �8�
:

HSG+RF = − �
�i,j�

JijSiSj − �
i

	H + hi
Si. �11�

The random bonds Jij were chosen from a Gaussian distribu-
tion with zero mean and standard deviation �J. The random
fields were chosen from a Gaussian distribution with zero
mean and standard deviation unity.

Since the dipolar interactions in our perpendicular aniso-
tropy films are antiferromagnetic, they introduce extensive
frustration into the system; this is the key ingredient for spin
glasses. Our experimental system also contains several pos-
sible sources of random fields: spins frozen in by the local
shape anisotropies produced by the locally deformed envi-
ronments, unusually large crystal-field anisotropies, or by
frozen-in reversed bubbles, as reported in the same experi-
mental system by Davies et al.15 Consequently, it is easy to
imagine that all of the necessary ingredients for the com-
bined EASG plus RFIM are likely to be present in our ex-
perimental samples. Results from Model 3 are shown in Fig.
25 and clearly resemble the experimental results presented
earlier.

4. Summary for model 3

We now summarize our results for model 3. We have
found that our pure EASG model, our pure RFIM, and our
combined EASG model plus RFIM all exhibit both RPM and
CPM, in which both memory effects persist to finite tempera-
tures and both memory effects increase with increasing dis-
order. For our pure EASG model, the simulated RPM and
CPM are identical because of the spin-inversion symmetry.
For our pure RFIM, the RPM is always much larger than the
CPM because of the lack of spin-inversion symmetry. Our
combined EASG and RFIM, a spin glass with diluted ran-
dom fields that break the spin-inversion symmetry, repro-
duces the essential experimental results—it exhibits both
RPM and CPM, both memory effects increase with increas-
ing disorder, and the model can be tuned so that the RPM is
a little bit larger than the CPM. All of these properties are
present in Fig. 25. It will be exciting to see if experimentally
realizable spin-glass systems can be shown to have these
properties.

VII. CONCLUSIONS

Our experimental results represent direct measurements of
the effects of controlled microscopic disorder on the mag-
netic memory of an ensemble of magnetic domains in such
perpendicular magnetic materials. We identified and studied
three different aspects of the domain-level memory: micro-
scopic return-point memory, microscopic complementary-

point memory, and microscopic half-loop memory. Because
our experimental observations could not be described by any
existing microscopic-disorder-based theory, we developed
theories that do account for the behavior of our experimental
system. Our combined experimental and theoretical work
sets benchmarks for future work.

We found a very rich behavior of these memory properties
in our system of perpendicular-anisotropy multilayer CoPt
samples. At the domain level, we found disorder-induced
partial RPM and CPM, and we also found a small RPM-
CPM symmetry breaking where the RPM was consistently
slightly larger than the CPM.

At the domain level, we found that the HLM versus the
sample magnetization was very similar for all of our
samples. There was only a subtle effect—the low-disorder
samples had slightly higher microscopic HLM than the high-
disorder samples. It was surprising to us that the HLM ef-
fects were nearly sample independent whereas the RPM and
CPM effects were extremely sample dependent.

FIG. 25. �Color online� RPM and CPM values predicted by
model 3. The field dependence for model 3 is shown in the top
panel where the predicted RPM values �solid lines� and CPM values
�dashed lines� are shown for different disorder strengths. The disor-
der dependence for model 3 at the coercive point is shown in the
bottom panel. Note that both memory effects increase with increas-
ing disorder and that the RPM �red circles� is always larger than the
CPM �blue squares�, in agreement with the experiments shown in
Fig. 16. The error bars are the size of the symbols and thus have
been neglected.
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Our observed RPM and CPM are independent of the num-
ber of major loops separating the pairs of magnetic speckle
fingerprints. This shows that the deterministic components of
the RPM and CPM are essentially stationary, and implies that
the deterministic memory in our system is largely reset by
bringing the sample to saturation. It also strongly suggests
that the same disorder is producing both the deterministic
RPM and CPM.

Our measured RPM is consistently higher than our CPM.
This slightly broken symmetry imposes severe limitations on
the possible theoretical models. The evolution of the RPM
and CPM with disorder is also very interesting. Both the
RPM and CPM have their largest values just after the initial
domain nucleation takes place and then diminish toward a
minimum as saturation is approached. At room temperature,
the memory is imperfect—the maximum measured RPM and
CPM values are less than 1. We suspect that this is due to the
thermal fluctuations in our samples, but have not yet demon-
strated this experimentally.

As we increase the disorder in our samples, there is ini-
tially little change in the memory, then at the same level of
disorder there is a rapid increase in both the RPM and the
CPM, followed by apparent plateaus with the RPM slightly
larger than the CPM. This is reminiscent of the disorder-
induced transition predicted by the Sethna et al. RFIM work
where the major-loop shape changes from a gradual loop to a
sharp loop at a critical value of the disorder. At the corre-
sponding critical disorder transition in our system, our loops
also change shape, but more interestingly, and perhaps more
importantly, both the RPM and CPM suddenly jump from
zero to their maximum values.

Two possible explanations for RPM being greater than the
CPM in the disordered samples have been presented. Within
the current experimental framework, it is not possible to de-
termine which of these two methods is a more accurate de-
scription of our system.

There are potential physical mechanisms that would intro-
duce random fields into our samples. Due to defects in the
disordered samples, quenched spins may be present that do
not reverse their direction even under the highest magnetic
fields we were able to apply. In effect, even though the

major-loop hysteresis curve appears to be constant and un-
changing, there may still be spins which persist in their origi-
nal direction. These could be due to large crystal anisotropy,
shape anisotropy because of the rough interfaces, or small,
persistent magnetic bubbles due to incomplete saturation. In
order to test for this scenario, it would be necessary to repeat
the RPM and CPM measurements after saturating the
samples under very high applied fields sufficient to saturate
even the most stubborn spins.

In contrast, our dynamical model does not require the
existence of these random fields. Instead it requires preces-
sional motion to be present in the system. We know that
spins precess in the presence of a magnetic field. However,
we do not know the extent of precession relative to damping.
Measurements of the ratio of the precessional and damping
terms off the LLG equation on similar systems29,30 have
shown that precessional motion is quite significant. More
experiments will be necessary to determine if this is also the
case for Co/Pt multilayer films. These two suggested experi-
ments, study under very high applied fields and determina-
tion of the precessional to damping ratio, should shed light
on the true mechanism for spin-inversion symmetry breaking
in this system.

There are very few direct, detailed studies of microscopic
RPM, CPM, and HLM in either longitudinal or perpendicu-
lar magnetic materials and even fewer domain-level en-
semble studies of such properties. It will be extremely inter-
esting to see what our coherent x-ray speckle metrology
technique—together with our complementary x-ray magnetic
microscopy studies—will teach us about the domain-level-
ensemble memory in both of these technologically important
and scientifically fascinating magnetic memory systems.
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Michael Faraday Quotes 
   

   

On his discovery of induction:
   

Queen Victoria: "But Mr. Faraday, of what use is it?"
Michael Faraday: "But Your Highness, of what use
 is a newborn baby?"

William Gladstone: “But what is the use of it?
Michael Faraday: “One day sir you may tax it.”

On science:  

 

  “Nothing is too wonderful to be true.”
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Over the last couple of years it has been realized that the vast computational power of graphics
processing units (GPUs) could be harvested for purposes other than the video game industry. This power,
which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity
of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units
on a single chip. To benefit from this setup for general computing purposes, the problems at hand need
to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory
accesses. In this contribution I discuss the performance potential for simulating spin models, such as the
Ising model, on GPU as compared to conventional simulations on CPU.

© 2010 Published by Elsevier B.V.

1. Introduction

Owing to a combination of an improved toolset of simulational
machinery and methods of data analysis and the exponential in-
crease in available computer power observed over the past four
decades, computer simulations such as the Monte Carlo method
have at least drawn level with the more traditional perturba-
tive approaches for studying a plethora of problems in statistical
physics [1], ranging from critical phenomena [2] over the physics
of disordered systems [3] to soft matter and biological problems
[4]. This success notwithstanding, a range of notoriously hard prob-
lems appear to create an insatiable appetite for more powerful
computational devices to finally settle a number of long-standing
questions. Among such problems are, for instance, the quest of un-
derstanding the nature of the spin glass phase [5] or the protein
folding problem. To achieve results beyond the reach of the avail-
able standard computational resources of the time, there has been
a tradition of designing special purpose computers, e.g., for calcu-
lations in lattice field theory [6] or the simulation of spin models
[7,8].

Since the design and programming of such dedicated machines
regularly require a large effort in terms of monetary and human re-
sources, recently scientists have started to adopt the use of graph-
ics processing units for general purpose computational tasks in the
hope of harvesting their nominally vast computational power, on
par with some devices based on FPGAs, without the need of time-
consuming work at and near the hardware level [9–11]. By design,
GPUs are optimized for manipulating a large number of graphics
primitives in parallel, which often amounts to simple, floating-
point matrix calculations. In contrast to current CPUs, they are

E-mail address: weigel@uni-mainz.de.

not designed to cope with “unexpected” branches in the code, or
for executing a single-threaded program as fast as possible. While
this makes GPUs not well suited as drop-in replacements for CPUs
for interactive computing, their highly parallel architecture might
well be taken advantage of in scientific calculations with an often
high degree of vectorizable or parallelizable code. Their original
design for graphics calculations, however, entails certain design
features which are not necessarily optimal for scientific computa-
tional tasks, such as a special hierarchy of memory organization or
a restriction to (efficient) floating-point calculations only in single
precision arithmetics, which only has been alleviated in the very
latest generation of cards.

While the first applications of general purpose computing on
GPUs were performed directly in graphics programming languages
such as OpenGL [9], access to these devices for scientific applica-
tions has been considerably simplified with the advent of language
extensions such as NVIDIA CUDA [12] and OpenCL [13] for per-
forming general purpose computing on GPUs. The application pre-
sented here was coded on the NVIDIA architecture using the CUDA
framework, which is a high-level extension to the C language fam-
ily.

2. Relevant features of GPU architecture

Fig. 1 shows a schematic representation of the NVIDIA GPUs
used in the work presented here. A GPU consists of a number of
multiprocessors, each composed of a number of single processing
units which concurrently work with the same code on different
parts of a common data set. Of utmost importance to the efficient
performance of GPU programs is the organization of GPU memory,
which comes in a number of flavors:
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The compute unified device architecture (CUDA) is a programming approach for perform-
ing scientific calculations on a graphics processing unit (GPU) as a data-parallel computing
device. The programming interface allows to implement algorithms using extensions to
standard C language. With continuously increased number of cores in combination with
a high memory bandwidth, a recent GPU offers incredible resources for general purpose
computing. First, we apply this new technology to Monte Carlo simulations of the two
dimensional ferromagnetic square lattice Ising model. By implementing a variant of the
checkerboard algorithm, results are obtained up to 60 times faster on the GPU than on a
current CPU core. An implementation of the three dimensional ferromagnetic cubic lattice
Ising model on a GPU is able to generate results up to 35 times faster than on a current CPU
core. As proof of concept we calculate the critical temperature of the 2D and 3D Ising model
using finite size scaling techniques. Theoretical results for the 2D Ising model and previous
simulation results for the 3D Ising model can be reproduced.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The Ising model, which is named after Ising [1], is a standard model of statistical physics and provides a simplified micro-
scopic description of ferromagnetism. It was introduced to explain the ferromagnetic phase transition from the paramag-
netic phase at high temperatures to the ferromagnetic phase below the Curie temperature TC . A large variety of
techniques and methods in statistical physics have originally been formulated for the Ising model and were generalized
and adapted to related models and problems [2]. Supported by his results for a one dimensional spin chain, in which no
phase transition occurs, Ising initially proposed in his doctoral thesis that there is also no phase transition in higher dimen-
sions which turned out to be a misinterpretation. The Ising model on a two dimensional square lattice with no magnetic field
was then analytically solved by Onsager in 1944 [3]. The critical temperature at which a second order phase transition be-
tween an ordered and a disordered phase occurs can be determined analytically for the two dimensional model
(TC ¼ 2:269185 [3]). Despite much effort, an analytic solution for the three dimensional Ising model still remains one of
the great challenges in statistical physics. However, computer simulations in combination with finite size scaling techniques
[4–7] are able to determine TC � 4:5115 [2] and the rest of the phase diagram with good accuracy. Since 1944, the Ising

0021-9991/$ - see front matter � 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcp.2009.03.018
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A Modern Graphics Processing unit (GPU) is able to perform massively parallel scientific computations
at low cost. We extend our implementation of the checkerboard algorithm for the two-dimensional Ising
model [T. Preis et al., Journal of Chemical Physics 228 (2009) 4468–4477] in order to overcome the
memory limitations of a single GPU which enables us to simulate significantly larger systems. Using
multi-spin coding techniques, we are able to accelerate simulations on a single GPU by factors up to 35
compared to an optimized single Central Processor Unit (CPU) core implementation which employs multi-
spin coding. By combining the Compute Unified Device Architecture (CUDA) with the Message Parsing
Interface (MPI) on the CPU level, a single Ising lattice can be updated by a cluster of GPUs in parallel. For
large systems, the computation time scales nearly linearly with the number of GPUs used. As proof of
concept we reproduce the critical temperature of the 2D Ising model using finite size scaling techniques.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Various scientific disciplines profited by GPU computing in recent years and are reporting impressive speedup factors in comparison to
single Central Processor Unit (CPU) core implementations. GPU stands for Graphics Processing Units which are high-performance many-
core processors that can be used to accelerate a wide range of applications. In the meantime, significant savings of computing time have
been reported by a huge variety of fields: GPU acceleration can be used in astronomy [1] and radio astronomy [2]. Soft tissue simula-
tion [3], algorithms for image registration [4], dose calculation [5], volume reconstruction from X-ray images [6], and the optimization
of intensity-modulated radiation therapy plans [7] are examples for the numerous applications in medicine. Furthermore, DNA sequence
alignment [8], molecular dynamics simulations [9–11], quantum chemistry [12], multipole calculations [13], density functional calculations
[14,15], air pollution modeling [16], time series analysis focused on financial markets [17,18], and Monte Carlo simulations [19–22] bene-
fited from GPU computing. For many applications, the accuracy can be comparable to that of a double-precision CPU implementation, such
as in [23]—the latest generation of GPUs support not only single precision but also double precision floating point operations. The adaption
of many computational methods is still in progress, e.g. the analysis of switching processes in financial markets [24,25]. Unfortunately, not
all algorithms can be ported efficiently onto a GPU architecture. Particularly, serial algorithms are not suited for GPU computing (for an
example see e.g. [26]).

Another crucial limitation is the lack of scalability as current programs typically utilize only single GPUs. As graphics processing
hardware is targeted at a broad consumer market—the games industry—, graphic cards can be produced at low cost. On the other hand,
to keep production costs low, the global memory is not upgradable and typically limited to 1 GB for consumer cards and 4 GB for Tesla
GPUs. Using a recent consumer graphics card, we accelerated Monte Carlo simulations of the Ising model [22]. In [22], a 2D square spin
lattice of dimension up to 10242 spins could be processed on a consumer GPU. The Ising model as a standard model of statistical physics
provides a simple microscopic description of ferromagnetism [27]. It was introduced to explain the ferromagnetic phase transition from
the paramagnetic phase at high temperatures to the ferromagnetic phase below the Curie temperature TC . A large variety of techniques
and methods in statistical physics have originally been formulated for the Ising model and were generalized and adapted to related models
and problems [28]. Due to its simplicity, which can be embodied by the possibility to use trivial parallelization approaches [29], the two-
dimensional Ising model is well suited as a benchmark model since its properties are well studied [30–32] and many physical systems
belong to the same universality class. The Ising model on a two-dimensional square lattice with no magnetic field was analytically solved

✩ Source code of our implementations for GPU clusters will be published on http://www.tobiaspreis.de after acceptance. In addition, the code can be downloaded from the
Google Code project multigpu-ising.

* Corresponding author.
E-mail addresses: lhyanor@gmail.com (B. Block), virnau@uni-mainz.de (P. Virnau), mail@tobiaspreis.de (T. Preis).

0010-4655/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2010.05.005

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://www.tobiaspreis.de
mailto:lhyanor@gmail.com
mailto:virnau@uni-mainz.de
mailto:mail@tobiaspreis.de
http://dx.doi.org/10.1016/j.cpc.2010.05.005



