Electric and Magnetic Fields in Matter

Static Fields
 Time-Dependent Fields Stationary Media Moving Media

Basic Idea

The applied fields induce internal alignment
This alignment produces an additional field

Formalism

Introduce fields that do not include the fields due to alignment

$$
\begin{array}{ll}
\text { free charges } & \text { free currents } \\
\text { bound charges } & \text { bound currents }
\end{array}
$$

Introduce polarization due to the bound charges and currents

Table 30-2

Three Electric Vectors

* Generally true, with κ independent of \mathbf{E}, except for certain materials called ferroelectrics; see footnote on page 758.

Table 37-1
Three Magnetic Vectors

Name	Symbol		ciated with	Boundary	Condition
Magnetic induction	B	All	rents	Normal continu	ponent us
Magnetic field strength	H	True	urrents only	Tangentia continu	component us \dagger
Magnetization (magnetic dipole moment per unit volume)	M	Magnetization currents only		Vanishes in a vacuum	
Defining equations for \mathbf{B}			\%r $\begin{aligned} \mathbf{F} & =q \mathbf{v} \times \mathbf{B} \\ \text { or } \quad & =i \mathbf{l} \times \mathbf{B}\end{aligned}$		$\begin{aligned} & \text { Eq. } 33-3 a \\ & \text { Eq. } 33-6 a \end{aligned}$
General relation among the three vectors			$\mathbf{B}=\mu_{0} \mathbf{H}+\mu_{0} \mathbf{M}$		Eq. 37-26
Ampère's law when magnetic materials are present			$\begin{gathered} \oint \mathbf{H} \cdot d \mathbf{l}=i \\ (i=\text { true current only }) \end{gathered}$		Eq. 37-27
Empirical relations for certain magnetic materials *			$\begin{aligned} \mathbf{B} & =\kappa_{m} \mu_{0} \mathbf{H} \\ \mathbf{M} & =\left(\kappa_{m}-1\right) \mathbf{H} \end{aligned}$		$\begin{aligned} & \text { Eq. } 37-29 \\ & \text { Eq. } 37-30 \end{aligned}$

* For paramagnetic and diamagnetic materials only, if κ_{m} is to be independent of \mathbf{H}.
\dagger Assuming no true currents exist at the boundary.

Fig. 30-13 (a) Showing $\mathbf{D}, \epsilon_{0} \mathbf{E}$, and \mathbf{P} in the dielectric (upper right) and in the gap (upper left) for a parallel-plate capacitor. (b) Showing samples of the lines associated with \mathbf{D} (free charge), $\epsilon_{0} \mathbf{E}$ (all charges), and \mathbf{P} (polarization charge).

Fig. 37-22 (a) The lines of \mathbf{H} and (b) the lines of \mathbf{B} for a permanent magnet. Note that the lines of \mathbf{H} change direction at the boundary. The closed dashed curves are paths of integration around which Ampère's law may be applied. The relation $\mathbf{B}=\mu_{0} \mathbf{H}+\mu_{0} \mathbf{M}$ is shown to be satisfied for (c) a particular outside point \boldsymbol{p} and (d) a particular inside point q.

BASIC EQUATIONS OF ELECTRODYNAMICS

Maxwell's Equations

In general :

$$
\left\{\begin{array}{l}
\nabla \cdot \mathbf{E}=\frac{1}{\epsilon_{0}} \rho \\
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{array}\right.
$$

In matter :

$$
\left\{\begin{array}{l}
\nabla \cdot \mathbf{D}=\rho_{f} \\
\boldsymbol{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
\boldsymbol{\nabla} \cdot \mathbf{B}=0 \\
\boldsymbol{\nabla} \times \mathbf{H}=\mathbf{J}_{f}+\frac{\partial \mathbf{D}}{\partial t}
\end{array}\right.
$$

Auxiliary Fields

Definitions :

$$
\left\{\begin{array}{l}
\mathbf{D}=\epsilon_{0} \mathbf{E}+\mathbf{P} \\
\mathbf{H}=\frac{1}{\mu_{0}} \mathbf{B}-\mathbf{M}
\end{array}\right.
$$

Linear media:

$$
\begin{cases}\mathbf{P}=\epsilon_{0} \chi_{e} \mathbf{E}, & \mathbf{D}=\epsilon \mathbf{E} \\ \mathbf{M}=\chi_{m} \mathbf{H}, & \mathbf{H}=\frac{1}{\mu} \mathbf{B}\end{cases}
$$

FARADAY FOUND

HOW CAN THAT EE?

SUPPOSE WE PUTAELAB OF METAL

$$
c^{\prime}=\frac{\epsilon_{0} A}{d^{\prime}}
$$

$$
d^{\prime}<d \Rightarrow c^{\prime}>c
$$

SO EARADAY HYPOTHESIEED

I monoed charge seponation in the aphorea Sphecee reparstod by wineloter
\Rightarrow A toma pre perfeot endenotere
Atomer are sepanated by an inpulater

Wh now fnow 2 EfFECTS
C harge sepanation \rightarrow prearigation FARAOAY's D EA revientation of digsles.

First principles

The gate oxide in a MOSFET can be modeled as a parallel plate capacitor. Ignoring quantum mechanical and depletion effects from the Si substrate and gate, the capacitance C of this parallel plate capacitor is given by

$$
C=\frac{\kappa \varepsilon_{0} A}{t}
$$

Where

- A is the capacitor area
- K is the relative dielectric constant of the material (3.9 for silicon dioxide)
- ε_{0} is the permittivity of free space
- t is the thickness of the capacitor oxide insulator

Since leakage limitation constrains further reduction of t, an alternative method to increase gate capacitance is alter k by replacing silicon dioxide with a high-k material. In such a scenario, a thicker gate layer might be used which can reduce the leakage current flowing through the structure as well as improving the gate dielectric reliability.

Conventional silicon dioxide gate dielectric structure compared to a potential high-k dielectric structure

POLARIZABILITY OF ATOMS
INOUCEO DIPOLES N induced dipaen in Favaloy's

ACTUAGLY FHL DISTORTION

IS EXTREMELY SMALL

SUPGR OOSITION: POSITIVE POINT CHARGE NGGATIVE GHARGED SPMERE

FIELDOUTSIDE
-t Our red friend the dipace!

- -

INOUCED OIPOLE MOMENT

$$
\vec{p}=q \vec{r}
$$

INDUCED POLARIZATION VECTOR

$$
\vec{p}=\begin{aligned}
& n \vec{p}=m q \vec{r} \\
& \uparrow \\
& \text { atros per mit venme }
\end{aligned}
$$

FOR SMALL FIALOS (Sinear dichetion)

$$
\vec{p}=\alpha \vec{E}
$$

$\int_{\text {atrain pacrizabity }}^{1}$

$$
E_{a}=\frac{e}{a_{0}^{2}}
$$

$$
\text { Distomtion } \propto \frac{E_{a x}}{E_{a}}=\frac{E}{\left(e / e_{0}^{4}\right)}
$$

ATOMIC fielos: $\quad 3 \times 10^{\prime \prime} \mathrm{V} / \mathrm{m}$ EXTERNAL FICLOS: $3 \times 10^{8} \mathrm{~V} / \mathrm{m}$
\Rightarrow DISTOATIONS ARE SMALL

Atomic number.

MOLECULAR DIELECTRICS

RANSOM
APPLy
DIPOLES
FIE CD

DIPOLES WANT TO ALIGN WITH THE AMBLED FIELD

$$
\text { IF THEY OLD } \vec{E}=3 \times 10^{9} \mathrm{~V} / \mathrm{m}
$$

SO WHY ONT THEY?

ENERGY GAIN PE

THERMAL ENERGY $K_{B} T$

$$
P R O B \sim e^{-P E / K_{E} T}
$$

HOR WATER $\quad \Rightarrow \quad \frac{P E}{K T} \sim 10^{-4}$ FOR WATER
$\epsilon=80$$\xrightarrow{ }$ SMALL ALIGNMENT

CONDUCTORS: free shougen

DIELECTRICS: No fine ahapen
the dipalow
WHAT DO THGY DO?

POLARIAATION
\vec{p} dipale momeat x atom on malesule N number of maloscere per unit volume
$\vec{P}=N \vec{p}$ dipsex moment per unit malume

suntace change density $\sigma_{p}=\vec{p} \cdot \hat{m}$
valume charge deraity $\rho_{\rho}=\vec{\nabla} \cdot \vec{\rho}$
it is uniform $\rho_{p}=0$
ALCASKS: σ_{p} premention

$$
\sigma_{p}=\vec{p} \cdot \hat{m}
$$

$$
\sigma_{6} \text { bound }
$$

σ_{i} indicese σ_{ρ} and ρ_{p} detersmine \vec{E} autride

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=\rho_{t} / \epsilon_{0} \\
& \rho_{t}=\rho_{f}+\rho_{f} \\
& \nabla^{2} V=-\rho_{t} / \epsilon_{0} \quad \rho_{0} \text { sson's ancton } \\
& \vec{\nabla} \cdot \vec{E}=\frac{1}{\epsilon_{0}}\left(\rho_{f}+\rho_{f}\right) \\
& \vec{\nabla} \cdot \vec{\varepsilon}=\frac{1}{\epsilon_{0}}\left(\rho_{f}-\vec{\nabla} \cdot \vec{\rho}\right) \\
& \vec{\nabla} \cdot(\epsilon \vec{E}+\vec{\rho})=-\vec{\nabla} \cdot \vec{\rho} \\
& \vec{\nabla} \cdot \overrightarrow{0}=\rho_{f}
\end{aligned}
$$

linee $x \quad \vec{D}$ stut and end on tree charges liver of \vec{E} on ace changee

(1) $\varepsilon=\frac{\sigma_{f}}{\epsilon_{0}}$
(2) $E=\sigma_{f} / \epsilon$
(3) $E=\sigma_{f} / \epsilon_{0}$ $D=\sigma_{f}$

$$
D=\sigma_{f} \dot{\min }(0,(), \text { and (1) }
$$

Fig. 30-13 (a) Showing $\mathbf{D}, \epsilon_{0} \mathbf{E}$, and \mathbf{P} in the dielectric (upper right) and in the gap (upper left) for a parallel-plate capacitor. (b) Showing samples of the lines associated with \mathbf{D} (free charge), $\epsilon_{0} \mathbf{E}$ (all charges), and \mathbf{P} (polarization charge).

POLARIZATION CHARGES

surface change density

$$
\begin{aligned}
& \sigma_{\text {poe }}=m \vec{p}
\end{aligned}
$$

$$
\begin{aligned}
& \int \vec{E} \cdot d \vec{S}=m_{0} Q_{T} / \epsilon 0 \\
& E^{\prime} A=\epsilon_{d}\left(Q_{F}-Q_{b}\right) / \epsilon_{\sigma} \\
& E^{\prime}=\frac{\sigma_{F}-\sigma_{b}}{\epsilon_{0}}=\frac{\sigma_{F}-P}{\epsilon_{0}}
\end{aligned}
$$

for law fields
and typical dielestion

$$
\vec{p}=x_{e} \epsilon_{0} \vec{E}
$$

electing. susceptibility

$$
\begin{aligned}
E= & \frac{\sigma_{f}}{\epsilon_{0}}\left(\frac{1}{x_{e}+1}\right) \\
& L \text { the reduatain faster }
\end{aligned}
$$

parallel plate capacitor

$$
\begin{aligned}
V & =E \alpha=\frac{\sigma_{E}}{\epsilon_{0}}\left(\frac{1}{x_{e}+1}\right) d \\
Q & =\sigma_{F} A \\
C & =\frac{\epsilon_{0} A}{d}(1+x) \quad \epsilon=\left(1+x_{e}\right) \epsilon_{0} \\
& =\frac{\epsilon_{0} A}{d}(x) \quad \epsilon=x \epsilon_{0}
\end{aligned}
$$

FOR ANY SURFACE
inside on mot

$$
\sigma_{p o l}=\vec{p} \cdot \hat{m}
$$

for ant volume

$$
\begin{aligned}
& \Delta Q_{\rho O l}=-\int_{s} \vec{p} \cdot d \vec{s} \\
& \Delta Q_{\rho O l}=\int_{V} \rho_{\rho O R} d V
\end{aligned}
$$

$$
\int \rho_{P O L} d v=-\int_{s} \vec{p} \cdot d \vec{s}
$$

an introrse, for \vec{p} and Proc

$$
\rho_{\mathrm{POL}}=-\vec{\nabla} \cdot \overrightarrow{\mathrm{P}}
$$

if \vec{p} is nat uniform, then there will be po a pat paenigstain druse density
perfectly

$$
\vec{\nabla} \cdot \vec{E}=\rho_{r} / \epsilon_{0}
$$

Real 6 nape $\vec{\nabla} \cdot \overrightarrow{\boldsymbol{P}}=-\rho \cdot \mathrm{Pec}$ PRon sort d JOLT REMINDS US
WARE IT CAME
FROM

ELECTROSTATICS WITH DIELECTRICS

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=\frac{P_{T}}{\epsilon 0} \quad \text { fUNDAMENTAL } \\
& P_{T}=\rho_{\text {face }}+\rho_{\text {POL }}=\rho_{\text {face }}-\vec{\nabla} \cdot \vec{P} \\
& \vec{\nabla} \cdot \vec{E}=\frac{1}{\epsilon_{0}}\left(p_{\text {frEE }}-\vec{\nabla} \cdot \vec{p}\right) \\
& \vec{\nabla} \cdot\left(\vec{E}+\frac{\vec{P}}{\epsilon_{0}}\right)=\frac{\rho+\mu E E}{\epsilon_{0}}
\end{aligned}
$$

$\vec{\nabla} \times \vec{E}=0 \quad$ in stile equal to zeno

$$
\begin{aligned}
& \vec{P}=x \vec{E} \\
& \vec{\nabla} \cdot((1+x) \vec{E})=\vec{\nabla} \cdot\left(x \vec{E}^{-2}\right)=\frac{P \text { tue }}{\epsilon_{0}}
\end{aligned}
$$

nothing new convenitant when we know pere and \vec{P}
if x in constant, we can tare it outside

$$
\vec{\nabla} \cdot \vec{E}=\frac{\rho_{\text {FREE }}}{\epsilon}
$$

if it rare in apace, interacting fester porn

MAXWELL INTRODUCED \vec{D}

$$
\begin{aligned}
& \vec{D}=\epsilon_{0} \vec{E}+\vec{P} \\
& \vec{\nabla} \cdot \vec{D}=P \text { fREE } \\
& \vec{\nabla} \times \vec{E}=0
\end{aligned}
$$

in general $\vec{\nabla} \times \vec{D} \neq 0$
mor potenticil for \vec{D}
in high symmotoy caces, \vec{D} wathe wee
NOT ENOUQH TO SOLVE!
MOST ADP SOMETHINE

$$
\vec{D}=\epsilon \vec{E}=\epsilon_{0}(1+x) \vec{E}=x \epsilon_{0} \vec{E}
$$

ϵ is called the permittivity
x elatric aucepotibility
x dieleatric conatent
to permittivity of free apace
\vec{D} in nat fundamantal!
it gint indenow the suent x mathen

\square

GANONILAL PLOBLEMS

SHOW FALSTAD.COM
solve M squall's equation impger

Lepereis eqn KNOWN vOLTAGES
poincit eyn

http://www.falstad.com/vector3de/

This applet is an electrostatics demonstration which displays the electric field in a number of situations. You can select from a number of fields and see how particles move in the field if it is treated as either a velocity field (where the particles move along the field lines) or an actual force field (where the particles move as if they were charged particles). This helps you visualize the fielr When you start the applet, you will see 500 particles moving in a point charge field. By default the particles are treating the field as a velocity field, which means that the field vectors determine how fast the particles are moving and in what direction. In this case, the particles just move toward the center. The velocity of all the particles at a certain point on the grid is always the same. If the field a force field, then the field vectors determine the acceleration of the particles, but their velocity me vary depending on where they started.

The Field Selection popup will allow you to select a vector field.
The choices that we looked at in class are:
conducting sphere $+\mathbf{p t}$: A conducting sphere near a point charge. The size of the sphere, the separation between it and the point charge, and the potential of the sphere are all adjustable. By default the sphere is grounded.
charged sphere + pt: A charged sphere near a point charge. This is provided to show the difference between a charged sphere and a conducting sphere. (The main difference is that the electric field lines are always perpendicular to the surface of the conducting sphere, whereas this is not true with a charged sphere. This is easier to see with a Y Slice.) By default the sphere has no charge, but this can be adjusted to a positive or negative value.
cyl + line charge: A conducting cylinder near a line charge.
conducting sphere in field: A grounded conducting sphere in a uniform external field.
dielec sphere in field \mathbf{E} : This is the electric field of a dielectric sphere in a uniform external field. The size of the sphere and the dielectric strength are adjustable. A dielectric is an insulating materi whose atoms are polarized in response to an external field; this causes the field to be weaker insid the dielectric.
cylinder in field: A grounded conducting cylinder in a uniform external field.
dielec cyl in field E: This is the electric field of a dielectric cylinder in a uniform external field. The size of the cylinder and the dielectric strength are adjustable.
dielec boundary E: This is the electric field of a point charge near a dielectric boundary. The poin charge is located outside of the dielectric by default; so the dielectric is the area below the boundar plane. The location of the point charge and the dielectric strength are adjustable.
conducting plane $+\mathbf{p t}$: This is the electric field of a point charge near a conducting boundary.

IMAGES IN DIELECTRICS

OUTSIDE

$$
Q^{\prime \prime}=\frac{2 x_{2}}{x_{1}+x_{2}}
$$

Fig. 3-3. Point charge and "dielectric hali-space." (a) represents the actual physical system of a charge $+q$ at a distance a from a dielectric half-space of specific inductive capacity κ. (b) is a system of images representing the configuration: the left-hand side of the distribution (b) is a system of charges which gives the correct field distribution in region I; the right-hand part gives the correct field distribution in region II.

$\epsilon_{2}>\epsilon_{1}$

$\epsilon_{2}<\epsilon_{1}$

Flewre 4-18. Lines of D (identified by arrows) and equipotentials for a point charge near a dielectric. As previously, equipotential surfaces are generated by rotating the figure about the axis indicated by the curved arrow. Equipotentials and lines of \boldsymbol{D} near the point charge are not shown.
the same medium 1 on both sides of the interface, the original charge Q, and a charge

$$
\begin{equation*}
Q^{\prime}=\frac{\epsilon_{r 1}-\epsilon_{r 2}}{\epsilon_{r 1}+\epsilon_{r 2}} Q \tag{4-55}
\end{equation*}
$$

at the image position. The field in medium 2 is the same as if medium 2 extended on both sides of the interface and the original charge Q were replaced by

$$
\begin{equation*}
Q^{\prime \prime}=\frac{2 \epsilon_{r_{2}}}{\epsilon_{r_{1}}+\epsilon_{r_{2}}} Q \tag{4-56}
\end{equation*}
$$

DIELECTMIC SPAERE IN AN ATPLIED FIECO

$$
\begin{aligned}
& v_{\text {in }}=\sum_{l=0}^{\infty} a_{l} R^{l} P_{l}(\cos \theta) \\
& v_{\text {out }}=\sum_{l=0}^{\infty}\left[b_{l} n^{L}+c_{l} n^{-(l+1)}\right] P_{l}(\cos \theta)
\end{aligned}
$$

$B C S$
componant of \vec{E}
TANGENTIAC CONTINOOUS ACROSS BOUNDARY

$$
-\left.\frac{1}{a} \frac{\partial v_{\text {in }}}{\partial \theta}\right|_{n=a}=\left.\frac{1}{a} \frac{\partial v_{\text {out }}}{\partial \theta}\right|_{n=a}
$$

NOLMAL COMPONENT of $\vec{\theta}$ continuous

$$
\begin{aligned}
& -\left.\epsilon \frac{\partial v_{\sin }}{\partial r}\right|_{n=\varepsilon}=-\left.\frac{\partial v_{\text {out }}}{\partial r}\right|_{n=e} \\
& E_{\text {tan }} \text { BC: } \\
& A_{e_{1}}=-E_{0}+\frac{C_{1}}{a^{3}} \\
& A_{L}=\frac{C_{e}}{a^{2 L+1}} \quad \text { for } L \neq 1 \\
& \overrightarrow{D_{\perp}} \quad B C: \\
& \epsilon A_{1}=-E_{0}-2 \frac{c_{1}}{a_{3}} \\
& \epsilon \ell A_{e}=-(l+1) \frac{C e}{a^{2 l+1}} \\
& \Rightarrow \quad A_{l}=C_{l}=0 \text { fen ale } l \neq 1 \\
& A_{1}=-\left(\frac{3}{2+6}\right) E_{0} \\
& c_{1}=\left(\frac{\epsilon-1}{\epsilon+2}\right) a^{3} E_{0}
\end{aligned}
$$

$$
\begin{aligned}
& v_{i n}=-\left(\frac{3}{2+\epsilon}\right) E_{0} n \cos \theta \\
& V_{\text {out }}=-E_{0} n \cos \theta+\left(\frac{\epsilon-1}{\epsilon+2}\right) E_{0}\left(\frac{a^{3}}{n^{2}}\right) \cos \theta \\
& \longrightarrow \longrightarrow-(\longrightarrow)
\end{aligned}
$$

UNIFORM \vec{p} INSIDE

$$
\vec{E} \text { ininice due tar } \vec{p}=\left(\frac{3}{2+\epsilon}\right) E_{0}
$$

OUTSIDE ONIFORM \vec{E}

$$
\begin{aligned}
& \text { spugaicac } \\
& \text { caviry }
\end{aligned}
$$

caviry prow opol

$$
\begin{aligned}
& \text { plos } \\
& \text { DrPOCE } \quad P=\left(\frac{\epsilon-1}{\epsilon+2}\right) a^{3} E_{0} \\
& \vec{P}_{\text {in }}=\quad(\epsilon-1) \vec{E}^{-2}=(\epsilon-1)\left(\frac{3}{2+\epsilon}\right) E_{0} \\
& \vec{\nabla} \cdot \vec{p}_{i m}=0 \\
& \hat{p}^{2} \cdot \hat{m}=\sigma_{p o r}=\left(\frac{3}{2+\epsilon}\right)(\epsilon-1) E_{0} \cos \theta
\end{aligned}
$$

There 4-24. The field near a dielectric sphere $\left(\epsilon_{r}=3\right)$ in a uniform electric field. The lines of D (indicated by arrows) crowd into the sphere as shown, with the result that D is larger inside than outside. Since there is no free charge at the surface of the sphere, the lines of D neither originate nor terminate there, and they are continuous across the boundary. The equipotentials spread out inside, corresponding to a lower electric field intensity E. The electric field intensity E is discontinuous at the surface, and the density of lines of force is lower inside than outside. As in the conducting sphere, the field is hardly disturbed at distances larger than one radius from the surface. The field inside is uniform. The origin is chosen at the center of the sphere and the polar axis used in the calculation points to the right.

CONOUCTING SPHERE

$$
n=a \quad V=0
$$

$$
n=\infty \quad V=-E_{0} t=-E_{0} n \cos \theta
$$

anly A_{1} and C_{1}

$$
\begin{aligned}
& A_{1}=-E_{6} \\
& c_{1}=-A_{1} a^{3}=E_{0} a^{3} \\
& V=-E_{0} n \cos \theta+B \frac{\cos \theta}{n} \\
& \text { Eo } a^{3} \\
& V=-E_{0} r \cos \theta+E_{0} a^{3} \frac{\cos \theta}{n} \\
& \prod_{\text {APPLEDE }} \uparrow \\
& \prod_{0 \text { orosing }} \\
& \text {-1POCE }
\end{aligned}
$$

Figure 4-22. Lines of force (indicated by arrows) and equipotentials for a conducting sphere in a uniform electric field. The lines of force are normal at the surface of the sphere, and there is zero electric field intensity inside. Observe that the field is hardly disturbed at distances larger than one radius from the surface of the sphere. The origin is at the center of the sphere and the polar axis used in the calculation points to the right.

B

