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Two-Body Decays
A=>Y+Y
A=>B+Y
A=>B+C (mp=mg)
A=>B+C (mp>mg)

Two-Body Reactions

Y+A=>Y+ A’ Compton Scattering
Ya*Yb=>Yc *Yd

A+B=>C+D (mg=mp=m¢c=mg)
A+B=>C+D (mj>mpand mg > mg)
A+B=>C
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One-dimensional relativistic [edit]

According to Special Relativity,
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Where p denotes momentum of any massive particle, v denotes velocity, ¢ denotes the speed of
light.

in the center of momentum frame where the total momentum equals zero,
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It is shown that U, =-v, remains true in relativistic calculation despite other differences| One of

the postulates in Special Relativity states that the Laws of Physics should be invariant in all inertial
frames of reference. That is, if total momentum is conserved in a particular inertial frame of
reference, total momentum will also be conserved in any inertial frame of reference, although the
amount of total momentum is frame-dependent. Therefore, by transforming from an inertial frame
of reference to another, we will be able to get the desired results. In a particular frame of reference
where the total momentum could be any,
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We can look at the two moving bodies as one system of which the total momentum is Pp the total

Pr

energy is E and its velocity v, is the velocity of its center of mass. Relative to the center of

momentum frame the total momentum equals zero. It can be shown that v, is given by:
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Now the velocities before the collision in the center of momentum frame ul' and u2' are:
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does not *‘soft land,”’ that is, we assume that y’(7(8)) < 0,
where T(6) is the impact time. From (2) and the definitions
of f, and f,, we have

y'(t)=v sin Of3(t)—gfs(t)=e N (v sin 6~ gf3(1))

and hence the impact assumption is
v
f3(T(6))>§ sin 6. )

In terms of the function
R(0
p(0)= ;—ggs—);
we have by (1),
R(8)=x(T(6))=v cos 0f,(T(6))
and hence
T(6)=f; '(p(6)).

The impact assumption (9) is therefore equivalent to

fg(f;’(p<a)>)>§ sin 6. (10)

Now, R(#8) is differentiable if and only if p(6) is differen-
tiable. By (3), p(8) is defined by P(p(8), 6)=0, where

P(p,8)=v sin 6p—gfs(f3 '(p)).

Finally, at p = p( ),

P o
2, =0 Sin 6=efi/2 (o) (p)

=v sin 6—gf3(f; '(p))<0

by (10), and hence p(6) is differentiable by the Implicit
Function Theorem.
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new introduction and notes, by Stillman Drake (Wall and Thompson, Tor-
onto, 1989), 2nd ed., p. 245.
2S. Drake and 1. Drabkin, Mechanics in Sixteenth-Century Italy (University
of Wisconsin Press, Madison, 1969), p. 91.
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1961), Vol. I, p. 114.
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I. INTRODUCTION

Minkowski diagrams in configuration space, with points
representing events, are often used in undergraduate courses
on special relativity. Similar diagrams in momentum space
are seldom shown, and the object of this note is to demon-
strate their pedagogical usefulness in discussing particle in-
teractions. In configuration space each point has coordinates
(t,x); in momentum space the coordinates are (E,p). Two
examples should be sufficient to show how such diagrams
can be used.

II. EXAMPLES

A. Fission

In this example there is just one space dimension:
Minkowski space is two dimensional. A particle of mass m is
represented by its mass shell, a hyperbola opening in the
positive E direction, given by

2 f
(E) —p2?=(mc)>.
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Figure 1 shows two such mass shells belonging to masses
m and M>m, each labeled by its mass. The scale on the
energy axis is chosen as E/c rather than E, so the two mass
shells cross the E/c axis at mc and Mc, respectively. Each
point on an m mass shell represents a state of a particle of
mass m, i.e., possible values of its energy and momentum. A
vector from the origin to such a point represents the energy—
momentum (E—p) vector of that state.

Consider a particle of mass M at rest, say a uranium
nucleus, that undergoes fission to two particles of equal mass
m. The vertical arrow in Fig. 1 represents the original ura-
nium E—p vector. E~p conservation implies that the E-p
vectors of the two fission fragments add up to the original
one, and since the total momentum is zero, the momenta of
the two fission fragments must be negatives: their E—p vec-
tors have opposite p components. Symmetry of the m mass
shell about the E/c¢ axis then implies that their E/c compo-
nents are equal, and conservation then implies than each
E/c component is equal to Mc/2. It is clear from the dia-
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Fig. 1. Fission.

gram that each E/c¢ component is higher than the point at
which the m mass shell crosses the E/c axis, i.e., greater
than mc, so m<iM,

Mc—2mc=Amc>0.

As the fission fragments interact with their surroundings,
they slow down and eventually come to rest. Then their total
E/c is 2mc, so the energy they give up to their surroundings
is just AE=Amc?. This is the real content of the famous
equation E=mc?, involving measurable energy changes
rather than absolute values relative to some more or less
arbitrarily chosen zero of energy. Note that the mass of the
fission fragments is not determined. But because their ener-
gies are both 1M c?, the mass m and momentum p are related
by

(%Mc)z—p2=(mc)2.

The logical order in which to present this in class is first to
draw the M mass shell, then the two E—p vectors of the
fission fragments, and only then to draw in the m mass shell.

This example is easily generalized to fission fragments of
unequal masses. Also, a similar diagram can be used to il-

¥

Fig. 2. Compton scattering.

|
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D

Fig. 3. Compton scattering (detail).

lustrate fusion or the binding energy of the deuteron. Then
M is less than 2m, and the M mass shell crosses the E/c
axis below 2mc.

B. Compton scattering

Now take Minkowski space to be three dimensional, as in
Fig. 2. The mass shell is now a hyperboloid of revolution. In
the figure the intersection of the (E/c,p,) plane with the
electron mass shell is the hyperbola labeled m,, and the
intersection with the light cone consists of the two lines la-
beled y. The light cone is the mass shell of the photon,
whose equation is

5] =0

c

The vertical arrow in Fig. 2 is the E-p vector of an elec-
tron at rest, and the other arrow represents an incident pho-
ton. The system’s total E—p vector is represented by the
point labeled A (the vector to A is not drawn to avoid con-
fusion). After scattering, the electron E—p vector (again on
the electron mass shell) plus the scattered photon E-p vec-
tor (again on the light cone) must add up to A. A way to
draw this is to construct an inverted light cone L with its
vertex at A. The E—p vectors of all possible scattered pho-
tons arrive at A from the closed curve, almost a circle, at
which L intersects m, in this three-dimensional space~time
(in four dimensions this would be a closed surface, almost a
sphere).

Figure 3 is an enlargement of part of Fig. 2. One possible
combination of scattered electron and photon E—p vectors is
indicated with arrows. The direction of the scattered photon
is obtained by projecting its E—~p vector onto the (p;.p3)
plane, so the different lines on the cone represent photons
moving in different directions. It is immediately evident that
the photon energy E, and hence its frequency v and wave-
length A, are determined by its direction.

ITI. CONCLUSION

Other particle interactions can also be visualized on simi-
lar Minkowski diagrams. The goal of this note is to show
how the dynamics can be visualized, not to perform the cal-
culations. The equations of the mass shells can be used, how-
ever, as a starting point for going on to the calculations.

Notes and Discussions 800



C=>A+B decay

A+ B=>C creation
Pa + Pb = Pc
Ma = Mb

Fig. 1. Fission.
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Abstract

Momentum space and Minkowski diagrams are powerful tools for interpreting
and analysing relativistic collisions in one or two spatial dimensions. All
relevant quantities that characterize a collision, including the mass, velocity,
momentum and energy of the interacting particles, both before and after
collision, can be directly seen from a single Minkowski diagram. Such
diagrams can also be useful for analysing the differences between Newtonian
and relativistic mechanics. As an interesting example, a simple derivation of
the Compton wavelength shift formula, based on the geometrical properties of
such momentum space diagrams, is also presented.

1. Introduction

A paper by Saletan [1] presented a geometric representation of relativistic interactions, using
Minkowski diagrams in momentum space. The method has great intuitive and pedagogical
power. In this paper the most important features of such diagrams are discussed in a somewhat
more systematic way and some extensions to Saletan’s original paper are presented.

For the purposes of this paper the particular units for mass m, energy E and momentum p
are unimportant. Multiplying by suitable factors of the speed of light ¢, all three quantities,
i.e. mc?, E and pc, can be expressed in units of energy. Throughout the paper this convention
is adopted and the notation (au) for ‘arbitrary unit of energy’ is used.

Minkowski diagrams are widely used in configuration space where points represent events,
expressed in coordinate notation as (ct, x) (for a 2D diagram) or (ct, x, y) (for a 3D diagram),
corresponding to one or two spatial dimensions, respectively. By convention, time ct is along
the vertical axis and space is represented along the horizontal axis (or axes) in such diagrams.
Drawing a Minkowski diagram with three spatial dimensions is not possible, since it would
require a four-dimensional image. Luckily, for many important relativistic phenomena the
third spatial dimension can be omitted from the discussion.

As proposed by Saletan [1], Minkowski diagrams can also be constructed in momentum
space, with energy E represented along the vertical axis and momentum p represented along
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C=>A+B decay
A+ B=>C creation
Pa + Pb = Pc

Ma < Mb

> pc

i
L)

-+

Figure 1. Perfectly inelastic collision in 1D. For all three particles involved in the collision, the
mass appears as the intersection of the E-axis with the hyperbola representing the given particle;
the velocity appears as the slope of the given energy-momentum vector (relative to the E-axis);
and the energy and momentum of each particle appear as the vertical and horizontal components,
respectively, of the energy-momentum vector.
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A+B=>A"+DB’
A"+B'=>A+B
Pa + Pb = Pa" + Pb’
Mb > Ma

ey

> pe

-1 0

4

A
T
1

Figure 2. Elastic collision in 1D. From C as the origin, an upside-down version of the hyperbola
mac” is drawn. This hyperbola (denoted with “mac” ") intersects the hyperbola mac” at two points.
These are the only two points that satisfy the two requirements listed in the text. B represents
particle my before the collision, B’ represents the same particle after the collision. By using the
parallelogram rule of vector addition, it is straightforward to draw the final energy-momentum
vector for particle m4 (denoted by A').
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3.4 The Geometry of the Energy-Momentum Four-Vector 45

P
m
P
M )
ass Figure 3.3. Finite mass hyperbola.
pO
Sheels
P,
P
Figure 3.4. Zero mass hyperbola.

mass zero. Their mass hyperbola is the cone depicted in Figure 3.4.
Conversely, particles with zero invariant mass travel with the speed of
light. One can easily show (see Exercise 1) that, if the four-momenta
of two particles are added (i.e., if the corresponding components are
added to obtain the components of the sum), the resulting four-
momentum is timelike, the invariant being greater than zero, or light
like, the invariant being zero. It is lightlike only if the two original
four-momentum vectors are themselves lightlike, with their space
momenta parallel. It follows that in adding the four-momenta of any
number of particles, one always obtains a timelike four-vector (unless,
of course, all the particles’ four-momenta that are added are lightlike
with all three-momentum vectors parallel). This four-momentum has
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2d elastic unequal m's (Bokor)

‘‘‘‘‘‘‘‘‘‘
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—>p\C

Figure 3. Elastic collision in 2D. (a) As a straightforward generalization of figure 2, an upside-
down version of the hyperboloid mc? is drawn from C taken as the origin. The intersection
curve of this inverted hyperboloid (denoted by ‘maqc”) with the hyperboloid mge’ gives the
possible loci for the tip of the energy-momentum vector of particle mpe® in this interaction.
(b) The intersection curve of the two hyperboloids: a tilted ellipse. The energy-momentum
vectors A" and B’ represent one of the infinite number of possible final states (corresponding to
the case when particle my moves along the negative y-axis after collision). A and B denote the
energy-momentum vectors before collision. The projection of the intersection ellipse on the (p.c,
pyc) plane is another ellipse, shown as a broken curve. (c) The projected ellipse on the (p.c, p,c)
plane. All points with a subscript *,’ are projections of the corresponding points on (b) onto the
(p«€, pyc) plane. B, describes another possible final configuration, added here for illustration.
(The foci of the ellipse are shown as two small empty circles.)
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Pc =Pa+ Pb
Pc = Pa' + Pb’
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does not *‘soft land,”’ that is, we assume that y’(7(8)) < 0,
where T(6) is the impact time. From (2) and the definitions
of f, and f,, we have

y'(t)=v sin Of3(t)—gfs(t)=e N (v sin 6~ gf3(1))

and hence the impact assumption is
v
f3(T(6))>§ sin 6. )

In terms of the function
R(0
p(0)= ;—ggs—);
we have by (1),
R(8)=x(T(6))=v cos 0f,(T(6))
and hence
T(6)=f; '(p(6)).

The impact assumption (9) is therefore equivalent to

fg(f;’(p<a)>)>§ sin 6. (10)

Now, R(#8) is differentiable if and only if p(6) is differen-
tiable. By (3), p(8) is defined by P(p(8), 6)=0, where

P(p,8)=v sin 6p—gfs(f3 '(p)).

Finally, at p = p( ),

P o
2, =0 Sin 6=efi/2 (o) (p)

=v sin 6—gf3(f; '(p))<0

by (10), and hence p(6) is differentiable by the Implicit
Function Theorem.

1G. Galilei, Two New Sciences (Elzevirs, Leyden, 1638), translated with a
new introduction and notes, by Stillman Drake (Wall and Thompson, Tor-
onto, 1989), 2nd ed., p. 245.
2S. Drake and 1. Drabkin, Mechanics in Sixteenth-Century Italy (University
of Wisconsin Press, Madison, 1969), p. 91.
3K. Symon, Mechanics (Addison-Wesley, Reading, MA, 1953), p. 38.
“H. Erlichson, ‘‘Maximum projectile range with drag and lift, with particu-
lar application to golf,”” Am. J. Phys. 51, 357-361 (1983).
5T. de Alwis, “Projectile motion with arbitrary resistance,”” Coll. Math. J.
26, 361-366 (1995).
6], Lekner, ‘“What goes up must come down; will air resistance make it
return sooner, or later?,”” Math. Mag. 55, 26-28 (1982).
"R. Courant, Differential and Integral Calculus (Interscience, New York,
1961), Vol. I, p. 114.
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I. INTRODUCTION

Minkowski diagrams in configuration space, with points
representing events, are often used in undergraduate courses
on special relativity. Similar diagrams in momentum space
are seldom shown, and the object of this note is to demon-
strate their pedagogical usefulness in discussing particle in-
teractions. In configuration space each point has coordinates
(t,x); in momentum space the coordinates are (E,p). Two
examples should be sufficient to show how such diagrams
can be used.

II. EXAMPLES

A. Fission

In this example there is just one space dimension:
Minkowski space is two dimensional. A particle of mass m is
represented by its mass shell, a hyperbola opening in the
positive E direction, given by

2 f
(E) —p2?=(mc)>.

c
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Figure 1 shows two such mass shells belonging to masses
m and M>m, each labeled by its mass. The scale on the
energy axis is chosen as E/c rather than E, so the two mass
shells cross the E/c axis at mc and Mc, respectively. Each
point on an m mass shell represents a state of a particle of
mass m, i.e., possible values of its energy and momentum. A
vector from the origin to such a point represents the energy—
momentum (E—p) vector of that state.

Consider a particle of mass M at rest, say a uranium
nucleus, that undergoes fission to two particles of equal mass
m. The vertical arrow in Fig. 1 represents the original ura-
nium E—p vector. E~p conservation implies that the E-p
vectors of the two fission fragments add up to the original
one, and since the total momentum is zero, the momenta of
the two fission fragments must be negatives: their E—p vec-
tors have opposite p components. Symmetry of the m mass
shell about the E/c¢ axis then implies that their E/c compo-
nents are equal, and conservation then implies than each
E/c component is equal to Mc/2. It is clear from the dia-
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Fig. 2. Compton scattering.
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2d Compton Scattering

Fig. 3. Compton scattering (detail).
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Abstract

Momentum space and Minkowski diagrams are powerful tools for interpreting
and analysing relativistic collisions in one or two spatial dimensions. All
relevant quantities that characterize a collision, including the mass, velocity,
momentum and energy of the interacting particles, both before and after
collision, can be directly seen from a single Minkowski diagram. Such
diagrams can also be useful for analysing the differences between Newtonian
and relativistic mechanics. As an interesting example, a simple derivation of
the Compton wavelength shift formula, based on the geometrical properties of
such momentum space diagrams, is also presented.

1. Introduction

A paper by Saletan [1] presented a geometric representation of relativistic interactions, using
Minkowski diagrams in momentum space. The method has great intuitive and pedagogical
power. In this paper the most important features of such diagrams are discussed in a somewhat
more systematic way and some extensions to Saletan’s original paper are presented.

For the purposes of this paper the particular units for mass m, energy E and momentum p
are unimportant. Multiplying by suitable factors of the speed of light ¢, all three quantities,
i.e. mc?, E and pc, can be expressed in units of energy. Throughout the paper this convention
is adopted and the notation (au) for ‘arbitrary unit of energy’ is used.

Minkowski diagrams are widely used in configuration space where points represent events,
expressed in coordinate notation as (ct, x) (for a 2D diagram) or (ct, x, y) (for a 3D diagram),
corresponding to one or two spatial dimensions, respectively. By convention, time ct is along
the vertical axis and space is represented along the horizontal axis (or axes) in such diagrams.
Drawing a Minkowski diagram with three spatial dimensions is not possible, since it would
require a four-dimensional image. Luckily, for many important relativistic phenomena the
third spatial dimension can be omitted from the discussion.

As proposed by Saletan [1], Minkowski diagrams can also be constructed in momentum
space, with energy E represented along the vertical axis and momentum p represented along
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Figure 5. Compton scattering. (a) First the total energy-momentum vector for the system is
found (using our initial parameters, the E-component of this vector is 1.5 and the pxc-component is
0.5). The tip of this vector is denoted by C. An upside-down version of the photon cone (denoted
by 'pha’) is then drawn from C; and the intersection curve between the hyperboloid mgc? and
the inverted cone "pha” represents the possible final states for the electron after the interaction.
(b) The intersection curve: a tilted ellipse. B" represents one possible final state for the electron
and A’ denotes the corresponding final state for the photon. A and B denote the energy-momentum
vectors before collision. (c) The projected ellipse on the (pxc, pyc) plane. Bp" and By™ denote
two possible final configurations. The vector pointing from the origin to any point on the ellipse
represents a possible momentum vector for the electron and the vector pointing from that point of
the ellipse to point C,, gives the corresponding momentum vector for the scattered photon. (The
foci of the ellipse are shown as two small empty circles.)

The relative directions of motion for the electron and photon are immediately apparent
from the figure. In addition, the length of the momentum vector for the photon in figure 5(c)
directly gives the numerical value for its energy too. (Note that the precise shape of the ellipse
depends on the energy of the incoming photon, as will be discussed below, but all ellipses,
regardless of the initial photon energy, share the two special features listed above.)



2d Compton Scattering

photon out
» shell
“at point C

electron ...
mass
shell

.........

photoh in shell

......

-.ii—-—-*.............

0502 ] Px



Larry Sorensen
2d Compton Scattering


2d Compton ScI:attering



Larry Sorensen
2d Compton Scattering

Larry Sorensen



2d Compton Scattering

APyC Pe any point
B e ———— on circle

P(photon)



Larry Sorensen
2d Compton Scattering

Larry Sorensen



Compton Scattering Algebra

Solution
Week 69 (1/5/04)

Compton scattering

We will solve this problem by making use of 4-momenta. The 4-momentum of a
particle is given by

PE(P07P17P27P3)E(EupIcapycapzc)E(E7pc)' (1)
In general, the inner-product of two 4-vectors is given by
A-B= AoBO — AlBl — A2B2 — A3B3. (2)

The square of a 4-momentum (that is, the inner product of a 4-momentum with
itself) is therefore
P =pP.P=F?—|p*? =m’" (3)

Let’s now apply these idea to the problem at hand. We will actually be doing
nothing here other than applying conservation of energy and momentum. It’s just
that the language of 4-vectors makes the whole procedure surprisingly simple. Note
that conservation of F and p during the collision can be succinctly written as

Pbefore = Pafter- (4)

Referring to the figure below, the 4-momenta before the collision are

he h
P, = (AC ;,0,0> . Py =(mc2,0,0,0). (5)

And the 4-momenta after the collision are

he hc he
P/ = (X,XCOSG,X

“ sin 6, O> , P! = (we won't need this). (6)

If we wanted to, we could write P/, in terms of its momentum and scattering angle.
But the nice thing about this 4-momentum method is that we don’t need to introduce
any quantities that we’re not interested in.
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Compton Scattering Algebra

Conservation of energy and momentum give P, + Py, = P, + Py,. Therefore,

(Pv‘*‘Pm_P«;)Q = Pg
= P2+ P + P?+ 2P, (P, — P)) - 2P,P, = D}
he  hc he he 9 4

2 4 2
= 0+ m“c" + 0+ 2mc (7—7)—277(1—0059) = m°c. (7)

Multiplying through by AN /(2hmc?) gives the desired result,

X:)\—i-i(l—cos@). (8)

mc

The ease of this solution arose from the fact that all the unknown garbage in P/,
disappeared when we squared it.

REMARKS:

1.
2.

If 6 ~ 0 (that is, not much scattering), then X' ~ )\, as expected.

If @ = 7 (that is, backward scattering) and additionally A < h/mc (that is, mc? <
he/\ = E,), then ' =~ 2h/me, so

he he 1
Efyzyzzzﬁmc. (9)

mc

Therefore, the photon bounces back with an essentially fixed Efy, independent of the
initial F, (as long as E. is large enough). This isn’t all that obvious.
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inelastic relativistic collision

A particle of mass m, moving at speed v = 4c¢/5, collides inelastically with a similar
particle at rest.

(a) What is the speed v, of the composite particle?

(b) What is its mass m¢?

Solution by Rudy Arthur:

Call the moving particle ‘M’, and the particle at rest ‘R’ (the composite particle is defined

to be ‘C’).
The momentum of the moving particle is
mv 4
Py = = =_mc. (1)
vz 3
s
And, the square of its energy is
Ey = (mc”)”* +(p,c)”. )
The energy of the particle at rest is
E, =(mc?). (3)
The square of the energy of the composite particle is
E.” = (Mmc”)* +(pcC)’. (4)
By conservation of energy: E,, + E, = E_, or squaring and rearranging,
2E,E, =E-E; -E; (5)

Substituting (2) and (4) into (5):

2E,E, =((Mm.c?)* +(p.C)*)—(2(mc*)* +(p,c)°)
By conservation of momentum, p. = p,,, So this reduces to

2E, E, = (m.c?)* - 2(mc?)?
Squaring again:

4E2E? =((mc?)? ~2(mc?)? ) (6)
Substituting from (2) and (3) into (6) and expanding on the right,

4(mc?)? (( p,C)° + (mcz)z) = ((mccz)4 —4(mc?)*(m.c?)* + 4(mc2)4)
Rearranging,

(m.c*)* —4(mc*)*(m.c®)* —4(mce’)* (p,,c)* =0

Using (1) this reduces to

mg —4m?Zm? —%m“ =0 (7)



Solving for m? (which must be positive) gives m? = %m , SO the answer to (b) is

4

m.=—m. 8
= (8)
The momentum of the composite particle is
m.V,
Pe =5 (9)
1 Ve
CZ

By conservation of momentum p,, = p_, and so, substituting from (1) and (8) into (9)

(10)

w

i : C
Solving for vc gives the answer to (a), v, = >



Inelastic Relativistic Collision

A particle of mass m, moving at speed v = 4c¢/5, collides inelastically with a similar
particle at rest.

(a) What is the speed v, of the composite particle?

(b) What is its mass m¢?

Solution by Michael Gottlieb:

(I choose units for which ¢ =1.)

Call the moving particle ‘M, and the particle at rest ‘R’. (The composite particle is
defined to be ‘C’.)

The momentum and energy of the particle at rest are
p, =0 E,=m.
The momentum of the moving particle is

and its energy is
— h M — E m

oy 4/5 3
For the composite particle, the conservation of energy implies that

EC=EM+ER=%m’

while the conservation of momentum implies that
4
Pc = Py = gm :
The speed of the composite particle is

_&_(4/3)m_£ _C
- _—(8/3)m_2' (For c#1, vc_2.)

c

The mass of the composite particle is given by the (positive) solution to

2 2
e (o]



Inelastic Relativistic Collision

A particle of mass m, moving at speed v = 4c¢/5, collides inelastically with a similar
particle at rest.

(a) What is the speed v, of the composite particle?
(b) What is its mass m¢?

Solution by llkka Makinen:
Call the frame of the particle at rest “the lab frame” and consider the center-of-mass

(CM) frame.
u -u
oO——— —@
oo
CM frame
o L ®
o
lab frame

In order for momentum to be conserved the center-of-mass of the system must
maintain a constant velocity u; this will be the velocity of the composite particle in
the lab frame.

The particle moving at speed v in the lab frame moves at speed u in the CM frame,

while —u is the speed of the lab frame relative to the CM frame. We can thus use the
relativistic transformation of velocities to find u:

=u > w -2u+v=0

1-wvu

1 (1 5 \/? 1
Y, \Y; 4 16 2

Then we can find the composite particle’s mass m. from the conservation of

momentum;
mv.  mu
Ji—v2 J1-u?
_ 2
1-u 835 4

1-v2 523 3



A particle of mass m http://www.feynmanlectures.info/solutions/inelastic_relativistic_collision_sol_4.html

inelastic relativistic collision
A particle of mass m, moving at speed v = 4¢/5, collides inelastically with a similar particle at rest.

(a) What is the speed v_ of the composite particle?

(b) What is its mass mc?

Solution by Ted Jacobson

Choose units where ¢ = 1, v=4/5. Let the incoming particle move in the x-direction of the rest frame, and let y = (1 — vz)*l/2 = 5/3.

The 4-momentum of the incoming particle (in the rest frame) is (ym, ymv, 0, 0), while the 4-momentum of the particle at rest is (m, 0, 0, 0), so the total 4-momentum is
p, = (my+1), myv, 0,0),

which must be conserved, and is therefore the 4-momentum of the composite particle. The mass of the composite particle is the magnitude of its 4-momentum:
m?= pﬂz = M2+ - mPyA? = P12 2y Dm? = 2+ Dm? = (16/3)m?.

Hence m = (4/\/§)m4

The velocity of the composite particle is its 3-momentum divided by its energy:
v, = px/pl = myv/m(y+1) = (y/(y+1))v = (5/8)v = (5/8)(4/5) = 1/2.

Hence v, = c/2.

lofl 4/30/11 5:51 AM
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pion, muon, neutrino

A pion (m,= 273 m,) at rest decays into a muon (m, = 207 m,) and a neutrino (m, = 0).
Find the kinetic energy and momentum of the muon and the neutrino in MeV.

Solution by Michael A. Gottlieb:

(I choose units such that ¢ = 1, and assume that m,= 0.511MeV.)

Since the pion is at rest conservation of momentum dictates that the momenta of the
muon and the neutrino be equal in magnitude (and opposite in direction),

P.=P,- (A)
Since the pion is at rest its energy equals its mass, £_=m_. Since the neutrino is
massless its energy equals its momentum, E, = p, . By conservation of energy,
E,=E,+E,, 50

E,=m.=p,. (B)
Substituting the right sides of (A) and (B) into the left side of the fundamental
kinematic equation for the muon E — p? = m., yields

2
(mﬂ _pv) _pf :m,tzl '
Solving for p, gives (the magnitudes of) the momenta of the decay particles and the
kinetic energy (equal to the total energy) of the massless neutrino,

2 2
p.(=p,=E,) = M — 29.65 MeV .

2m

s

The kinetic energy of the muon equals its total energy minus its mass which, using (B),
is (m,—p,)—m,= 408 MeV .



Example: Relativistic two-body decay

@ Consider the decay of a massive particle into two lighter ones, such
that rest masses satisfy M > my; + m».

@ To calculate energies and momenta of decay products use:
Rest frame of decaying particle: E =M, P =0;

Energy conservation: E=E + E;
Momentum conservation: P=p +p, = p1=p2
Energy-momentum relation: E? = m? + p°.

@Casel: m=m=0=Ei=p1=p=E=M)2

@ Case 2: Arbitrary masses, m;y # 0, my # O:

_ MPE(mi—m}) A (M —mi—mE)—4mim2
Eip = S and p; = pp = M :

I




Example: Relativistic two-body reactions

@ Central reaction type in particle physics:
2-body scattering: a+b— c+d

@ Convenient frame of inertia for description:
centre-of momentum frame,
characterised by p,+p,=p_+pP,= 0

@ Calculate Lorentz-invariant mass (energy) from:

s=M,, = (E+E)—(p,+p,)
= (Ec+Ea)—(p.+p,).

@ This is the energy squared in the c.m.-frame: s = E2 .




Example: Relativistic two-body reactions (cont’'d)

@ Can also calculate the (Lorentz-invariant) momentum transfer from
a to c, called t and from a to d, called u:

t = (Ea—E)—(p,—p) =(Eo—Ea)’—(p, — p,)°
u = (Ba—Eq)’—(p,—p,) =(E»—E)*—(p,—p.)°

@ Properties:
@s>0,and t, u<0
9 s—l—t+u=m§+mi+m§+m§.
Therefore, for massless particles s + t + u = 0.

@ In the c.m.-frame, and for massless particles:

E? E?
t=— Cém' (1 —cosf,) and u=— Cém' (14 cosfac) .

0,c is called the “scattering angle”.




Particle creation and decay

@ Consider a special case of 2 — 2-scattering:
Production of intermediate particle:
a+b—-M-—c+d

@ Energy and momentum of M in c.m.-frame:
E = Ea + Eb, B =0
@ We will see that the probability for this process “resonates”, if
s = E?_ = M? (resonance production).
The production cross section will yield a peak.

a

b

@ Note: Cross section is a way to quantify the probability for a process

to happen, more on this in Lecture 3.

o




Example for resonance production: eTe~ — hadrons

o and R in e"e~ Collisions

||




Mandelstam variables

From Wikipedia, the free encyclopedia

In theoretical physics, the Mandelstam variables are numerical
quantities that encode the energy, momentum, and angles of particles
in a scattering process in a Lorentz-invariant fashion. They are used
for scattering processes of two particles to two particles.

If the Minkowski Metric is chosen to be diag(1,—1,— 1, — 1), the
Mandelstam variables s,Z,u are then defined by

*s=(p1 -I-P2)2 = (p3+ pa)’

ct=(p1— p3)’ = (p2 — pa)’°

cu=(p1—ps)° = (po— p3)°
Where P, and p,are the four-momenta of the incoming particles and
P, and p , are the four-momenta of the outgoing particles, and we are
using Planck units (c=1).

s is also known as the square of the center-of-mass energy (invariant
mass) and t is also known as the square of the momentum transfer.

R R

B b,

In this diagram, two particles come in &
with momenta p 1 and Py they interact in
some fashion, and then two particles with
different momentum (p3 and p 4) leave.



Feynman diagrams [edit]

The letters s,t,u are also used in the terms s-channel, t-channel, u-channel. These channels represent different
Feynman diagrams or different possible scattering events where the interaction involves the exchange of an
intermediate particle whose squared four-momentum equals s,z,u, respectively.

R %R\/%R R

R ae/\ae R

s-channel t-channel u-channel

For example the s-channel corresponds to the particles 1,2 joining into an intermediate particle that eventually
splits into 3,4: the s-channel is the only way that resonances and new unstable particles may be discovered
provided their lifetimes are long enough that they are directly detectable. The t-channel represents the process in
which the particle 1 emits the intermediate particle and becomes the final particle 3, while the particle 2 absorbs
the intermediate particle and becomes 4. The u-channel is the t-channel with the role of the particles 3,4
interchanged.

The Mandelstam variables were first introduced by physicist Stanley Mandelstam in 1958.



Addition of [edit]

Note that

.s+t-|—u.=mf+mg+m§+m:“)1

where m, is the mass of particle i.

Proof [edit]
To prove this, we need to use two facts:

« The square of a particle's four momentum is the square of its mass,

p;=m; (1)

i

+ And conservation of four-momentum,
P1+P2=pP3+ P4
P1= —p2+Ps+ ps (2)
So, to begin,
. 2 _ .2 2
S—m+m%—@+%+%rm
t =(p1—pa) TP Py - 2py - pa
u=(p1—pa)" =p] +Ps— 2p1- P4
First, use (1) to re-write these,
s = mf+-m§+ 2py - po
t = mf2+ m§2— 2p; - ps
u=miy+my— 2p1 - 4
Then add them
s+t +u=3m; + mj+mg+mji +2p; - pp — 2p1 - p3 — 2p1 - pa
:mf +m§ +rm§ +-m3 -|—2(-mf +P1-P2—P1°"P3—P1 'P4)
=mf+m§-|—m§+m§+2(mf+171'@2 —P3 —p4))
Then use eq (2) to simplify further,
s+t+u=mi +mj;+mj;+m; +2(mrf — P -p1)
=mf+m§+m:2;+mi+2(mf_mf)
So finally,

s+t+u=mf+mg+m§+m§



Relativistic Dynamics: Conservation of Four-Momentum

Energy-Momentum Diagrams: Minkowski diagrams in

Definition: four- momentum space
A particle’s energy-momentum diagram plots E versus P,

Object’s four-
E(=P;)4 momentumP
Typically we assume P
P,=P. =0
So that _
E of object -
p = |Pxl

p = (E, px, py; pz)
/{ >

x =(t, x, y, 2) 1 P,
P, of object

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield
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Relativistic Dynamics: Conservation of Four-Momentum

Energy-Momentum Diagrams ...
Properties:
dR tangent to worldline
Slope at event:1 /v,
At a given event:

EA
Pis parallel todR oottt
P iObject’s
IR :energy
Slope of P = m i,
T P,
1 /v,
Son M V1 — v? .
T _ — ..
b vV1—v2 m

dR
dR
> >
/ X / X
E4 E 4
//— Object’s x-momentum
m . m
: Object’s
Object’s energy P |—
P = Object’s mass -
> >
Py Py

m iIs the rest mass
Er2 = pr2 + M2

Mass is magnitude of P: m = VE? —p?

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

vX = px / E
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Relativistic Dynamics: Conservation of Four-Momentum
Energy-Momentum Diagrams ...

Mass is magnitude of P: “1

2

m* = E2 _ p2 Hyperbola

Tip of vector lies on a hyperbola.

Arrow on E-P diagram is frame dependent.

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield
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Relativistic Dynamics: Conservation of Four-Momentum
Energy-Momentum Diagrams ...

Example:
Ve = 3/5

So P has slope 5/3.

__ 5
E—4m
3
K:E—m:%m
1 2 _ 9
K>2mv = £5Mm

E 4
| \
" Hyperbola
- m* = E — PZ

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield




Relativistic Dynamics: Conservation of Four-Momentum

Energy-Momentum Diagrams .

Summary:

E4 Hyperbola

E? — p? = m?

Line with

———————— " slope =1

: ;
K
=
E Slope = 1/v,
e = E/P,. <1
P .
| p > P\

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield




Relativistic Dynamics: Conservation of Four-Momentum
Methods for Conservation of Four-Momentum Problems:

Two objects, | & 2, collide:
Before: P, P>

After: P33, Py
Conservation of 4-momentum: p1+p2=p3+p4
El E2 ES E4
Pla:' PZQ; ng P4:U
+ — +
Ply P2y PSy P4y
Plz PZZ PSZ P4Z

Each component must be conserved separately.

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield
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Relativistic Dynamics: Conservation of Four-Momentum
Methods for Conservation of Four-Momentum Problems ...

Example |:
Before:
Rock I:mq =12 kg vy, =4/5
Rock 2: Mo = 28 kg Vo = 0
After:
Rock I:v3, = —5/13

Question:What is v4,.?

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield
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Relativistic Dynamics: Conservation of Four-Momentum

Methods for Conservation of Four-Momentum Problems ...

Answer:
Before:
Rock I:
m
By = L
\/1 — Ulg
P, = 1 U1
\/1 — Uty
Rock 2:
m
Ey = -
\/1 — Vg
P,. T2V

N \/1 o /Ugaj

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

= 5/3(12 kg) = 20 kg

=(5/3)(4/5)(12 kg) = 16 kg

V1= (4/5)
=0 kg




Relativistic Dynamics: Conservation of Four-Momentum
Methods for Conservation of Four-Momentum Problems ...

After:
Rock I:
(105] ™M1 1
= — — = (13/12)(12 kg) =13 k
S /1-0Z /1 (-5/13)2 \/144/169 (13/12)(12 ke) "
TM1U3%
Ps,. = — (13/12)(—=5/13)(12 kg) = —H k
s = e = (13/12)(-5/13)(12 k) = =5 kg
Conservation: /E‘l\ /El\ /EQ\ E3\
P433 o Pl;p 4 PQ:E o PS:U
Py, - Py, Po, Ps,
\ Py / \Pi.) \ P/ Ps. |
/20 kg\ 28 kg\ /13 kg\ /35 kg\
16 kg 0 —5 kg 21 kg
o |T| o 0 0
\ 0 ) o/ \o /) \ o)

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield




Relativistic Dynamics: Conservation of Four-Momentum
Methods for Conservation of Four-Momentum Problems ...

After:
Check mass of Rock 2:

— /(35 kg)2 — (21 kg)2 = 7 kg /52 — 32 = 28 kg

Finally,

Y T B T 35 kg

Ot W

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield
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Relativistic Dynamics: Conservation of Four-Momentum

Methods for Conservation of Four-Momentum Problems ...

Example 2: E (kg) 4

Problem: Solve previous problem
using E-P diagram.
Answer:Add 4-momenta vectors.

28 kg

Before:
Total 4-momentum P:

=10

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

+— P, (kg)




Relativistic Dynamics: Conservation of Four-Momentum
Methods for Conservation of Four-Momentum Problems ...

E (kg) 4
Example 2 ...

After:Vectors must add to same Pp. . -2k

—1!—

Know: P3 = (Es, Pr,,0,0) 10+
= (13 kg, —5 kg, 0, 0) T

This vector can
be constructed
knowing

P 3 and PT

Then: P, = P — Pjs.

% +—> P, (kg)

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield
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Relativistic Dynamics: Conservation of Four-Momentum

Mass of a Collection of Particles:

Relativistic energy = Rest energy + Relativistic kinetic energy.

This is conserved.

Can mass and energy be inter-converted!?

Yes!

One general case:
Mass of a system of particles # Sum of individual masses.

mass Is not additive

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

16
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Relativistic Dynamics: Conservation of Four-Momentum

Mass of a Collection of Particles ...

Example: Inelastic collision.
Problem:

Two putty balls: m =4 kg atwvy, = 3/5 andve, = —3/5.

Collide and stick together into mass M .

Before After

U1, = +3/5 m m vy, = —3/5
: »Q Q= : M Q (At rest)

—» +X » +X

Question:What is the total mass M after the collision?

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

17



Relativistic Dynamics: Conservation of Four-Momentum

Mass of a Collection of Particles ...

Before: 4-momentum 5 /x 5 /5
boap L mB/5) L m(=3/5)

V' 1—1(3/5)? ¢1 — (—3/5)2
After: 4-momentum

Mass at rest: Conservation implies total P, = 0
Before: Energy!?
Newtonian: Kinetic energy converted to heat (?).Also,
M=m+4m=2m =8 kg
Relativistic energy: Final object is at rest (Eafter — M)

Conservation:M = F, + E5 =
T /1-(3/5)2 /1-(—3/5)

2 10
i = —m = 10 kg

- J/16/25 A4
“Mass” is larger by 2 kg!

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield
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Relativistic Dynamics: Conservation of Four-Momentum

Mass of a Collection of Particles ...
Where did this “mass” come from?
Option: Increase in thermal energy; if so, alot!

Rather: Mass is a property of the system as a whole.

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield
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Relativistic Dynamics: Conservation of Four-Momentum

Mass of a Collection of Particles ...

Extra mass already present before collision:

Balls moving as one system:
M =./E3 - P2,
:E1+E2:5kg+5kg:10 kg

Lessons:
System mass unchanged.
Mass is not individually additive.
Mass is a property of system as a whole.

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

E (kg)4
16
- 4 kg
5_
1 4 kg
3 » P, (kg)
5
4 kg 4 kg

20



Relativistic Dynamics: Conservation of Four-Momentum

Four-Momentum of Light:

“Particle” of light: Burst or flash of short duration.

4-momentum of light flash moving +x with energy F.
E A

P is parallel to worldline, which has slope = |. E+----—----,

p
— = :1
B U

So for light: p = E.

i
I
I
I
I
I
I
I
| » P

Light carries momentum: (E&M light “pressure” experiment, 1903)

Light has zero mass:

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield




Relativistic Dynamics: Conservation of Four-Momentum
Four-Momentum of Light ...

Example 3:
Annihilation: Particle + Antiparticle produces light.
Problem:
Matter-Antimatter rocket engine produces light pulse.
Initially, rocket mass M = 90, 000 kg.
Rocket fires, emitting pulse with energy £1..
Rocket then moving at v =4/5 .

Ep
M - . I ¥ m - 0 — 4/5
| v=20 - /) \T I /_f,’ -
Full ship Burst of light Partially empty ship
Before the engines fire After the engines fire

Question:What is the rocket’s final mass m?

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield
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Relativistic Dynamics: Conservation of Four-Momentum
Four-Momentum of Light ...

Answer:
Before: 4-momentum (P, P,,, P,, P,) = (M, 0,0,0).
After: System = Ship + Light Pulse.

Pulse: p;, = F1,, Py = —Ef
(Pptappmappyvppz) — (EL7 _EL7070>

T B m B
V1—0v2 /1 —(4/5)2
4
Psx:—kp:Ev:gm

Ship now mass m: P, =

O
—m
3

Psy:Psz:O

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield
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Relativistic Dynamics: Conservation of Four-Momentum

Four-Momentum of Light ...

Conservation:

M EL %m
0 —EL gm
= +
0 0 0
0 0 0
M = FE; + gm
EL — %m
v =1

m = =M = 30,000 kg
Fuel mass = M — m = 60,000 kg to accelerate ship tov =

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

4
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Relativistic Dynamics: Conservation of Four-Momentum

Particle Physics:

Elementary particles small: Can accelerate to v ~ c.
Definition: Electron volt is the energy gained by

an electron passing through a |V battery:

1eV=1.602x10""J=1.782x 107°° kg

Example:
Electron: m = 0.511 MeVatv = 4/5.
Relativistic energy: F = ° 0.852 MeV
B = = —m = 0. e
gY Ji—o2 3

Relativistic kinetic energy: K = EE — m = 0.341 MeV

Relativistic momentum: p = EFv = 0.682 MeV

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield
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Relativistic Dynamics: Conservation of Four-Momentum

Particle Physics ...

Example 4: Kaon decays to 2 pions

Problem:
Kaon: K meson with m = 498 MeV.

Pion: 7 meson with m = 135 MeV.
Decay: AT = 36 ns

KO—>7TO—|—7TO

Question: After decay what is the speed of the pions!?

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield
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Relativistic Dynamics: Conservation of Four-Momentum

Particle Physics ...

Answer:
Conservation: /)\f Ey Eo
0 | P1 P2az
O o O * P2y
O O PQz
SO: sz:PQZ:O
Poy, = —p1

Pion 2 moves in -x direction, same momentum: ps = |Ps,| = p1.

They both have same mass and so same relativistic energies:

EQZ\/m2+p3:\/m2+p%:E1

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield




Relativistic Dynamics: Conservation of Four-Momentum

Particle Physics ...

M = 2F;

Plug in numbers:

E; = M/2 = 249 MeV

p1 = \/Ef — M2 = /(249 MeV)2 — (135 MeV)2 = (209 MeV

U7 E T 249 MeV
U1 — U2

Kaon mass converted to pion kinetic energy.

Lecture | |: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield
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does not *‘soft land,”’ that is, we assume that y’(7(8)) < 0,
where T(6) is the impact time. From (2) and the definitions
of f, and f,, we have

y'(t)=v sin Of3(t)—gfs(t)=e N (v sin 6~ gf3(1))

and hence the impact assumption is
v
f3(T(6))>§ sin 6. )

In terms of the function
R(0
p(0)= ;—ggs—);
we have by (1),
R(8)=x(T(6))=v cos 0f,(T(6))
and hence
T(6)=f; '(p(6)).

The impact assumption (9) is therefore equivalent to

fg(f;’(p<a)>)>§ sin 6. (10)

Now, R(#8) is differentiable if and only if p(6) is differen-
tiable. By (3), p(8) is defined by P(p(8), 6)=0, where

P(p,8)=v sin 6p—gfs(f3 '(p)).

Finally, at p = p( ),

P o
2, =0 Sin 6=efi/2 (o) (p)

=v sin 6—gf3(f; '(p))<0

by (10), and hence p(6) is differentiable by the Implicit
Function Theorem.

1G. Galilei, Two New Sciences (Elzevirs, Leyden, 1638), translated with a
new introduction and notes, by Stillman Drake (Wall and Thompson, Tor-
onto, 1989), 2nd ed., p. 245.
2S. Drake and 1. Drabkin, Mechanics in Sixteenth-Century Italy (University
of Wisconsin Press, Madison, 1969), p. 91.
3K. Symon, Mechanics (Addison-Wesley, Reading, MA, 1953), p. 38.
“H. Erlichson, ‘‘Maximum projectile range with drag and lift, with particu-
lar application to golf,”” Am. J. Phys. 51, 357-361 (1983).
5T. de Alwis, “Projectile motion with arbitrary resistance,”” Coll. Math. J.
26, 361-366 (1995).
6], Lekner, ‘“What goes up must come down; will air resistance make it
return sooner, or later?,”” Math. Mag. 55, 26-28 (1982).
"R. Courant, Differential and Integral Calculus (Interscience, New York,
1961), Vol. I, p. 114.

Minkowski diagrams in momentum space

Eugene J. Saletan

Physics Department, Northeasten University, Boston, Massachusetts 02115
(Received 3 February 1997; accepted 12 February 1997)

I. INTRODUCTION

Minkowski diagrams in configuration space, with points
representing events, are often used in undergraduate courses
on special relativity. Similar diagrams in momentum space
are seldom shown, and the object of this note is to demon-
strate their pedagogical usefulness in discussing particle in-
teractions. In configuration space each point has coordinates
(t,x); in momentum space the coordinates are (E,p). Two
examples should be sufficient to show how such diagrams
can be used.

II. EXAMPLES

A. Fission

In this example there is just one space dimension:
Minkowski space is two dimensional. A particle of mass m is
represented by its mass shell, a hyperbola opening in the
positive E direction, given by

2 f
(E) —p2?=(mc)>.

c

799 Am. J. Phys. 65 (8), August 1997

Figure 1 shows two such mass shells belonging to masses
m and M>m, each labeled by its mass. The scale on the
energy axis is chosen as E/c rather than E, so the two mass
shells cross the E/c axis at mc and Mc, respectively. Each
point on an m mass shell represents a state of a particle of
mass m, i.e., possible values of its energy and momentum. A
vector from the origin to such a point represents the energy—
momentum (E—p) vector of that state.

Consider a particle of mass M at rest, say a uranium
nucleus, that undergoes fission to two particles of equal mass
m. The vertical arrow in Fig. 1 represents the original ura-
nium E—p vector. E~p conservation implies that the E-p
vectors of the two fission fragments add up to the original
one, and since the total momentum is zero, the momenta of
the two fission fragments must be negatives: their E—p vec-
tors have opposite p components. Symmetry of the m mass
shell about the E/c¢ axis then implies that their E/c compo-
nents are equal, and conservation then implies than each
E/c component is equal to Mc/2. It is clear from the dia-

© 1997 American Association of Physics Teachers 799



Fig. 1. Fission.

gram that each E/c¢ component is higher than the point at
which the m mass shell crosses the E/c axis, i.e., greater
than mc, so m<iM,

Mc—2mc=Amc>0.

As the fission fragments interact with their surroundings,
they slow down and eventually come to rest. Then their total
E/c is 2mc, so the energy they give up to their surroundings
is just AE=Amc?. This is the real content of the famous
equation E=mc?, involving measurable energy changes
rather than absolute values relative to some more or less
arbitrarily chosen zero of energy. Note that the mass of the
fission fragments is not determined. But because their ener-
gies are both 1M c?, the mass m and momentum p are related
by

(%Mc)z—p2=(mc)2.

The logical order in which to present this in class is first to
draw the M mass shell, then the two E—p vectors of the
fission fragments, and only then to draw in the m mass shell.

This example is easily generalized to fission fragments of
unequal masses. Also, a similar diagram can be used to il-

¥

Fig. 2. Compton scattering.

|
800 Am.J. Ph{ys., Vol. 65, No. 8, August 1997

D

Fig. 3. Compton scattering (detail).

lustrate fusion or the binding energy of the deuteron. Then
M is less than 2m, and the M mass shell crosses the E/c
axis below 2mc.

B. Compton scattering

Now take Minkowski space to be three dimensional, as in
Fig. 2. The mass shell is now a hyperboloid of revolution. In
the figure the intersection of the (E/c,p,) plane with the
electron mass shell is the hyperbola labeled m,, and the
intersection with the light cone consists of the two lines la-
beled y. The light cone is the mass shell of the photon,
whose equation is

5] =0

c

The vertical arrow in Fig. 2 is the E-p vector of an elec-
tron at rest, and the other arrow represents an incident pho-
ton. The system’s total E—p vector is represented by the
point labeled A (the vector to A is not drawn to avoid con-
fusion). After scattering, the electron E—p vector (again on
the electron mass shell) plus the scattered photon E-p vec-
tor (again on the light cone) must add up to A. A way to
draw this is to construct an inverted light cone L with its
vertex at A. The E—p vectors of all possible scattered pho-
tons arrive at A from the closed curve, almost a circle, at
which L intersects m, in this three-dimensional space~time
(in four dimensions this would be a closed surface, almost a
sphere).

Figure 3 is an enlargement of part of Fig. 2. One possible
combination of scattered electron and photon E—p vectors is
indicated with arrows. The direction of the scattered photon
is obtained by projecting its E—~p vector onto the (p;.p3)
plane, so the different lines on the cone represent photons
moving in different directions. It is immediately evident that
the photon energy E, and hence its frequency v and wave-
length A, are determined by its direction.

ITI. CONCLUSION

Other particle interactions can also be visualized on simi-
lar Minkowski diagrams. The goal of this note is to show
how the dynamics can be visualized, not to perform the cal-
culations. The equations of the mass shells can be used, how-
ever, as a starting point for going on to the calculations.

Notes and Discussions 800
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Abstract

Momentum space and Minkowski diagrams are powerful tools for interpreting
and analysing relativistic collisions in one or two spatial dimensions. All
relevant quantities that characterize a collision, including the mass, velocity,
momentum and energy of the interacting particles, both before and after
collision, can be directly seen from a single Minkowski diagram. Such
diagrams can also be useful for analysing the differences between Newtonian
and relativistic mechanics. As an interesting example, a simple derivation of
the Compton wavelength shift formula, based on the geometrical properties of
such momentum space diagrams, is also presented.

1. Introduction

A paper by Saletan [1] presented a geometric representation of relativistic interactions, using
Minkowski diagrams in momentum space. The method has great intuitive and pedagogical
power. In this paper the most important features of such diagrams are discussed in a somewhat
more systematic way and some extensions to Saletan’s original paper are presented.

For the purposes of this paper the particular units for mass m, energy E and momentum p
are unimportant. Multiplying by suitable factors of the speed of light ¢, all three quantities,
i.e. mc?, E and pc, can be expressed in units of energy. Throughout the paper this convention
is adopted and the notation (au) for ‘arbitrary unit of energy’ is used.

Minkowski diagrams are widely used in configuration space where points represent events,
expressed in coordinate notation as (ct, x) (for a 2D diagram) or (ct, x, y) (for a 3D diagram),
corresponding to one or two spatial dimensions, respectively. By convention, time ct is along
the vertical axis and space is represented along the horizontal axis (or axes) in such diagrams.
Drawing a Minkowski diagram with three spatial dimensions is not possible, since it would
require a four-dimensional image. Luckily, for many important relativistic phenomena the
third spatial dimension can be omitted from the discussion.

As proposed by Saletan [1], Minkowski diagrams can also be constructed in momentum
space, with energy E represented along the vertical axis and momentum p represented along
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the horizontal axis (or axes). In this diagram a point (E, pc) or (E, pic, p,c) expresses the
state of a particle as it moves with energy £ and momentum p. Some general features of
these diagrams can be understood by considering the relativistic expressions for energy and
momentum:

2

p=_ "M (1)
U2
-z
and

m .

p=—v (in 1D), (2
1-4

m m .

Py = ——Vy and py = ———=v, (in 2D), 3)

-2 ’ 12

C2
yielding the well-known relation between mass, energy and momentum:
E? — (pe)* = (mc*)*. “)

Equation (4) expresses the invariance of mass. Different observers will disagree about the
energy and momentum of a given moving particle, but the particular algebraic combination of
E and p on the left-hand side of (4) gives the same value for all observers: mass is invariant.

It can be seen from (4) that in momentum-space Minkowski diagrams all possible states
of a given particle with mass m lie on the same hyperbola (for motion in 1D) or hyperboloid of
revolution (for motion in 2D). A vector drawn from the origin to any point on this hyperbola
(or hyperboloid) is the energy—momentum vector of the particle.

The energy—momentum vector can be used effectively for the visualization of all
relevant properties of the particle; the intersection point of the E-axis with the hyperbola
(or hyperboloid) on which the tip of the vector lies represents the particle’s mass; and the slope
of the vector relative to the E-axis represents its speed (as a fraction of ¢). An attractive feature
of such diagrams is that the total energy and total momentum of a system of particles can be
visualized in a single step by adding up the individual energy—momentum vectors and looking
at the vertical or horizontal components of the resulting total energy—momentum vector. In
what follows, it will be demonstrated how all important features of both inelastic and elastic
collisions can be seen at a single glance on such Minkowski diagrams.

2. Collisions

In classroom problems involving collisions, it is typically the masses and initial velocities of
the colliding particles that are given; students are then supposed to find

(a) the mass and velocity of the resulting single particle (in perfectly inelastic collisions) and
(b) the final velocities of the colliding particles (in elastic collisions).

2.1. Perfectly inelastic collision between two particles

Figure 1 presents the momentum-space Minkowski diagram of a perfectly inelastic collision
between two particles having masses of my4 and mp, respectively. The masses and initial
velocities are the following:

myc® =1 (au), mp®=2(au), vy=-05¢, vp=0.6c.
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Figure 1. Perfectly inelastic collision in 1D. For all three particles involved in the collision, the
mass appears as the intersection of the E-axis with the hyperbola representing the given particle;
the velocity appears as the slope of the given energy—momentum vector (relative to the E-axis);
and the energy and momentum of each particle appear as the vertical and horizontal components,
respectively, of the energy—momentum vector.

In the collision the two particles are combined into a single particle m¢ which moves with
a velocity vc. The combined particle is represented by an energy—momentum vector which is
the vectorial sum of the energy—momentum vectors of the two colliding particles.

Writing the equations for conservation of energy and conservation of momentum and
solving them algebraically yields

mec? =3.536(au) and ve =0.252¢c.

Even though these numbers cannot be deduced to such precision from figure 1, the figure
does ‘tell the entire story’ of the collision and provides quantitative answers to all relevant
questions for all three particles involved in the collision (as explained in the figure caption).

The solution for m¢ and v¢ is uniquely determined. When treating inelastic collisions
algebraically, this fact is usually explained by noting that we have two equations (conservation
of energy and conservation of momentum) for two unknowns. Using a Minkowski diagram
such as figure 1, the uniqueness of the solution is trivially apparent: the combined particle is
represented as the sum of two vectors, so both the ‘length’ of this sum vector (i.e. mcc?) and
its orientation (i.e. ve ¢~') are uniquely determined.

Perfectly inelastic collisions yield a unique value for the mass m¢ of the created particle and
its velocity vector vc, regardless of the number of spatial dimensions involved. In the algebraic
treatment this is explained by noting that as we increase the number of dimensions—and hence
the number of unknowns in the components of vc—the number of available equations increases
at the same rate, hence the total number of independent equations (and the total number of
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unknowns) becomes 3 and 4, in 2D and 3D collisions, respectively. In the Minkowski diagram
treatment, again, the reasoning is simpler: the energy—momentum vector of the created particle
is the sum of two energy—momentum vectors; hence its ‘length’ (i.e. m¢) and its orientation
(which tells us the components of v¢) are uniquely determined.

One of the most important features of perfectly inelastic collisions is that m¢ > my + mp,
i.e. the final particle has larger mass than the sum of the two original masses. This point is
immediately apparent in the figure. Even the numerical value of the mass excess m¢ — (my +
mp), i.e. the part of the kinetic energy which was converted to mass during the collision, can
be read off from the diagram in a straightforward way.

Fission is an inelastic collision such as the one presented in figure 1, but ‘played backward
in time’. In that case a diagram quite similar to figure 1 can be used for the analysis. Fission
was discussed in detail in Saletan’s paper [1], including the explanation of mass defect, so it
will not be discussed here.

2.2. Elastic collision between two particles in 1D

Let us consider an elastic collision with the same initial conditions as in figure 1. The task is
to find the final velocities v, and v of the two particles after they bounced off each other. In
the momentum-space Minkowski diagram we should thus find two energy—momentum vectors
which satisfy the following requirements:

(1) they must add up to produce the same combined energy—momentum vector as the two
initial energy—momentum vectors did (i.e. their sum must point at C);

(2) the tips of the two vectors must lie on the hyperbolae representing mac’® and mpc?,
respectively.

A simple geometrical method to solve the problem is presented in figure 2. Again, a
single diagram tells the whole story: all particle speeds, energies and momenta, both before
and after collision, are shown quantitatively.

A unique solution exists for v4 and vy’ in a one-dimensional elastic collision. Just like for
inelastic collisions, this fact is usually explained from algebra by noting that we have the same
number of equations as unknowns: two equations (conservation of energy and conservation
of momentum) for two unknowns. However, a Minkowski diagram such as figure 2 even tells
‘this part of the story’ at a single glance: if two hyperbolae intersect, they intersect at exactly
two points. One of these two points corresponds to the initial configuration of the particles.
The other uniquely determines the state of the particles after collision.

2.3. Elastic collision between particles in 2D

It is straightforward to generalize the previous discussion to collisions in two spatial
dimensions. The Minkowski diagram becomes a three-dimensional figure where each
colliding particle is represented by a hyperboloid of revolution, rather than a hyperbola, as
equations (3) and (4) suggest. Figure 3(a) presents such a diagram for the same initial
parameters as figures 1 and 2. (The axis along which the two particles were moving before
collision is the x-axis.)

In the usual algebraic discussion of elastic collisions in 2D it is noted that there is an
infinite number of possible final states for the two particles: we have four unknowns (the x-
and y-components of the final velocities v4 and vp), but only three independent equations
(energy conservation plus the two components of momentum conservation). Again, however,
a single glance at the Minkowski diagram in figure 3(a) is sufficient to provide a simple
alternative explanation for the infinite number of possible final states: the two hyperboloids
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Figure 2. Elastic collision in 1D. From C as the origin, an upside-down version of the hyperbola
mac? is drawn. This hyperbola (denoted with “muc?”) intersects the hyperbola mpc? at two points.
These are the only two points that satisfy the two requirements listed in the text. B represents
particle mp before the collision, B’ represents the same particle after the collision. By using the
parallelogram rule of vector addition, it is straightforward to draw the final energy—momentum
vector for particle my4 (denoted by A).

intersect in a continuous curve, not just two discrete points as in the 1D case (see figure 2),
resulting in an infinite number of possible solutions.

Figure 3(b) depicts the intersection curve of the two hyperboloids: a tilted ellipse.
Figure 3(c) shows this projected ellipse on the (pyc, p,c) plane. The kind of partial, ‘momentum-
only’ Minkowski diagram depicted in figure 3(c) may also have its pedagogical uses. Any
vector pointing from origin O to an arbitrary point on the ellipse gives a possible momentum
vector for particle mp, and the vector pointing from that point of the ellipse to point C,, gives the
corresponding momentum vector for particle m4. The total momentum vector of the system
is represented by OCp,

3. Special cases

3.1. Special case #1: 2D elastic collision between a particle and an identical particle at rest

A frequently discussed special case of 2D elastic collisions is when two identical particles
collide (i.e. my = mp), and one of them is initially at rest. A well-known result of the Newtonian
treatment of this problem is that after collision the two particles move perpendicularly to each
other. That this result is correct only for small initial speeds can be readily illustrated using
momentum-only Minkowski diagrams.
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muc

~—>PxC

Figure 3. Elastic collision in 2D. (a) As a straightforward generalization of figure 2, an upside-
down version of the hyperboloid mac? is drawn from C taken as the origin. The intersection
curve of this inverted hyperboloid (denoted by ‘mac?’) with the hyperboloid mpc? gives the
possible loci for the tip of the energy—-momentum vector of particle mpc? in this interaction.
(b) The intersection curve of the two hyperboloids: a tilted ellipse. The energy—-momentum
vectors A’ and B’ represent one of the infinite number of possible final states (corresponding to
the case when particle mp moves along the negative y-axis after collision). A and B denote the
energy—momentum vectors before collision. The projection of the intersection ellipse on the (pyc,
Pyc) plane is another ellipse, shown as a broken curve. (c) The projected ellipse on the (pxc, pyc)
plane. All points with a subscript ‘,’ are projections of the corresponding points on (b) onto the
(pxc, pyc) plane. By’ describes another possible final configuration, added here for illustration.
(The foci of the ellipse are shown as two small empty circles.)

Figure 4 presents momentum-only Minkowski diagrams for this type of collision, with
= mpc® = 1 (au). As seen in figure 4(a) (corresponding to a highly relativistic case) the

relative orientation of the final momentum vectors can deviate significantly from 90°. As we
approach the classical case, the relative orientation of the final momentum vectors becomes
closer and closer to perpendicular: for decreasing v, the eccentricity of the ellipse decreases
and the diagram begins to resemble a circle. In the Newtonian approximation the diagram is
a circle with OC, as its diameter; hence each possible momentum configuration corresponds
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Figure 4. Elastic collision in 2D between identical particles, one of them at rest. The initial speed
of particle my is (a) v4 = 0.9 ¢, (b) v4 = 0.5 ¢, and (c) v4 = 0.1 c. Just like for figure 3(c), the
relativistic treatment always results in an ellipse for the curve describing the possible configurations
after collision. In this special case, however, O and C, (the starting point and the tip of the total
momentum vector, respectively) are the two end points of the major axis of the ellipse. Some
possible configurations for the final momenta of the two particles are depicted as vectors with
dotted lines. (Again, the foci of the ellipses are shown as two small empty circles.) The figure also
illustrates quantitatively how the Newtonian formula for total momentum mg4-v4 deviates from the
correct relativistic one, but approaches it at small velocities. The total momentum is (in (au)) 2.06,
0.58 and 0.10, for figures 4(a), (b) and (c), respectively. The corresponding Newtonian values
would be 0.90, 0.50 and 0.10, respectively.

to drawing two adjacent chords between the end points of a diameter, yielding, according to
Thales’ theorem, perpendicularly oriented final momenta.

3.2. Special case #2: Compton scattering

Another special case for 2D elastic collision is Compton scattering: here a photon collides
with an electron originally at rest. As a result, part of the photon’s energy is transferred to the
electron, causing it to move in some direction, while the photon itself will be scattered in some
other direction. The energy loss for the photon results in a wavelength shift. The main points
of the momentum-space Minkowski diagram analysis for this interaction were discussed in
Saletan’s paper [1], so I just give a short summary here and make some additional remarks.

For any photon E? — (pc)> = 0, so photons are represented in a momentum-space
Minkowski diagram with a cone, denoted with phy in figure 5(a). (Unlike the ‘light cone’
in configuration space Minkowski diagrams, the cone in figure 5(a) represents all photons,
travelling with any energy at any time on the (x, y) plane.) That photons are particles with
zero mass is immediately apparent from the Minkowski diagram, since the cone in figure 5(a)
can be thought of as a degenerate hyperboloid which intersects the E-axis at £ = 0.

The electron is represented by the hyperboloid denoted by mp. For simplicity, the
energy unit in this example is chosen so that the electron’s mass is unity: mpc’ = 1. The
incoming photon is assumed to move along the positive x-axis with energy E4 = pac = 0.5.
The geometrical method to find the final states for the photon and the electron is similar to
figure 3(a) (see captions to figure 5). Figure 5(b) shows the intersection curve (again, a tilted
ellipse). Asin figure 3(b), the interaction ellipse can next be projected onto the (p.c, pyc) plane.
The result is shown in figure 5(c). Two special features are apparent on this ellipse, compared
to figure 3(c) (which represented an arbitrary collision between two material particles):

(1) the left end-point of the major axis is at the origin;
(2) point C,, the projection of C, coincides with the right-hand-side focus.
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Figure 5. Compton scattering. (a) First the total energy—momentum vector for the system is
found (using our initial parameters, the E-component of this vector is 1.5 and the p,c-component is
0.5). The tip of this vector is denoted by C. An upside-down version of the photon cone (denoted
by ‘phs’) is then drawn from C; and the intersection curve between the hyperboloid mpc? and
the inverted cone “phy” represents the possible final states for the electron after the interaction.
(b) The intersection curve: a tilted ellipse. B’ represents one possible final state for the electron
and A’ denotes the corresponding final state for the photon. A and B denote the energy—momentum
vectors before collision. (c) The projected ellipse on the (pic, pyc) plane. By’ and By denote
two possible final configurations. The vector pointing from the origin to any point on the ellipse
represents a possible momentum vector for the electron and the vector pointing from that point of
the ellipse to point C, gives the corresponding momentum vector for the scattered photon. (The
foci of the ellipse are shown as two small empty circles.)

The relative directions of motion for the electron and photon are immediately apparent
from the figure. In addition, the length of the momentum vector for the photon in figure 5(c)
directly gives the numerical value for its energy too. (Note that the precise shape of the ellipse
depends on the energy of the incoming photon, as will be discussed below, but all ellipses,
regardless of the initial photon energy, share the two special features listed above.)
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Some qualitative features of Compton scattering are immediately obvious from
figure 5(c): (1) all scattered photons have smaller energies (i.e. larger wavelength) than the
initial photon; (2) as the scattering angle increases, the energy of the scattered photon decreases,
and the backward scattered photon has the smallest energy (i.e. the largest wavelength).

The equation of the ‘Compton ellipse’ of figure 5(c) can be found in a straightforward
way. The equation of the hyperboloid for mpc? is

E:,/m%c2+p§+p)2,'c ®)

and the equation of the upside-down cone ‘phy’ is

E = (pa+mpc— [(px— pa)*+p2) -c. (6)

Equating the right-hand sides of equations (5) and (6) yields the equation of the projected
intersection ellipse in the (p,, p,) plane:

(ch - %)2 + (PyC)2 _

a? b? L ™
where
a4 = pac(pa +mpc) ®)
2pa+mpc
and
mgc
b= pac m 9

are the semi-major axis and the semi-minor axis, respectively. The focal length is
pic
f=va*—-b=_—4 . (10)
2pa+mpc

Using equations (8)—(10) we find particularly simple expressions for the eccentricity e and the
so-called parameter IT of the ellipse:

f PA

a pa+mpc
no b o pamsc (12)
- a pA+ch'

The geometrical meaning of eccentricity e is how much the ellipse deviates from a circle (as
e — 0, the ellipse becomes a circle and the two foci coincide with the centre of the circle).
As seen from equation (11), the eccentricity of the Compton ellipse has a physical meaning
too: if the initial photon energy is much smaller than the electron’s mass, i.e. (psc)/(mpc?) <K
1, the ellipse becomes a circle, and the possible momentum vectors of the photon are along
radii of that circle (see figure 5(c)). This implies that the scattered photon only changes its
direction, while losing only a negligible fraction of its energy.

The equation of an ellipse has its most elegant algebraic form in the polar coordinate
system having one of the focal points as its origin. The length of the radius vector r as a
function of the polar angle 6 is given as

— (13)
r= .

1 —ecosf
As seen in figure 5(c), in the Compton ellipse the length of the ‘radius vector’ that belongs to

a given photon scattering angle ® represents the final photon momentum p’4 ¢ corresponding
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to that scattering angle. Adapting equation (13) for figure 5(c) and substituting expressions
(11) and (12) for IT and e, we obtain

I’f’l)_!;C2

mpc
pPa

pac = (14)

1+ —cos®

Substituting the de Broglie expressions for the initial and final photon momenta, p4 = ’f and

Py = % (where h is Planck’s constant) and multiplying through both sides by the denominator
in equation (14) we get

/

h —
;c(l—cos@):ch2 VAR (15)

hence
h
AL=—— (1 —cos®). (16)
mpgc

The well-known formula for the Compton wavelength shift of the photon is thus obtained by
exploiting the geometric properties of the Compton ellipse rather than the purely algebraic
method of writing the equations for the conservation of momentum and conservation of energy,
and then eliminating the electron’s velocity and scattering angle from the equations. Whereas
the mathematics employed here in deriving equation (16) is not necessarily simpler than the
purely algebraic method, the geometric approach presented here might be more elegant and
attractive in the eyes of many students, especially since neither the electron’s velocity nor its
scattering angle appear anywhere in the derivation.

4. Concluding remarks

Momentum-space Minkowski diagrams may serve as a powerful tool in classroom discussions
of particle—particle and particle—photon interactions. In many cases a single diagram can give
students not only a quick qualitative description of all relevant features of the interaction at a
single glance, but it can also provide them with a rough numerical value for all the essential
physical quantities.
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