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Abstract
Momentum space and Minkowski diagrams are powerful tools for interpreting
and analysing relativistic collisions in one or two spatial dimensions. All
relevant quantities that characterize a collision, including the mass, velocity,
momentum and energy of the interacting particles, both before and after
collision, can be directly seen from a single Minkowski diagram. Such
diagrams can also be useful for analysing the differences between Newtonian
and relativistic mechanics. As an interesting example, a simple derivation of
the Compton wavelength shift formula, based on the geometrical properties of
such momentum space diagrams, is also presented.

1. Introduction

A paper by Saletan [1] presented a geometric representation of relativistic interactions, using
Minkowski diagrams in momentum space. The method has great intuitive and pedagogical
power. In this paper the most important features of such diagrams are discussed in a somewhat
more systematic way and some extensions to Saletan’s original paper are presented.

For the purposes of this paper the particular units for mass m, energy E and momentum p
are unimportant. Multiplying by suitable factors of the speed of light c, all three quantities,
i.e. mc2, E and pc, can be expressed in units of energy. Throughout the paper this convention
is adopted and the notation (au) for ‘arbitrary unit of energy’ is used.

Minkowski diagrams are widely used in configuration space where points represent events,
expressed in coordinate notation as (ct, x) (for a 2D diagram) or (ct, x, y) (for a 3D diagram),
corresponding to one or two spatial dimensions, respectively. By convention, time ct is along
the vertical axis and space is represented along the horizontal axis (or axes) in such diagrams.
Drawing a Minkowski diagram with three spatial dimensions is not possible, since it would
require a four-dimensional image. Luckily, for many important relativistic phenomena the
third spatial dimension can be omitted from the discussion.

As proposed by Saletan [1], Minkowski diagrams can also be constructed in momentum
space, with energy E represented along the vertical axis and momentum p represented along
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Abstract
Momentum space and Minkowski diagrams are powerful tools for interpreting
and analysing relativistic collisions in one or two spatial dimensions. All
relevant quantities that characterize a collision, including the mass, velocity,
momentum and energy of the interacting particles, both before and after
collision, can be directly seen from a single Minkowski diagram. Such
diagrams can also be useful for analysing the differences between Newtonian
and relativistic mechanics. As an interesting example, a simple derivation of
the Compton wavelength shift formula, based on the geometrical properties of
such momentum space diagrams, is also presented.

1. Introduction

A paper by Saletan [1] presented a geometric representation of relativistic interactions, using
Minkowski diagrams in momentum space. The method has great intuitive and pedagogical
power. In this paper the most important features of such diagrams are discussed in a somewhat
more systematic way and some extensions to Saletan’s original paper are presented.

For the purposes of this paper the particular units for mass m, energy E and momentum p
are unimportant. Multiplying by suitable factors of the speed of light c, all three quantities,
i.e. mc2, E and pc, can be expressed in units of energy. Throughout the paper this convention
is adopted and the notation (au) for ‘arbitrary unit of energy’ is used.

Minkowski diagrams are widely used in configuration space where points represent events,
expressed in coordinate notation as (ct, x) (for a 2D diagram) or (ct, x, y) (for a 3D diagram),
corresponding to one or two spatial dimensions, respectively. By convention, time ct is along
the vertical axis and space is represented along the horizontal axis (or axes) in such diagrams.
Drawing a Minkowski diagram with three spatial dimensions is not possible, since it would
require a four-dimensional image. Luckily, for many important relativistic phenomena the
third spatial dimension can be omitted from the discussion.

As proposed by Saletan [1], Minkowski diagrams can also be constructed in momentum
space, with energy E represented along the vertical axis and momentum p represented along
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Solution

Week 69 (1/5/04)

Compton scattering

We will solve this problem by making use of 4-momenta. The 4-momentum of a
particle is given by

P ≡ (P0, P1, P2, P3) ≡ (E, pxc, pyc, pzc) ≡ (E,pc). (1)

In general, the inner-product of two 4-vectors is given by

A · B ≡ A0B0 −A1B1 −A2B2 −A3B3. (2)

The square of a 4-momentum (that is, the inner product of a 4-momentum with
itself) is therefore

P 2 ≡ P · P = E2 − |p|2c2 = m2c4. (3)

Let’s now apply these idea to the problem at hand. We will actually be doing
nothing here other than applying conservation of energy and momentum. It’s just
that the language of 4-vectors makes the whole procedure surprisingly simple. Note
that conservation of E and p during the collision can be succinctly written as

Pbefore = Pafter. (4)

Referring to the figure below, the 4-momenta before the collision are

Pγ =
�

hc

λ
,
hc

λ
, 0, 0

�
, Pm = (mc2, 0, 0, 0). (5)

And the 4-momenta after the collision are

P �
γ =

�
hc

λ� ,
hc

λ� cos θ,
hc

λ� sin θ, 0
�

, P �
m = (we won�t need this). (6)

m

m

θ
λ

λ

'
x

y

If we wanted to, we could write P �
m in terms of its momentum and scattering angle.

But the nice thing about this 4-momentum method is that we don’t need to introduce
any quantities that we’re not interested in.

1
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Conservation of energy and momentum give Pγ + Pm = P �
γ + P �

m. Therefore,

(Pγ + Pm − P �
γ)2 = P �2

m

=⇒ P 2
γ + P 2

m + P �2
γ + 2Pm(Pγ − P �

γ)− 2PγP �
γ = P �2

m

=⇒ 0 + m2c4 + 0 + 2mc2
�

hc

λ
− hc

λ�

�
− 2

hc

λ

hc

λ� (1− cos θ) = m2c4. (7)

Multiplying through by λλ�/(2hmc3) gives the desired result,

λ� = λ +
h

mc
(1− cos θ). (8)

The ease of this solution arose from the fact that all the unknown garbage in P �
m

disappeared when we squared it.

Remarks:

1. If θ ≈ 0 (that is, not much scattering), then λ� ≈ λ, as expected.

2. If θ = π (that is, backward scattering) and additionally λ � h/mc (that is, mc2 �
hc/λ = Eγ), then λ� ≈ 2h/mc, so

E�
γ =

hc

λ� ≈
hc
2h
mc

=
1
2
mc2. (9)

Therefore, the photon bounces back with an essentially fixed E�
γ , independent of the

initial Eγ (as long as Eγ is large enough). This isn’t all that obvious.
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inelastic relativistic collision 
 
A particle of mass m, moving at speed v = 4c/5, collides inelastically with a similar 
particle at rest. 
 
(a) What is the speed vC of the composite particle? 
 
(b) What is its mass mC? 
 

Solution by Rudy Arthur: 
 
Call the moving particle ‘M’, and the particle at rest ‘R’ (the composite particle is defined 
to be ‘C’).  
 
The momentum of the moving particle is 

M 2

2

4
3

1

mvp
v
c

= =

−

mc

M
2

.       (1) 

And, the square of its energy is  

M
2 2 2( ) ( )E mc p c= + .       (2) 

The energy of the particle at rest is  

R
2( )E mc= .        (3) 

The square of the energy of the composite particle  is  

C C C
2 2 2( ) ( 2)E m c p c= + .      (4) 

By conservation of energy: , or squaring and rearranging,  M RE E E+ = C

2
M R C M R

2 22E E E E E= − −       (5) 

Substituting (2) and (4) into (5): 

( ) ( )M R C C M
2 2 2 2 2 22 ( ) ( ) 2( ) ( )E E m c p c mc p c= + − +  

By conservation of momentum, C Mp p= , so this reduces to 

M R C
2 2 2 22 ( ) 2( )E E m c mc= −  

Squaring again:  

(M R C

22 2 2 2 2 24 ( ) 2(E E m c mc= − ))      (6) 

Substituting from (2) and (3) into (6) and expanding on the right, 

( ) ( )M C C
2 2 2 2 2 2 4 2 2 2 2 2 44( ) ( ) ( ) ( ) 4( ) ( ) 4( )mc p c mc m c mc m c mc+ = − +  

Rearranging, 

C C
2 4 2 2 2 2 2 2 2( ) 4( ) ( ) 4( ) ( )m c mc m c mc p c− − M 0=  

Using (1) this reduces to  

C C
4 2 2 4644

9
m m m m 0− − =       (7) 



Solving for (which must be positive)C
2m  gives C

2 16
3

m = m , so the answer to (b) is  

C

4
3

m = m .        (8) 

The momentum of the composite particle is  

C C
C

C
2

21

m vp
v
c

=

−

 .        (9) 

By conservation of momentum M Cp p= , and so, substituting from (1) and (8) into (9) 

C

C
2

2

4
4 3
3

1

mv
mc

v
c

=

−

               (10) 

Solving for vC gives the answer to (a), C 2
cv = . 



Inelastic Relativistic Collision 
 
A particle of mass m, moving at speed v = 4c/5, collides inelastically with a similar 
particle at rest. 
 
(a) What is the speed vC of the composite particle? 
 
(b) What is its mass mC? 
 

Solution by Michael Gottlieb: 
 
(I choose units for which  c = 1.) 
 
Call the moving particle ‘M’, and the particle at rest ‘R’. (The composite particle is 
defined to be ‘C’.) 
 
The momentum and energy of the particle at rest are 
  R R0p E m= = . 

The momentum of the moving particle is 

M 2 2

4 5 4
31 41

5

mvp m
v

= = =
− ⎛ ⎞− ⎜ ⎟

⎝ ⎠

m , 

and its energy is   
( )

M
M 4 3 5

4 5 3
mpE m

v
= = = , 

For the composite particle, the conservation of energy implies that 

C M R

8
3

E E E m= + = , 

while the conservation of momentum implies that   

C M

4
3

p p= = m . 

The speed of the composite particle is  

  ( )
( )
4 3 1
8 3 2

c
c

c

mpv
E m

= = = .   (For 1c ≠ , C 2
cv = .) 

The mass of the composite particle is given by the (positive) solution to 

   C C C

2 2
2 2 2 8 4

3 3
m E p m m⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, 

C

4
3

m m= .  



Inelastic Relativistic Collision 
 
A particle of mass m, moving at speed v = 4c/5, collides inelastically with a similar 
particle at rest. 
 
(a) What is the speed vC of the composite particle? 
(b) What is its mass mC? 
 

Solution by Ilkka Mäkinen: 
Call the frame of the particle at rest “the lab frame” and consider the center-of-mass 
(CM) frame. 
 

v 

lab frame

u 

u – u 

CM frame 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order for momentum to be conserved the center-of-mass of the system must 
maintain a constant velocity u; this will be the velocity of the composite particle in 
the lab frame. 
 
The particle moving at speed v in the lab frame moves at speed u in the CM frame, 
while –u is the speed of the lab frame relative to the CM frame. We can thus use the 
relativistic transformation of velocities to find u: 
 

u
vu
uv

=
−
−

1
  →    022 =+− vuvu

 

2
1

16
9

4
5111

2 =−=−−=
vv

u  

 
Then we can find the composite particle’s mass mc from the conservation of 
momentum: 

C

2 21 1
m umv

v u
=

− −
 

 

C

2

2

1 8 3 5 4
5 2 3 31

v um m m
u v

− m∴ = = =
−

. 



inelastic relativistic collision
 
A particle of mass m, moving at speed v = 4c/5, collides inelastically with a similar particle at rest.
(a) What is the speed vc of the composite particle?

(b) What is its mass mc?

 

Solution by Ted Jacobson
 

Choose units where c = 1, v = 4/5.  Let the incoming particle move in the x-direction of the rest frame, and let  γ  =  (1 – v2)–1/2   =  5/3.
 
The 4-momentum of the incoming particle (in the rest frame) is (γm, γmv, 0, 0), while the 4-momentum of the particle at rest is (m, 0, 0, 0), so the total 4-momentum is
 
        pµ  =  (m(γ+1), mγv, 0, 0),

 
which must be conserved, and is therefore the 4-momentum of the composite particle.  The mass of the composite particle is the magnitude of its 4-momentum:
 

        mc
2  =  pµ

2  =  m2(γ+1)2 - m2γ2v2  =  (γ2(1-v2) + 2γ+1)m2  =  2(γ+1)m2  =  (16/3)m2.

 
Hence  mc  =  (4/√3)m.

 
The velocity of the composite particle is its 3-momentum divided by its energy:
 
        vc  =  px / pt  =  mγv / m(γ+1)  =  (γ/(γ+1))v  =  (5/8)v  =  (5/8)(4/5)  =  1/2.

 
Hence  vc  =  c/2.

A particle of mass m http://www.feynmanlectures.info/solutions/inelastic_relativistic_collision_sol_4.html
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pion, muon, neutrino 
 
A pion (mπ = 273 me) at rest decays into a muon (mμ = 207 me) and a neutrino (mν = 0). 
Find the kinetic energy and momentum of the muon and the neutrino in MeV. 
 
Solution by Michael A. Gottlieb: 
 
(I choose units such that c = 1, and assume that me = 0.511MeV.) 
 
Since the pion is at rest conservation of momentum dictates that the momenta of the 
muon and the neutrino be equal in magnitude (and opposite in direction),  

p pμ ν= .        (A) 

Since the pion is at rest its energy equals its mass, E mπ π= . Since the neutrino is 

massless its energy equals its momentum, E pν ν= .  By conservation of energy, 

E E Eπ μ= + ν , so  

E m pμ π= − ν

2

.        (B) 

Substituting the right sides of (A) and (B) into the left side of the fundamental 
kinematic equation for the muon 2 2E p mμ μ− = μ  yields  

( )2 2 2m p p mπ ν ν− − = μ .  

Solving for pν  gives (the magnitudes of) the momenta of the decay particles and the 

kinetic energy  (equal to the total energy) of the massless neutrino, 

( ) ( )2 2

29.65 MeV
2

m m
p p E

m
π μ

ν μ ν
π

−
= = = = . 

The kinetic energy of the muon equals its total energy minus its mass which, using (B), 
is ( ) . 4.08 MeVm p mπ ν μ− − =



















Relativistic Dynamics: Conservation of Four-Momentum

Energy-Momentum Diagrams:

Definition:
   A particle’s energy-momentum diagram plots

   Typically we assume

   So that

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

E versus Px

Py = Pz = 0

p = |Px|

2
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Relativistic Dynamics: Conservation of Four-Momentum

Energy-Momentum Diagrams ...

Properties:
         tangent to worldline
   Slope at event:
   At a given event:
         is parallel to

   Slope of                 :

   So                                              .

   Mass is magnitude of    :

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

P

1/vx

Px

E
=

mvx√
1− v2

√
1− v2

m
= vx

dR

dR

1/vx

P

P = mdR
dτ

m =
�

E2 − p2

3

Larry Sorensen
m is the rest mass
E^2 = p^2 + m^2
vx = px / E
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Relativistic Dynamics: Conservation of Four-Momentum

Energy-Momentum Diagrams ...

Mass is magnitude of    :

Tip of vector lies on a hyperbola.

Arrow on E-P diagram is frame dependent.

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

P

m2 = E2 − p2

4
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Relativistic Dynamics: Conservation of Four-Momentum

Energy-Momentum Diagrams ...

Example:

So                           .

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

vx = 3/5

P has slope 5/3

E = 5
4m

Px = 3
4m

K = E −m = 1
4m

K > 1
2mv2 = 9

50m

6



Relativistic Dynamics: Conservation of Four-Momentum

Energy-Momentum Diagrams ...

Summary:

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield
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Relativistic Dynamics: Conservation of Four-Momentum

Methods for Conservation of Four-Momentum Problems:

Two objects, 1 & 2, collide:
   Before:
   After:

Conservation of 4-momentum:

Each component must be conserved separately.

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield





E1

P1x

P1y

P1z



 +





E2

P2x

P2y

P2z



 =





E3

P3x

P3y

P3z



 +





E4

P4x

P4y

P4z





P1, P2

P3, P4

9
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Relativistic Dynamics: Conservation of Four-Momentum

Methods for Conservation of Four-Momentum Problems ...

Example 1:
   Before:
      Rock 1:
      Rock 2:
   After:
      Rock 1:

Question: What is      ?

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

m1 = 12 kg
m2 = 28 kg

v1x = 4/5
v2x = 0

v3x = −5/13

v4x

10
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Relativistic Dynamics: Conservation of Four-Momentum

Methods for Conservation of Four-Momentum Problems ...

Answer:
   Before:
      Rock 1:

      Rock 2:

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

P1x =
m1v1x�
1− v2

1x

= (5/3)(4/5)(12 kg) = 16 kg

E2 =
m2�

1− v2
2x

= m2 = 28 kg

P2x =
m2v2x�
1− v2

2x

= 0 kg

E1 =
m1�

1− v2
1x

=
m1�

1− (4/5)2
= 5/3(12 kg) = 20 kg

11



Relativistic Dynamics: Conservation of Four-Momentum

Methods for Conservation of Four-Momentum Problems ...

After:
   Rock 1:

Conservation:

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

E3 =
m1�

1− v2
3x

=
m1�

1− (−5/13)2
=

m1�
144/169

= (13/12)(12 kg) = 13 kg

P3x =
m1v3x�
1− v2

3x

= (13/12)(−5/13)(12 kg) = −5 kg





E4

P4x

P4y

P4z



 =





E1

P1x

P1y

P1z



 +





E2

P2x

P2y

P2z



−





E3

P3x

P3y

P3z





=





20 kg
16 kg

0
0



 +





28 kg
0
0
0



−





13 kg
−5 kg

0
0



 =





35 kg
21 kg

0
0





12



Relativistic Dynamics: Conservation of Four-Momentum

Methods for Conservation of Four-Momentum Problems ...

After:
   Check mass of Rock 2:

Finally,

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

v4x =
P4x

E4
=

21 kg
35 kg

=
3
5

m =
�

E2
4x − P 2

4x

=
�

(35 kg)2 − (21 kg)2 = 7 kg
�

52 − 32 = 28 kg

13
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Methods for Conservation of Four-Momentum Problems ...

Example 2:
   Problem: Solve previous problem
      using E-P diagram.
   Answer: Add 4-momenta vectors.

   Before:
      Total 4-momentum      :

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

PT

ET = 48 kg

PTx = 16 kg

14
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Methods for Conservation of Four-Momentum Problems ...

Example 2 ...
   After: Vectors must add to same      .

   Know:

   Then:                         .

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

PT

P4 = PT −P3

P3 = (E3, PTx, 0, 0)
= (13 kg,−5 kg, 0, 0)

15
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Mass of a Collection of Particles:

Relativistic energy = Rest energy + Relativistic kinetic energy.

This is conserved.

Can mass and energy be inter-converted?

Yes!

One general case:
   Mass of a system of particles     Sum of individual masses.

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

�=

16

Larry Sorensen
mass is not additive

Larry Sorensen


Larry Sorensen
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Mass of a Collection of Particles ...

Example: Inelastic collision.
   Problem:
      Two putty balls:                  at                 and                   .

      Collide and stick together into mass     .

   Question: What is the total mass     after the collision?

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

m = 4 kg v1x = 3/5 v2x = −3/5

M

M

17
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Mass of a Collection of Particles ...

Before: 4-momentum

After: 4-momentum
   Mass at rest: Conservation implies total
Before: Energy?
   Newtonian: Kinetic energy converted to heat (?). Also,

   Relativistic energy: Final object is at rest (                  ).
   Conservation:

“Mass” is larger by        !
Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

P1x + P2x =
m(3/5)�
1− (3/5)2

+
m(−3/5)�
1− (−3/5)2

= 0

Px = 0

M = m + m = 2m = 8 kg

M = E1 + E2 =
m�

1− (3/5)2
+

m�
1− (−3/5)2

=
2m�
16/25

=
10
4

m = 10 kg

2 kg

Eafter = M

18
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Mass of a Collection of Particles ...

Where did this “mass” come from?

   Option: Increase in thermal energy; if so, alot!

   Rather: Mass is a property of the system as a whole.

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

19
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Mass of a Collection of Particles ...

Extra mass already present before collision:
   Balls moving as one system:

Lessons:
   System mass unchanged.
   Mass is not individually additive.
   Mass is a property of system as a whole.

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

M =
�

E2
T − P 2

Tx

= E1 + E2 = 5 kg + 5 kg = 10 kg

20
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Four-Momentum of Light:
“Particle” of light: Burst or flash of short duration.
4-momentum of light flash moving +x with energy   .

    is parallel to worldline, which has slope = 1.

So for light:           .

Light carries momentum: (E&M light “pressure” experiment, 1903)

Light has zero mass:

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

P

E

p

E
= v = 1

p = E

m2 = E2 − p2 = 0

21
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Four-Momentum of Light ...

Example 3:
   Annihilation: Particle + Antiparticle produces light.
Problem:
   Matter-Antimatter rocket engine produces light pulse.
   Initially, rocket mass                         .
   Rocket fires, emitting pulse with energy     .
   Rocket then moving at              .

Question: What is the rocket’s final mass    ?
Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

M = 90, 000 kg
EL

v = 4/5

m

22
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Four-Momentum of Light ...

Answer:
   Before: 4-momentum                                             .
   After: System = Ship + Light Pulse.

   Pulse:                ,

   Ship now mass m:

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

(Pt, Px, Py, Pz) = (M, 0, 0, 0)

pL = EL Ppx = −EL

(Ppt, Ppx, Ppy, Ppz) = (EL,−EL, 0, 0)

Pst =
m√

1− v2
=

m�
1− (4/5)2

=
5
3
m

Psx = +p = Ev =
4
3
m

Psy = Psz = 0

23
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Four-Momentum of Light ...

Conservation:

Fuel mass =                                 to accelerate ship to         . 
Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield





M
0
0
0



 =





EL

−EL

0
0



 +





5
3m
4
3m
0
0





M = EL + 5
3m

EL = 4
3m

m = 1
3M = 30, 000 kg

M −m = 60, 000 kg

v = 4
5

v = 4
5

24
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Particle Physics:
   Elementary particles small: Can accelerate to v ~ c.
Definition: Electron volt is the energy gained by
   an electron passing through a 1V battery:

Example:
   Electron:                           at             .

   Relativistic energy:

   Relativistic kinetic energy:

   Relativistic momentum:

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

1 eV = 1.602× 10−19 J = 1.782× 10−36 kg

m = 0.511 MeV v = 4/5

E =
m√

1− v2
=

5
3
m = 0.852 MeV

K = E −m = 0.341 MeV

p = Ev = 0.682 MeV

25
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Particle Physics ...

Example 4: Kaon decays to 2 pions
Problem:
   Kaon:      meson with                       .
   Pion:      meson with                       .
   Decay:

Question: After decay what is the speed of the pions?

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

K0

π0
m = 498 MeV
m = 135 MeV

∆τ = 36 ns
K0 → π0 + π0

26
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Particle Physics ...

Answer:
   Conservation:

So:

Pion 2 moves in -x direction, same momentum:                          .

They both have same mass and so same relativistic energies:

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield





M
0
0
0



 =





E1

p1

0
0



 +





E2

P2x

P2y

P2z





P2y = P2z = 0
P2x = −p1

p2 = |P2x| = p1

E2 =
�

m2 + p2
2 =

�
m2 + p2

1 = E1

27
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Particle Physics ...

Plug in numbers:

Kaon mass converted to pion kinetic energy.

Lecture 11: Relativity & Thermal Physics, Physics 9HB (Winter 2008); Jim Crutchfield

v1 =
p1

E1
=

209 MeV
249 MeV

≈ 0.84

v1 = v2

M = 2E1

E1 = M/2 = 249 MeV

p1 =
�

E2
1 −M2 =

�
(249 MeV)2 − (135 MeV)2 = (209 MeV)2

28
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Abstract
Momentum space and Minkowski diagrams are powerful tools for interpreting
and analysing relativistic collisions in one or two spatial dimensions. All
relevant quantities that characterize a collision, including the mass, velocity,
momentum and energy of the interacting particles, both before and after
collision, can be directly seen from a single Minkowski diagram. Such
diagrams can also be useful for analysing the differences between Newtonian
and relativistic mechanics. As an interesting example, a simple derivation of
the Compton wavelength shift formula, based on the geometrical properties of
such momentum space diagrams, is also presented.

1. Introduction

A paper by Saletan [1] presented a geometric representation of relativistic interactions, using
Minkowski diagrams in momentum space. The method has great intuitive and pedagogical
power. In this paper the most important features of such diagrams are discussed in a somewhat
more systematic way and some extensions to Saletan’s original paper are presented.

For the purposes of this paper the particular units for mass m, energy E and momentum p
are unimportant. Multiplying by suitable factors of the speed of light c, all three quantities,
i.e. mc2, E and pc, can be expressed in units of energy. Throughout the paper this convention
is adopted and the notation (au) for ‘arbitrary unit of energy’ is used.

Minkowski diagrams are widely used in configuration space where points represent events,
expressed in coordinate notation as (ct, x) (for a 2D diagram) or (ct, x, y) (for a 3D diagram),
corresponding to one or two spatial dimensions, respectively. By convention, time ct is along
the vertical axis and space is represented along the horizontal axis (or axes) in such diagrams.
Drawing a Minkowski diagram with three spatial dimensions is not possible, since it would
require a four-dimensional image. Luckily, for many important relativistic phenomena the
third spatial dimension can be omitted from the discussion.

As proposed by Saletan [1], Minkowski diagrams can also be constructed in momentum
space, with energy E represented along the vertical axis and momentum p represented along
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the horizontal axis (or axes). In this diagram a point (E, pc) or (E, pxc, pyc) expresses the
state of a particle as it moves with energy E and momentum p. Some general features of
these diagrams can be understood by considering the relativistic expressions for energy and
momentum:

E = mc2

√
1 − v2

c2

(1)

and

p = m
√

1 − v2

c2

v (in 1D), (2)

px = m
√

1 − v2

c2

vx and py = m
√

1 − v2

c2

vy (in 2D), (3)

yielding the well-known relation between mass, energy and momentum:

E2 − (pc)2 = (mc2)2. (4)

Equation (4) expresses the invariance of mass. Different observers will disagree about the
energy and momentum of a given moving particle, but the particular algebraic combination of
E and p on the left-hand side of (4) gives the same value for all observers: mass is invariant.

It can be seen from (4) that in momentum-space Minkowski diagrams all possible states
of a given particle with mass m lie on the same hyperbola (for motion in 1D) or hyperboloid of
revolution (for motion in 2D). A vector drawn from the origin to any point on this hyperbola
(or hyperboloid) is the energy–momentum vector of the particle.

The energy–momentum vector can be used effectively for the visualization of all
relevant properties of the particle; the intersection point of the E-axis with the hyperbola
(or hyperboloid) on which the tip of the vector lies represents the particle’s mass; and the slope
of the vector relative to the E-axis represents its speed (as a fraction of c). An attractive feature
of such diagrams is that the total energy and total momentum of a system of particles can be
visualized in a single step by adding up the individual energy–momentum vectors and looking
at the vertical or horizontal components of the resulting total energy–momentum vector. In
what follows, it will be demonstrated how all important features of both inelastic and elastic
collisions can be seen at a single glance on such Minkowski diagrams.

2. Collisions

In classroom problems involving collisions, it is typically the masses and initial velocities of
the colliding particles that are given; students are then supposed to find

(a) the mass and velocity of the resulting single particle (in perfectly inelastic collisions) and
(b) the final velocities of the colliding particles (in elastic collisions).

2.1. Perfectly inelastic collision between two particles

Figure 1 presents the momentum-space Minkowski diagram of a perfectly inelastic collision
between two particles having masses of mA and mB, respectively. The masses and initial
velocities are the following:

mAc2 = 1 (au), mBc2 = 2 (au), vA = −0.5 c, vB = 0.6 c.
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Figure 1. Perfectly inelastic collision in 1D. For all three particles involved in the collision, the
mass appears as the intersection of the E-axis with the hyperbola representing the given particle;
the velocity appears as the slope of the given energy–momentum vector (relative to the E-axis);
and the energy and momentum of each particle appear as the vertical and horizontal components,
respectively, of the energy–momentum vector.

In the collision the two particles are combined into a single particle mC which moves with
a velocity vC . The combined particle is represented by an energy–momentum vector which is
the vectorial sum of the energy–momentum vectors of the two colliding particles.

Writing the equations for conservation of energy and conservation of momentum and
solving them algebraically yields

mCc2 = 3.536 (au) and vC = 0.252 c.
Even though these numbers cannot be deduced to such precision from figure 1, the figure

does ‘tell the entire story’ of the collision and provides quantitative answers to all relevant
questions for all three particles involved in the collision (as explained in the figure caption).

The solution for mC and vC is uniquely determined. When treating inelastic collisions
algebraically, this fact is usually explained by noting that we have two equations (conservation
of energy and conservation of momentum) for two unknowns. Using a Minkowski diagram
such as figure 1, the uniqueness of the solution is trivially apparent: the combined particle is
represented as the sum of two vectors, so both the ‘length’ of this sum vector (i.e. mCc2) and
its orientation (i.e. vC c−1) are uniquely determined.

Perfectly inelastic collisions yield a unique value for the mass mC of the created particle and
its velocity vector vC , regardless of the number of spatial dimensions involved. In the algebraic
treatment this is explained by noting that as we increase the number of dimensions—and hence
the number of unknowns in the components of vC—the number of available equations increases
at the same rate, hence the total number of independent equations (and the total number of
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unknowns) becomes 3 and 4, in 2D and 3D collisions, respectively. In the Minkowski diagram
treatment, again, the reasoning is simpler: the energy–momentum vector of the created particle
is the sum of two energy–momentum vectors; hence its ‘length’ (i.e. mC) and its orientation
(which tells us the components of vC) are uniquely determined.

One of the most important features of perfectly inelastic collisions is that mC > mA + mB,
i.e. the final particle has larger mass than the sum of the two original masses. This point is
immediately apparent in the figure. Even the numerical value of the mass excess mC − (mA +
mB), i.e. the part of the kinetic energy which was converted to mass during the collision, can
be read off from the diagram in a straightforward way.

Fission is an inelastic collision such as the one presented in figure 1, but ‘played backward
in time’. In that case a diagram quite similar to figure 1 can be used for the analysis. Fission
was discussed in detail in Saletan’s paper [1], including the explanation of mass defect, so it
will not be discussed here.

2.2. Elastic collision between two particles in 1D

Let us consider an elastic collision with the same initial conditions as in figure 1. The task is
to find the final velocities vA′ and vB ′ of the two particles after they bounced off each other. In
the momentum-space Minkowski diagram we should thus find two energy–momentum vectors
which satisfy the following requirements:

(1) they must add up to produce the same combined energy–momentum vector as the two
initial energy–momentum vectors did (i.e. their sum must point at C);

(2) the tips of the two vectors must lie on the hyperbolae representing mAc2 and mBc2,
respectively.

A simple geometrical method to solve the problem is presented in figure 2. Again, a
single diagram tells the whole story: all particle speeds, energies and momenta, both before
and after collision, are shown quantitatively.

A unique solution exists for vA′ and vB ′ in a one-dimensional elastic collision. Just like for
inelastic collisions, this fact is usually explained from algebra by noting that we have the same
number of equations as unknowns: two equations (conservation of energy and conservation
of momentum) for two unknowns. However, a Minkowski diagram such as figure 2 even tells
‘this part of the story’ at a single glance: if two hyperbolae intersect, they intersect at exactly
two points. One of these two points corresponds to the initial configuration of the particles.
The other uniquely determines the state of the particles after collision.

2.3. Elastic collision between particles in 2D

It is straightforward to generalize the previous discussion to collisions in two spatial
dimensions. The Minkowski diagram becomes a three-dimensional figure where each
colliding particle is represented by a hyperboloid of revolution, rather than a hyperbola, as
equations (3) and (4) suggest. Figure 3(a) presents such a diagram for the same initial
parameters as figures 1 and 2. (The axis along which the two particles were moving before
collision is the x-axis.)

In the usual algebraic discussion of elastic collisions in 2D it is noted that there is an
infinite number of possible final states for the two particles: we have four unknowns (the x-
and y-components of the final velocities vA′ and vB′), but only three independent equations
(energy conservation plus the two components of momentum conservation). Again, however,
a single glance at the Minkowski diagram in figure 3(a) is sufficient to provide a simple
alternative explanation for the infinite number of possible final states: the two hyperboloids
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Figure 2. Elastic collision in 1D. From C as the origin, an upside-down version of the hyperbola
mAc2 is drawn. This hyperbola (denoted with “mAc2”) intersects the hyperbola mBc2 at two points.
These are the only two points that satisfy the two requirements listed in the text. B represents
particle mB before the collision, B′ represents the same particle after the collision. By using the
parallelogram rule of vector addition, it is straightforward to draw the final energy–momentum
vector for particle mA (denoted by A′).

intersect in a continuous curve, not just two discrete points as in the 1D case (see figure 2),
resulting in an infinite number of possible solutions.

Figure 3(b) depicts the intersection curve of the two hyperboloids: a tilted ellipse.
Figure 3(c) shows this projected ellipse on the (pxc, pyc) plane. The kind of partial, ‘momentum-
only’ Minkowski diagram depicted in figure 3(c) may also have its pedagogical uses. Any
vector pointing from origin O to an arbitrary point on the ellipse gives a possible momentum
vector for particle mB, and the vector pointing from that point of the ellipse to point Cp gives the
corresponding momentum vector for particle mA. The total momentum vector of the system
is represented by OCp.

3. Special cases

3.1. Special case #1: 2D elastic collision between a particle and an identical particle at rest

A frequently discussed special case of 2D elastic collisions is when two identical particles
collide (i.e. mA = mB), and one of them is initially at rest. A well-known result of the Newtonian
treatment of this problem is that after collision the two particles move perpendicularly to each
other. That this result is correct only for small initial speeds can be readily illustrated using
momentum-only Minkowski diagrams.
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(a)

(b) (c)

Figure 3. Elastic collision in 2D. (a) As a straightforward generalization of figure 2, an upside-
down version of the hyperboloid mAc2 is drawn from C taken as the origin. The intersection
curve of this inverted hyperboloid (denoted by ‘mAc2’) with the hyperboloid mBc2 gives the
possible loci for the tip of the energy–momentum vector of particle mBc2 in this interaction.
(b) The intersection curve of the two hyperboloids: a tilted ellipse. The energy–momentum
vectors A′ and B′ represent one of the infinite number of possible final states (corresponding to
the case when particle mB moves along the negative y-axis after collision). A and B denote the
energy–momentum vectors before collision. The projection of the intersection ellipse on the (pxc,
pyc) plane is another ellipse, shown as a broken curve. (c) The projected ellipse on the (pxc, pyc)
plane. All points with a subscript ‘p’ are projections of the corresponding points on (b) onto the
(pxc, pyc) plane. Bp

′ ′ describes another possible final configuration, added here for illustration.
(The foci of the ellipse are shown as two small empty circles.)

Figure 4 presents momentum-only Minkowski diagrams for this type of collision, with
mAc2 = mBc2 = 1 (au). As seen in figure 4(a) (corresponding to a highly relativistic case) the
relative orientation of the final momentum vectors can deviate significantly from 90◦. As we
approach the classical case, the relative orientation of the final momentum vectors becomes
closer and closer to perpendicular: for decreasing vA the eccentricity of the ellipse decreases
and the diagram begins to resemble a circle. In the Newtonian approximation the diagram is
a circle with OCp as its diameter; hence each possible momentum configuration corresponds
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(a) (c) (d)

Figure 4. Elastic collision in 2D between identical particles, one of them at rest. The initial speed
of particle mA is (a) vA = 0.9 c, (b) vA = 0.5 c, and (c) vA = 0.1 c. Just like for figure 3(c), the
relativistic treatment always results in an ellipse for the curve describing the possible configurations
after collision. In this special case, however, O and Cp (the starting point and the tip of the total
momentum vector, respectively) are the two end points of the major axis of the ellipse. Some
possible configurations for the final momenta of the two particles are depicted as vectors with
dotted lines. (Again, the foci of the ellipses are shown as two small empty circles.) The figure also
illustrates quantitatively how the Newtonian formula for total momentum mA·vA deviates from the
correct relativistic one, but approaches it at small velocities. The total momentum is (in (au)) 2.06,
0.58 and 0.10, for figures 4(a), (b) and (c), respectively. The corresponding Newtonian values
would be 0.90, 0.50 and 0.10, respectively.

to drawing two adjacent chords between the end points of a diameter, yielding, according to
Thales’ theorem, perpendicularly oriented final momenta.

3.2. Special case #2: Compton scattering

Another special case for 2D elastic collision is Compton scattering: here a photon collides
with an electron originally at rest. As a result, part of the photon’s energy is transferred to the
electron, causing it to move in some direction, while the photon itself will be scattered in some
other direction. The energy loss for the photon results in a wavelength shift. The main points
of the momentum-space Minkowski diagram analysis for this interaction were discussed in
Saletan’s paper [1], so I just give a short summary here and make some additional remarks.

For any photon E2 − (pc)2 = 0, so photons are represented in a momentum-space
Minkowski diagram with a cone, denoted with phA in figure 5(a). (Unlike the ‘light cone’
in configuration space Minkowski diagrams, the cone in figure 5(a) represents all photons,
travelling with any energy at any time on the (x, y) plane.) That photons are particles with
zero mass is immediately apparent from the Minkowski diagram, since the cone in figure 5(a)
can be thought of as a degenerate hyperboloid which intersects the E-axis at E = 0.

The electron is represented by the hyperboloid denoted by mB. For simplicity, the
energy unit in this example is chosen so that the electron’s mass is unity: mBc2 = 1. The
incoming photon is assumed to move along the positive x-axis with energy EA = pAc = 0.5.
The geometrical method to find the final states for the photon and the electron is similar to
figure 3(a) (see captions to figure 5). Figure 5(b) shows the intersection curve (again, a tilted
ellipse). As in figure 3(b), the interaction ellipse can next be projected onto the (pxc, pyc) plane.
The result is shown in figure 5(c). Two special features are apparent on this ellipse, compared
to figure 3(c) (which represented an arbitrary collision between two material particles):

(1) the left end-point of the major axis is at the origin;
(2) point Cp, the projection of C, coincides with the right-hand-side focus.
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(a)

(b) (c)

Figure 5. Compton scattering. (a) First the total energy–momentum vector for the system is
found (using our initial parameters, the E-component of this vector is 1.5 and the pxc-component is
0.5). The tip of this vector is denoted by C. An upside-down version of the photon cone (denoted
by ‘phA’) is then drawn from C; and the intersection curve between the hyperboloid mBc2 and
the inverted cone “phA” represents the possible final states for the electron after the interaction.
(b) The intersection curve: a tilted ellipse. B′ represents one possible final state for the electron
and A′ denotes the corresponding final state for the photon. A and B denote the energy–momentum
vectors before collision. (c) The projected ellipse on the (pxc, pyc) plane. Bp

′ and Bp
′ ′ denote

two possible final configurations. The vector pointing from the origin to any point on the ellipse
represents a possible momentum vector for the electron and the vector pointing from that point of
the ellipse to point Cp gives the corresponding momentum vector for the scattered photon. (The
foci of the ellipse are shown as two small empty circles.)

The relative directions of motion for the electron and photon are immediately apparent
from the figure. In addition, the length of the momentum vector for the photon in figure 5(c)
directly gives the numerical value for its energy too. (Note that the precise shape of the ellipse
depends on the energy of the incoming photon, as will be discussed below, but all ellipses,
regardless of the initial photon energy, share the two special features listed above.)
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Some qualitative features of Compton scattering are immediately obvious from
figure 5(c): (1) all scattered photons have smaller energies (i.e. larger wavelength) than the
initial photon; (2) as the scattering angle increases, the energy of the scattered photon decreases,
and the backward scattered photon has the smallest energy (i.e. the largest wavelength).

The equation of the ‘Compton ellipse’ of figure 5(c) can be found in a straightforward
way. The equation of the hyperboloid for mBc2 is

E =
√

m2
Bc2 + p2

x + p2
y · c (5)

and the equation of the upside-down cone ‘phA’ is

E =
(
pA + mBc −

√
(px − pA)2 + p2

y

)
· c. (6)

Equating the right-hand sides of equations (5) and (6) yields the equation of the projected
intersection ellipse in the (px, py) plane:

(
pxc − a

2

)2

a2
+

(pyc)
2

b2
= 1, (7)

where

a = pAc(pA + mBc)

2pA + mBc
(8)

and

b = pAc

√
mBc

2pA + mBc
(9)

are the semi-major axis and the semi-minor axis, respectively. The focal length is

f =
√

a2 − b2 = p2
Ac

2pA + mBc
. (10)

Using equations (8)–(10) we find particularly simple expressions for the eccentricity e and the
so-called parameter ! of the ellipse:

e ≡ f

a
= pA

pA + mBc
(11)

! ≡ b2

a
= pAmBc2

pA + mBc
. (12)

The geometrical meaning of eccentricity e is how much the ellipse deviates from a circle (as
e → 0, the ellipse becomes a circle and the two foci coincide with the centre of the circle).
As seen from equation (11), the eccentricity of the Compton ellipse has a physical meaning
too: if the initial photon energy is much smaller than the electron’s mass, i.e. (pAc)/(mBc2) &
1, the ellipse becomes a circle, and the possible momentum vectors of the photon are along
radii of that circle (see figure 5(c)). This implies that the scattered photon only changes its
direction, while losing only a negligible fraction of its energy.

The equation of an ellipse has its most elegant algebraic form in the polar coordinate
system having one of the focal points as its origin. The length of the radius vector r as a
function of the polar angle θ is given as

r = !

1 − e cos θ
. (13)

As seen in figure 5(c), in the Compton ellipse the length of the ‘radius vector’ that belongs to
a given photon scattering angle # represents the final photon momentum p′

A c corresponding
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to that scattering angle. Adapting equation (13) for figure 5(c) and substituting expressions
(11) and (12) for ! and e, we obtain

p′
Ac = mBc2

1 + mBc
pA

− cos #
. (14)

Substituting the de Broglie expressions for the initial and final photon momenta, pA = h
λ

and
p′

A = h
λ′ (where h is Planck’s constant) and multiplying through both sides by the denominator

in equation (14) we get

h

λ′ c (1 − cos #) = mBc2 λ′ − λ

λ′ , (15)

hence

%λ = h

mBc
(1 − cos #) . (16)

The well-known formula for the Compton wavelength shift of the photon is thus obtained by
exploiting the geometric properties of the Compton ellipse rather than the purely algebraic
method of writing the equations for the conservation of momentum and conservation of energy,
and then eliminating the electron’s velocity and scattering angle from the equations. Whereas
the mathematics employed here in deriving equation (16) is not necessarily simpler than the
purely algebraic method, the geometric approach presented here might be more elegant and
attractive in the eyes of many students, especially since neither the electron’s velocity nor its
scattering angle appear anywhere in the derivation.

4. Concluding remarks

Momentum-space Minkowski diagrams may serve as a powerful tool in classroom discussions
of particle–particle and particle–photon interactions. In many cases a single diagram can give
students not only a quick qualitative description of all relevant features of the interaction at a
single glance, but it can also provide them with a rough numerical value for all the essential
physical quantities.
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